1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/lsm_hooks.h>
16 #include <linux/file.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/binfmts.h>
32 #include <linux/personality.h>
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
43 * Warn if that happens, once per boot.
45 static void warn_setuid_and_fcaps_mixed(const char *fname
)
49 printk(KERN_INFO
"warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname
);
57 * cap_capable - Determine whether a task has a particular effective capability
58 * @cred: The credentials to use
59 * @ns: The user namespace in which we need the capability
60 * @cap: The capability to check for
61 * @audit: Whether to write an audit message or not
63 * Determine whether the nominated task has the specified capability amongst
64 * its effective set, returning 0 if it does, -ve if it does not.
66 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
67 * and has_capability() functions. That is, it has the reverse semantics:
68 * cap_has_capability() returns 0 when a task has a capability, but the
69 * kernel's capable() and has_capability() returns 1 for this case.
71 int cap_capable(const struct cred
*cred
, struct user_namespace
*targ_ns
,
74 struct user_namespace
*ns
= targ_ns
;
76 /* See if cred has the capability in the target user namespace
77 * by examining the target user namespace and all of the target
78 * user namespace's parents.
81 /* Do we have the necessary capabilities? */
82 if (ns
== cred
->user_ns
)
83 return cap_raised(cred
->cap_effective
, cap
) ? 0 : -EPERM
;
85 /* Have we tried all of the parent namespaces? */
86 if (ns
== &init_user_ns
)
90 * The owner of the user namespace in the parent of the
91 * user namespace has all caps.
93 if ((ns
->parent
== cred
->user_ns
) && uid_eq(ns
->owner
, cred
->euid
))
97 * If you have a capability in a parent user ns, then you have
98 * it over all children user namespaces as well.
103 /* We never get here */
107 * cap_settime - Determine whether the current process may set the system clock
108 * @ts: The time to set
109 * @tz: The timezone to set
111 * Determine whether the current process may set the system clock and timezone
112 * information, returning 0 if permission granted, -ve if denied.
114 int cap_settime(const struct timespec64
*ts
, const struct timezone
*tz
)
116 if (!capable(CAP_SYS_TIME
))
122 * cap_ptrace_access_check - Determine whether the current process may access
124 * @child: The process to be accessed
125 * @mode: The mode of attachment.
127 * If we are in the same or an ancestor user_ns and have all the target
128 * task's capabilities, then ptrace access is allowed.
129 * If we have the ptrace capability to the target user_ns, then ptrace
133 * Determine whether a process may access another, returning 0 if permission
134 * granted, -ve if denied.
136 int cap_ptrace_access_check(struct task_struct
*child
, unsigned int mode
)
139 const struct cred
*cred
, *child_cred
;
140 const kernel_cap_t
*caller_caps
;
143 cred
= current_cred();
144 child_cred
= __task_cred(child
);
145 if (mode
& PTRACE_MODE_FSCREDS
)
146 caller_caps
= &cred
->cap_effective
;
148 caller_caps
= &cred
->cap_permitted
;
149 if (cred
->user_ns
== child_cred
->user_ns
&&
150 cap_issubset(child_cred
->cap_permitted
, *caller_caps
))
152 if (ns_capable(child_cred
->user_ns
, CAP_SYS_PTRACE
))
161 * cap_ptrace_traceme - Determine whether another process may trace the current
162 * @parent: The task proposed to be the tracer
164 * If parent is in the same or an ancestor user_ns and has all current's
165 * capabilities, then ptrace access is allowed.
166 * If parent has the ptrace capability to current's user_ns, then ptrace
170 * Determine whether the nominated task is permitted to trace the current
171 * process, returning 0 if permission is granted, -ve if denied.
