mt76x2: apply coverage class on slot time too
[linux/fpc-iii.git] / kernel / bpf / verifier.c
bloba9e4b1372da6c1635e708e1ace953a19e4030030
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 #include <linux/bsearch.h>
24 #include <linux/sort.h>
25 #include <linux/perf_event.h>
27 #include "disasm.h"
29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30 #define BPF_PROG_TYPE(_id, _name) \
31 [_id] = & _name ## _verifier_ops,
32 #define BPF_MAP_TYPE(_id, _ops)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
38 /* bpf_check() is a static code analyzer that walks eBPF program
39 * instruction by instruction and updates register/stack state.
40 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 * The first pass is depth-first-search to check that the program is a DAG.
43 * It rejects the following programs:
44 * - larger than BPF_MAXINSNS insns
45 * - if loop is present (detected via back-edge)
46 * - unreachable insns exist (shouldn't be a forest. program = one function)
47 * - out of bounds or malformed jumps
48 * The second pass is all possible path descent from the 1st insn.
49 * Since it's analyzing all pathes through the program, the length of the
50 * analysis is limited to 64k insn, which may be hit even if total number of
51 * insn is less then 4K, but there are too many branches that change stack/regs.
52 * Number of 'branches to be analyzed' is limited to 1k
54 * On entry to each instruction, each register has a type, and the instruction
55 * changes the types of the registers depending on instruction semantics.
56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57 * copied to R1.
59 * All registers are 64-bit.
60 * R0 - return register
61 * R1-R5 argument passing registers
62 * R6-R9 callee saved registers
63 * R10 - frame pointer read-only
65 * At the start of BPF program the register R1 contains a pointer to bpf_context
66 * and has type PTR_TO_CTX.
68 * Verifier tracks arithmetic operations on pointers in case:
69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71 * 1st insn copies R10 (which has FRAME_PTR) type into R1
72 * and 2nd arithmetic instruction is pattern matched to recognize
73 * that it wants to construct a pointer to some element within stack.
74 * So after 2nd insn, the register R1 has type PTR_TO_STACK
75 * (and -20 constant is saved for further stack bounds checking).
76 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 * Most of the time the registers have SCALAR_VALUE type, which
79 * means the register has some value, but it's not a valid pointer.
80 * (like pointer plus pointer becomes SCALAR_VALUE type)
82 * When verifier sees load or store instructions the type of base register
83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
84 * types recognized by check_mem_access() function.
86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87 * and the range of [ptr, ptr + map's value_size) is accessible.
89 * registers used to pass values to function calls are checked against
90 * function argument constraints.
92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93 * It means that the register type passed to this function must be
94 * PTR_TO_STACK and it will be used inside the function as
95 * 'pointer to map element key'
97 * For example the argument constraints for bpf_map_lookup_elem():
98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99 * .arg1_type = ARG_CONST_MAP_PTR,
100 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 * ret_type says that this function returns 'pointer to map elem value or null'
103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104 * 2nd argument should be a pointer to stack, which will be used inside
105 * the helper function as a pointer to map element key.
107 * On the kernel side the helper function looks like:
108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111 * void *key = (void *) (unsigned long) r2;
112 * void *value;
114 * here kernel can access 'key' and 'map' pointers safely, knowing that
115 * [key, key + map->key_size) bytes are valid and were initialized on
116 * the stack of eBPF program.
119 * Corresponding eBPF program may look like:
120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124 * here verifier looks at prototype of map_lookup_elem() and sees:
125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130 * and were initialized prior to this call.
131 * If it's ok, then verifier allows this BPF_CALL insn and looks at
132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134 * returns ether pointer to map value or NULL.
136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137 * insn, the register holding that pointer in the true branch changes state to
138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139 * branch. See check_cond_jmp_op().
141 * After the call R0 is set to return type of the function and registers R1-R5
142 * are set to NOT_INIT to indicate that they are no longer readable.
145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
146 struct bpf_verifier_stack_elem {
147 /* verifer state is 'st'
148 * before processing instruction 'insn_idx'
149 * and after processing instruction 'prev_insn_idx'
151 struct bpf_verifier_state st;
152 int insn_idx;
153 int prev_insn_idx;
154 struct bpf_verifier_stack_elem *next;
157 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
158 #define BPF_COMPLEXITY_LIMIT_STACK 1024
160 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
162 struct bpf_call_arg_meta {
163 struct bpf_map *map_ptr;
164 bool raw_mode;
165 bool pkt_access;
166 int regno;
167 int access_size;
168 s64 msize_smax_value;
169 u64 msize_umax_value;
172 static DEFINE_MUTEX(bpf_verifier_lock);
174 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
175 va_list args)
177 unsigned int n;
179 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
181 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
182 "verifier log line truncated - local buffer too short\n");
184 n = min(log->len_total - log->len_used - 1, n);
185 log->kbuf[n] = '\0';
187 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
188 log->len_used += n;
189 else
190 log->ubuf = NULL;
193 /* log_level controls verbosity level of eBPF verifier.
194 * bpf_verifier_log_write() is used to dump the verification trace to the log,
195 * so the user can figure out what's wrong with the program
197 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
198 const char *fmt, ...)
200 va_list args;
202 if (!bpf_verifier_log_needed(&env->log))
203 return;
205 va_start(args, fmt);
206 bpf_verifier_vlog(&env->log, fmt, args);
207 va_end(args);
209 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
211 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
213 struct bpf_verifier_env *env = private_data;
214 va_list args;
216 if (!bpf_verifier_log_needed(&env->log))
217 return;
219 va_start(args, fmt);
220 bpf_verifier_vlog(&env->log, fmt, args);
221 va_end(args);
224 static bool type_is_pkt_pointer(enum bpf_reg_type type)
226 return type == PTR_TO_PACKET ||
227 type == PTR_TO_PACKET_META;
230 /* string representation of 'enum bpf_reg_type' */
231 static const char * const reg_type_str[] = {
232 [NOT_INIT] = "?",
233 [SCALAR_VALUE] = "inv",
234 [PTR_TO_CTX] = "ctx",
235 [CONST_PTR_TO_MAP] = "map_ptr",
236 [PTR_TO_MAP_VALUE] = "map_value",
237 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
238 [PTR_TO_STACK] = "fp",
239 [PTR_TO_PACKET] = "pkt",
240 [PTR_TO_PACKET_META] = "pkt_meta",
241 [PTR_TO_PACKET_END] = "pkt_end",
244 static void print_liveness(struct bpf_verifier_env *env,
245 enum bpf_reg_liveness live)
247 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
248 verbose(env, "_");
249 if (live & REG_LIVE_READ)
250 verbose(env, "r");
251 if (live & REG_LIVE_WRITTEN)
252 verbose(env, "w");
255 static struct bpf_func_state *func(struct bpf_verifier_env *env,
256 const struct bpf_reg_state *reg)
258 struct bpf_verifier_state *cur = env->cur_state;
260 return cur->frame[reg->frameno];
263 static void print_verifier_state(struct bpf_verifier_env *env,
264 const struct bpf_func_state *state)
266 const struct bpf_reg_state *reg;
267 enum bpf_reg_type t;
268 int i;
270 if (state->frameno)
271 verbose(env, " frame%d:", state->frameno);
272 for (i = 0; i < MAX_BPF_REG; i++) {
273 reg = &state->regs[i];
274 t = reg->type;
275 if (t == NOT_INIT)
276 continue;
277 verbose(env, " R%d", i);
278 print_liveness(env, reg->live);
279 verbose(env, "=%s", reg_type_str[t]);
280 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
281 tnum_is_const(reg->var_off)) {
282 /* reg->off should be 0 for SCALAR_VALUE */
283 verbose(env, "%lld", reg->var_off.value + reg->off);
284 if (t == PTR_TO_STACK)
285 verbose(env, ",call_%d", func(env, reg)->callsite);
286 } else {
287 verbose(env, "(id=%d", reg->id);
288 if (t != SCALAR_VALUE)
289 verbose(env, ",off=%d", reg->off);
290 if (type_is_pkt_pointer(t))
291 verbose(env, ",r=%d", reg->range);
292 else if (t == CONST_PTR_TO_MAP ||
293 t == PTR_TO_MAP_VALUE ||
294 t == PTR_TO_MAP_VALUE_OR_NULL)
295 verbose(env, ",ks=%d,vs=%d",
296 reg->map_ptr->key_size,
297 reg->map_ptr->value_size);
298 if (tnum_is_const(reg->var_off)) {
299 /* Typically an immediate SCALAR_VALUE, but
300 * could be a pointer whose offset is too big
301 * for reg->off
303 verbose(env, ",imm=%llx", reg->var_off.value);
304 } else {
305 if (reg->smin_value != reg->umin_value &&
306 reg->smin_value != S64_MIN)
307 verbose(env, ",smin_value=%lld",
308 (long long)reg->smin_value);
309 if (reg->smax_value != reg->umax_value &&
310 reg->smax_value != S64_MAX)
311 verbose(env, ",smax_value=%lld",
312 (long long)reg->smax_value);
313 if (reg->umin_value != 0)
314 verbose(env, ",umin_value=%llu",
315 (unsigned long long)reg->umin_value);
316 if (reg->umax_value != U64_MAX)
317 verbose(env, ",umax_value=%llu",
318 (unsigned long long)reg->umax_value);
319 if (!tnum_is_unknown(reg->var_off)) {
320 char tn_buf[48];
322 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
323 verbose(env, ",var_off=%s", tn_buf);
326 verbose(env, ")");
329 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
330 if (state->stack[i].slot_type[0] == STACK_SPILL) {
331 verbose(env, " fp%d",
332 (-i - 1) * BPF_REG_SIZE);
333 print_liveness(env, state->stack[i].spilled_ptr.live);
334 verbose(env, "=%s",
335 reg_type_str[state->stack[i].spilled_ptr.type]);
337 if (state->stack[i].slot_type[0] == STACK_ZERO)
338 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
340 verbose(env, "\n");
343 static int copy_stack_state(struct bpf_func_state *dst,
344 const struct bpf_func_state *src)
346 if (!src->stack)
347 return 0;
348 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
349 /* internal bug, make state invalid to reject the program */
350 memset(dst, 0, sizeof(*dst));
351 return -EFAULT;
353 memcpy(dst->stack, src->stack,
354 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
355 return 0;
358 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
359 * make it consume minimal amount of memory. check_stack_write() access from
360 * the program calls into realloc_func_state() to grow the stack size.
