2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
38 #include <linux/mmc/ioctl.h>
39 #include <linux/mmc/card.h>
40 #include <linux/mmc/host.h>
41 #include <linux/mmc/mmc.h>
42 #include <linux/mmc/sd.h>
44 #include <asm/uaccess.h>
48 MODULE_ALIAS("mmc:block");
49 #ifdef MODULE_PARAM_PREFIX
50 #undef MODULE_PARAM_PREFIX
52 #define MODULE_PARAM_PREFIX "mmcblk."
54 #define INAND_CMD38_ARG_EXT_CSD 113
55 #define INAND_CMD38_ARG_ERASE 0x00
56 #define INAND_CMD38_ARG_TRIM 0x01
57 #define INAND_CMD38_ARG_SECERASE 0x80
58 #define INAND_CMD38_ARG_SECTRIM1 0x81
59 #define INAND_CMD38_ARG_SECTRIM2 0x88
60 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
62 static DEFINE_MUTEX(block_mutex
);
65 * The defaults come from config options but can be overriden by module
68 static int perdev_minors
= CONFIG_MMC_BLOCK_MINORS
;
71 * We've only got one major, so number of mmcblk devices is
72 * limited to 256 / number of minors per device.
74 static int max_devices
;
76 /* 256 minors, so at most 256 separate devices */
77 static DECLARE_BITMAP(dev_use
, 256);
78 static DECLARE_BITMAP(name_use
, 256);
81 * There is one mmc_blk_data per slot.
86 struct mmc_queue queue
;
87 struct list_head part
;
90 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
91 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
94 unsigned int read_only
;
95 unsigned int part_type
;
96 unsigned int name_idx
;
97 unsigned int reset_done
;
98 #define MMC_BLK_READ BIT(0)
99 #define MMC_BLK_WRITE BIT(1)
100 #define MMC_BLK_DISCARD BIT(2)
101 #define MMC_BLK_SECDISCARD BIT(3)
104 * Only set in main mmc_blk_data associated
105 * with mmc_card with mmc_set_drvdata, and keeps
106 * track of the current selected device partition.
108 unsigned int part_curr
;
109 struct device_attribute force_ro
;
110 struct device_attribute power_ro_lock
;
114 static DEFINE_MUTEX(open_lock
);
116 enum mmc_blk_status
{
127 module_param(perdev_minors
, int, 0444);
128 MODULE_PARM_DESC(perdev_minors
, "Minors numbers to allocate per device");
130 static inline int mmc_blk_part_switch(struct mmc_card
*card
,
131 struct mmc_blk_data
*md
);
132 static int get_card_status(struct mmc_card
*card
, u32
*status
, int retries
);
134 static struct mmc_blk_data
*mmc_blk_get(struct gendisk
*disk
)
136 struct mmc_blk_data
*md
;
138 mutex_lock(&open_lock
);
139 md
= disk
->private_data
;
140 if (md
&& md
->usage
== 0)
144 mutex_unlock(&open_lock
);
149 static inline int mmc_get_devidx(struct gendisk
*disk
)
151 int devmaj
= MAJOR(disk_devt(disk
));
152 int devidx
= MINOR(disk_devt(disk
)) / perdev_minors
;
155 devidx
= disk
->first_minor
/ perdev_minors
;
159 static void mmc_blk_put(struct mmc_blk_data
*md
)
161 mutex_lock(&open_lock
);
163 if (md
->usage
== 0) {
164 int devidx
= mmc_get_devidx(md
->disk
);
165 blk_cleanup_queue(md
->queue
.queue
);
167 __clear_bit(devidx
, dev_use
);
172 mutex_unlock(&open_lock
);
175 static ssize_t
power_ro_lock_show(struct device
*dev
,
176 struct device_attribute
*attr
, char *buf
)
179 struct mmc_blk_data
*md
= mmc_blk_get(dev_to_disk(dev
));
180 struct mmc_card
*card
= md
->queue
.card
;
183 if (card
->ext_csd
.boot_ro_lock
& EXT_CSD_BOOT_WP_B_PERM_WP_EN
)
185 else if (card
->ext_csd
.boot_ro_lock
& EXT_CSD_BOOT_WP_B_PWR_WP_EN
)
188 ret
= snprintf(buf
, PAGE_SIZE
, "%d\n", locked
);
193 static ssize_t
power_ro_lock_store(struct device
*dev
,
194 struct device_attribute
*attr
, const char *buf
, size_t count
)
197 struct mmc_blk_data
*md
, *part_md
;
198 struct mmc_card
*card
;
201 if (kstrtoul(buf
, 0, &set
))
207 md
= mmc_blk_get(dev_to_disk(dev
));
208 card
= md
->queue
.card
;
210 mmc_claim_host(card
->host
);
212 ret
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_BOOT_WP
,
213 card
->ext_csd
.boot_ro_lock
|
214 EXT_CSD_BOOT_WP_B_PWR_WP_EN
,
215 card
->ext_csd
.part_time
);
217 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md
->disk
->disk_name
, ret
);
219 card
->ext_csd
.boot_ro_lock
|= EXT_CSD_BOOT_WP_B_PWR_WP_EN
;
221 mmc_release_host(card
->host
);
224 pr_info("%s: Locking boot partition ro until next power on\n",
225 md
->disk
->disk_name
);
226 set_disk_ro(md
->disk
, 1);
228 list_for_each_entry(part_md
, &md
->part
, part
)
229 if (part_md
->area_type
== MMC_BLK_DATA_AREA_BOOT
) {
230 pr_info("%s: Locking boot partition ro until next power on\n", part_md
->disk
->disk_name
);
231 set_disk_ro(part_md
->disk
, 1);
239 static ssize_t
force_ro_show(struct device
*dev
, struct device_attribute
*attr
,
243 struct mmc_blk_data
*md
= mmc_blk_get(dev_to_disk(dev
));
245 ret
= snprintf(buf
, PAGE_SIZE
, "%d",
246 get_disk_ro(dev_to_disk(dev
)) ^
252 static ssize_t
force_ro_store(struct device
*dev
, struct device_attribute
*attr
,
253 const char *buf
, size_t count
)
257 struct mmc_blk_data
*md
= mmc_blk_get(dev_to_disk(dev
));
258 unsigned long set
= simple_strtoul(buf
, &end
, 0);
264 set_disk_ro(dev_to_disk(dev
), set
|| md
->read_only
);
271 static int mmc_blk_open(struct block_device
*bdev
, fmode_t mode
)
273 struct mmc_blk_data
*md
= mmc_blk_get(bdev
->bd_disk
);
276 mutex_lock(&block_mutex
);
279 check_disk_change(bdev
);
282 if ((mode
& FMODE_WRITE
) && md
->read_only
) {
287 mutex_unlock(&block_mutex
);
292 static int mmc_blk_release(struct gendisk
*disk
, fmode_t mode
)
294 struct mmc_blk_data
*md
= disk
->private_data
;
296 mutex_lock(&block_mutex
);
298 mutex_unlock(&block_mutex
);
303 mmc_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
305 geo
->cylinders
= get_capacity(bdev
->bd_disk
) / (4 * 16);
311 struct mmc_blk_ioc_data
{
312 struct mmc_ioc_cmd ic
;
317 static struct mmc_blk_ioc_data
*mmc_blk_ioctl_copy_from_user(
318 struct mmc_ioc_cmd __user
*user
)
320 struct mmc_blk_ioc_data
*idata
;
323 idata
= kzalloc(sizeof(*idata
), GFP_KERNEL
);
329 if (copy_from_user(&idata
->ic
, user
, sizeof(idata
->ic
))) {
334 idata
->buf_bytes
= (u64
) idata
->ic
.blksz
* idata
->ic
.blocks
;
335 if (idata
->buf_bytes
> MMC_IOC_MAX_BYTES
) {
340 if (!idata
->buf_bytes
)
343 idata
->buf
= kzalloc(idata
->buf_bytes
, GFP_KERNEL
);
349 if (copy_from_user(idata
->buf
, (void __user
*)(unsigned long)
350 idata
->ic
.data_ptr
, idata
->buf_bytes
)) {
365 static int ioctl_rpmb_card_status_poll(struct mmc_card
*card
, u32
*status
,
371 if (!status
|| !retries_max
)
375 err
= get_card_status(card
, status
, 5);
379 if (!R1_STATUS(*status
) &&
380 (R1_CURRENT_STATE(*status
) != R1_STATE_PRG
))
381 break; /* RPMB programming operation complete */
384 * Rechedule to give the MMC device a chance to continue
385 * processing the previous command without being polled too
388 usleep_range(1000, 5000);
389 } while (++retry_count
< retries_max
);
391 if (retry_count
== retries_max
)
397 static int mmc_blk_ioctl_cmd(struct block_device
*bdev
,
398 struct mmc_ioc_cmd __user
*ic_ptr
)
400 struct mmc_blk_ioc_data
*idata
;
401 struct mmc_blk_data
*md
;
402 struct mmc_card
*card
;
403 struct mmc_command cmd
= {0};
404 struct mmc_data data
= {0};
405 struct mmc_request mrq
= {NULL
};
406 struct scatterlist sg
;
412 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
413 * whole block device, not on a partition. This prevents overspray
414 * between sibling partitions.