173 int cap_ptrace_traceme(struct task_struct
*parent
)
176 const struct cred
*cred
, *child_cred
;
179 cred
= __task_cred(parent
);
180 child_cred
= current_cred();
181 if (cred
->user_ns
== child_cred
->user_ns
&&
182 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
184 if (has_ns_capability(parent
, child_cred
->user_ns
, CAP_SYS_PTRACE
))
193 * cap_capget - Retrieve a task's capability sets
194 * @target: The task from which to retrieve the capability sets
195 * @effective: The place to record the effective set
196 * @inheritable: The place to record the inheritable set
197 * @permitted: The place to record the permitted set
199 * This function retrieves the capabilities of the nominated task and returns
200 * them to the caller.
202 int cap_capget(struct task_struct
*target
, kernel_cap_t
*effective
,
203 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
205 const struct cred
*cred
;
207 /* Derived from kernel/capability.c:sys_capget. */
209 cred
= __task_cred(target
);
210 *effective
= cred
->cap_effective
;
211 *inheritable
= cred
->cap_inheritable
;
212 *permitted
= cred
->cap_permitted
;
218 * Determine whether the inheritable capabilities are limited to the old
219 * permitted set. Returns 1 if they are limited, 0 if they are not.
221 static inline int cap_inh_is_capped(void)
224 /* they are so limited unless the current task has the CAP_SETPCAP
227 if (cap_capable(current_cred(), current_cred()->user_ns
,
228 CAP_SETPCAP
, SECURITY_CAP_AUDIT
) == 0)
234 * cap_capset - Validate and apply proposed changes to current's capabilities
235 * @new: The proposed new credentials; alterations should be made here
236 * @old: The current task's current credentials
237 * @effective: A pointer to the proposed new effective capabilities set
238 * @inheritable: A pointer to the proposed new inheritable capabilities set
239 * @permitted: A pointer to the proposed new permitted capabilities set
241 * This function validates and applies a proposed mass change to the current
242 * process's capability sets. The changes are made to the proposed new
243 * credentials, and assuming no error, will be committed by the caller of LSM.
245 int cap_capset(struct cred
*new,
246 const struct cred
*old
,
247 const kernel_cap_t
*effective
,
248 const kernel_cap_t
*inheritable
,
249 const kernel_cap_t
*permitted
)
251 if (cap_inh_is_capped() &&
252 !cap_issubset(*inheritable
,
253 cap_combine(old
->cap_inheritable
,
254 old
->cap_permitted
)))
255 /* incapable of using this inheritable set */
258 if (!cap_issubset(*inheritable
,
259 cap_combine(old
->cap_inheritable
,
261 /* no new pI capabilities outside bounding set */
264 /* verify restrictions on target's new Permitted set */
265 if (!cap_issubset(*permitted
, old
->cap_permitted
))
268 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
269 if (!cap_issubset(*effective
, *permitted
))
272 new->cap_effective
= *effective
;
273 new->cap_inheritable
= *inheritable
;
274 new->cap_permitted
= *permitted
;
277 * Mask off ambient bits that are no longer both permitted and
280 new->cap_ambient
= cap_intersect(new->cap_ambient
,
281 cap_intersect(*permitted
,
283 if (WARN_ON(!cap_ambient_invariant_ok(new)))
289 * Clear proposed capability sets for execve().
291 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
293 cap_clear(bprm
->cred
->cap_permitted
);
294 bprm
->cap_effective
= false;
298 * cap_inode_need_killpriv - Determine if inode change affects privileges
299 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
301 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
302 * affects the security markings on that inode, and if it is, should
303 * inode_killpriv() be invoked or the change rejected?
305 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
306 * -ve to deny the change.
308 int cap_inode_need_killpriv(struct dentry
*dentry
)
310 struct inode
*inode
= d_backing_inode(dentry
);
313 error
= __vfs_getxattr(dentry
, inode
, XATTR_NAME_CAPS
, NULL
, 0);
318 * cap_inode_killpriv - Erase the security markings on an inode
319 * @dentry: The inode/dentry to alter
321 * Erase the privilege-enhancing security markings on an inode.