361 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
362 * which this function copies over. It points to previous bpf_verifier_state
363 * which is never reallocated
365 static int realloc_func_state(struct bpf_func_state *state, int size,
366 bool copy_old)
368 u32 old_size = state->allocated_stack;
369 struct bpf_stack_state *new_stack;
370 int slot = size / BPF_REG_SIZE;
372 if (size <= old_size || !size) {
373 if (copy_old)
374 return 0;
375 state->allocated_stack = slot * BPF_REG_SIZE;
376 if (!size && old_size) {
377 kfree(state->stack);
378 state->stack = NULL;
380 return 0;
382 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
383 GFP_KERNEL);
384 if (!new_stack)
385 return -ENOMEM;
386 if (copy_old) {
387 if (state->stack)
388 memcpy(new_stack, state->stack,
389 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
390 memset(new_stack + old_size / BPF_REG_SIZE, 0,
391 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
393 state->allocated_stack = slot * BPF_REG_SIZE;
394 kfree(state->stack);
395 state->stack = new_stack;
396 return 0;
399 static void free_func_state(struct bpf_func_state *state)
401 if (!state)
402 return;
403 kfree(state->stack);
404 kfree(state);
407 static void free_verifier_state(struct bpf_verifier_state *state,
408 bool free_self)
410 int i;
412 for (i = 0; i <= state->curframe; i++) {
413 free_func_state(state->frame[i]);
414 state->frame[i] = NULL;
416 if (free_self)
417 kfree(state);
420 /* copy verifier state from src to dst growing dst stack space
421 * when necessary to accommodate larger src stack
423 static int copy_func_state(struct bpf_func_state *dst,
424 const struct bpf_func_state *src)
426 int err;
428 err = realloc_func_state(dst, src->allocated_stack, false);
429 if (err)
430 return err;
431 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
432 return copy_stack_state(dst, src);
435 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
436 const struct bpf_verifier_state *src)
438 struct bpf_func_state *dst;
439 int i, err;
441 /* if dst has more stack frames then src frame, free them */
442 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
443 free_func_state(dst_state->frame[i]);
444 dst_state->frame[i] = NULL;
446 dst_state->curframe = src->curframe;
447 dst_state->parent = src->parent;
448 for (i = 0; i <= src->curframe; i++) {
449 dst = dst_state->frame[i];
450 if (!dst) {
451 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
452 if (!dst)
453 return -ENOMEM;
454 dst_state->frame[i] = dst;
456 err = copy_func_state(dst, src->frame[i]);
457 if (err)
458 return err;
460 return 0;
463 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
464 int *insn_idx)
466 struct bpf_verifier_state *cur = env->cur_state;
467 struct bpf_verifier_stack_elem *elem, *head = env->head;
468 int err;
470 if (env->head == NULL)
471 return -ENOENT;
473 if (cur) {
474 err = copy_verifier_state(cur, &head->st);
475 if (err)
476 return err;
478 if (insn_idx)
479 *insn_idx = head->insn_idx;
480 if (prev_insn_idx)
481 *prev_insn_idx = head->prev_insn_idx;
482 elem = head->next;
483 free_verifier_state(&head->st, false);
484 kfree(head);
485 env->head = elem;
486 env->stack_size--;
487 return 0;
490 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
491 int insn_idx, int prev_insn_idx)
493 struct bpf_verifier_state *cur = env->cur_state;
494 struct bpf_verifier_stack_elem *elem;
495 int err;
497 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
498 if (!elem)
499 goto err;
501 elem->insn_idx = insn_idx;
502 elem->prev_insn_idx = prev_insn_idx;
503 elem->next = env->head;
504 env->head = elem;
505 env->stack_size++;
506 err = copy_verifier_state(&elem->st, cur);
507 if (err)
508 goto err;
509 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
510 verbose(env, "BPF program is too complex\n");
511 goto err;
513 return &elem->st;
514 err:
515 free_verifier_state(env->cur_state, true);
516 env->cur_state = NULL;
517 /* pop all elements and return */
518 while (!pop_stack(env, NULL, NULL));
519 return NULL;
522 #define CALLER_SAVED_REGS 6
523 static const int caller_saved[CALLER_SAVED_REGS] = {
524 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
527 static void __mark_reg_not_init(struct bpf_reg_state *reg);
529 /* Mark the unknown part of a register (variable offset or scalar value) as
530 * known to have the value @imm.
532 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
534 reg->id = 0;
535 reg->var_off = tnum_const(imm);
536 reg->smin_value = (s64)imm;
537 reg->smax_value = (s64)imm;
538 reg->umin_value = imm;
539 reg->umax_value = imm;
542 /* Mark the 'variable offset' part of a register as zero. This should be
543 * used only on registers holding a pointer type.
545 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
547 __mark_reg_known(reg, 0);
550 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
552 __mark_reg_known(reg, 0);
553 reg->off = 0;
554 reg->type = SCALAR_VALUE;
557 static void mark_reg_known_zero(struct bpf_verifier_env *env,
558 struct bpf_reg_state *regs, u32 regno)
560 if (WARN_ON(regno >= MAX_BPF_REG)) {
561 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
562 /* Something bad happened, let's kill all regs */
563 for (regno = 0; regno < MAX_BPF_REG; regno++)
564 __mark_reg_not_init(regs + regno);
565 return;
567 __mark_reg_known_zero(regs + regno);
570 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
572 return type_is_pkt_pointer(reg->type);
575 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
577 return reg_is_pkt_pointer(reg) ||
578 reg->type == PTR_TO_PACKET_END;
581 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
582 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
583 enum bpf_reg_type which)
585 /* The register can already have a range from prior markings.
586 * This is fine as long as it hasn't been advanced from its
587 * origin.
589 return reg->type == which &&
590 reg->id == 0 &&
591 reg->off == 0 &&
592 tnum_equals_const(reg->var_off, 0);
595 /* Attempts to improve min/max values based on var_off information */
596 static void __update_reg_bounds(struct bpf_reg_state *reg)
598 /* min signed is max(sign bit) | min(other bits) */
599 reg->smin_value = max_t(s64, reg->smin_value,
600 reg->var_off.value | (reg->var_off.mask & S64_MIN));
601 /* max signed is min(sign bit) | max(other bits) */
602 reg->smax_value = min_t(s64, reg->smax_value,
603 reg->var_off.value | (reg->var_off.mask & S64_MAX));
604 reg->umin_value = max(reg->umin_value, reg->var_off.value);
605 reg->umax_value = min(reg->umax_value,
606 reg->var_off.value | reg->var_off.mask);
609 /* Uses signed min/max values to inform unsigned, and vice-versa */
610 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
612 /* Learn sign from signed bounds.
613 * If we cannot cross the sign boundary, then signed and unsigned bounds
614 * are the same, so combine. This works even in the negative case, e.g.
615 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
617 if (reg->smin_value >= 0 || reg->smax_value < 0) {
618 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
619 reg->umin_value);
620 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
621 reg->umax_value);
622 return;
624 /* Learn sign from unsigned bounds. Signed bounds cross the sign
625 * boundary, so we must be careful.
627 if ((s64)reg->umax_value >= 0) {
628 /* Positive. We can't learn anything from the smin, but smax
629 * is positive, hence safe.
631 reg->smin_value = reg->umin_value;
632 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
633 reg->umax_value);
634 } else if ((s64)reg->umin_value < 0) {
635 /* Negative. We can't learn anything from the smax, but smin
636 * is negative, hence safe.
638 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
639 reg->umin_value);
640 reg->smax_value = reg->umax_value;
644 /* Attempts to improve var_off based on unsigned min/max information */
645 static void __reg_bound_offset(struct bpf_reg_state *reg)
647 reg->var_off = tnum_intersect(reg->var_off,
648 tnum_range(reg->umin_value,
649 reg->umax_value));
652 /* Reset the min/max bounds of a register */
653 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
655 reg->smin_value = S64_MIN;
656 reg->smax_value = S64_MAX;
657 reg->umin_value = 0;
658 reg->umax_value = U64_MAX;
661 /* Mark a register as having a completely unknown (scalar) value. */
662 static void __mark_reg_unknown(struct bpf_reg_state *reg)
664 reg->type = SCALAR_VALUE;
665 reg->id = 0;
666 reg->off = 0;
667 reg->var_off = tnum_unknown;
668 reg->frameno = 0;
669 __mark_reg_unbounded(reg);
672 static void mark_reg_unknown(struct bpf_verifier_env *env,
673 struct bpf_reg_state *regs, u32 regno)
675 if (WARN_ON(regno >= MAX_BPF_REG)) {
676 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
677 /* Something bad happened, let's kill all regs except FP */
678 for (regno = 0; regno < BPF_REG_FP; regno++)
679 __mark_reg_not_init(regs + regno);
680 return;
682 __mark_reg_unknown(regs + regno);
685 static void __mark_reg_not_init(struct bpf_reg_state *reg)
687 __mark_reg_unknown(reg);
688 reg->type = NOT_INIT;
691 static void mark_reg_not_init(struct bpf_verifier_env *env,
692 struct bpf_reg_state *regs, u32 regno)
694 if (WARN_ON(regno >= MAX_BPF_REG)) {
695 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
696 /* Something bad happened, let's kill all regs except FP */
697 for (regno = 0; regno < BPF_REG_FP; regno++)
698 __mark_reg_not_init(regs + regno);
699 return;
701 __mark_reg_not_init(regs + regno);
704 static void init_reg_state(struct bpf_verifier_env *env,
705 struct bpf_func_state *state)
707 struct bpf_reg_state *regs = state->regs;
708 int i;
710 for (i = 0; i < MAX_BPF_REG; i++) {
711 mark_reg_not_init(env, regs, i);
712 regs[i].live = REG_LIVE_NONE;
715 /* frame pointer */
716 regs[BPF_REG_FP].type = PTR_TO_STACK;
717 mark_reg_known_zero(env, regs, BPF_REG_FP);
718 regs[BPF_REG_FP].frameno = state->frameno;
720 /* 1st arg to a function */
721 regs[BPF_REG_1].type = PTR_TO_CTX;
722 mark_reg_known_zero(env, regs, BPF_REG_1);
725 #define BPF_MAIN_FUNC (-1)
726 static void init_func_state(struct bpf_verifier_env *env,
727 struct bpf_func_state *state,
728 int callsite, int frameno, int subprogno)
730 state->callsite = callsite;
731 state->frameno = frameno;
732 state->subprogno = subprogno;
733 init_reg_state(env, state);
736 enum reg_arg_type {
737 SRC_OP, /* register is used as source operand */
738 DST_OP, /* register is used as destination operand */
739 DST_OP_NO_MARK /* same as above, check only, don't mark */
742 static int cmp_subprogs(const void *a, const void *b)
744 return ((struct bpf_subprog_info *)a)->start -
745 ((struct bpf_subprog_info *)b)->start;
748 static int find_subprog(struct bpf_verifier_env *env, int off)
750 struct bpf_subprog_info *p;
752 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
753 sizeof(env->subprog_info[0]), cmp_subprogs);
754 if (!p)
755 return -ENOENT;
756 return p - env->subprog_info;
760 static int add_subprog(struct bpf_verifier_env *env, int off)
762 int insn_cnt = env->prog->len;
763 int ret;
765 if (off >= insn_cnt || off < 0) {
766 verbose(env, "call to invalid destination\n");
767 return -EINVAL;
769 ret = find_subprog(env, off);
770 if (ret >= 0)
771 return 0;
772 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
773 verbose(env, "too many subprograms\n");
774 return -E2BIG;
776 env->subprog_info[env->subprog_cnt++].start = off;
777 sort(env->subprog_info, env->subprog_cnt,
778 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
779 return 0;
782 static int check_subprogs(struct bpf_verifier_env *env)
784 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
785 struct bpf_subprog_info *subprog = env->subprog_info;
786 struct bpf_insn *insn = env->prog->insnsi;
787 int insn_cnt = env->prog->len;
789 /* Add entry function. */
790 ret = add_subprog(env, 0);
791 if (ret < 0)
792 return ret;
794 /* determine subprog starts. The end is one before the next starts */
795 for (i = 0; i < insn_cnt; i++) {
796 if (insn[i].code != (BPF_JMP | BPF_CALL))
797 continue;
798 if (insn[i].src_reg != BPF_PSEUDO_CALL)
799 continue;
800 if (!env->allow_ptr_leaks) {
801 verbose(env, "function calls to other bpf functions are allowed for root only\n");
802 return -EPERM;
804 if (bpf_prog_is_dev_bound(env->prog->aux)) {
805 verbose(env, "function calls in offloaded programs are not supported yet\n");
806 return -EINVAL;
808 ret = add_subprog(env, i + insn[i].imm + 1);
809 if (ret < 0)
810 return ret;
813 /* Add a fake 'exit' subprog which could simplify subprog iteration
814 * logic. 'subprog_cnt' should not be increased.
816 subprog[env->subprog_cnt].start = insn_cnt;
818 if (env->log.level > 1)
819 for (i = 0; i < env->subprog_cnt; i++)
820 verbose(env, "func#%d @%d\n", i, subprog[i].start);
822 /* now check that all jumps are within the same subprog */
823 subprog_start = subprog[cur_subprog].start;
824 subprog_end = subprog[cur_subprog + 1].start;
825 for (i = 0; i < insn_cnt; i++) {
826 u8 code = insn[i].code;
828 if (BPF_CLASS(code) != BPF_JMP)
829 goto next;
830 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
831 goto next;
832 off = i + insn[i].off + 1;
833 if (off < subprog_start || off >= subprog_end) {
834 verbose(env, "jump out of range from insn %d to %d\n", i, off);
835 return -EINVAL;
837 next:
838 if (i == subprog_end - 1) {
839 /* to avoid fall-through from one subprog into another
840 * the last insn of the subprog should be either exit
841 * or unconditional jump back
843 if (code != (BPF_JMP | BPF_EXIT) &&
844 code != (BPF_JMP | BPF_JA)) {
845 verbose(env, "last insn is not an exit or jmp\n");
846 return -EINVAL;
848 subprog_start = subprog_end;
849 cur_subprog++;
850 if (cur_subprog < env->subprog_cnt)
851 subprog_end = subprog[cur_subprog + 1].start;
854 return 0;
857 static
858 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
859 const struct bpf_verifier_state *state,
860 struct bpf_verifier_state *parent,
861 u32 regno)
863 struct bpf_verifier_state *tmp = NULL;
865 /* 'parent' could be a state of caller and
866 * 'state' could be a state of callee. In such case
867 * parent->curframe < state->curframe
868 * and it's ok for r1 - r5 registers
870 * 'parent' could be a callee's state after it bpf_exit-ed.