416 if ((!capable(CAP_SYS_RAWIO
)) || (bdev
!= bdev
->bd_contains
))
419 idata
= mmc_blk_ioctl_copy_from_user(ic_ptr
);
421 return PTR_ERR(idata
);
423 md
= mmc_blk_get(bdev
->bd_disk
);
429 if (md
->area_type
& MMC_BLK_DATA_AREA_RPMB
)
432 card
= md
->queue
.card
;
438 cmd
.opcode
= idata
->ic
.opcode
;
439 cmd
.arg
= idata
->ic
.arg
;
440 cmd
.flags
= idata
->ic
.flags
;
442 if (idata
->buf_bytes
) {
445 data
.blksz
= idata
->ic
.blksz
;
446 data
.blocks
= idata
->ic
.blocks
;
448 sg_init_one(data
.sg
, idata
->buf
, idata
->buf_bytes
);
450 if (idata
->ic
.write_flag
)
451 data
.flags
= MMC_DATA_WRITE
;
453 data
.flags
= MMC_DATA_READ
;
455 /* data.flags must already be set before doing this. */
456 mmc_set_data_timeout(&data
, card
);
458 /* Allow overriding the timeout_ns for empirical tuning. */
459 if (idata
->ic
.data_timeout_ns
)
460 data
.timeout_ns
= idata
->ic
.data_timeout_ns
;
462 if ((cmd
.flags
& MMC_RSP_R1B
) == MMC_RSP_R1B
) {
464 * Pretend this is a data transfer and rely on the
465 * host driver to compute timeout. When all host
466 * drivers support cmd.cmd_timeout for R1B, this
470 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
472 data
.timeout_ns
= idata
->ic
.cmd_timeout_ms
* 1000000;
480 mmc_claim_host(card
->host
);
482 err
= mmc_blk_part_switch(card
, md
);
486 if (idata
->ic
.is_acmd
) {
487 err
= mmc_app_cmd(card
->host
, card
);
493 err
= mmc_set_blockcount(card
, data
.blocks
,
494 idata
->ic
.write_flag
& (1 << 31));
499 mmc_wait_for_req(card
->host
, &mrq
);
502 dev_err(mmc_dev(card
->host
), "%s: cmd error %d\n",
503 __func__
, cmd
.error
);
508 dev_err(mmc_dev(card
->host
), "%s: data error %d\n",
509 __func__
, data
.error
);
515 * According to the SD specs, some commands require a delay after
516 * issuing the command.
518 if (idata
->ic
.postsleep_min_us
)
519 usleep_range(idata
->ic
.postsleep_min_us
, idata
->ic
.postsleep_max_us
);
521 if (copy_to_user(&(ic_ptr
->response
), cmd
.resp
, sizeof(cmd
.resp
))) {
526 if (!idata
->ic
.write_flag
) {
527 if (copy_to_user((void __user
*)(unsigned long) idata
->ic
.data_ptr
,
528 idata
->buf
, idata
->buf_bytes
)) {
536 * Ensure RPMB command has completed by polling CMD13
539 err
= ioctl_rpmb_card_status_poll(card
, &status
, 5);
541 dev_err(mmc_dev(card
->host
),
542 "%s: Card Status=0x%08X, error %d\n",
543 __func__
, status
, err
);
547 mmc_release_host(card
->host
);
557 static int mmc_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
558 unsigned int cmd
, unsigned long arg
)
561 if (cmd
== MMC_IOC_CMD
)
562 ret
= mmc_blk_ioctl_cmd(bdev
, (struct mmc_ioc_cmd __user
*)arg
);
567 static int mmc_blk_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
568 unsigned int cmd
, unsigned long arg
)
570 return mmc_blk_ioctl(bdev
, mode
, cmd
, (unsigned long) compat_ptr(arg
));
574 static const struct block_device_operations mmc_bdops
= {
575 .open
= mmc_blk_open
,
576 .release
= mmc_blk_release
,
577 .getgeo
= mmc_blk_getgeo
,
578 .owner
= THIS_MODULE
,
579 .ioctl
= mmc_blk_ioctl
,
581 .compat_ioctl
= mmc_blk_compat_ioctl
,
585 static inline int mmc_blk_part_switch(struct mmc_card
*card
,
586 struct mmc_blk_data
*md
)
589 struct mmc_blk_data
*main_md
= mmc_get_drvdata(card
);
591 if (main_md
->part_curr
== md
->part_type
)
594 if (mmc_card_mmc(card
)) {
595 u8 part_config
= card
->ext_csd
.part_config
;
597 part_config
&= ~EXT_CSD_PART_CONFIG_ACC_MASK
;
598 part_config
|= md
->part_type
;
600 ret
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
601 EXT_CSD_PART_CONFIG
, part_config
,
602 card
->ext_csd
.part_time
);
606 card
->ext_csd
.part_config
= part_config
;
609 main_md
->part_curr
= md
->part_type
;
613 static u32
mmc_sd_num_wr_blocks(struct mmc_card
*card
)
619 struct mmc_request mrq
= {NULL
};
620 struct mmc_command cmd
= {0};
621 struct mmc_data data
= {0};
623 struct scatterlist sg
;
625 cmd
.opcode
= MMC_APP_CMD
;
626 cmd
.arg
= card
->rca
<< 16;
627 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
629 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
632 if (!mmc_host_is_spi(card
->host
) && !(cmd
.resp
[0] & R1_APP_CMD
))
635 memset(&cmd
, 0, sizeof(struct mmc_command
));
637 cmd
.opcode
= SD_APP_SEND_NUM_WR_BLKS
;
639 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_ADTC
;
643 data
.flags
= MMC_DATA_READ
;
646 mmc_set_data_timeout(&data
, card
);
651 blocks
= kmalloc(4, GFP_KERNEL
);
655 sg_init_one(&sg
, blocks
, 4);
657 mmc_wait_for_req(card
->host
, &mrq
);
659 result
= ntohl(*blocks
);
662 if (cmd
.error
|| data
.error
)
668 static int send_stop(struct mmc_card
*card
, u32
*status
)
670 struct mmc_command cmd
= {0};
673 cmd
.opcode
= MMC_STOP_TRANSMISSION
;
674 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
675 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 5);
677 *status
= cmd
.resp
[0];
681 static int get_card_status(struct mmc_card
*card
, u32
*status
, int retries
)
683 struct mmc_command cmd
= {0};
686 cmd
.opcode
= MMC_SEND_STATUS