323 * Returns 0 if successful, -ve on error.
325 int cap_inode_killpriv(struct dentry
*dentry
)
329 error
= __vfs_removexattr(dentry
, XATTR_NAME_CAPS
);
330 if (error
== -EOPNOTSUPP
)
336 * Calculate the new process capability sets from the capability sets attached
339 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data
*caps
,
340 struct linux_binprm
*bprm
,
344 struct cred
*new = bprm
->cred
;
348 if (caps
->magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
351 if (caps
->magic_etc
& VFS_CAP_REVISION_MASK
)
354 CAP_FOR_EACH_U32(i
) {
355 __u32 permitted
= caps
->permitted
.cap
[i
];
356 __u32 inheritable
= caps
->inheritable
.cap
[i
];
359 * pP' = (X & fP) | (pI & fI)
360 * The addition of pA' is handled later.
362 new->cap_permitted
.cap
[i
] =
363 (new->cap_bset
.cap
[i
] & permitted
) |
364 (new->cap_inheritable
.cap
[i
] & inheritable
);
366 if (permitted
& ~new->cap_permitted
.cap
[i
])
367 /* insufficient to execute correctly */
372 * For legacy apps, with no internal support for recognizing they
373 * do not have enough capabilities, we return an error if they are
374 * missing some "forced" (aka file-permitted) capabilities.
376 return *effective
? ret
: 0;
380 * Extract the on-exec-apply capability sets for an executable file.
382 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
384 struct inode
*inode
= d_backing_inode(dentry
);
388 struct vfs_cap_data caps
;
390 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
395 size
= __vfs_getxattr((struct dentry
*)dentry
, inode
,
396 XATTR_NAME_CAPS
, &caps
, XATTR_CAPS_SZ
);
397 if (size
== -ENODATA
|| size
== -EOPNOTSUPP
)
398 /* no data, that's ok */
403 if (size
< sizeof(magic_etc
))
406 cpu_caps
->magic_etc
= magic_etc
= le32_to_cpu(caps
.magic_etc
);
408 switch (magic_etc
& VFS_CAP_REVISION_MASK
) {
409 case VFS_CAP_REVISION_1
:
410 if (size
!= XATTR_CAPS_SZ_1
)
412 tocopy
= VFS_CAP_U32_1
;
414 case VFS_CAP_REVISION_2
:
415 if (size
!= XATTR_CAPS_SZ_2
)
417 tocopy
= VFS_CAP_U32_2
;
423 CAP_FOR_EACH_U32(i
) {
426 cpu_caps
->permitted
.cap
[i
] = le32_to_cpu(caps
.data
[i
].permitted
);
427 cpu_caps
->inheritable
.cap
[i
] = le32_to_cpu(caps
.data
[i
].inheritable
);
430 cpu_caps
->permitted
.cap
[CAP_LAST_U32
] &= CAP_LAST_U32_VALID_MASK
;
431 cpu_caps
->inheritable
.cap
[CAP_LAST_U32
] &= CAP_LAST_U32_VALID_MASK
;
437 * Attempt to get the on-exec apply capability sets for an executable file from
438 * its xattrs and, if present, apply them to the proposed credentials being
439 * constructed by execve().
441 static int get_file_caps(struct linux_binprm
*bprm
, bool *effective
, bool *has_cap
)
444 struct cpu_vfs_cap_data vcaps
;
446 bprm_clear_caps(bprm
);
448 if (!file_caps_enabled
)
451 if (!mnt_may_suid(bprm
->file
->f_path
.mnt
))
455 * This check is redundant with mnt_may_suid() but is kept to make
456 * explicit that capability bits are limited to s_user_ns and its
459 if (!current_in_userns(bprm
->file
->f_path
.mnt
->mnt_sb
->s_user_ns
))
462 rc
= get_vfs_caps_from_disk(bprm
->file
->f_path
.dentry
, &vcaps
);
465 printk(KERN_NOTICE
"%s: get_vfs_caps_from_disk returned %d for %s\n",
466 __func__
, rc
, bprm
->filename
);
467 else if (rc
== -ENODATA
)
472 rc
= bprm_caps_from_vfs_caps(&vcaps
, bprm
, effective
, has_cap
);
474 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
475 __func__
, rc
, bprm
->filename
);
479 bprm_clear_caps(bprm
);
485 * cap_bprm_set_creds - Set up the proposed credentials for execve().