871 * In such case parent->curframe > state->curframe
872 * and it's ok for r0 only
874 if (parent->curframe == state->curframe ||
875 (parent->curframe < state->curframe &&
876 regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
877 (parent->curframe > state->curframe &&
878 regno == BPF_REG_0))
879 return parent;
881 if (parent->curframe > state->curframe &&
882 regno >= BPF_REG_6) {
883 /* for callee saved regs we have to skip the whole chain
884 * of states that belong to callee and mark as LIVE_READ
885 * the registers before the call
887 tmp = parent;
888 while (tmp && tmp->curframe != state->curframe) {
889 tmp = tmp->parent;
891 if (!tmp)
892 goto bug;
893 parent = tmp;
894 } else {
895 goto bug;
897 return parent;
898 bug:
899 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
900 verbose(env, "regno %d parent frame %d current frame %d\n",
901 regno, parent->curframe, state->curframe);
902 return NULL;
905 static int mark_reg_read(struct bpf_verifier_env *env,
906 const struct bpf_verifier_state *state,
907 struct bpf_verifier_state *parent,
908 u32 regno)
910 bool writes = parent == state->parent; /* Observe write marks */
912 if (regno == BPF_REG_FP)
913 /* We don't need to worry about FP liveness because it's read-only */
914 return 0;
916 while (parent) {
917 /* if read wasn't screened by an earlier write ... */
918 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
919 break;
920 parent = skip_callee(env, state, parent, regno);
921 if (!parent)
922 return -EFAULT;
923 /* ... then we depend on parent's value */
924 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
925 state = parent;
926 parent = state->parent;
927 writes = true;
929 return 0;
932 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
933 enum reg_arg_type t)
935 struct bpf_verifier_state *vstate = env->cur_state;
936 struct bpf_func_state *state = vstate->frame[vstate->curframe];
937 struct bpf_reg_state *regs = state->regs;
939 if (regno >= MAX_BPF_REG) {
940 verbose(env, "R%d is invalid\n", regno);
941 return -EINVAL;
944 if (t == SRC_OP) {
945 /* check whether register used as source operand can be read */
946 if (regs[regno].type == NOT_INIT) {
947 verbose(env, "R%d !read_ok\n", regno);
948 return -EACCES;
950 return mark_reg_read(env, vstate, vstate->parent, regno);
951 } else {
952 /* check whether register used as dest operand can be written to */
953 if (regno == BPF_REG_FP) {
954 verbose(env, "frame pointer is read only\n");
955 return -EACCES;
957 regs[regno].live |= REG_LIVE_WRITTEN;
958 if (t == DST_OP)
959 mark_reg_unknown(env, regs, regno);
961 return 0;
964 static bool is_spillable_regtype(enum bpf_reg_type type)
966 switch (type) {
967 case PTR_TO_MAP_VALUE:
968 case PTR_TO_MAP_VALUE_OR_NULL:
969 case PTR_TO_STACK:
970 case PTR_TO_CTX:
971 case PTR_TO_PACKET:
972 case PTR_TO_PACKET_META:
973 case PTR_TO_PACKET_END:
974 case CONST_PTR_TO_MAP:
975 return true;
976 default:
977 return false;
981 /* Does this register contain a constant zero? */
982 static bool register_is_null(struct bpf_reg_state *reg)
984 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
987 /* check_stack_read/write functions track spill/fill of registers,
988 * stack boundary and alignment are checked in check_mem_access()
990 static int check_stack_write(struct bpf_verifier_env *env,
991 struct bpf_func_state *state, /* func where register points to */
992 int off, int size, int value_regno)
994 struct bpf_func_state *cur; /* state of the current function */
995 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
996 enum bpf_reg_type type;
998 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
999 true);
1000 if (err)
1001 return err;
1002 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1003 * so it's aligned access and [off, off + size) are within stack limits
1005 if (!env->allow_ptr_leaks &&
1006 state->stack[spi].slot_type[0] == STACK_SPILL &&
1007 size != BPF_REG_SIZE) {
1008 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1009 return -EACCES;
1012 cur = env->cur_state->frame[env->cur_state->curframe];
1013 if (value_regno >= 0 &&
1014 is_spillable_regtype((type = cur->regs[value_regno].type))) {
1016 /* register containing pointer is being spilled into stack */
1017 if (size != BPF_REG_SIZE) {
1018 verbose(env, "invalid size of register spill\n");
1019 return -EACCES;
1022 if (state != cur && type == PTR_TO_STACK) {
1023 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1024 return -EINVAL;
1027 /* save register state */
1028 state->stack[spi].spilled_ptr = cur->regs[value_regno];
1029 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1031 for (i = 0; i < BPF_REG_SIZE; i++)
1032 state->stack[spi].slot_type[i] = STACK_SPILL;
1033 } else {
1034 u8 type = STACK_MISC;
1036 /* regular write of data into stack */
1037 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1039 /* only mark the slot as written if all 8 bytes were written
1040 * otherwise read propagation may incorrectly stop too soon
1041 * when stack slots are partially written.
1042 * This heuristic means that read propagation will be
1043 * conservative, since it will add reg_live_read marks
1044 * to stack slots all the way to first state when programs
1045 * writes+reads less than 8 bytes
1047 if (size == BPF_REG_SIZE)
1048 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1050 /* when we zero initialize stack slots mark them as such */
1051 if (value_regno >= 0 &&
1052 register_is_null(&cur->regs[value_regno]))
1053 type = STACK_ZERO;
1055 for (i = 0; i < size; i++)
1056 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1057 type;
1059 return 0;
1062 /* registers of every function are unique and mark_reg_read() propagates
1063 * the liveness in the following cases:
1064 * - from callee into caller for R1 - R5 that were used as arguments
1065 * - from caller into callee for R0 that used as result of the call
1066 * - from caller to the same caller skipping states of the callee for R6 - R9,
1067 * since R6 - R9 are callee saved by implicit function prologue and
1068 * caller's R6 != callee's R6, so when we propagate liveness up to
1069 * parent states we need to skip callee states for R6 - R9.
1071 * stack slot marking is different, since stacks of caller and callee are
1072 * accessible in both (since caller can pass a pointer to caller's stack to
1073 * callee which can pass it to another function), hence mark_stack_slot_read()
1074 * has to propagate the stack liveness to all parent states at given frame number.
1075 * Consider code:
1076 * f1() {
1077 * ptr = fp - 8;
1078 * *ptr = ctx;
1079 * call f2 {
1080 * .. = *ptr;
1082 * .. = *ptr;
1084 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1085 * to mark liveness at the f1's frame and not f2's frame.
1086 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1087 * to propagate liveness to f2 states at f1's frame level and further into
1088 * f1 states at f1's frame level until write into that stack slot
1090 static void mark_stack_slot_read(struct bpf_verifier_env *env,
1091 const struct bpf_verifier_state *state,
1092 struct bpf_verifier_state *parent,
1093 int slot, int frameno)
1095 bool writes = parent == state->parent; /* Observe write marks */
1097 while (parent) {
1098 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
1099 /* since LIVE_WRITTEN mark is only done for full 8-byte
1100 * write the read marks are conservative and parent
1101 * state may not even have the stack allocated. In such case
1102 * end the propagation, since the loop reached beginning
1103 * of the function
1105 break;
1106 /* if read wasn't screened by an earlier write ... */
1107 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1108 break;
1109 /* ... then we depend on parent's value */
1110 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1111 state = parent;
1112 parent = state->parent;
1113 writes = true;
1117 static int check_stack_read(struct bpf_verifier_env *env,
1118 struct bpf_func_state *reg_state /* func where register points to */,
1119 int off, int size, int value_regno)
1121 struct bpf_verifier_state *vstate = env->cur_state;
1122 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1123 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1124 u8 *stype;
1126 if (reg_state->allocated_stack <= slot) {
1127 verbose(env, "invalid read from stack off %d+0 size %d\n",
1128 off, size);
1129 return -EACCES;
1131 stype = reg_state->stack[spi].slot_type;
1133 if (stype[0] == STACK_SPILL) {
1134 if (size != BPF_REG_SIZE) {
1135 verbose(env, "invalid size of register spill\n");
1136 return -EACCES;
1138 for (i = 1; i < BPF_REG_SIZE; i++) {
1139 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1140 verbose(env, "corrupted spill memory\n");
1141 return -EACCES;
1145 if (value_regno >= 0) {
1146 /* restore register state from stack */
1147 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1148 /* mark reg as written since spilled pointer state likely
1149 * has its liveness marks cleared by is_state_visited()
1150 * which resets stack/reg liveness for state transitions
1152 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1154 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1155 reg_state->frameno);
1156 return 0;
1157 } else {
1158 int zeros = 0;
1160 for (i = 0; i < size; i++) {
1161 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1162 continue;
1163 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1164 zeros++;
1165 continue;
1167 verbose(env, "invalid read from stack off %d+%d size %d\n",
1168 off, i, size);
1169 return -EACCES;
1171 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1172 reg_state->frameno);
1173 if (value_regno >= 0) {
1174 if (zeros == size) {
1175 /* any size read into register is zero extended,
1176 * so the whole register == const_zero
1178 __mark_reg_const_zero(&state->regs[value_regno]);
1179 } else {
1180 /* have read misc data from the stack */
1181 mark_reg_unknown(env, state->regs, value_regno);
1183 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1185 return 0;
1189 /* check read/write into map element returned by bpf_map_lookup_elem() */
1190 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1191 int size, bool zero_size_allowed)
1193 struct bpf_reg_state *regs = cur_regs(env);
1194 struct bpf_map *map = regs[regno].map_ptr;
1196 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1197 off + size > map->value_size) {
1198 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1199 map->value_size, off, size);
1200 return -EACCES;
1202 return 0;
1205 /* check read/write into a map element with possible variable offset */
1206 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1207 int off, int size, bool zero_size_allowed)
1209 struct bpf_verifier_state *vstate = env->cur_state;
1210 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1211 struct bpf_reg_state *reg = &state->regs[regno];
1212 int err;
1214 /* We may have adjusted the register to this map value, so we
1215 * need to try adding each of min_value and max_value to off
1216 * to make sure our theoretical access will be safe.
1218 if (env->log.level)
1219 print_verifier_state(env, state);
1220 /* The minimum value is only important with signed
1221 * comparisons where we can't assume the floor of a
1222 * value is 0. If we are using signed variables for our
1223 * index'es we need to make sure that whatever we use
1224 * will have a set floor within our range.
1226 if (reg->smin_value < 0) {
1227 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1228 regno);
1229 return -EACCES;
1231 err = __check_map_access(env, regno, reg->smin_value + off, size,
1232 zero_size_allowed);
1233 if (err) {
1234 verbose(env, "R%d min value is outside of the array range\n",
1235 regno);
1236 return err;
1239 /* If we haven't set a max value then we need to bail since we can't be
1240 * sure we won't do bad things.
1241 * If reg->umax_value + off could overflow, treat that as unbounded too.