;
687 if (!mmc_host_is_spi(card
->host
))
688 cmd
.arg
= card
->rca
<< 16;
689 cmd
.flags
= MMC_RSP_SPI_R2
| MMC_RSP_R1
| MMC_CMD_AC
;
690 err
= mmc_wait_for_cmd(card
->host
, &cmd
, retries
);
692 *status
= cmd
.resp
[0];
696 #define ERR_NOMEDIUM 3
699 #define ERR_CONTINUE 0
701 static int mmc_blk_cmd_error(struct request
*req
, const char *name
, int error
,
702 bool status_valid
, u32 status
)
706 /* response crc error, retry the r/w cmd */
707 pr_err("%s: %s sending %s command, card status %#x\n",
708 req
->rq_disk
->disk_name
, "response CRC error",
713 pr_err("%s: %s sending %s command, card status %#x\n",
714 req
->rq_disk
->disk_name
, "timed out", name
, status
);
716 /* If the status cmd initially failed, retry the r/w cmd */
721 * If it was a r/w cmd crc error, or illegal command
722 * (eg, issued in wrong state) then retry - we should
723 * have corrected the state problem above.
725 if (status
& (R1_COM_CRC_ERROR
| R1_ILLEGAL_COMMAND
))
728 /* Otherwise abort the command */
732 /* We don't understand the error code the driver gave us */
733 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
734 req
->rq_disk
->disk_name
, error
, status
);
740 * Initial r/w and stop cmd error recovery.
741 * We don't know whether the card received the r/w cmd or not, so try to
742 * restore things back to a sane state. Essentially, we do this as follows:
743 * - Obtain card status. If the first attempt to obtain card status fails,
744 * the status word will reflect the failed status cmd, not the failed
745 * r/w cmd. If we fail to obtain card status, it suggests we can no
746 * longer communicate with the card.
747 * - Check the card state. If the card received the cmd but there was a
748 * transient problem with the response, it might still be in a data transfer
749 * mode. Try to send it a stop command. If this fails, we can't recover.
750 * - If the r/w cmd failed due to a response CRC error, it was probably
751 * transient, so retry the cmd.
752 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
753 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
754 * illegal cmd, retry.
755 * Otherwise we don't understand what happened, so abort.
757 static int mmc_blk_cmd_recovery(struct mmc_card
*card
, struct request
*req
,
758 struct mmc_blk_request
*brq
, int *ecc_err
)
760 bool prev_cmd_status_valid
= true;
761 u32 status
, stop_status
= 0;
764 if (mmc_card_removed(card
))
768 * Try to get card status which indicates both the card state
769 * and why there was no response. If the first attempt fails,
770 * we can't be sure the returned status is for the r/w command.
772 for (retry
= 2; retry
>= 0; retry
--) {
773 err
= get_card_status(card
, &status
, 0);
777 prev_cmd_status_valid
= false;
778 pr_err("%s: error %d sending status command, %sing\n",
779 req
->rq_disk
->disk_name
, err
, retry
? "retry" : "abort");
782 /* We couldn't get a response from the card. Give up. */
784 /* Check if the card is removed */
785 if (mmc_detect_card_removed(card
->host
))
790 /* Flag ECC errors */
791 if ((status
& R1_CARD_ECC_FAILED
) ||
792 (brq
->stop
.resp
[0] & R1_CARD_ECC_FAILED
) ||
793 (brq
->cmd
.resp
[0] & R1_CARD_ECC_FAILED
))
797 * Check the current card state. If it is in some data transfer
798 * mode, tell it to stop (and hopefully transition back to TRAN.)
800 if (R1_CURRENT_STATE(status
) == R1_STATE_DATA
||
801 R1_CURRENT_STATE(status
) == R1_STATE_RCV
) {
802 err
= send_stop(card
, &stop_status
);
804 pr_err("%s: error %d sending stop command\n",
805 req
->rq_disk
->disk_name
, err
);
808 * If the stop cmd also timed out, the card is probably
809 * not present, so abort. Other errors are bad news too.
813 if (stop_status
& R1_CARD_ECC_FAILED
)
817 /* Check for set block count errors */
819 return mmc_blk_cmd_error(req
, "SET_BLOCK_COUNT", brq
->sbc
.error
,
820 prev_cmd_status_valid
, status
);
822 /* Check for r/w command errors */
824 return mmc_blk_cmd_error(req
, "r/w cmd", brq
->cmd
.error
,
825 prev_cmd_status_valid
, status
);
828 if (!brq
->stop
.error
)
831 /* Now for stop errors. These aren't fatal to the transfer. */
832 pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
833 req
->rq_disk
->disk_name
, brq
->stop
.error
,
834 brq
->cmd
.resp
[0], status
);
837 * Subsitute in our own stop status as this will give the error
838 * state which happened during the execution of the r/w command.
841 brq
->stop
.resp
[0] = stop_status
;
847 static int mmc_blk_reset(struct mmc_blk_data
*md
, struct mmc_host
*host
,
852 if (md
->reset_done
& type
)
855 md
->reset_done
|= type
;
856 err
= mmc_hw_reset(host
);
857 /* Ensure we switch back to the correct partition */
858 if (err
!= -EOPNOTSUPP
) {
859 struct mmc_blk_data
*main_md
= mmc_get_drvdata(host
->card
);
862 main_md
->part_curr
= main_md
->part_type
;
863 part_err
= mmc_blk_part_switch(host
->card
, md
);
866 * We have failed to get back into the correct
867 * partition, so we need to abort the whole request.