486 * @bprm: The execution parameters, including the proposed creds
488 * Set up the proposed credentials for a new execution context being
489 * constructed by execve(). The proposed creds in @bprm->cred is altered,
490 * which won't take effect immediately. Returns 0 if successful, -ve on error.
492 int cap_bprm_set_creds(struct linux_binprm
*bprm
)
494 const struct cred
*old
= current_cred();
495 struct cred
*new = bprm
->cred
;
496 bool effective
, has_cap
= false, is_setid
;
500 if (WARN_ON(!cap_ambient_invariant_ok(old
)))
504 ret
= get_file_caps(bprm
, &effective
, &has_cap
);
508 root_uid
= make_kuid(new->user_ns
, 0);
510 if (!issecure(SECURE_NOROOT
)) {
512 * If the legacy file capability is set, then don't set privs
513 * for a setuid root binary run by a non-root user. Do set it
514 * for a root user just to cause least surprise to an admin.
516 if (has_cap
&& !uid_eq(new->uid
, root_uid
) && uid_eq(new->euid
, root_uid
)) {
517 warn_setuid_and_fcaps_mixed(bprm
->filename
);
521 * To support inheritance of root-permissions and suid-root
522 * executables under compatibility mode, we override the
523 * capability sets for the file.
525 * If only the real uid is 0, we do not set the effective bit.
527 if (uid_eq(new->euid
, root_uid
) || uid_eq(new->uid
, root_uid
)) {
528 /* pP' = (cap_bset & ~0) | (pI & ~0) */
529 new->cap_permitted
= cap_combine(old
->cap_bset
,
530 old
->cap_inheritable
);
532 if (uid_eq(new->euid
, root_uid
))
537 /* if we have fs caps, clear dangerous personality flags */
538 if (!cap_issubset(new->cap_permitted
, old
->cap_permitted
))
539 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
542 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
543 * credentials unless they have the appropriate permit.
545 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
547 is_setid
= !uid_eq(new->euid
, old
->uid
) || !gid_eq(new->egid
, old
->gid
);
550 !cap_issubset(new->cap_permitted
, old
->cap_permitted
)) &&
551 bprm
->unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
552 /* downgrade; they get no more than they had, and maybe less */
553 if (!capable(CAP_SETUID
) ||
554 (bprm
->unsafe
& LSM_UNSAFE_NO_NEW_PRIVS
)) {
555 new->euid
= new->uid
;
556 new->egid
= new->gid
;
558 new->cap_permitted
= cap_intersect(new->cap_permitted
,
562 new->suid
= new->fsuid
= new->euid
;
563 new->sgid
= new->fsgid
= new->egid
;
565 /* File caps or setid cancels ambient. */
566 if (has_cap
|| is_setid
)
567 cap_clear(new->cap_ambient
);
570 * Now that we've computed pA', update pP' to give:
571 * pP' = (X & fP) | (pI & fI) | pA'
573 new->cap_permitted
= cap_combine(new->cap_permitted
, new->cap_ambient
);
576 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
577 * this is the same as pE' = (fE ? pP' : 0) | pA'.
580 new->cap_effective
= new->cap_permitted
;
582 new->cap_effective
= new->cap_ambient
;
584 if (WARN_ON(!cap_ambient_invariant_ok(new)))
587 bprm
->cap_effective
= effective
;
590 * Audit candidate if current->cap_effective is set
592 * We do not bother to audit if 3 things are true:
593 * 1) cap_effective has all caps
595 * 3) root is supposed to have all caps (SECURE_NOROOT)
596 * Since this is just a normal root execing a process.