1243 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1244 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1245 regno);
1246 return -EACCES;
1248 err = __check_map_access(env, regno, reg->umax_value + off, size,
1249 zero_size_allowed);
1250 if (err)
1251 verbose(env, "R%d max value is outside of the array range\n",
1252 regno);
1253 return err;
1256 #define MAX_PACKET_OFF 0xffff
1258 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1259 const struct bpf_call_arg_meta *meta,
1260 enum bpf_access_type t)
1262 switch (env->prog->type) {
1263 case BPF_PROG_TYPE_LWT_IN:
1264 case BPF_PROG_TYPE_LWT_OUT:
1265 /* dst_input() and dst_output() can't write for now */
1266 if (t == BPF_WRITE)
1267 return false;
1268 /* fallthrough */
1269 case BPF_PROG_TYPE_SCHED_CLS:
1270 case BPF_PROG_TYPE_SCHED_ACT:
1271 case BPF_PROG_TYPE_XDP:
1272 case BPF_PROG_TYPE_LWT_XMIT:
1273 case BPF_PROG_TYPE_SK_SKB:
1274 case BPF_PROG_TYPE_SK_MSG:
1275 if (meta)
1276 return meta->pkt_access;
1278 env->seen_direct_write = true;
1279 return true;
1280 default:
1281 return false;
1285 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1286 int off, int size, bool zero_size_allowed)
1288 struct bpf_reg_state *regs = cur_regs(env);
1289 struct bpf_reg_state *reg = &regs[regno];
1291 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1292 (u64)off + size > reg->range) {
1293 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1294 off, size, regno, reg->id, reg->off, reg->range);
1295 return -EACCES;
1297 return 0;
1300 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1301 int size, bool zero_size_allowed)
1303 struct bpf_reg_state *regs = cur_regs(env);
1304 struct bpf_reg_state *reg = &regs[regno];
1305 int err;
1307 /* We may have added a variable offset to the packet pointer; but any
1308 * reg->range we have comes after that. We are only checking the fixed
1309 * offset.
1312 /* We don't allow negative numbers, because we aren't tracking enough
1313 * detail to prove they're safe.
1315 if (reg->smin_value < 0) {
1316 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1317 regno);
1318 return -EACCES;
1320 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1321 if (err) {
1322 verbose(env, "R%d offset is outside of the packet\n", regno);
1323 return err;
1325 return err;
1328 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
1329 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1330 enum bpf_access_type t, enum bpf_reg_type *reg_type)
1332 struct bpf_insn_access_aux info = {
1333 .reg_type = *reg_type,
1336 if (env->ops->is_valid_access &&
1337 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1338 /* A non zero info.ctx_field_size indicates that this field is a
1339 * candidate for later verifier transformation to load the whole
1340 * field and then apply a mask when accessed with a narrower
1341 * access than actual ctx access size. A zero info.ctx_field_size
1342 * will only allow for whole field access and rejects any other
1343 * type of narrower access.
1345 *reg_type = info.reg_type;
1347 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1348 /* remember the offset of last byte accessed in ctx */
1349 if (env->prog->aux->max_ctx_offset < off + size)
1350 env->prog->aux->max_ctx_offset = off + size;
1351 return 0;
1354 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1355 return -EACCES;
1358 static bool __is_pointer_value(bool allow_ptr_leaks,
1359 const struct bpf_reg_state *reg)
1361 if (allow_ptr_leaks)
1362 return false;
1364 return reg->type != SCALAR_VALUE;
1367 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1369 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1372 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1374 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1376 return reg->type == PTR_TO_CTX;
1379 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1381 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1383 return type_is_pkt_pointer(reg->type);
1386 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1387 const struct bpf_reg_state *reg,
1388 int off, int size, bool strict)
1390 struct tnum reg_off;
1391 int ip_align;
1393 /* Byte size accesses are always allowed. */
1394 if (!strict || size == 1)
1395 return 0;
1397 /* For platforms that do not have a Kconfig enabling
1398 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1399 * NET_IP_ALIGN is universally set to '2'. And on platforms
1400 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1401 * to this code only in strict mode where we want to emulate
1402 * the NET_IP_ALIGN==2 checking. Therefore use an
1403 * unconditional IP align value of '2'.
1405 ip_align = 2;
1407 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1408 if (!tnum_is_aligned(reg_off, size)) {
1409 char tn_buf[48];
1411 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1412 verbose(env,
1413 "misaligned packet access off %d+%s+%d+%d size %d\n",
1414 ip_align, tn_buf, reg->off, off, size);
1415 return -EACCES;
1418 return 0;
1421 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1422 const struct bpf_reg_state *reg,
1423 const char *pointer_desc,
1424 int off, int size, bool strict)
1426 struct tnum reg_off;
1428 /* Byte size accesses are always allowed. */
1429 if (!strict || size == 1)
1430 return 0;
1432 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1433 if (!tnum_is_aligned(reg_off, size)) {
1434 char tn_buf[48];
1436 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1437 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1438 pointer_desc, tn_buf, reg->off, off, size);
1439 return -EACCES;
1442 return 0;
1445 static int check_ptr_alignment(struct bpf_verifier_env *env,
1446 const struct bpf_reg_state *reg, int off,
1447 int size, bool strict_alignment_once)
1449 bool strict = env->strict_alignment || strict_alignment_once;
1450 const char *pointer_desc = "";
1452 switch (reg->type) {
1453 case PTR_TO_PACKET:
1454 case PTR_TO_PACKET_META:
1455 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1456 * right in front, treat it the very same way.
1458 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1459 case PTR_TO_MAP_VALUE:
1460 pointer_desc = "value ";
1461 break;
1462 case PTR_TO_CTX:
1463 pointer_desc = "context ";
1464 break;
1465 case PTR_TO_STACK:
1466 pointer_desc = "stack ";
1467 /* The stack spill tracking logic in check_stack_write()
1468 * and check_stack_read() relies on stack accesses being
1469 * aligned.
1471 strict = true;
1472 break;
1473 default:
1474 break;
1476 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1477 strict);
1480 static int update_stack_depth(struct bpf_verifier_env *env,
1481 const struct bpf_func_state *func,
1482 int off)
1484 u16 stack = env->subprog_info[func->subprogno].stack_depth;
1486 if (stack >= -off)
1487 return 0;
1489 /* update known max for given subprogram */
1490 env->subprog_info[func->subprogno].stack_depth = -off;
1491 return 0;
1494 /* starting from main bpf function walk all instructions of the function
1495 * and recursively walk all callees that given function can call.
1496 * Ignore jump and exit insns.
1497 * Since recursion is prevented by check_cfg() this algorithm
1498 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1500 static int check_max_stack_depth(struct bpf_verifier_env *env)
1502 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1503 struct bpf_subprog_info *subprog = env->subprog_info;
1504 struct bpf_insn *insn = env->prog->insnsi;
1505 int ret_insn[MAX_CALL_FRAMES];
1506 int ret_prog[MAX_CALL_FRAMES];
1508 process_func:
1509 /* round up to 32-bytes, since this is granularity
1510 * of interpreter stack size
1512 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1513 if (depth > MAX_BPF_STACK) {
1514 verbose(env, "combined stack size of %d calls is %d. Too large\n",
1515 frame + 1, depth);
1516 return -EACCES;
1518 continue_func:
1519 subprog_end = subprog[idx + 1].start;
1520 for (; i < subprog_end; i++) {
1521 if (insn[i].code != (BPF_JMP | BPF_CALL))
1522 continue;
1523 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1524 continue;
1525 /* remember insn and function to return to */
1526 ret_insn[frame] = i + 1;
1527 ret_prog[frame] = idx;
1529 /* find the callee */
1530 i = i + insn[i].imm + 1;
1531 idx = find_subprog(env, i);
1532 if (idx < 0) {
1533 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1535 return -EFAULT;
1537 frame++;
1538 if (frame >= MAX_CALL_FRAMES) {
1539 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1540 return -EFAULT;
1542 goto process_func;
1544 /* end of for() loop means the last insn of the 'subprog'
1545 * was reached. Doesn't matter whether it was JA or EXIT
1547 if (frame == 0)
1548 return 0;
1549 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1550 frame--;
1551 i = ret_insn[frame];
1552 idx = ret_prog[frame];
1553 goto continue_func;
1556 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1557 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1558 const struct bpf_insn *insn, int idx)
1560 int start = idx + insn->imm + 1, subprog;
1562 subprog = find_subprog(env, start);
1563 if (subprog < 0) {
1564 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1565 start);
1566 return -EFAULT;
1568 return env->subprog_info[subprog].stack_depth;
1570 #endif
1572 /* truncate register to smaller size (in bytes)
1573 * must be called with size < BPF_REG_SIZE
1575 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1577 u64 mask;
1579 /* clear high bits in bit representation */
1580 reg->var_off = tnum_cast(reg->var_off, size);
1582 /* fix arithmetic bounds */
1583 mask = ((u64)1 << (size * 8)) - 1;
1584 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1585 reg->umin_value &= mask;
1586 reg->umax_value &= mask;
1587 } else {
1588 reg->umin_value = 0;
1589 reg->umax_value = mask;
1591 reg->smin_value = reg->umin_value;
1592 reg->smax_value = reg->umax_value;
1595 /* check whether memory at (regno + off) is accessible for t = (read | write)
1596 * if t==write, value_regno is a register which value is stored into memory
1597 * if t==read, value_regno is a register which will receive the value from memory
1598 * if t==write && value_regno==-1, some unknown value is stored into memory
1599 * if t==read && value_regno==-1, don't care what we read from memory
1601 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1602 int off, int bpf_size, enum bpf_access_type t,
1603 int value_regno, bool strict_alignment_once)
1605 struct bpf_reg_state *regs = cur_regs(env);
1606 struct bpf_reg_state *reg = regs + regno;
1607 struct bpf_func_state *state;
1608 int size, err = 0;
1610 size = bpf_size_to_bytes(bpf_size);
1611 if (size < 0)
1612 return size;
1614 /* alignment checks will add in reg->off themselves */
1615 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1616 if (err)
1617 return err;
1619 /* for access checks, reg->off is just part of off */
1620 off += reg->off;
1622 if (reg->type == PTR_TO_MAP_VALUE) {
1623 if (t == BPF_WRITE && value_regno >= 0 &&
1624 is_pointer_value(env, value_regno)) {
1625 verbose(env, "R%d leaks addr into map\n", value_regno);
1626 return -EACCES;
1629 err = check_map_access(env, regno, off, size, false);
1630 if (!err && t == BPF_READ && value_regno >= 0)
1631 mark_reg_unknown(env, regs, value_regno);
1633 } else if (reg->type == PTR_TO_CTX) {
1634 enum bpf_reg_type reg_type = SCALAR_VALUE;
1636 if (t == BPF_WRITE && value_regno >= 0 &&
1637 is_pointer_value(env, value_regno)) {
1638 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1639 return -EACCES;
1641 /* ctx accesses must be at a fixed offset, so that we can
1642 * determine what type of data were returned.
1644 if (reg->off) {
1645 verbose(env,
1646 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1647 regno, reg->off, off - reg->off);
1648 return -EACCES;
1650 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1651 char tn_buf[48];
1653 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1654 verbose(env,
1655 "variable ctx access var_off=%s off=%d size=%d",
1656 tn_buf, off, size);
1657 return -EACCES;
1659 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1660 if (!err && t == BPF_READ && value_regno >= 0) {
1661 /* ctx access returns either a scalar, or a
1662 * PTR_TO_PACKET[_META,_END]. In the latter
1663 * case, we know the offset is zero.
1665 if (reg_type == SCALAR_VALUE)
1666 mark_reg_unknown(env, regs, value_regno);
1667 else
1668 mark_reg_known_zero(env, regs,
1669 value_regno);
1670 regs[value_regno].id = 0;
1671 regs[value_regno].off = 0;
1672 regs[value_regno].range = 0;
1673 regs[value_regno].type = reg_type;
1676 } else if (reg->type == PTR_TO_STACK) {
1677 /* stack accesses must be at a fixed offset, so that we can
1678 * determine what type of data were returned.
1679 * See check_stack_read().