875 static inline void mmc_blk_reset_success(struct mmc_blk_data
*md
, int type
)
877 md
->reset_done
&= ~type
;
880 static int mmc_blk_issue_discard_rq(struct mmc_queue
*mq
, struct request
*req
)
882 struct mmc_blk_data
*md
= mq
->data
;
883 struct mmc_card
*card
= md
->queue
.card
;
884 unsigned int from
, nr
, arg
;
885 int err
= 0, type
= MMC_BLK_DISCARD
;
887 if (!mmc_can_erase(card
)) {
892 from
= blk_rq_pos(req
);
893 nr
= blk_rq_sectors(req
);
895 if (mmc_can_discard(card
))
896 arg
= MMC_DISCARD_ARG
;
897 else if (mmc_can_trim(card
))
902 if (card
->quirks
& MMC_QUIRK_INAND_CMD38
) {
903 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
904 INAND_CMD38_ARG_EXT_CSD
,
905 arg
== MMC_TRIM_ARG
?
906 INAND_CMD38_ARG_TRIM
:
907 INAND_CMD38_ARG_ERASE
,
912 err
= mmc_erase(card
, from
, nr
, arg
);
914 if (err
== -EIO
&& !mmc_blk_reset(md
, card
->host
, type
))
917 mmc_blk_reset_success(md
, type
);
918 blk_end_request(req
, err
, blk_rq_bytes(req
));
923 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue
*mq
,
926 struct mmc_blk_data
*md
= mq
->data
;
927 struct mmc_card
*card
= md
->queue
.card
;
928 unsigned int from
, nr
, arg
, trim_arg
, erase_arg
;
929 int err
= 0, type
= MMC_BLK_SECDISCARD
;
931 if (!(mmc_can_secure_erase_trim(card
) || mmc_can_sanitize(card
))) {
936 from
= blk_rq_pos(req
);
937 nr
= blk_rq_sectors(req
);
939 /* The sanitize operation is supported at v4.5 only */
940 if (mmc_can_sanitize(card
)) {
941 erase_arg
= MMC_ERASE_ARG
;
942 trim_arg
= MMC_TRIM_ARG
;
944 erase_arg
= MMC_SECURE_ERASE_ARG
;
945 trim_arg
= MMC_SECURE_TRIM1_ARG
;
948 if (mmc_erase_group_aligned(card
, from
, nr
))
950 else if (mmc_can_trim(card
))
957 if (card
->quirks
& MMC_QUIRK_INAND_CMD38
) {
958 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
959 INAND_CMD38_ARG_EXT_CSD
,
960 arg
== MMC_SECURE_TRIM1_ARG
?
961 INAND_CMD38_ARG_SECTRIM1
:
962 INAND_CMD38_ARG_SECERASE
,
968 err
= mmc_erase(card
, from
, nr
, arg
);
974 if (arg
== MMC_SECURE_TRIM1_ARG
) {
975 if (card
->quirks
& MMC_QUIRK_INAND_CMD38
) {
976 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
977 INAND_CMD38_ARG_EXT_CSD
,
978 INAND_CMD38_ARG_SECTRIM2
,
984 err
= mmc_erase(card
, from
, nr
, MMC_SECURE_TRIM2_ARG
);
991 if (mmc_can_sanitize(card
))
992 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
993 EXT_CSD_SANITIZE_START
, 1, 0);
995 if (err
&& !mmc_blk_reset(md
, card
->host
, type
))
998 mmc_blk_reset_success(md
, type
);
1000 blk_end_request(req
, err
, blk_rq_bytes(req
));
1005 static int mmc_blk_issue_flush(struct mmc_queue
*mq
, struct request
*req
)
1007 struct mmc_blk_data
*md
= mq
->data
;
1008 struct mmc_card
*card
= md
->queue
.card
;
1011 ret
= mmc_flush_cache(card
);
1015 blk_end_request_all(req
, ret
);
1021 * Reformat current write as a reliable write, supporting
1022 * both legacy and the enhanced reliable write MMC cards.
1023 * In each transfer we'll handle only as much as a single
1024 * reliable write can handle, thus finish the request in
1025 * partial completions.
1027 static inline void mmc_apply_rel_rw(struct mmc_blk_request
*brq
,
1028 struct mmc_card
*card
,
1029 struct request
*req
)
1031 if (!(card
->ext_csd
.rel_param
& EXT_CSD_WR_REL_PARAM_EN
)) {
1032 /* Legacy mode imposes restrictions on transfers. */
1033 if (!IS_ALIGNED(brq
->cmd
.arg
, card
->ext_csd
.rel_sectors
))
1034 brq
->data
.blocks
= 1;
1036 if (brq
->data
.blocks
> card
->ext_csd
.rel_sectors
)
1037 brq
->data
.blocks
= card
->ext_csd
.rel_sectors
;
1038 else if (brq
->data
.blocks
< card
->ext_csd
.rel_sectors
)
1039 brq
->data
.blocks
= 1;
1043 #define CMD_ERRORS \
1044 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1045 R1_ADDRESS_ERROR | /* Misaligned address */ \
1046 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1047 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1048 R1_CC_ERROR | /* Card controller error */ \
1049 R1_ERROR) /* General/unknown error */
1051 static int mmc_blk_err_check(struct mmc_card
*card
,
1052 struct mmc_async_req
*areq
)
1054 struct mmc_queue_req
*mq_mrq
= container_of(areq
, struct mmc_queue_req
,
1056 struct mmc_blk_request
*brq
= &mq_mrq
->brq
;
1057 struct request
*req
= mq_mrq
->req
;
1061 * sbc.error indicates a problem with the set block count
1062 * command. No data will have been transferred.
1064 * cmd.error indicates a problem with the r/w command. No
1065 * data will have been transferred.
1067 * stop.error indicates a problem with the stop command. Data
1068 * may have been transferred, or may still be transferring.
1070 if (brq
->sbc
.error
|| brq
->cmd
.error
|| brq
->stop
.error
||
1072 switch (mmc_blk_cmd_recovery(card
, req
, brq
, &ecc_err
)) {
1074 return MMC_BLK_RETRY
;
1076 return MMC_BLK_ABORT
;
1078 return MMC_BLK_NOMEDIUM
;
1085 * Check for errors relating to the execution of the
1086 * initial command - such as address errors. No data
1087 * has been transferred.
1089 if (brq
->cmd
.resp
[0] & CMD_ERRORS
) {
1090 pr_err("%s: r/w command failed, status = %#x\n",
1091 req
->rq_disk
->disk_name
, brq
->cmd
.resp
[0]);
1092 return MMC_BLK_ABORT
;
1096 * Everything else is either success, or a data error of some
1097 * kind. If it was a write, we may have transitioned to
1098 * program mode, which we have to wait for it to complete.
1100 if (!mmc_host_is_spi(card
->host
) && rq_data_dir(req
) != READ
) {
1102 unsigned long timeout
;
1104 timeout
= jiffies
+ msecs_to_jiffies(MMC_BLK_TIMEOUT_MS
);
1106 int err
= get_card_status(card
, &status
, 5);
1108 pr_err("%s: error %d requesting status\n",
1109 req
->rq_disk
->disk_name
, err
);
1110 return MMC_BLK_CMD_ERR
;
1113 /* Timeout if the device never becomes ready for data
1114 * and never leaves the program state.
1116 if (time_after(jiffies
, timeout
)) {
1117 pr_err("%s: Card stuck in programming state!"\
1118 " %s %s\n", mmc_hostname(card
->host
),
1119 req
->rq_disk
->disk_name
, __func__
);
1121 return MMC_BLK_CMD_ERR
;
1124 * Some cards mishandle the status bits,
1125 * so make sure to check both the busy
1126 * indication and the card state.
