2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
22 #include <asm/memory.h>
23 #include <asm/cpufeature.h>
26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
27 * "negative" addresses. This makes it impossible to directly share
28 * mappings with the kernel.
30 * Instead, give the HYP mode its own VA region at a fixed offset from
31 * the kernel by just masking the top bits (which are all ones for a
32 * kernel address). We need to find out how many bits to mask.
34 * We want to build a set of page tables that cover both parts of the
35 * idmap (the trampoline page used to initialize EL2), and our normal
36 * runtime VA space, at the same time.
38 * Given that the kernel uses VA_BITS for its entire address space,
39 * and that half of that space (VA_BITS - 1) is used for the linear
40 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
42 * The main question is "Within the VA_BITS space, does EL2 use the
43 * top or the bottom half of that space to shadow the kernel's linear
44 * mapping?". As we need to idmap the trampoline page, this is
45 * determined by the range in which this page lives.
47 * If the page is in the bottom half, we have to use the top half. If
48 * the page is in the top half, we have to use the bottom half:
50 * T = __pa_symbol(__hyp_idmap_text_start)
51 * if (T & BIT(VA_BITS - 1))
52 * HYP_VA_MIN = 0 //idmap in upper half
54 * HYP_VA_MIN = 1 << (VA_BITS - 1)
55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
57 * This of course assumes that the trampoline page exists within the
58 * VA_BITS range. If it doesn't, then it means we're in the odd case
59 * where the kernel idmap (as well as HYP) uses more levels than the
60 * kernel runtime page tables (as seen when the kernel is configured
61 * for 4k pages, 39bits VA, and yet memory lives just above that
62 * limit, forcing the idmap to use 4 levels of page tables while the
63 * kernel itself only uses 3). In this particular case, it doesn't
64 * matter which side of VA_BITS we use, as we're guaranteed not to
65 * conflict with anything.
67 * When using VHE, there are no separate hyp mappings and all KVM
68 * functionality is already mapped as part of the main kernel
69 * mappings, and none of this applies in that case.
74 #include <asm/alternative.h>
77 * Convert a kernel VA into a HYP VA.
78 * reg: VA to be converted.
80 * The actual code generation takes place in kvm_update_va_mask, and
81 * the instructions below are only there to reserve the space and
82 * perform the register allocation (kvm_update_va_mask uses the
83 * specific registers encoded in the instructions).
85 .macro kern_hyp_va reg
86 alternative_cb kvm_update_va_mask
87 and \reg
, \reg
, #1 /* mask with va_mask */
88 ror
\reg
, \reg
, #1 /* rotate to the first tag bit */
89 add
\reg
, \reg
, #0 /* insert the low 12 bits of the tag */
90 add
\reg
, \reg
, #0, lsl 12 /* insert the top 12 bits of the tag */
91 ror
\reg
, \reg
, #63 /* rotate back */
97 #include <asm/pgalloc.h>
98 #include <asm/cache.h>
99 #include <asm/cacheflush.h>
100 #include <asm/mmu_context.h>
101 #include <asm/pgtable.h>
103 void kvm_update_va_mask(struct alt_instr
*alt
,
104 __le32
*origptr
, __le32
*updptr
, int nr_inst
);
106 static inline unsigned long __kern_hyp_va(unsigned long v
)
108 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
111 "add %0, %0, #0, lsl 12\n"
118 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
121 * Obtain the PC-relative address of a kernel symbol
124 * The goal of this macro is to return a symbol's address based on a
125 * PC-relative computation, as opposed to a loading the VA from a
126 * constant pool or something similar. This works well for HYP, as an
127 * absolute VA is guaranteed to be wrong. Only use this if trying to
128 * obtain the address of a symbol (i.e. not something you obtained by
129 * following a pointer).
131 #define hyp_symbol_addr(s) \
134 asm("adrp %0, %1\n" \
135 "add %0, %0, :lo12:%1\n" \
136 : "=r" (addr) : "S" (&s)); \
141 * We currently only support a 40bit IPA.