1681 if (!tnum_is_const(reg->var_off)) {
1682 char tn_buf[48];
1684 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1685 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1686 tn_buf, off, size);
1687 return -EACCES;
1689 off += reg->var_off.value;
1690 if (off >= 0 || off < -MAX_BPF_STACK) {
1691 verbose(env, "invalid stack off=%d size=%d\n", off,
1692 size);
1693 return -EACCES;
1696 state = func(env, reg);
1697 err = update_stack_depth(env, state, off);
1698 if (err)
1699 return err;
1701 if (t == BPF_WRITE)
1702 err = check_stack_write(env, state, off, size,
1703 value_regno);
1704 else
1705 err = check_stack_read(env, state, off, size,
1706 value_regno);
1707 } else if (reg_is_pkt_pointer(reg)) {
1708 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1709 verbose(env, "cannot write into packet\n");
1710 return -EACCES;
1712 if (t == BPF_WRITE && value_regno >= 0 &&
1713 is_pointer_value(env, value_regno)) {
1714 verbose(env, "R%d leaks addr into packet\n",
1715 value_regno);
1716 return -EACCES;
1718 err = check_packet_access(env, regno, off, size, false);
1719 if (!err && t == BPF_READ && value_regno >= 0)
1720 mark_reg_unknown(env, regs, value_regno);
1721 } else {
1722 verbose(env, "R%d invalid mem access '%s'\n", regno,
1723 reg_type_str[reg->type]);
1724 return -EACCES;
1727 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1728 regs[value_regno].type == SCALAR_VALUE) {
1729 /* b/h/w load zero-extends, mark upper bits as known 0 */
1730 coerce_reg_to_size(&regs[value_regno], size);
1732 return err;
1735 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1737 int err;
1739 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1740 insn->imm != 0) {
1741 verbose(env, "BPF_XADD uses reserved fields\n");
1742 return -EINVAL;
1745 /* check src1 operand */
1746 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1747 if (err)
1748 return err;
1750 /* check src2 operand */
1751 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1752 if (err)
1753 return err;
1755 if (is_pointer_value(env, insn->src_reg)) {
1756 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1757 return -EACCES;
1760 if (is_ctx_reg(env, insn->dst_reg) ||
1761 is_pkt_reg(env, insn->dst_reg)) {
1762 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1763 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1764 "context" : "packet");
1765 return -EACCES;
1768 /* check whether atomic_add can read the memory */
1769 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1770 BPF_SIZE(insn->code), BPF_READ, -1, true);
1771 if (err)
1772 return err;
1774 /* check whether atomic_add can write into the same memory */
1775 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1776 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1779 /* when register 'regno' is passed into function that will read 'access_size'
1780 * bytes from that pointer, make sure that it's within stack boundary
1781 * and all elements of stack are initialized.
1782 * Unlike most pointer bounds-checking functions, this one doesn't take an
1783 * 'off' argument, so it has to add in reg->off itself.
1785 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1786 int access_size, bool zero_size_allowed,
1787 struct bpf_call_arg_meta *meta)
1789 struct bpf_reg_state *reg = cur_regs(env) + regno;
1790 struct bpf_func_state *state = func(env, reg);
1791 int off, i, slot, spi;
1793 if (reg->type != PTR_TO_STACK) {
1794 /* Allow zero-byte read from NULL, regardless of pointer type */
1795 if (zero_size_allowed && access_size == 0 &&
1796 register_is_null(reg))
1797 return 0;
1799 verbose(env, "R%d type=%s expected=%s\n", regno,
1800 reg_type_str[reg->type],
1801 reg_type_str[PTR_TO_STACK]);
1802 return -EACCES;
1805 /* Only allow fixed-offset stack reads */
1806 if (!tnum_is_const(reg->var_off)) {
1807 char tn_buf[48];
1809 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1810 verbose(env, "invalid variable stack read R%d var_off=%s\n",
1811 regno, tn_buf);
1812 return -EACCES;
1814 off = reg->off + reg->var_off.value;
1815 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1816 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1817 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1818 regno, off, access_size);
1819 return -EACCES;
1822 if (meta && meta->raw_mode) {
1823 meta->access_size = access_size;
1824 meta->regno = regno;
1825 return 0;
1828 for (i = 0; i < access_size; i++) {
1829 u8 *stype;
1831 slot = -(off + i) - 1;
1832 spi = slot / BPF_REG_SIZE;
1833 if (state->allocated_stack <= slot)
1834 goto err;
1835 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1836 if (*stype == STACK_MISC)
1837 goto mark;
1838 if (*stype == STACK_ZERO) {
1839 /* helper can write anything into the stack */
1840 *stype = STACK_MISC;
1841 goto mark;
1843 err:
1844 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1845 off, i, access_size);
1846 return -EACCES;
1847 mark:
1848 /* reading any byte out of 8-byte 'spill_slot' will cause
1849 * the whole slot to be marked as 'read'
1851 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
1852 spi, state->frameno);
1854 return update_stack_depth(env, state, off);
1857 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1858 int access_size, bool zero_size_allowed,
1859 struct bpf_call_arg_meta *meta)
1861 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1863 switch (reg->type) {
1864 case PTR_TO_PACKET:
1865 case PTR_TO_PACKET_META:
1866 return check_packet_access(env, regno, reg->off, access_size,
1867 zero_size_allowed);
1868 case PTR_TO_MAP_VALUE:
1869 return check_map_access(env, regno, reg->off, access_size,
1870 zero_size_allowed);
1871 default: /* scalar_value|ptr_to_stack or invalid ptr */
1872 return check_stack_boundary(env, regno, access_size,
1873 zero_size_allowed, meta);
1877 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1879 return type == ARG_PTR_TO_MEM ||
1880 type == ARG_PTR_TO_MEM_OR_NULL ||
1881 type == ARG_PTR_TO_UNINIT_MEM;
1884 static bool arg_type_is_mem_size(enum bpf_arg_type type)
1886 return type == ARG_CONST_SIZE ||
1887 type == ARG_CONST_SIZE_OR_ZERO;
1890 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1891 enum bpf_arg_type arg_type,
1892 struct bpf_call_arg_meta *meta)
1894 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1895 enum bpf_reg_type expected_type, type = reg->type;
1896 int err = 0;
1898 if (arg_type == ARG_DONTCARE)
1899 return 0;
1901 err = check_reg_arg(env, regno, SRC_OP);
1902 if (err)
1903 return err;
1905 if (arg_type == ARG_ANYTHING) {
1906 if (is_pointer_value(env, regno)) {
1907 verbose(env, "R%d leaks addr into helper function\n",
1908 regno);
1909 return -EACCES;
1911 return 0;
1914 if (type_is_pkt_pointer(type) &&
1915 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1916 verbose(env, "helper access to the packet is not allowed\n");
1917 return -EACCES;
1920 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1921 arg_type == ARG_PTR_TO_MAP_VALUE) {
1922 expected_type = PTR_TO_STACK;
1923 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
1924 type != expected_type)
1925 goto err_type;
1926 } else if (arg_type == ARG_CONST_SIZE ||
1927 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1928 expected_type = SCALAR_VALUE;
1929 if (type != expected_type)
1930 goto err_type;
1931 } else if (arg_type == ARG_CONST_MAP_PTR) {
1932 expected_type = CONST_PTR_TO_MAP;
1933 if (type != expected_type)
1934 goto err_type;
1935 } else if (arg_type == ARG_PTR_TO_CTX) {
1936 expected_type = PTR_TO_CTX;
1937 if (type != expected_type)
1938 goto err_type;
1939 } else if (arg_type_is_mem_ptr(arg_type)) {
1940 expected_type = PTR_TO_STACK;
1941 /* One exception here. In case function allows for NULL to be
1942 * passed in as argument, it's a SCALAR_VALUE type. Final test
1943 * happens during stack boundary checking.
1945 if (register_is_null(reg) &&
1946 arg_type == ARG_PTR_TO_MEM_OR_NULL)
1947 /* final test in check_stack_boundary() */;
1948 else if (!type_is_pkt_pointer(type) &&
1949 type != PTR_TO_MAP_VALUE &&
1950 type != expected_type)
1951 goto err_type;
1952 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1953 } else {
1954 verbose(env, "unsupported arg_type %d\n", arg_type);
1955 return -EFAULT;
1958 if (arg_type == ARG_CONST_MAP_PTR) {
1959 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1960 meta->map_ptr = reg->map_ptr;
1961 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1962 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1963 * check that [key, key + map->key_size) are within
1964 * stack limits and initialized
1966 if (!meta->map_ptr) {
1967 /* in function declaration map_ptr must come before
1968 * map_key, so that it's verified and known before
1969 * we have to check map_key here. Otherwise it means
1970 * that kernel subsystem misconfigured verifier
1972 verbose(env, "invalid map_ptr to access map->key\n");
1973 return -EACCES;
1975 err = check_helper_mem_access(env, regno,
1976 meta->map_ptr->key_size, false,
1977 NULL);
1978 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1979 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1980 * check [value, value + map->value_size) validity
1982 if (!meta->map_ptr) {
1983 /* kernel subsystem misconfigured verifier */
1984 verbose(env, "invalid map_ptr to access map->value\n");
1985 return -EACCES;
1987 err = check_helper_mem_access(env, regno,
1988 meta->map_ptr->value_size, false,
1989 NULL);
1990 } else if (arg_type_is_mem_size(arg_type)) {
1991 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1993 /* remember the mem_size which may be used later
1994 * to refine return values.
1996 meta->msize_smax_value = reg->smax_value;
1997 meta->msize_umax_value = reg->umax_value;
1999 /* The register is SCALAR_VALUE; the access check
2000 * happens using its boundaries.
2002 if (!tnum_is_const(reg->var_off))
2003 /* For unprivileged variable accesses, disable raw
2004 * mode so that the program is required to
2005 * initialize all the memory that the helper could
2006 * just partially fill up.
2008 meta = NULL;
2010 if (reg->smin_value < 0) {
2011 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2012 regno);
2013 return -EACCES;
2016 if (reg->umin_value == 0) {
2017 err = check_helper_mem_access(env, regno - 1, 0,
2018 zero_size_allowed,
2019 meta);
2020 if (err)
2021 return err;
2024 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2025 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2026 regno);
2027 return -EACCES;
2029 err = check_helper_mem_access(env, regno - 1,
2030 reg->umax_value,
2031 zero_size_allowed, meta);
2034 return err;
2035 err_type:
2036 verbose(env, "R%d type=%s expected=%s\n", regno,
2037 reg_type_str[type], reg_type_str[expected_type]);
2038 return -EACCES;
2041 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2042 struct bpf_map *map, int func_id)
2044 if (!map)
2045 return 0;
2047 /* We need a two way check, first is from map perspective ... */
2048 switch (map->map_type) {
2049 case BPF_MAP_TYPE_PROG_ARRAY:
2050 if (func_id != BPF_FUNC_tail_call)
2051 goto error;
2052 break;
2053 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2054 if (func_id != BPF_FUNC_perf_event_read &&
2055 func_id != BPF_FUNC_perf_event_output &&
2056 func_id != BPF_FUNC_perf_event_read_value)
2057 goto error;
2058 break;
2059 case BPF_MAP_TYPE_STACK_TRACE:
2060 if (func_id != BPF_FUNC_get_stackid)
2061 goto error;
2062 break;
2063 case BPF_MAP_TYPE_CGROUP_ARRAY:
2064 if (func_id != BPF_FUNC_skb_under_cgroup &&
2065 func_id != BPF_FUNC_current_task_under_cgroup)
2066 goto error;
2067 break;
2068 /* devmap returns a pointer to a live net_device ifindex that we cannot
2069 * allow to be modified from bpf side. So do not allow lookup elements
2070 * for now.
2072 case BPF_MAP_TYPE_DEVMAP:
2073 if (func_id != BPF_FUNC_redirect_map)
2074 goto error;
2075 break;
2076 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2077 * appear.