1128 } while (!(status
& R1_READY_FOR_DATA
) ||
1129 (R1_CURRENT_STATE(status
) == R1_STATE_PRG
));
1132 if (brq
->data
.error
) {
1133 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1134 req
->rq_disk
->disk_name
, brq
->data
.error
,
1135 (unsigned)blk_rq_pos(req
),
1136 (unsigned)blk_rq_sectors(req
),
1137 brq
->cmd
.resp
[0], brq
->stop
.resp
[0]);
1139 if (rq_data_dir(req
) == READ
) {
1141 return MMC_BLK_ECC_ERR
;
1142 return MMC_BLK_DATA_ERR
;
1144 return MMC_BLK_CMD_ERR
;
1148 if (!brq
->data
.bytes_xfered
)
1149 return MMC_BLK_RETRY
;
1151 if (blk_rq_bytes(req
) != brq
->data
.bytes_xfered
)
1152 return MMC_BLK_PARTIAL
;
1154 return MMC_BLK_SUCCESS
;
1157 static void mmc_blk_rw_rq_prep(struct mmc_queue_req
*mqrq
,
1158 struct mmc_card
*card
,
1160 struct mmc_queue
*mq
)
1162 u32 readcmd
, writecmd
;
1163 struct mmc_blk_request
*brq
= &mqrq
->brq
;
1164 struct request
*req
= mqrq
->req
;
1165 struct mmc_blk_data
*md
= mq
->data
;
1169 * Reliable writes are used to implement Forced Unit Access and
1170 * REQ_META accesses, and are supported only on MMCs.
1172 * XXX: this really needs a good explanation of why REQ_META
1173 * is treated special.
1175 bool do_rel_wr
= ((req
->cmd_flags
& REQ_FUA
) ||
1176 (req
->cmd_flags
& REQ_META
)) &&
1177 (rq_data_dir(req
) == WRITE
) &&
1178 (md
->flags
& MMC_BLK_REL_WR
);
1180 memset(brq
, 0, sizeof(struct mmc_blk_request
));
1181 brq
->mrq
.cmd
= &brq
->cmd
;
1182 brq
->mrq
.data
= &brq
->data
;
1184 brq
->cmd
.arg
= blk_rq_pos(req
);
1185 if (!mmc_card_blockaddr(card
))
1187 brq
->cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_ADTC
;
1188 brq
->data
.blksz
= 512;
1189 brq
->stop
.opcode
= MMC_STOP_TRANSMISSION
;
1191 brq
->stop
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
1192 brq
->data
.blocks
= blk_rq_sectors(req
);
1195 * The block layer doesn't support all sector count
1196 * restrictions, so we need to be prepared for too big
1199 if (brq
->data
.blocks
> card
->host
->max_blk_count
)
1200 brq
->data
.blocks
= card
->host
->max_blk_count
;
1202 if (brq
->data
.blocks
> 1) {
1204 * After a read error, we redo the request one sector
1205 * at a time in order to accurately determine which
1206 * sectors can be read successfully.
1209 brq
->data
.blocks
= 1;
1211 /* Some controllers can't do multiblock reads due to hw bugs */
1212 if (card
->host
->caps2
& MMC_CAP2_NO_MULTI_READ
&&
1213 rq_data_dir(req
) == READ
)
1214 brq
->data
.blocks
= 1;
1217 if (brq
->data
.blocks
> 1 || do_rel_wr
) {
1218 /* SPI multiblock writes terminate using a special
1219 * token, not a STOP_TRANSMISSION request.
1221 if (!mmc_host_is_spi(card
->host
) ||
1222 rq_data_dir(req
) == READ
)
1223 brq
->mrq
.stop
= &brq
->stop
;
1224 readcmd
= MMC_READ_MULTIPLE_BLOCK
;
1225 writecmd
= MMC_WRITE_MULTIPLE_BLOCK
;
1227 brq
->mrq
.stop
= NULL
;
1228 readcmd
= MMC_READ_SINGLE_BLOCK
;
1229 writecmd
= MMC_WRITE_BLOCK
;
1231 if (rq_data_dir(req
) == READ
) {
1232 brq
->cmd
.opcode
= readcmd
;
1233 brq
->data
.flags
|= MMC_DATA_READ
;
1235 brq
->cmd
.opcode
= writecmd
;
1236 brq
->data
.flags
|= MMC_DATA_WRITE
;
1240 mmc_apply_rel_rw(brq
, card
, req
);
1243 * Data tag is used only during writing meta data to speed
1244 * up write and any subsequent read of this meta data
1246 do_data_tag
= (card
->ext_csd
.data_tag_unit_size
) &&
1247 (req
->cmd_flags
& REQ_META
) &&
1248 (rq_data_dir(req
) == WRITE
) &&
1249 ((brq
->data
.blocks
* brq
->data
.blksz
) >=
1250 card
->ext_csd
.data_tag_unit_size
);
1253 * Pre-defined multi-block transfers are preferable to
1254 * open ended-ones (and necessary for reliable writes).
1255 * However, it is not sufficient to just send CMD23,
1256 * and avoid the final CMD12, as on an error condition
1257 * CMD12 (stop) needs to be sent anyway. This, coupled
1258 * with Auto-CMD23 enhancements provided by some
1259 * hosts, means that the complexity of dealing
1260 * with this is best left to the host. If CMD23 is
1261 * supported by card and host, we'll fill sbc in and let
1262 * the host deal with handling it correctly. This means
1263 * that for hosts that don't expose MMC_CAP_CMD23, no
1264 * change of behavior will be observed.
1266 * N.B: Some MMC cards experience perf degradation.
1267 * We'll avoid using CMD23-bounded multiblock writes for
1268 * these, while retaining features like reliable writes.
1270 if ((md
->flags
& MMC_BLK_CMD23
) && mmc_op_multi(brq
->cmd
.opcode
) &&
1271 (do_rel_wr
|| !(card
->quirks
& MMC_QUIRK_BLK_NO_CMD23
) ||
1273 brq
->sbc
.opcode
= MMC_SET_BLOCK_COUNT
;
1274 brq
->sbc
.arg
= brq
->data
.blocks
|
1275 (do_rel_wr
? (1 << 31) : 0) |
1276 (do_data_tag
? (1 << 29) : 0);
1277 brq
->sbc
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1278 brq
->mrq
.sbc
= &brq
->sbc
;
1281 mmc_set_data_timeout(&brq
->data
, card
);
1283 brq
->data
.sg
= mqrq
->sg
;
1284 brq
->data
.sg_len
= mmc_queue_map_sg(mq
, mqrq
);
1287 * Adjust the sg list so it is the same size as the
1290 if (brq
->data
.blocks
!= blk_rq_sectors(req
)) {
1291 int i
, data_size
= brq
->data
.blocks
<< 9;
1292 struct scatterlist
*sg
;
1294 for_each_sg(brq
->data
.sg
, sg
, brq
->data
.sg_len
, i
) {
1295 data_size
-= sg
->length
;
1296 if (data_size
<= 0) {
1297 sg
->length
+= data_size
;
1302 brq
->data
.sg_len
= i
;
1305 mqrq
->mmc_active
.mrq
= &brq
->mrq
;
1306 mqrq
->mmc_active
.err_check
= mmc_blk_err_check
;
1308 mmc_queue_bounce_pre(mqrq
);
1311 static int mmc_blk_cmd_err(struct mmc_blk_data
*md
, struct mmc_card
*card
,
1312 struct mmc_blk_request
*brq
, struct request
*req
,
1316 * If this is an SD card and we're writing, we can first
1317 * mark the known good sectors as ok.