143 #define KVM_PHYS_SHIFT (40)
145 #define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr)
146 #define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm))
147 #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL))
149 static inline bool kvm_page_empty(void *ptr
)
151 struct page
*ptr_page
= virt_to_page(ptr
);
152 return page_count(ptr_page
) == 1;
155 #include <asm/stage2_pgtable.h>
157 int create_hyp_mappings(void *from
, void *to
, pgprot_t prot
);
158 int create_hyp_io_mappings(phys_addr_t phys_addr
, size_t size
,
159 void __iomem
**kaddr
,
160 void __iomem
**haddr
);
161 int create_hyp_exec_mappings(phys_addr_t phys_addr
, size_t size
,
163 void free_hyp_pgds(void);
165 void stage2_unmap_vm(struct kvm
*kvm
);
166 int kvm_alloc_stage2_pgd(struct kvm
*kvm
);
167 void kvm_free_stage2_pgd(struct kvm
*kvm
);
168 int kvm_phys_addr_ioremap(struct kvm
*kvm
, phys_addr_t guest_ipa
,
169 phys_addr_t pa
, unsigned long size
, bool writable
);
171 int kvm_handle_guest_abort(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
);
173 void kvm_mmu_free_memory_caches(struct kvm_vcpu
*vcpu
);
175 phys_addr_t
kvm_mmu_get_httbr(void);
176 phys_addr_t
kvm_get_idmap_vector(void);
177 int kvm_mmu_init(void);
178 void kvm_clear_hyp_idmap(void);
180 #define kvm_mk_pmd(ptep) \
181 __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
182 #define kvm_mk_pud(pmdp) \
183 __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
184 #define kvm_mk_pgd(pudp) \
185 __pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE)
187 static inline pte_t
kvm_s2pte_mkwrite(pte_t pte
)
189 pte_val(pte
) |= PTE_S2_RDWR
;
193 static inline pmd_t
kvm_s2pmd_mkwrite(pmd_t pmd
)
195 pmd_val(pmd
) |= PMD_S2_RDWR
;
199 static inline pte_t
kvm_s2pte_mkexec(pte_t pte
)
201 pte_val(pte
) &= ~PTE_S2_XN
;
205 static inline pmd_t
kvm_s2pmd_mkexec(pmd_t pmd
)
207 pmd_val(pmd
) &= ~PMD_S2_XN
;
211 static inline void kvm_set_s2pte_readonly(pte_t
*ptep
)
213 pteval_t old_pteval
, pteval
;
215 pteval
= READ_ONCE(pte_val(*ptep
));
218 pteval
&= ~PTE_S2_RDWR
;
219 pteval
|= PTE_S2_RDONLY
;
220 pteval
= cmpxchg_relaxed(&pte_val(*ptep
), old_pteval
, pteval
);
221 } while (pteval
!= old_pteval
);
224 static inline bool kvm_s2pte_readonly(pte_t
*ptep
)
226 return (READ_ONCE(pte_val(*ptep
)) & PTE_S2_RDWR
) == PTE_S2_RDONLY
;
229 static inline bool kvm_s2pte_exec(pte_t
*ptep
)
231 return !(READ_ONCE(pte_val(*ptep
)) & PTE_S2_XN
);
234 static inline void kvm_set_s2pmd_readonly(pmd_t
*pmdp
)
236 kvm_set_s2pte_readonly((pte_t
*)pmdp
);
239 static inline bool kvm_s2pmd_readonly(pmd_t
*pmdp
)
241 return kvm_s2pte_readonly((pte_t
*)pmdp
);
244 static inline bool kvm_s2pmd_exec(pmd_t
*pmdp
)
246 return !(READ_ONCE(pmd_val(*pmdp
)) & PMD_S2_XN
);
249 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
251 #ifdef __PAGETABLE_PMD_FOLDED
252 #define hyp_pmd_table_empty(pmdp) (0)
254 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
257 #ifdef __PAGETABLE_PUD_FOLDED
258 #define hyp_pud_table_empty(pudp) (0)
260 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
265 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
267 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu
*vcpu
)
269 return (vcpu_read_sys_reg(vcpu
, SCTLR_EL1
) & 0b101) == 0b101;
272 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn
, unsigned long size
)
274 void *va
= page_address(pfn_to_page(pfn
));
277 * With FWB, we ensure that the guest always accesses memory using
278 * cacheable attributes, and we don't have to clean to PoC when
279 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
280 * PoU is not required either in this case.