598 * Number 1 above might fail if you don't have a full bset, but I think
599 * that is interesting information to audit.
601 if (!cap_issubset(new->cap_effective
, new->cap_ambient
)) {
602 if (!cap_issubset(CAP_FULL_SET
, new->cap_effective
) ||
603 !uid_eq(new->euid
, root_uid
) || !uid_eq(new->uid
, root_uid
) ||
604 issecure(SECURE_NOROOT
)) {
605 ret
= audit_log_bprm_fcaps(bprm
, new, old
);
611 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
613 if (WARN_ON(!cap_ambient_invariant_ok(new)))
620 * cap_bprm_secureexec - Determine whether a secure execution is required
621 * @bprm: The execution parameters
623 * Determine whether a secure execution is required, return 1 if it is, and 0
626 * The credentials have been committed by this point, and so are no longer
627 * available through @bprm->cred.
629 int cap_bprm_secureexec(struct linux_binprm
*bprm
)
631 const struct cred
*cred
= current_cred();
632 kuid_t root_uid
= make_kuid(cred
->user_ns
, 0);
634 if (!uid_eq(cred
->uid
, root_uid
)) {
635 if (bprm
->cap_effective
)
637 if (!cap_issubset(cred
->cap_permitted
, cred
->cap_ambient
))
641 return (!uid_eq(cred
->euid
, cred
->uid
) ||
642 !gid_eq(cred
->egid
, cred
->gid
));
646 * cap_inode_setxattr - Determine whether an xattr may be altered
647 * @dentry: The inode/dentry being altered
648 * @name: The name of the xattr to be changed
649 * @value: The value that the xattr will be changed to
650 * @size: The size of value
651 * @flags: The replacement flag
653 * Determine whether an xattr may be altered or set on an inode, returning 0 if
654 * permission is granted, -ve if denied.
656 * This is used to make sure security xattrs don't get updated or set by those
657 * who aren't privileged to do so.
659 int cap_inode_setxattr(struct dentry
*dentry
, const char *name
,
660 const void *value
, size_t size
, int flags
)
662 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
663 if (!capable(CAP_SETFCAP
))
668 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
669 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
670 !capable(CAP_SYS_ADMIN
))
676 * cap_inode_removexattr - Determine whether an xattr may be removed
677 * @dentry: The inode/dentry being altered
678 * @name: The name of the xattr to be changed
680 * Determine whether an xattr may be removed from an inode, returning 0 if
681 * permission is granted, -ve if denied.
683 * This is used to make sure security xattrs don't get removed by those who
684 * aren't privileged to remove them.
686 int cap_inode_removexattr(struct dentry
*dentry
, const char *name
)
688 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
689 if (!capable(CAP_SETFCAP
))
694 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
695 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
696 !capable(CAP_SYS_ADMIN
))
702 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
703 * a process after a call to setuid, setreuid, or setresuid.
705 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
706 * {r,e,s}uid != 0, the permitted and effective capabilities are
709 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
710 * capabilities of the process are cleared.
712 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
713 * capabilities are set to the permitted capabilities.
715 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
720 * cevans - New behaviour, Oct '99
721 * A process may, via prctl(), elect to keep its capabilities when it
722 * calls setuid() and switches away from uid==0. Both permitted and
723 * effective sets will be retained.
724 * Without this change, it was impossible for a daemon to drop only some
725 * of its privilege. The call to setuid(!=0) would drop all privileges!
726 * Keeping uid 0 is not an option because uid 0 owns too many vital
728 * Thanks to Olaf Kirch and Peter Benie for spotting this.