1319 * If the card is not SD, we can still ok written sectors
1320 * as reported by the controller (which might be less than
1321 * the real number of written sectors, but never more).
1323 if (mmc_card_sd(card
)) {
1326 blocks
= mmc_sd_num_wr_blocks(card
);
1327 if (blocks
!= (u32
)-1) {
1328 ret
= blk_end_request(req
, 0, blocks
<< 9);
1331 ret
= blk_end_request(req
, 0, brq
->data
.bytes_xfered
);
1336 static int mmc_blk_issue_rw_rq(struct mmc_queue
*mq
, struct request
*rqc
)
1338 struct mmc_blk_data
*md
= mq
->data
;
1339 struct mmc_card
*card
= md
->queue
.card
;
1340 struct mmc_blk_request
*brq
= &mq
->mqrq_cur
->brq
;
1341 int ret
= 1, disable_multi
= 0, retry
= 0, type
;
1342 enum mmc_blk_status status
;
1343 struct mmc_queue_req
*mq_rq
;
1344 struct request
*req
= rqc
;
1345 struct mmc_async_req
*areq
;
1347 if (!rqc
&& !mq
->mqrq_prev
->req
)
1353 * When 4KB native sector is enabled, only 8 blocks
1354 * multiple read or write is allowed
1356 if ((brq
->data
.blocks
& 0x07) &&
1357 (card
->ext_csd
.data_sector_size
== 4096)) {
1358 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1359 req
->rq_disk
->disk_name
);
1362 mmc_blk_rw_rq_prep(mq
->mqrq_cur
, card
, 0, mq
);
1363 areq
= &mq
->mqrq_cur
->mmc_active
;
1366 areq
= mmc_start_req(card
->host
, areq
, (int *) &status
);
1370 mq_rq
= container_of(areq
, struct mmc_queue_req
, mmc_active
);
1373 type
= rq_data_dir(req
) == READ
? MMC_BLK_READ
: MMC_BLK_WRITE
;
1374 mmc_queue_bounce_post(mq_rq
);
1377 case MMC_BLK_SUCCESS
:
1378 case MMC_BLK_PARTIAL
:
1380 * A block was successfully transferred.
1382 mmc_blk_reset_success(md
, type
);
1383 ret
= blk_end_request(req
, 0,
1384 brq
->data
.bytes_xfered
);
1386 * If the blk_end_request function returns non-zero even
1387 * though all data has been transferred and no errors
1388 * were returned by the host controller, it's a bug.
1390 if (status
== MMC_BLK_SUCCESS
&& ret
) {
1391 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1392 __func__
, blk_rq_bytes(req
),
1393 brq
->data
.bytes_xfered
);
1398 case MMC_BLK_CMD_ERR
:
1399 ret
= mmc_blk_cmd_err(md
, card
, brq
, req
, ret
);
1400 if (!mmc_blk_reset(md
, card
->host
, type
))
1408 if (!mmc_blk_reset(md
, card
->host
, type
))
1411 case MMC_BLK_DATA_ERR
: {
1414 err
= mmc_blk_reset(md
, card
->host
, type
);
1421 case MMC_BLK_ECC_ERR
:
1422 if (brq
->data
.blocks
> 1) {
1423 /* Redo read one sector at a time */
1424 pr_warning("%s: retrying using single block read\n",
1425 req
->rq_disk
->disk_name
);
1430 * After an error, we redo I/O one sector at a
1431 * time, so we only reach here after trying to
1432 * read a single sector.
1434 ret
= blk_end_request(req
, -EIO
,
1439 case MMC_BLK_NOMEDIUM
:
1445 * In case of a incomplete request
1446 * prepare it again and resend.
1448 mmc_blk_rw_rq_prep(mq_rq
, card
, disable_multi
, mq
);
1449 mmc_start_req(card
->host
, &mq_rq
->mmc_active
, NULL
);
1456 if (mmc_card_removed(card
))
1457 req
->cmd_flags
|= REQ_QUIET
;
1459 ret
= blk_end_request(req
, -EIO
, blk_rq_cur_bytes(req
));
1463 mmc_blk_rw_rq_prep(mq
->mqrq_cur
, card
, 0, mq
);
1464 mmc_start_req(card
->host
, &mq
->mqrq_cur
->mmc_active
, NULL
);
1470 static int mmc_blk_issue_rq(struct mmc_queue
*mq
, struct request
*req
)
1473 struct mmc_blk_data
*md
= mq
->data
;
1474 struct mmc_card
*card
= md
->queue
.card
;
1476 if (req
&& !mq
->mqrq_prev
->req
)
1477 /* claim host only for the first request */
1478 mmc_claim_host(card
->host
);
1480 ret
= mmc_blk_part_switch(card
, md
);
1483 blk_end_request_all(req
, -EIO
);
1489 if (req
&& req
->cmd_flags
& REQ_DISCARD
) {
1490 /* complete ongoing async transfer before issuing discard */
1491 if (card
->host
->areq
)
1492 mmc_blk_issue_rw_rq(mq
, NULL
);
1493 if (req
->cmd_flags
& REQ_SECURE
&&
1494 !(card
->quirks
& MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
))
1495 ret
= mmc_blk_issue_secdiscard_rq(mq
, req
);
1497 ret
= mmc_blk_issue_discard_rq(mq
, req
);
1498 } else if (req
&& req
->cmd_flags
& REQ_FLUSH
) {
1499 /* complete ongoing async transfer before issuing flush */
1500 if (card
->host
->areq
)
1501 mmc_blk_issue_rw_rq(mq
, NULL
);
1502 ret
= mmc_blk_issue_flush(mq
, req
);
1504 ret
= mmc_blk_issue_rw_rq(mq
, req
);
1509 /* release host only when there are no more requests */
1510 mmc_release_host(card
->host
);
1514 static inline int mmc_blk_readonly(struct mmc_card
*card
)
1516 return mmc_card_readonly(card
) ||
1517 !(card
->csd
.cmdclass
& CCC_BLOCK_WRITE
);
1520 static struct mmc_blk_data
*mmc_blk_alloc_req(struct mmc_card
*card
,
1521 struct device
*parent
,
1524 const char *subname
,
1527 struct mmc_blk_data
*md
;
1530 devidx
= find_first_zero_bit(dev_use
, max_devices
);
1531 if (devidx
>= max_devices
)
1532 return ERR_PTR(-ENOSPC
);
1533 __set_bit(devidx
, dev_use
);
1535 md
= kzalloc(sizeof(struct mmc_blk_data
), GFP_KERNEL
);
1542 * !subname implies we are creating main mmc_blk_data that will be
1543 * associated with mmc_card with mmc_set_drvdata. Due to device
1544 * partitions, devidx will not coincide with a per-physical card
1545 * index anymore so we keep track of a name index.