2079 case BPF_MAP_TYPE_CPUMAP:
2080 case BPF_MAP_TYPE_XSKMAP:
2081 if (func_id != BPF_FUNC_redirect_map)
2082 goto error;
2083 break;
2084 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2085 case BPF_MAP_TYPE_HASH_OF_MAPS:
2086 if (func_id != BPF_FUNC_map_lookup_elem)
2087 goto error;
2088 break;
2089 case BPF_MAP_TYPE_SOCKMAP:
2090 if (func_id != BPF_FUNC_sk_redirect_map &&
2091 func_id != BPF_FUNC_sock_map_update &&
2092 func_id != BPF_FUNC_map_delete_elem &&
2093 func_id != BPF_FUNC_msg_redirect_map)
2094 goto error;
2095 break;
2096 case BPF_MAP_TYPE_SOCKHASH:
2097 if (func_id != BPF_FUNC_sk_redirect_hash &&
2098 func_id != BPF_FUNC_sock_hash_update &&
2099 func_id != BPF_FUNC_map_delete_elem &&
2100 func_id != BPF_FUNC_msg_redirect_hash)
2101 goto error;
2102 break;
2103 default:
2104 break;
2107 /* ... and second from the function itself. */
2108 switch (func_id) {
2109 case BPF_FUNC_tail_call:
2110 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2111 goto error;
2112 if (env->subprog_cnt > 1) {
2113 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2114 return -EINVAL;
2116 break;
2117 case BPF_FUNC_perf_event_read:
2118 case BPF_FUNC_perf_event_output:
2119 case BPF_FUNC_perf_event_read_value:
2120 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2121 goto error;
2122 break;
2123 case BPF_FUNC_get_stackid:
2124 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2125 goto error;
2126 break;
2127 case BPF_FUNC_current_task_under_cgroup:
2128 case BPF_FUNC_skb_under_cgroup:
2129 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2130 goto error;
2131 break;
2132 case BPF_FUNC_redirect_map:
2133 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2134 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2135 map->map_type != BPF_MAP_TYPE_XSKMAP)
2136 goto error;
2137 break;
2138 case BPF_FUNC_sk_redirect_map:
2139 case BPF_FUNC_msg_redirect_map:
2140 case BPF_FUNC_sock_map_update:
2141 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2142 goto error;
2143 break;
2144 case BPF_FUNC_sk_redirect_hash:
2145 case BPF_FUNC_msg_redirect_hash:
2146 case BPF_FUNC_sock_hash_update:
2147 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2148 goto error;
2149 break;
2150 default:
2151 break;
2154 return 0;
2155 error:
2156 verbose(env, "cannot pass map_type %d into func %s#%d\n",
2157 map->map_type, func_id_name(func_id), func_id);
2158 return -EINVAL;
2161 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2163 int count = 0;
2165 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2166 count++;
2167 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2168 count++;
2169 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2170 count++;
2171 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2172 count++;
2173 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2174 count++;
2176 /* We only support one arg being in raw mode at the moment,
2177 * which is sufficient for the helper functions we have
2178 * right now.
2180 return count <= 1;
2183 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2184 enum bpf_arg_type arg_next)
2186 return (arg_type_is_mem_ptr(arg_curr) &&
2187 !arg_type_is_mem_size(arg_next)) ||
2188 (!arg_type_is_mem_ptr(arg_curr) &&
2189 arg_type_is_mem_size(arg_next));
2192 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2194 /* bpf_xxx(..., buf, len) call will access 'len'
2195 * bytes from memory 'buf'. Both arg types need
2196 * to be paired, so make sure there's no buggy
2197 * helper function specification.
2199 if (arg_type_is_mem_size(fn->arg1_type) ||
2200 arg_type_is_mem_ptr(fn->arg5_type) ||
2201 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2202 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2203 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2204 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2205 return false;
2207 return true;
2210 static int check_func_proto(const struct bpf_func_proto *fn)
2212 return check_raw_mode_ok(fn) &&
2213 check_arg_pair_ok(fn) ? 0 : -EINVAL;
2216 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2217 * are now invalid, so turn them into unknown SCALAR_VALUE.
2219 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2220 struct bpf_func_state *state)
2222 struct bpf_reg_state *regs = state->regs, *reg;
2223 int i;
2225 for (i = 0; i < MAX_BPF_REG; i++)
2226 if (reg_is_pkt_pointer_any(&regs[i]))
2227 mark_reg_unknown(env, regs, i);
2229 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2230 if (state->stack[i].slot_type[0] != STACK_SPILL)
2231 continue;
2232 reg = &state->stack[i].spilled_ptr;
2233 if (reg_is_pkt_pointer_any(reg))
2234 __mark_reg_unknown(reg);
2238 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2240 struct bpf_verifier_state *vstate = env->cur_state;
2241 int i;
2243 for (i = 0; i <= vstate->curframe; i++)
2244 __clear_all_pkt_pointers(env, vstate->frame[i]);
2247 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2248 int *insn_idx)
2250 struct bpf_verifier_state *state = env->cur_state;
2251 struct bpf_func_state *caller, *callee;
2252 int i, subprog, target_insn;
2254 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2255 verbose(env, "the call stack of %d frames is too deep\n",
2256 state->curframe + 2);
2257 return -E2BIG;
2260 target_insn = *insn_idx + insn->imm;
2261 subprog = find_subprog(env, target_insn + 1);
2262 if (subprog < 0) {
2263 verbose(env, "verifier bug. No program starts at insn %d\n",
2264 target_insn + 1);
2265 return -EFAULT;
2268 caller = state->frame[state->curframe];
2269 if (state->frame[state->curframe + 1]) {
2270 verbose(env, "verifier bug. Frame %d already allocated\n",
2271 state->curframe + 1);
2272 return -EFAULT;
2275 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2276 if (!callee)
2277 return -ENOMEM;
2278 state->frame[state->curframe + 1] = callee;
2280 /* callee cannot access r0, r6 - r9 for reading and has to write
2281 * into its own stack before reading from it.
2282 * callee can read/write into caller's stack
2284 init_func_state(env, callee,
2285 /* remember the callsite, it will be used by bpf_exit */
2286 *insn_idx /* callsite */,
2287 state->curframe + 1 /* frameno within this callchain */,
2288 subprog /* subprog number within this prog */);
2290 /* copy r1 - r5 args that callee can access */
2291 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2292 callee->regs[i] = caller->regs[i];
2294 /* after the call regsiters r0 - r5 were scratched */
2295 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2296 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2297 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2300 /* only increment it after check_reg_arg() finished */
2301 state->curframe++;
2303 /* and go analyze first insn of the callee */
2304 *insn_idx = target_insn;
2306 if (env->log.level) {
2307 verbose(env, "caller:\n");
2308 print_verifier_state(env, caller);
2309 verbose(env, "callee:\n");
2310 print_verifier_state(env, callee);
2312 return 0;
2315 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2317 struct bpf_verifier_state *state = env->cur_state;
2318 struct bpf_func_state *caller, *callee;
2319 struct bpf_reg_state *r0;
2321 callee = state->frame[state->curframe];
2322 r0 = &callee->regs[BPF_REG_0];
2323 if (r0->type == PTR_TO_STACK) {
2324 /* technically it's ok to return caller's stack pointer
2325 * (or caller's caller's pointer) back to the caller,
2326 * since these pointers are valid. Only current stack
2327 * pointer will be invalid as soon as function exits,
2328 * but let's be conservative
2330 verbose(env, "cannot return stack pointer to the caller\n");
2331 return -EINVAL;
2334 state->curframe--;
2335 caller = state->frame[state->curframe];
2336 /* return to the caller whatever r0 had in the callee */
2337 caller->regs[BPF_REG_0] = *r0;
2339 *insn_idx = callee->callsite + 1;
2340 if (env->log.level) {
2341 verbose(env, "returning from callee:\n");
2342 print_verifier_state(env, callee);
2343 verbose(env, "to caller at %d:\n", *insn_idx);
2344 print_verifier_state(env, caller);
2346 /* clear everything in the callee */
2347 free_func_state(callee);
2348 state->frame[state->curframe + 1] = NULL;
2349 return 0;
2352 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2353 int func_id,
2354 struct bpf_call_arg_meta *meta)
2356 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2358 if (ret_type != RET_INTEGER ||
2359 (func_id != BPF_FUNC_get_stack &&
2360 func_id != BPF_FUNC_probe_read_str))
2361 return;
2363 ret_reg->smax_value = meta->msize_smax_value;
2364 ret_reg->umax_value = meta->msize_umax_value;
2365 __reg_deduce_bounds(ret_reg);
2366 __reg_bound_offset(ret_reg);
2369 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2371 const struct bpf_func_proto *fn = NULL;
2372 struct bpf_reg_state *regs;
2373 struct bpf_call_arg_meta meta;
2374 bool changes_data;
2375 int i, err;
2377 /* find function prototype */
2378 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2379 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2380 func_id);
2381 return -EINVAL;
2384 if (env->ops->get_func_proto)
2385 fn = env->ops->get_func_proto(func_id, env->prog);
2386 if (!fn) {
2387 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2388 func_id);
2389 return -EINVAL;
2392 /* eBPF programs must be GPL compatible to use GPL-ed functions */
2393 if (!env->prog->gpl_compatible && fn->gpl_only) {
2394 verbose(env, "cannot call GPL only function from proprietary program\n");
2395 return -EINVAL;
2398 /* With LD_ABS/IND some JITs save/restore skb from r1. */
2399 changes_data = bpf_helper_changes_pkt_data(fn->func);
2400 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2401 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2402 func_id_name(func_id), func_id);
2403 return -EINVAL;
2406 memset(&meta, 0, sizeof(meta));
2407 meta.pkt_access = fn->pkt_access;
2409 err = check_func_proto(fn);
2410 if (err) {
2411 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2412 func_id_name(func_id), func_id);
2413 return err;
2416 /* check args */
2417 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2418 if (err)
2419 return err;
2420 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2421 if (err)
2422 return err;
2423 if (func_id == BPF_FUNC_tail_call) {
2424 if (meta.map_ptr == NULL) {
2425 verbose(env, "verifier bug\n");
2426 return -EINVAL;
2428 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
2430 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2431 if (err)
2432 return err;
2433 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2434 if (err)
2435 return err;
2436 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2437 if (err)
2438 return err;
2440 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2441 * is inferred from register state.
2443 for (i = 0; i < meta.access_size; i++) {
2444 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2445 BPF_WRITE, -1, false);
2446 if (err)
2447 return err;
2450 regs = cur_regs(env);
2451 /* reset caller saved regs */
2452 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2453 mark_reg_not_init(env, regs, caller_saved[i]);
2454 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2457 /* update return register (already marked as written above) */
2458 if (fn->ret_type == RET_INTEGER) {
2459 /* sets type to SCALAR_VALUE */
2460 mark_reg_unknown(env, regs, BPF_REG_0);
2461 } else if (fn->ret_type == RET_VOID) {
2462 regs[BPF_REG_0].type = NOT_INIT;
2463 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2464 struct bpf_insn_aux_data *insn_aux;
2466 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2467 /* There is no offset yet applied, variable or fixed */
2468 mark_reg_known_zero(env, regs, BPF_REG_0);
2469 regs[BPF_REG_0].off = 0;
2470 /* remember map_ptr, so that check_map_access()
2471 * can check 'value_size' boundary of memory access
2472 * to map element returned from bpf_map_lookup_elem()
2474 if (meta.map_ptr == NULL) {
2475 verbose(env,
2476 "kernel subsystem misconfigured verifier\n");
2477 return -EINVAL;
2479 regs[BPF_REG_0].map_ptr = meta.map_ptr;
2480 regs[BPF_REG_0].id = ++env->id_gen;
2481 insn_aux = &env->insn_aux_data[insn_idx];
2482 if (!insn_aux->map_ptr)
2483 insn_aux->map_ptr = meta.map_ptr;
2484 else if (insn_aux->map_ptr != meta.map_ptr)
2485 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2486 } else {
2487 verbose(env, "unknown return type %d of func %s#%d\n",
2488 fn->ret_type, func_id_name(func_id), func_id);
2489 return -EINVAL;
2492 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2494 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2495 if (err)
2496 return err;
2498 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2499 const char *err_str;
2501 #ifdef CONFIG_PERF_EVENTS
2502 err = get_callchain_buffers(sysctl_perf_event_max_stack);
2503 err_str = "cannot get callchain buffer for func %s#%d\n";
2504 #else
2505 err = -ENOTSUPP;
2506 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2507 #endif
2508 if (err) {
2509 verbose(env, err_str, func_id_name(func_id), func_id);
2510 return err;
2513 env->prog->has_callchain_buf = true;
2516 if (changes_data)
2517 clear_all_pkt_pointers(env);
2518 return 0;
2521 static bool signed_add_overflows(s64 a, s64 b)
2523 /* Do the add in u64, where overflow is well-defined */
2524 s64 res = (s64)((u64)a + (u64)b);
2526 if (b < 0)
2527 return res > a;
2528 return res < a;
2531 static bool signed_sub_overflows(s64 a, s64 b)
2533 /* Do the sub in u64, where overflow is well-defined */
2534 s64 res = (s64)((u64)a - (u64)b);
2536 if (b < 0)
2537 return res < a;
2538 return res > a;
2541 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2542 const struct bpf_reg_state *reg,
2543 enum bpf_reg_type type)
2545 bool known = tnum_is_const(reg->var_off);
2546 s64 val = reg->var_off.value;
2547 s64 smin = reg->smin_value;
2549 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2550 verbose(env, "math between %s pointer and %lld is not allowed\n",
2551 reg_type_str[type], val);
2552 return false;
2555 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2556 verbose(env, "%s pointer offset %d is not allowed\n",
2557 reg_type_str[type], reg->off);
2558 return false;
2561 if (smin == S64_MIN) {
2562 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2563 reg_type_str[type]);
2564 return false;
2567 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2568 verbose(env, "value %lld makes %s pointer be out of bounds\n",
2569 smin, reg_type_str[type]);
2570 return false;
2573 return true;
2576 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2577 * Caller should also handle BPF_MOV case separately.