730 static inline void cap_emulate_setxuid(struct cred
*new, const struct cred
*old
)
732 kuid_t root_uid
= make_kuid(old
->user_ns
, 0);
734 if ((uid_eq(old
->uid
, root_uid
) ||
735 uid_eq(old
->euid
, root_uid
) ||
736 uid_eq(old
->suid
, root_uid
)) &&
737 (!uid_eq(new->uid
, root_uid
) &&
738 !uid_eq(new->euid
, root_uid
) &&
739 !uid_eq(new->suid
, root_uid
))) {
740 if (!issecure(SECURE_KEEP_CAPS
)) {
741 cap_clear(new->cap_permitted
);
742 cap_clear(new->cap_effective
);
746 * Pre-ambient programs expect setresuid to nonroot followed
747 * by exec to drop capabilities. We should make sure that
748 * this remains the case.
750 cap_clear(new->cap_ambient
);
752 if (uid_eq(old
->euid
, root_uid
) && !uid_eq(new->euid
, root_uid
))
753 cap_clear(new->cap_effective
);
754 if (!uid_eq(old
->euid
, root_uid
) && uid_eq(new->euid
, root_uid
))
755 new->cap_effective
= new->cap_permitted
;
759 * cap_task_fix_setuid - Fix up the results of setuid() call
760 * @new: The proposed credentials
761 * @old: The current task's current credentials
762 * @flags: Indications of what has changed
764 * Fix up the results of setuid() call before the credential changes are
765 * actually applied, returning 0 to grant the changes, -ve to deny them.
767 int cap_task_fix_setuid(struct cred
*new, const struct cred
*old
, int flags
)
773 /* juggle the capabilities to follow [RES]UID changes unless
774 * otherwise suppressed */
775 if (!issecure(SECURE_NO_SETUID_FIXUP
))
776 cap_emulate_setxuid(new, old
);
780 /* juggle the capabilties to follow FSUID changes, unless
781 * otherwise suppressed
783 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
784 * if not, we might be a bit too harsh here.
786 if (!issecure(SECURE_NO_SETUID_FIXUP
)) {
787 kuid_t root_uid
= make_kuid(old
->user_ns
, 0);
788 if (uid_eq(old
->fsuid
, root_uid
) && !uid_eq(new->fsuid
, root_uid
))
790 cap_drop_fs_set(new->cap_effective
);
792 if (!uid_eq(old
->fsuid
, root_uid
) && uid_eq(new->fsuid
, root_uid
))
794 cap_raise_fs_set(new->cap_effective
,
807 * Rationale: code calling task_setscheduler, task_setioprio, and
808 * task_setnice, assumes that
809 * . if capable(cap_sys_nice), then those actions should be allowed
810 * . if not capable(cap_sys_nice), but acting on your own processes,
811 * then those actions should be allowed
812 * This is insufficient now since you can call code without suid, but
813 * yet with increased caps.
814 * So we check for increased caps on the target process.
816 static int cap_safe_nice(struct task_struct
*p
)
818 int is_subset
, ret
= 0;
821 is_subset
= cap_issubset(__task_cred(p
)->cap_permitted
,
822 current_cred()->cap_permitted
);
823 if (!is_subset
&& !ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
))
831 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
832 * @p: The task to affect
834 * Detemine if the requested scheduler policy change is permitted for the
835 * specified task, returning 0 if permission is granted, -ve if denied.
837 int cap_task_setscheduler(struct task_struct
*p
)
839 return cap_safe_nice(p
);
843 * cap_task_ioprio - Detemine if I/O priority change is permitted
844 * @p: The task to affect
845 * @ioprio: The I/O priority to set
847 * Detemine if the requested I/O priority change is permitted for the specified
848 * task, returning 0 if permission is granted, -ve if denied.
850 int cap_task_setioprio(struct task_struct
*p
, int ioprio
)
852 return cap_safe_nice(p
);
856 * cap_task_ioprio - Detemine if task priority change is permitted
857 * @p: The task to affect
858 * @nice: The nice value to set
860 * Detemine if the requested task priority change is permitted for the
861 * specified task, returning 0 if permission is granted, -ve if denied.