1548 md
->name_idx
= find_first_zero_bit(name_use
, max_devices
);
1549 __set_bit(md
->name_idx
, name_use
);
1551 md
->name_idx
= ((struct mmc_blk_data
*)
1552 dev_to_disk(parent
)->private_data
)->name_idx
;
1554 md
->area_type
= area_type
;
1557 * Set the read-only status based on the supported commands
1558 * and the write protect switch.
1560 md
->read_only
= mmc_blk_readonly(card
);
1562 md
->disk
= alloc_disk(perdev_minors
);
1563 if (md
->disk
== NULL
) {
1568 spin_lock_init(&md
->lock
);
1569 INIT_LIST_HEAD(&md
->part
);
1572 ret
= mmc_init_queue(&md
->queue
, card
, &md
->lock
, subname
);
1576 md
->queue
.issue_fn
= mmc_blk_issue_rq
;
1577 md
->queue
.data
= md
;
1579 md
->disk
->major
= MMC_BLOCK_MAJOR
;
1580 md
->disk
->first_minor
= devidx
* perdev_minors
;
1581 md
->disk
->fops
= &mmc_bdops
;
1582 md
->disk
->private_data
= md
;
1583 md
->disk
->queue
= md
->queue
.queue
;
1584 md
->disk
->driverfs_dev
= parent
;
1585 set_disk_ro(md
->disk
, md
->read_only
|| default_ro
);
1586 if (area_type
& MMC_BLK_DATA_AREA_RPMB
)
1587 md
->disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1590 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1592 * - be set for removable media with permanent block devices
1593 * - be unset for removable block devices with permanent media
1595 * Since MMC block devices clearly fall under the second
1596 * case, we do not set GENHD_FL_REMOVABLE. Userspace
1597 * should use the block device creation/destruction hotplug
1598 * messages to tell when the card is present.
1601 snprintf(md
->disk
->disk_name
, sizeof(md
->disk
->disk_name
),
1602 "mmcblk%d%s", md
->name_idx
, subname
? subname
: "");
1604 if (mmc_card_mmc(card
))
1605 blk_queue_logical_block_size(md
->queue
.queue
,
1606 card
->ext_csd
.data_sector_size
);
1608 blk_queue_logical_block_size(md
->queue
.queue
, 512);
1610 set_capacity(md
->disk
, size
);
1612 if (mmc_host_cmd23(card
->host
)) {
1613 if (mmc_card_mmc(card
) ||
1614 (mmc_card_sd(card
) &&
1615 card
->scr
.cmds
& SD_SCR_CMD23_SUPPORT
))
1616 md
->flags
|= MMC_BLK_CMD23
;
1619 if (mmc_card_mmc(card
) &&
1620 md
->flags
& MMC_BLK_CMD23
&&
1621 ((card
->ext_csd
.rel_param
& EXT_CSD_WR_REL_PARAM_EN
) ||
1622 card
->ext_csd
.rel_sectors
)) {
1623 md
->flags
|= MMC_BLK_REL_WR
;
1624 blk_queue_flush(md
->queue
.queue
, REQ_FLUSH
| REQ_FUA
);
1634 return ERR_PTR(ret
);
1637 static struct mmc_blk_data
*mmc_blk_alloc(struct mmc_card
*card
)
1640 struct mmc_blk_data
*md
;
1642 if (!mmc_card_sd(card
) && mmc_card_blockaddr(card
)) {
1644 * The EXT_CSD sector count is in number or 512 byte
1647 size
= card
->ext_csd
.sectors
;
1650 * The CSD capacity field is in units of read_blkbits.
1651 * set_capacity takes units of 512 bytes.
1653 size
= card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9);
1656 md
= mmc_blk_alloc_req(card
, &card
->dev
, size
, false, NULL
,
1657 MMC_BLK_DATA_AREA_MAIN
);
1661 static int mmc_blk_alloc_part(struct mmc_card
*card
,
1662 struct mmc_blk_data
*md
,
1663 unsigned int part_type
,
1666 const char *subname
,
1670 struct mmc_blk_data
*part_md
;
1672 part_md
= mmc_blk_alloc_req(card
, disk_to_dev(md
->disk
), size
, default_ro
,
1673 subname
, area_type
);
1674 if (IS_ERR(part_md
))
1675 return PTR_ERR(part_md
);
1676 part_md
->part_type
= part_type
;
1677 list_add(&part_md
->part
, &md
->part
);
1679 string_get_size((u64
)get_capacity(part_md
->disk
) << 9, STRING_UNITS_2
,
1680 cap_str
, sizeof(cap_str
));
1681 pr_info("%s: %s %s partition %u %s\n",
1682 part_md
->disk
->disk_name
, mmc_card_id(card
),
1683 mmc_card_name(card
), part_md
->part_type
, cap_str
);
1687 /* MMC Physical partitions consist of two boot partitions and
1688 * up to four general purpose partitions.
1689 * For each partition enabled in EXT_CSD a block device will be allocatedi
1690 * to provide access to the partition.
1693 static int mmc_blk_alloc_parts(struct mmc_card
*card
, struct mmc_blk_data
*md
)
1697 if (!mmc_card_mmc(card
))
1700 for (idx
= 0; idx
< card
->nr_parts
; idx
++) {
1701 if (card
->part
[idx
].size
) {
1702 ret
= mmc_blk_alloc_part(card
, md
,
1703 card
->part
[idx
].part_cfg
,
1704 card
->part
[idx
].size
>> 9,
1705 card
->part
[idx
].force_ro
,
1706 card
->part
[idx
].name
,
1707 card
->part
[idx
].area_type
);
1716 static void mmc_blk_remove_req(struct mmc_blk_data
*md
)
1718 struct mmc_card
*card
;
1721 card
= md
->queue
.card
;
1722 if (md
->disk
->flags
& GENHD_FL_UP
) {
1723 device_remove_file(disk_to_dev(md
->disk
), &md
->force_ro
);
1724 if ((md
->area_type
& MMC_BLK_DATA_AREA_BOOT
) &&
1725 card
->ext_csd
.boot_ro_lockable
)
1726 device_remove_file(disk_to_dev(md
->disk
),
1727 &md
->power_ro_lock
);
1729 /* Stop new requests from getting into the queue */
1730 del_gendisk(md
->disk
);
1733 /* Then flush out any already in there */
1734 mmc_cleanup_queue(&md
->queue
);
1739 static void mmc_blk_remove_parts(struct mmc_card
*card
,
1740 struct mmc_blk_data
*md
)
1742 struct list_head
*pos
, *q
;
1743 struct mmc_blk_data
*part_md
;
1745 __clear_bit(md
->name_idx
, name_use
);
1746 list_for_each_safe(pos
, q
, &md
->part
) {
1747 part_md
= list_entry(pos
, struct mmc_blk_data
, part
);
1749 mmc_blk_remove_req(part_md
);
1753 static int mmc_add_disk(struct mmc_blk_data
*md
)
1756 struct mmc_card
*card
= md
->queue
.card
;
1759 md
->force_ro
.show
= force_ro_show
;
1760 md
->force_ro
.store
= force_ro_store
;
1761 sysfs_attr_init(&md
->force_ro
.attr
);
1762 md
->force_ro
.attr
.name
= "force_ro";
1763 md
->force_ro
.attr
.mode
= S_IRUGO
| S_IWUSR
;
1764 ret
= device_create_file(disk_to_dev(md
->disk
), &md
->force_ro
);
1768 if ((md
->area_type
& MMC_BLK_DATA_AREA_BOOT
) &&
1769 card
->ext_csd
.boot_ro_lockable
) {
1772 if (card
->ext_csd
.boot_ro_lock
& EXT_CSD_BOOT_WP_B_PWR_WP_DIS
)
1775 mode
= S_IRUGO
| S_IWUSR
;
1777 md
->power_ro_lock
.show