282 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB
))
285 kvm_flush_dcache_to_poc(va
, size
);
288 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn
,
291 if (icache_is_aliasing()) {
292 /* any kind of VIPT cache */
293 __flush_icache_all();
294 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
295 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
296 void *va
= page_address(pfn_to_page(pfn
));
298 invalidate_icache_range((unsigned long)va
,
299 (unsigned long)va
+ size
);
303 static inline void __kvm_flush_dcache_pte(pte_t pte
)
305 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB
)) {
306 struct page
*page
= pte_page(pte
);
307 kvm_flush_dcache_to_poc(page_address(page
), PAGE_SIZE
);
311 static inline void __kvm_flush_dcache_pmd(pmd_t pmd
)
313 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB
)) {
314 struct page
*page
= pmd_page(pmd
);
315 kvm_flush_dcache_to_poc(page_address(page
), PMD_SIZE
);
319 static inline void __kvm_flush_dcache_pud(pud_t pud
)
321 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB
)) {
322 struct page
*page
= pud_page(pud
);
323 kvm_flush_dcache_to_poc(page_address(page
), PUD_SIZE
);
327 #define kvm_virt_to_phys(x) __pa_symbol(x)
329 void kvm_set_way_flush(struct kvm_vcpu
*vcpu
);
330 void kvm_toggle_cache(struct kvm_vcpu
*vcpu
, bool was_enabled
);
332 static inline bool __kvm_cpu_uses_extended_idmap(void)
334 return __cpu_uses_extended_idmap_level();
337 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
339 return idmap_ptrs_per_pgd
;
343 * Can't use pgd_populate here, because the extended idmap adds an extra level
344 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
345 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
347 static inline void __kvm_extend_hypmap(pgd_t
*boot_hyp_pgd
,
349 pgd_t
*merged_hyp_pgd
,
350 unsigned long hyp_idmap_start
)
356 * Use the first entry to access the HYP mappings. It is
357 * guaranteed to be free, otherwise we wouldn't use an
360 VM_BUG_ON(pgd_val(merged_hyp_pgd
[0]));
361 pgd_addr
= __phys_to_pgd_val(__pa(hyp_pgd
));
362 merged_hyp_pgd
[0] = __pgd(pgd_addr
| PMD_TYPE_TABLE
);
365 * Create another extended level entry that points to the boot HYP map,
366 * which contains an ID mapping of the HYP init code. We essentially
367 * merge the boot and runtime HYP maps by doing so, but they don't
368 * overlap anyway, so this is fine.
370 idmap_idx
= hyp_idmap_start
>> VA_BITS
;
371 VM_BUG_ON(pgd_val(merged_hyp_pgd
[idmap_idx
]));
372 pgd_addr
= __phys_to_pgd_val(__pa(boot_hyp_pgd
));
373 merged_hyp_pgd
[idmap_idx
] = __pgd(pgd_addr
| PMD_TYPE_TABLE
);
376 static inline unsigned int kvm_get_vmid_bits(void)
378 int reg
= read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1
);
380 return (cpuid_feature_extract_unsigned_field(reg
, ID_AA64MMFR1_VMIDBITS_SHIFT
) == 2) ? 16 : 8;
384 * We are not in the kvm->srcu critical section most of the time, so we take
385 * the SRCU read lock here. Since we copy the data from the user page, we
386 * can immediately drop the lock again.
388 static inline int kvm_read_guest_lock(struct kvm
*kvm
,
389 gpa_t gpa
, void *data
, unsigned long len
)
391 int srcu_idx
= srcu_read_lock(&kvm
->srcu
);
392 int ret
= kvm_read_guest(kvm
, gpa
, data
, len
);
394 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
399 #ifdef CONFIG_KVM_INDIRECT_VECTORS
401 * EL2 vectors can be mapped and rerouted in a number of ways,
402 * depending on the kernel configuration and CPU present:
404 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
405 * hardening sequence is placed in one of the vector slots, which is
406 * executed before jumping to the real vectors.