863 int cap_task_setnice(struct task_struct
*p
, int nice
)
865 return cap_safe_nice(p
);
869 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
870 * the current task's bounding set. Returns 0 on success, -ve on error.
872 static int cap_prctl_drop(unsigned long cap
)
876 if (!ns_capable(current_user_ns(), CAP_SETPCAP
))
881 new = prepare_creds();
884 cap_lower(new->cap_bset
, cap
);
885 return commit_creds(new);
889 * cap_task_prctl - Implement process control functions for this security module
890 * @option: The process control function requested
891 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
893 * Allow process control functions (sys_prctl()) to alter capabilities; may
894 * also deny access to other functions not otherwise implemented here.
896 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
897 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
898 * modules will consider performing the function.
900 int cap_task_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
901 unsigned long arg4
, unsigned long arg5
)
903 const struct cred
*old
= current_cred();
907 case PR_CAPBSET_READ
:
908 if (!cap_valid(arg2
))
910 return !!cap_raised(old
->cap_bset
, arg2
);
912 case PR_CAPBSET_DROP
:
913 return cap_prctl_drop(arg2
);
916 * The next four prctl's remain to assist with transitioning a
917 * system from legacy UID=0 based privilege (when filesystem
918 * capabilities are not in use) to a system using filesystem
919 * capabilities only - as the POSIX.1e draft intended.
923 * PR_SET_SECUREBITS =
924 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
925 * | issecure_mask(SECURE_NOROOT)
926 * | issecure_mask(SECURE_NOROOT_LOCKED)
927 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
928 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
930 * will ensure that the current process and all of its
931 * children will be locked into a pure
932 * capability-based-privilege environment.
934 case PR_SET_SECUREBITS
:
935 if ((((old
->securebits
& SECURE_ALL_LOCKS
) >> 1)
936 & (old
->securebits
^ arg2
)) /*[1]*/
937 || ((old
->securebits
& SECURE_ALL_LOCKS
& ~arg2
)) /*[2]*/
938 || (arg2
& ~(SECURE_ALL_LOCKS
| SECURE_ALL_BITS
)) /*[3]*/
939 || (cap_capable(current_cred(),
940 current_cred()->user_ns
, CAP_SETPCAP
,
941 SECURITY_CAP_AUDIT
) != 0) /*[4]*/
943 * [1] no changing of bits that are locked
944 * [2] no unlocking of locks
945 * [3] no setting of unsupported bits
946 * [4] doing anything requires privilege (go read about
947 * the "sendmail capabilities bug")
950 /* cannot change a locked bit */
953 new = prepare_creds();
956 new->securebits
= arg2
;
957 return commit_creds(new);
959 case PR_GET_SECUREBITS
:
960 return old
->securebits
;
962 case PR_GET_KEEPCAPS
:
963 return !!issecure(SECURE_KEEP_CAPS
);
965 case PR_SET_KEEPCAPS
:
966 if (arg2
> 1) /* Note, we rely on arg2 being unsigned here */
968 if (issecure(SECURE_KEEP_CAPS_LOCKED
))
971 new = prepare_creds();
975 new->securebits
|= issecure_mask(SECURE_KEEP_CAPS
);
977 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
978 return commit_creds(new);
981 if (arg2
== PR_CAP_AMBIENT_CLEAR_ALL
) {
982 if (arg3
| arg4
| arg5
)
985 new = prepare_creds();
988 cap_clear(new->cap_ambient
);
989 return commit_creds(new);
992 if (((!cap_valid(arg3
)) | arg4
| arg5
))
995 if (arg2
== PR_CAP_AMBIENT_IS_SET
) {
996 return !!cap_raised(current_cred()->cap_ambient
, arg3
);
997 } else if (arg2
!= PR_CAP_AMBIENT_RAISE
&&
998 arg2
!= PR_CAP_AMBIENT_LOWER
) {
1001 if (arg2
== PR_CAP_AMBIENT_RAISE
&&
1002 (!cap_raised(current_cred()->cap_permitted
, arg3
) ||
1003 !cap_raised(current_cred()->cap_inheritable
,
1005 issecure(SECURE_NO_CAP_AMBIENT_RAISE
)))
1008 new = prepare_creds();
1011 if (arg2
== PR_CAP_AMBIENT_RAISE
)
1012 cap_raise(new->cap_ambient
, arg3
);
1014 cap_lower(new->cap_ambient
, arg3
);
1015 return commit_creds(new);
1019 /* No functionality available - continue with default */
1025 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1026 * @mm: The VM space in which the new mapping is to be made
1027 * @pages: The size of the mapping
1029 * Determine whether the allocation of a new virtual mapping by the current
1030 * task is permitted, returning 1 if permission is granted, 0 if not.