= power_ro_lock_show
;
1778 md
->power_ro_lock
.store
= power_ro_lock_store
;
1779 sysfs_attr_init(&md
->power_ro_lock
.attr
);
1780 md
->power_ro_lock
.attr
.mode
= mode
;
1781 md
->power_ro_lock
.attr
.name
=
1782 "ro_lock_until_next_power_on";
1783 ret
= device_create_file(disk_to_dev(md
->disk
),
1784 &md
->power_ro_lock
);
1786 goto power_ro_lock_fail
;
1791 device_remove_file(disk_to_dev(md
->disk
), &md
->force_ro
);
1793 del_gendisk(md
->disk
);
1798 #define CID_MANFID_SANDISK 0x2
1799 #define CID_MANFID_TOSHIBA 0x11
1800 #define CID_MANFID_MICRON 0x13
1801 #define CID_MANFID_SAMSUNG 0x15
1803 static const struct mmc_fixup blk_fixups
[] =
1805 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK
, 0x100, add_quirk
,
1806 MMC_QUIRK_INAND_CMD38
),
1807 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK
, 0x100, add_quirk
,
1808 MMC_QUIRK_INAND_CMD38
),
1809 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK
, 0x100, add_quirk
,
1810 MMC_QUIRK_INAND_CMD38
),
1811 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK
, 0x100, add_quirk
,
1812 MMC_QUIRK_INAND_CMD38
),
1813 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK
, 0x100, add_quirk
,
1814 MMC_QUIRK_INAND_CMD38
),
1817 * Some MMC cards experience performance degradation with CMD23
1818 * instead of CMD12-bounded multiblock transfers. For now we'll
1819 * black list what's bad...
1820 * - Certain Toshiba cards.
1822 * N.B. This doesn't affect SD cards.
1824 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA
, CID_OEMID_ANY
, add_quirk_mmc
,
1825 MMC_QUIRK_BLK_NO_CMD23
),
1826 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA
, CID_OEMID_ANY
, add_quirk_mmc
,
1827 MMC_QUIRK_BLK_NO_CMD23
),
1828 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA
, CID_OEMID_ANY
, add_quirk_mmc
,
1829 MMC_QUIRK_BLK_NO_CMD23
),
1832 * Some Micron MMC cards needs longer data read timeout than
1835 MMC_FIXUP(CID_NAME_ANY
, CID_MANFID_MICRON
, 0x200, add_quirk_mmc
,
1836 MMC_QUIRK_LONG_READ_TIME
),
1839 * On these Samsung MoviNAND parts, performing secure erase or
1840 * secure trim can result in unrecoverable corruption due to a
1843 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
1844 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
1845 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
1846 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
1847 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
1848 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
1849 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
1850 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
1851 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
1852 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
1853 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
1854 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
1855 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
1856 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
1857 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG
, CID_OEMID_ANY
, add_quirk_mmc
,
1858 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
),
1863 static int mmc_blk_probe(struct mmc_card
*card
)
1865 struct mmc_blk_data
*md
, *part_md
;
1869 * Check that the card supports the command class(es) we need.
1871 if (!(card
->csd
.cmdclass
& CCC_BLOCK_READ
))
1874 md
= mmc_blk_alloc(card
);
1878 string_get_size((u64
)get_capacity(md
->disk
) << 9, STRING_UNITS_2
,
1879 cap_str
, sizeof(cap_str
));
1880 pr_info("%s: %s %s %s %s\n",
1881 md
->disk
->disk_name
, mmc_card_id(card
), mmc_card_name(card
),
1882 cap_str
, md
->read_only
? "(ro)" : "");
1884 if (mmc_blk_alloc_parts(card
, md
))
1887 mmc_set_drvdata(card
, md
);
1888 mmc_fixup_device(card
, blk_fixups
);
1890 if (mmc_add_disk(md
))
1893 list_for_each_entry(part_md
, &md
->part
, part
) {
1894 if (mmc_add_disk(part_md
))
1900 mmc_blk_remove_parts(card
, md
);
1901 mmc_blk_remove_req(md
);
1905 static void mmc_blk_remove(struct mmc_card
*card
)
1907 struct mmc_blk_data
*md
= mmc_get_drvdata(card
);
1909 mmc_blk_remove_parts(card
, md
);
1910 mmc_claim_host(card
->host
);
1911 mmc_blk_part_switch(card
, md
);
1912 mmc_release_host(card
->host
);
1913 mmc_blk_remove_req(md
);
1914 mmc_set_drvdata(card
, NULL
);
1918 static int mmc_blk_suspend(struct mmc_card
*card
)
1920 struct mmc_blk_data
*part_md
;
1921 struct mmc_blk_data
*md
= mmc_get_drvdata(card
);
1924 mmc_queue_suspend(&md
->queue
);
1925 list_for_each_entry(part_md
, &md
->part
, part
) {
1926 mmc_queue_suspend(&part_md
->queue
);
1932 static int mmc_blk_resume(struct mmc_card
*card
)
1934 struct mmc_blk_data
*part_md
;
1935 struct mmc_blk_data
*md
= mmc_get_drvdata(card
);
1939 * Resume involves the card going into idle state,
1940 * so current partition is always the main one.
1942 md
->part_curr
= md
->part_type
;
1943 mmc_queue_resume(&md
->queue
);
1944 list_for_each_entry(part_md
, &md
->part
, part
) {
1945 mmc_queue_resume(&part_md
->queue
);
1951 #define mmc_blk_suspend NULL
1952 #define mmc_blk_resume NULL
1955 static struct mmc_driver mmc_driver
= {
1959 .probe
= mmc_blk_probe
,
1960 .remove
= mmc_blk_remove
,
1961 .suspend
= mmc_blk_suspend
,
1962 .resume
= mmc_blk_resume
,
1965 static int __init
mmc_blk_init(void)
1969 if (perdev_minors
!= CONFIG_MMC_BLOCK_MINORS
)
1970 pr_info("mmcblk: using %d minors per device\n", perdev_minors
);
1972 max_devices
= 256 / perdev_minors
;
1974 res
= register_blkdev(MMC_BLOCK_MAJOR
, "mmc");
1978 res
= mmc_register_driver(&mmc_driver
);
1984 unregister_blkdev(MMC_BLOCK_MAJOR
, "mmc");
1989 static void __exit
mmc_blk_exit(void)
1991 mmc_unregister_driver(&mmc_driver
);
1992 unregister_blkdev(MMC_BLOCK_MAJOR
, "mmc");
1995 module_init(mmc_blk_init
);
1996 module_exit(mmc_blk_exit
);
1998 MODULE_LICENSE("GPL");
1999 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");