2578 * If we return -EACCES, caller may want to try again treating pointer as a
2579 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2581 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2582 struct bpf_insn *insn,
2583 const struct bpf_reg_state *ptr_reg,
2584 const struct bpf_reg_state *off_reg)
2586 struct bpf_verifier_state *vstate = env->cur_state;
2587 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2588 struct bpf_reg_state *regs = state->regs, *dst_reg;
2589 bool known = tnum_is_const(off_reg->var_off);
2590 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2591 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2592 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2593 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2594 u8 opcode = BPF_OP(insn->code);
2595 u32 dst = insn->dst_reg;
2597 dst_reg = &regs[dst];
2599 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2600 smin_val > smax_val || umin_val > umax_val) {
2601 /* Taint dst register if offset had invalid bounds derived from
2602 * e.g. dead branches.
2604 __mark_reg_unknown(dst_reg);
2605 return 0;
2608 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2609 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
2610 verbose(env,
2611 "R%d 32-bit pointer arithmetic prohibited\n",
2612 dst);
2613 return -EACCES;
2616 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2617 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2618 dst);
2619 return -EACCES;
2621 if (ptr_reg->type == CONST_PTR_TO_MAP) {
2622 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2623 dst);
2624 return -EACCES;
2626 if (ptr_reg->type == PTR_TO_PACKET_END) {
2627 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2628 dst);
2629 return -EACCES;
2632 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2633 * The id may be overwritten later if we create a new variable offset.
2635 dst_reg->type = ptr_reg->type;
2636 dst_reg->id = ptr_reg->id;
2638 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2639 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2640 return -EINVAL;
2642 switch (opcode) {
2643 case BPF_ADD:
2644 /* We can take a fixed offset as long as it doesn't overflow
2645 * the s32 'off' field
2647 if (known && (ptr_reg->off + smin_val ==
2648 (s64)(s32)(ptr_reg->off + smin_val))) {
2649 /* pointer += K. Accumulate it into fixed offset */
2650 dst_reg->smin_value = smin_ptr;
2651 dst_reg->smax_value = smax_ptr;
2652 dst_reg->umin_value = umin_ptr;
2653 dst_reg->umax_value = umax_ptr;
2654 dst_reg->var_off = ptr_reg->var_off;
2655 dst_reg->off = ptr_reg->off + smin_val;
2656 dst_reg->range = ptr_reg->range;
2657 break;
2659 /* A new variable offset is created. Note that off_reg->off
2660 * == 0, since it's a scalar.
2661 * dst_reg gets the pointer type and since some positive
2662 * integer value was added to the pointer, give it a new 'id'
2663 * if it's a PTR_TO_PACKET.
2664 * this creates a new 'base' pointer, off_reg (variable) gets
2665 * added into the variable offset, and we copy the fixed offset
2666 * from ptr_reg.
2668 if (signed_add_overflows(smin_ptr, smin_val) ||
2669 signed_add_overflows(smax_ptr, smax_val)) {
2670 dst_reg->smin_value = S64_MIN;
2671 dst_reg->smax_value = S64_MAX;
2672 } else {
2673 dst_reg->smin_value = smin_ptr + smin_val;
2674 dst_reg->smax_value = smax_ptr + smax_val;
2676 if (umin_ptr + umin_val < umin_ptr ||
2677 umax_ptr + umax_val < umax_ptr) {
2678 dst_reg->umin_value = 0;
2679 dst_reg->umax_value = U64_MAX;
2680 } else {
2681 dst_reg->umin_value = umin_ptr + umin_val;
2682 dst_reg->umax_value = umax_ptr + umax_val;
2684 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2685 dst_reg->off = ptr_reg->off;
2686 if (reg_is_pkt_pointer(ptr_reg)) {
2687 dst_reg->id = ++env->id_gen;
2688 /* something was added to pkt_ptr, set range to zero */
2689 dst_reg->range = 0;
2691 break;
2692 case BPF_SUB:
2693 if (dst_reg == off_reg) {
2694 /* scalar -= pointer. Creates an unknown scalar */
2695 verbose(env, "R%d tried to subtract pointer from scalar\n",
2696 dst);
2697 return -EACCES;
2699 /* We don't allow subtraction from FP, because (according to
2700 * test_verifier.c test "invalid fp arithmetic", JITs might not
2701 * be able to deal with it.
2703 if (ptr_reg->type == PTR_TO_STACK) {
2704 verbose(env, "R%d subtraction from stack pointer prohibited\n",
2705 dst);
2706 return -EACCES;
2708 if (known && (ptr_reg->off - smin_val ==
2709 (s64)(s32)(ptr_reg->off - smin_val))) {
2710 /* pointer -= K. Subtract it from fixed offset */
2711 dst_reg->smin_value = smin_ptr;
2712 dst_reg->smax_value = smax_ptr;
2713 dst_reg->umin_value = umin_ptr;
2714 dst_reg->umax_value = umax_ptr;
2715 dst_reg->var_off = ptr_reg->var_off;
2716 dst_reg->id = ptr_reg->id;
2717 dst_reg->off = ptr_reg->off - smin_val;
2718 dst_reg->range = ptr_reg->range;
2719 break;
2721 /* A new variable offset is created. If the subtrahend is known
2722 * nonnegative, then any reg->range we had before is still good.
2724 if (signed_sub_overflows(smin_ptr, smax_val) ||
2725 signed_sub_overflows(smax_ptr, smin_val)) {
2726 /* Overflow possible, we know nothing */
2727 dst_reg->smin_value = S64_MIN;
2728 dst_reg->smax_value = S64_MAX;
2729 } else {
2730 dst_reg->smin_value = smin_ptr - smax_val;
2731 dst_reg->smax_value = smax_ptr - smin_val;
2733 if (umin_ptr < umax_val) {
2734 /* Overflow possible, we know nothing */
2735 dst_reg->umin_value = 0;
2736 dst_reg->umax_value = U64_MAX;
2737 } else {
2738 /* Cannot overflow (as long as bounds are consistent) */
2739 dst_reg->umin_value = umin_ptr - umax_val;
2740 dst_reg->umax_value = umax_ptr - umin_val;
2742 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2743 dst_reg->off = ptr_reg->off;
2744 if (reg_is_pkt_pointer(ptr_reg)) {
2745 dst_reg->id = ++env->id_gen;
2746 /* something was added to pkt_ptr, set range to zero */
2747 if (smin_val < 0)
2748 dst_reg->range = 0;
2750 break;
2751 case BPF_AND:
2752 case BPF_OR:
2753 case BPF_XOR:
2754 /* bitwise ops on pointers are troublesome, prohibit. */
2755 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2756 dst, bpf_alu_string[opcode >> 4]);
2757 return -EACCES;
2758 default:
2759 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2760 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2761 dst, bpf_alu_string[opcode >> 4]);
2762 return -EACCES;
2765 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2766 return -EINVAL;
2768 __update_reg_bounds(dst_reg);
2769 __reg_deduce_bounds(dst_reg);
2770 __reg_bound_offset(dst_reg);
2771 return 0;
2774 /* WARNING: This function does calculations on 64-bit values, but the actual
2775 * execution may occur on 32-bit values. Therefore, things like bitshifts
2776 * need extra checks in the 32-bit case.
2778 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2779 struct bpf_insn *insn,
2780 struct bpf_reg_state *dst_reg,
2781 struct bpf_reg_state src_reg)
2783 struct bpf_reg_state *regs = cur_regs(env);
2784 u8 opcode = BPF_OP(insn->code);
2785 bool src_known, dst_known;
2786 s64 smin_val, smax_val;
2787 u64 umin_val, umax_val;
2788 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2790 smin_val = src_reg.smin_value;
2791 smax_val = src_reg.smax_value;
2792 umin_val = src_reg.umin_value;
2793 umax_val = src_reg.umax_value;
2794 src_known = tnum_is_const(src_reg.var_off);
2795 dst_known = tnum_is_const(dst_reg->var_off);
2797 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2798 smin_val > smax_val || umin_val > umax_val) {
2799 /* Taint dst register if offset had invalid bounds derived from
2800 * e.g. dead branches.
2802 __mark_reg_unknown(dst_reg);
2803 return 0;
2806 if (!src_known &&
2807 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2808 __mark_reg_unknown(dst_reg);
2809 return 0;
2812 switch (opcode) {
2813 case BPF_ADD:
2814 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2815 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2816 dst_reg->smin_value = S64_MIN;
2817 dst_reg->smax_value = S64_MAX;
2818 } else {
2819 dst_reg->smin_value += smin_val;
2820 dst_reg->smax_value += smax_val;
2822 if (dst_reg->umin_value + umin_val < umin_val ||
2823 dst_reg->umax_value + umax_val < umax_val) {
2824 dst_reg->umin_value = 0;
2825 dst_reg->umax_value = U64_MAX;
2826 } else {
2827 dst_reg->umin_value += umin_val;
2828 dst_reg->umax_value += umax_val;
2830 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2831 break;
2832 case BPF_SUB:
2833 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2834 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2835 /* Overflow possible, we know nothing */
2836 dst_reg->smin_value = S64_MIN;
2837 dst_reg->smax_value = S64_MAX;
2838 } else {
2839 dst_reg->smin_value -= smax_val;
2840 dst_reg->smax_value -= smin_val;
2842 if (dst_reg->umin_value < umax_val) {
2843 /* Overflow possible, we know nothing */
2844 dst_reg->umin_value = 0;
2845 dst_reg->umax_value = U64_MAX;
2846 } else {
2847 /* Cannot overflow (as long as bounds are consistent) */
2848 dst_reg->umin_value -= umax_val;
2849 dst_reg->umax_value -= umin_val;
2851 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2852 break;
2853 case BPF_MUL:
2854 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2855 if (smin_val < 0 || dst_reg->smin_value < 0) {
2856 /* Ain't nobody got time to multiply that sign */
2857 __mark_reg_unbounded(dst_reg);
2858 __update_reg_bounds(dst_reg);
2859 break;
2861 /* Both values are positive, so we can work with unsigned and
2862 * copy the result to signed (unless it exceeds S64_MAX).
2864 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2865 /* Potential overflow, we know nothing */
2866 __mark_reg_unbounded(dst_reg);
2867 /* (except what we can learn from the var_off) */
2868 __update_reg_bounds(dst_reg);
2869 break;
2871 dst_reg->umin_value *= umin_val;
2872 dst_reg->umax_value *= umax_val;
2873 if (dst_reg->umax_value > S64_MAX) {
2874 /* Overflow possible, we know nothing */
2875 dst_reg->smin_value = S64_MIN;
2876 dst_reg->smax_value = S64_MAX;
2877 } else {
2878 dst_reg->smin_value = dst_reg->umin_value;
2879 dst_reg->smax_value = dst_reg->umax_value;
2881 break;
2882 case BPF_AND:
2883 if (src_known && dst_known) {
2884 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2885 src_reg.var_off.value);
2886 break;
2888 /* We get our minimum from the var_off, since that's inherently
2889 * bitwise. Our maximum is the minimum of the operands' maxima.
2891 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2892 dst_reg->umin_value = dst_reg->var_off.value;
2893 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2894 if (dst_reg->smin_value < 0 || smin_val < 0) {
2895 /* Lose signed bounds when ANDing negative numbers,
2896 * ain't nobody got time for that.
2898 dst_reg->smin_value = S64_MIN;
2899 dst_reg->smax_value = S64_MAX;
2900 } else {
2901 /* ANDing two positives gives a positive, so safe to
2902 * cast result into s64.