1032 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
1034 int cap_sys_admin
= 0;
1036 if (cap_capable(current_cred(), &init_user_ns
, CAP_SYS_ADMIN
,
1037 SECURITY_CAP_NOAUDIT
) == 0)
1039 return cap_sys_admin
;
1043 * cap_mmap_addr - check if able to map given addr
1044 * @addr: address attempting to be mapped
1046 * If the process is attempting to map memory below dac_mmap_min_addr they need
1047 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1048 * capability security module. Returns 0 if this mapping should be allowed
1051 int cap_mmap_addr(unsigned long addr
)
1055 if (addr
< dac_mmap_min_addr
) {
1056 ret
= cap_capable(current_cred(), &init_user_ns
, CAP_SYS_RAWIO
,
1057 SECURITY_CAP_AUDIT
);
1058 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1060 current
->flags
|= PF_SUPERPRIV
;
1065 int cap_mmap_file(struct file
*file
, unsigned long reqprot
,
1066 unsigned long prot
, unsigned long flags
)
1071 #ifdef CONFIG_SECURITY
1073 struct security_hook_list capability_hooks
[] = {
1074 LSM_HOOK_INIT(capable
, cap_capable
),
1075 LSM_HOOK_INIT(settime
, cap_settime
),
1076 LSM_HOOK_INIT(ptrace_access_check
, cap_ptrace_access_check
),
1077 LSM_HOOK_INIT(ptrace_traceme
, cap_ptrace_traceme
),
1078 LSM_HOOK_INIT(capget
, cap_capget
),
1079 LSM_HOOK_INIT(capset
, cap_capset
),
1080 LSM_HOOK_INIT(bprm_set_creds
, cap_bprm_set_creds
),
1081 LSM_HOOK_INIT(bprm_secureexec
, cap_bprm_secureexec
),
1082 LSM_HOOK_INIT(inode_need_killpriv
, cap_inode_need_killpriv
),
1083 LSM_HOOK_INIT(inode_killpriv
, cap_inode_killpriv
),
1084 LSM_HOOK_INIT(mmap_addr
, cap_mmap_addr
),
1085 LSM_HOOK_INIT(mmap_file
, cap_mmap_file
),
1086 LSM_HOOK_INIT(task_fix_setuid
, cap_task_fix_setuid
),
1087 LSM_HOOK_INIT(task_prctl
, cap_task_prctl
),
1088 LSM_HOOK_INIT(task_setscheduler
, cap_task_setscheduler
),
1089 LSM_HOOK_INIT(task_setioprio
, cap_task_setioprio
),
1090 LSM_HOOK_INIT(task_setnice
, cap_task_setnice
),
1091 LSM_HOOK_INIT(vm_enough_memory
, cap_vm_enough_memory
),
1094 void __init
capability_add_hooks(void)
1096 security_add_hooks(capability_hooks
, ARRAY_SIZE(capability_hooks
));
1099 #endif /* CONFIG_SECURITY */