408 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
409 * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
410 * hardening sequence is mapped next to the idmap page, and executed
411 * before jumping to the real vectors.
413 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
414 * empty slot is selected, mapped next to the idmap page, and
415 * executed before jumping to the real vectors.
417 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
418 * VHE, as we don't have hypervisor-specific mappings. If the system
419 * is VHE and yet selects this capability, it will be ignored.
423 extern void *__kvm_bp_vect_base
;
424 extern int __kvm_harden_el2_vector_slot
;
426 static inline void *kvm_get_hyp_vector(void)
428 struct bp_hardening_data
*data
= arm64_get_bp_hardening_data();
429 void *vect
= kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector
));
432 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR
) && data
->fn
) {
433 vect
= kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start
));
434 slot
= data
->hyp_vectors_slot
;
437 if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS
) && !has_vhe()) {
438 vect
= __kvm_bp_vect_base
;
440 slot
= __kvm_harden_el2_vector_slot
;
444 vect
+= slot
* SZ_2K
;
449 /* This is only called on a !VHE system */
450 static inline int kvm_map_vectors(void)
453 * HBP = ARM64_HARDEN_BRANCH_PREDICTOR
454 * HEL2 = ARM64_HARDEN_EL2_VECTORS
456 * !HBP + !HEL2 -> use direct vectors
457 * HBP + !HEL2 -> use hardened vectors in place
458 * !HBP + HEL2 -> allocate one vector slot and use exec mapping
459 * HBP + HEL2 -> use hardened vertors and use exec mapping
461 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR
)) {
462 __kvm_bp_vect_base
= kvm_ksym_ref(__bp_harden_hyp_vecs_start
);
463 __kvm_bp_vect_base
= kern_hyp_va(__kvm_bp_vect_base
);
466 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS
)) {
467 phys_addr_t vect_pa
= __pa_symbol(__bp_harden_hyp_vecs_start
);
468 unsigned long size
= (__bp_harden_hyp_vecs_end
-
469 __bp_harden_hyp_vecs_start
);
472 * Always allocate a spare vector slot, as we don't
473 * know yet which CPUs have a BP hardening slot that
476 __kvm_harden_el2_vector_slot
= atomic_inc_return(&arm64_el2_vector_last_slot
);
477 BUG_ON(__kvm_harden_el2_vector_slot
>= BP_HARDEN_EL2_SLOTS
);
478 return create_hyp_exec_mappings(vect_pa
, size
,
479 &__kvm_bp_vect_base
);
485 static inline void *kvm_get_hyp_vector(void)
487 return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector
));
490 static inline int kvm_map_vectors(void)
496 #ifdef CONFIG_ARM64_SSBD
497 DECLARE_PER_CPU_READ_MOSTLY(u64
, arm64_ssbd_callback_required
);
499 static inline int hyp_map_aux_data(void)
503 for_each_possible_cpu(cpu
) {
506 ptr
= per_cpu_ptr(&arm64_ssbd_callback_required
, cpu
);
507 err
= create_hyp_mappings(ptr
, ptr
+ 1, PAGE_HYP
);
514 static inline int hyp_map_aux_data(void)
520 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
523 * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
524 * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
527 static inline int arm64_vttbr_x(u32 ipa_shift
, u32 levels
)
529 int x
= ARM64_VTTBR_X(ipa_shift
, levels
);
531 return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52
) && x
< 6) ? 6 : x
;
534 static inline u64
vttbr_baddr_mask(u32 ipa_shift
, u32 levels
)
536 unsigned int x
= arm64_vttbr_x(ipa_shift
, levels
);
538 return GENMASK_ULL(PHYS_MASK_SHIFT
- 1, x
);
541 static inline u64
kvm_vttbr_baddr_mask(struct kvm
*kvm
)
543 return vttbr_baddr_mask(kvm_phys_shift(kvm
), kvm_stage2_levels(kvm
));
546 static inline bool kvm_cpu_has_cnp(void)
548 return system_supports_cnp();
551 #endif /* __ASSEMBLY__ */
552 #endif /* __ARM64_KVM_MMU_H__ */