2904 dst_reg->smin_value = dst_reg->umin_value;
2905 dst_reg->smax_value = dst_reg->umax_value;
2907 /* We may learn something more from the var_off */
2908 __update_reg_bounds(dst_reg);
2909 break;
2910 case BPF_OR:
2911 if (src_known && dst_known) {
2912 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2913 src_reg.var_off.value);
2914 break;
2916 /* We get our maximum from the var_off, and our minimum is the
2917 * maximum of the operands' minima
2919 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2920 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2921 dst_reg->umax_value = dst_reg->var_off.value |
2922 dst_reg->var_off.mask;
2923 if (dst_reg->smin_value < 0 || smin_val < 0) {
2924 /* Lose signed bounds when ORing negative numbers,
2925 * ain't nobody got time for that.
2927 dst_reg->smin_value = S64_MIN;
2928 dst_reg->smax_value = S64_MAX;
2929 } else {
2930 /* ORing two positives gives a positive, so safe to
2931 * cast result into s64.
2933 dst_reg->smin_value = dst_reg->umin_value;
2934 dst_reg->smax_value = dst_reg->umax_value;
2936 /* We may learn something more from the var_off */
2937 __update_reg_bounds(dst_reg);
2938 break;
2939 case BPF_LSH:
2940 if (umax_val >= insn_bitness) {
2941 /* Shifts greater than 31 or 63 are undefined.
2942 * This includes shifts by a negative number.
2944 mark_reg_unknown(env, regs, insn->dst_reg);
2945 break;
2947 /* We lose all sign bit information (except what we can pick
2948 * up from var_off)
2950 dst_reg->smin_value = S64_MIN;
2951 dst_reg->smax_value = S64_MAX;
2952 /* If we might shift our top bit out, then we know nothing */
2953 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2954 dst_reg->umin_value = 0;
2955 dst_reg->umax_value = U64_MAX;
2956 } else {
2957 dst_reg->umin_value <<= umin_val;
2958 dst_reg->umax_value <<= umax_val;
2960 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2961 /* We may learn something more from the var_off */
2962 __update_reg_bounds(dst_reg);
2963 break;
2964 case BPF_RSH:
2965 if (umax_val >= insn_bitness) {
2966 /* Shifts greater than 31 or 63 are undefined.
2967 * This includes shifts by a negative number.
2969 mark_reg_unknown(env, regs, insn->dst_reg);
2970 break;
2972 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2973 * be negative, then either:
2974 * 1) src_reg might be zero, so the sign bit of the result is
2975 * unknown, so we lose our signed bounds
2976 * 2) it's known negative, thus the unsigned bounds capture the
2977 * signed bounds
2978 * 3) the signed bounds cross zero, so they tell us nothing
2979 * about the result
2980 * If the value in dst_reg is known nonnegative, then again the
2981 * unsigned bounts capture the signed bounds.
2982 * Thus, in all cases it suffices to blow away our signed bounds
2983 * and rely on inferring new ones from the unsigned bounds and
2984 * var_off of the result.
2986 dst_reg->smin_value = S64_MIN;
2987 dst_reg->smax_value = S64_MAX;
2988 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
2989 dst_reg->umin_value >>= umax_val;
2990 dst_reg->umax_value >>= umin_val;
2991 /* We may learn something more from the var_off */
2992 __update_reg_bounds(dst_reg);
2993 break;
2994 case BPF_ARSH:
2995 if (umax_val >= insn_bitness) {
2996 /* Shifts greater than 31 or 63 are undefined.
2997 * This includes shifts by a negative number.
2999 mark_reg_unknown(env, regs, insn->dst_reg);
3000 break;
3003 /* Upon reaching here, src_known is true and
3004 * umax_val is equal to umin_val.
3006 dst_reg->smin_value >>= umin_val;
3007 dst_reg->smax_value >>= umin_val;
3008 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3010 /* blow away the dst_reg umin_value/umax_value and rely on
3011 * dst_reg var_off to refine the result.
3013 dst_reg->umin_value = 0;
3014 dst_reg->umax_value = U64_MAX;
3015 __update_reg_bounds(dst_reg);
3016 break;
3017 default:
3018 mark_reg_unknown(env, regs, insn->dst_reg);
3019 break;
3022 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3023 /* 32-bit ALU ops are (32,32)->32 */
3024 coerce_reg_to_size(dst_reg, 4);
3025 coerce_reg_to_size(&src_reg, 4);
3028 __reg_deduce_bounds(dst_reg);
3029 __reg_bound_offset(dst_reg);
3030 return 0;
3033 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3034 * and var_off.
3036 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3037 struct bpf_insn *insn)
3039 struct bpf_verifier_state *vstate = env->cur_state;
3040 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3041 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3042 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3043 u8 opcode = BPF_OP(insn->code);
3045 dst_reg = &regs[insn->dst_reg];
3046 src_reg = NULL;
3047 if (dst_reg->type != SCALAR_VALUE)
3048 ptr_reg = dst_reg;
3049 if (BPF_SRC(insn->code) == BPF_X) {
3050 src_reg = &regs[insn->src_reg];
3051 if (src_reg->type != SCALAR_VALUE) {
3052 if (dst_reg->type != SCALAR_VALUE) {
3053 /* Combining two pointers by any ALU op yields
3054 * an arbitrary scalar. Disallow all math except
3055 * pointer subtraction
3057 if (opcode == BPF_SUB){
3058 mark_reg_unknown(env, regs, insn->dst_reg);
3059 return 0;
3061 verbose(env, "R%d pointer %s pointer prohibited\n",
3062 insn->dst_reg,
3063 bpf_alu_string[opcode >> 4]);
3064 return -EACCES;
3065 } else {
3066 /* scalar += pointer
3067 * This is legal, but we have to reverse our
3068 * src/dest handling in computing the range
3070 return adjust_ptr_min_max_vals(env, insn,
3071 src_reg, dst_reg);
3073 } else if (ptr_reg) {
3074 /* pointer += scalar */
3075 return adjust_ptr_min_max_vals(env, insn,
3076 dst_reg, src_reg);
3078 } else {
3079 /* Pretend the src is a reg with a known value, since we only
3080 * need to be able to read from this state.
3082 off_reg.type = SCALAR_VALUE;
3083 __mark_reg_known(&off_reg, insn->imm);
3084 src_reg = &off_reg;
3085 if (ptr_reg) /* pointer += K */
3086 return adjust_ptr_min_max_vals(env, insn,
3087 ptr_reg, src_reg);
3090 /* Got here implies adding two SCALAR_VALUEs */
3091 if (WARN_ON_ONCE(ptr_reg)) {
3092 print_verifier_state(env, state);
3093 verbose(env, "verifier internal error: unexpected ptr_reg\n");
3094 return -EINVAL;
3096 if (WARN_ON(!src_reg)) {
3097 print_verifier_state(env, state);
3098 verbose(env, "verifier internal error: no src_reg\n");
3099 return -EINVAL;
3101 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3104 /* check validity of 32-bit and 64-bit arithmetic operations */
3105 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3107 struct bpf_reg_state *regs = cur_regs(env);
3108 u8 opcode = BPF_OP(insn->code);
3109 int err;
3111 if (opcode == BPF_END || opcode == BPF_NEG) {
3112 if (opcode == BPF_NEG) {
3113 if (BPF_SRC(insn->code) != 0 ||
3114 insn->src_reg != BPF_REG_0 ||
3115 insn->off != 0 || insn->imm != 0) {
3116 verbose(env, "BPF_NEG uses reserved fields\n");
3117 return -EINVAL;
3119 } else {
3120 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3121 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3122 BPF_CLASS(insn->code) == BPF_ALU64) {
3123 verbose(env, "BPF_END uses reserved fields\n");
3124 return -EINVAL;
3128 /* check src operand */
3129 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3130 if (err)
3131 return err;
3133 if (is_pointer_value(env, insn->dst_reg)) {
3134 verbose(env, "R%d pointer arithmetic prohibited\n",
3135 insn->dst_reg);
3136 return -EACCES;
3139 /* check dest operand */
3140 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3141 if (err)
3142 return err;
3144 } else if (opcode == BPF_MOV) {
3146 if (BPF_SRC(insn->code) == BPF_X) {
3147 if (insn->imm != 0 || insn->off != 0) {
3148 verbose(env, "BPF_MOV uses reserved fields\n");
3149 return -EINVAL;
3152 /* check src operand */
3153 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3154 if (err)
3155 return err;
3156 } else {
3157 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3158 verbose(env, "BPF_MOV uses reserved fields\n");
3159 return -EINVAL;
3163 /* check dest operand */
3164 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3165 if (err)
3166 return err;
3168 if (BPF_SRC(insn->code) == BPF_X) {
3169 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3170 /* case: R1 = R2
3171 * copy register state to dest reg
3173 regs[insn->dst_reg] = regs[insn->src_reg];
3174 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3175 } else {
3176 /* R1 = (u32) R2 */
3177 if (is_pointer_value(env, insn->src_reg)) {
3178 verbose(env,
3179 "R%d partial copy of pointer\n",
3180 insn->src_reg);
3181 return -EACCES;
3183 mark_reg_unknown(env, regs, insn->dst_reg);
3184 coerce_reg_to_size(&regs[insn->dst_reg], 4);
3186 } else {
3187 /* case: R = imm
3188 * remember the value we stored into this reg
3190 regs[insn->dst_reg].type = SCALAR_VALUE;
3191 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3192 __mark_reg_known(regs + insn->dst_reg,
3193 insn->imm);
3194 } else {
3195 __mark_reg_known(regs + insn->dst_reg,
3196 (u32)insn->imm);
3200 } else if (opcode > BPF_END) {
3201 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3202 return -EINVAL;
3204 } else { /* all other ALU ops: and, sub, xor, add, ... */
3206 if (BPF_SRC(insn->code) == BPF_X) {
3207 if (insn->imm != 0 || insn->off != 0) {
3208 verbose(env, "BPF_ALU uses reserved fields\n");
3209 return -EINVAL;
3211 /* check src1 operand */
3212 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3213 if (err)
3214 return err;
3215 } else {
3216 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3217 verbose(env, "BPF_ALU uses reserved fields\n");
3218 return -EINVAL;
3222 /* check src2 operand */
3223 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3224 if (err)
3225 return err;
3227 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3228 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3229 verbose(env, "div by zero\n");
3230 return -EINVAL;
3233 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3234 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3235 return -EINVAL;
3238 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3239 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3240 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3242 if (insn->imm < 0 || insn->imm >= size) {
3243 verbose(env, "invalid shift %d\n", insn->imm);
3244 return -EINVAL;
3248 /* check dest operand */
3249 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3250 if (err)
3251 return err;
3253 return adjust_reg_min_max_vals(env, insn);
3256 return 0;
3259 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3260 struct bpf_reg_state *dst_reg,
3261 enum bpf_reg_type type,
3262 bool range_right_open)
3264 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3265 struct bpf_reg_state *regs = state->regs, *reg;
3266 u16 new_range;
3267 int i, j;
3269 if (dst_reg->off < 0 ||
3270 (dst_reg->off == 0 && range_right_open))
3271 /* This doesn't give us any range */
3272 return;
3274 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3275 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3276 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3277 * than pkt_end, but that's because it's also less than pkt.
3279 return;
3281 new_range = dst_reg->off;
3282 if (range_right_open)
3283 new_range--;
3285 /* Examples for register markings:
3287 * pkt_data in dst register:
3289 * r2 = r3;
3290 * r2 += 8;
3291 * if (r2 > pkt_end) goto <handle exception>
3292 * <access okay>
3294 * r2 = r3;
3295 * r2 += 8;
3296 * if (r2 < pkt_end) goto <access okay>
3297 * <handle exception>
3299 * Where:
3300 * r2 == dst_reg, pkt_end == src_reg
3301 * r2=pkt(id=n,off=8,r=0)
3302 * r3=pkt(id=n,off=0,r=0)
3304 * pkt_data in src register:
3306 * r2 = r3;
3307 * r2 += 8;
3308 * if (pkt_end >= r2) goto <access okay>
3309 * <handle exception>
3311 * r2 = r3;
3312 * r2 += 8;
3313 * if (pkt_end <= r2) goto <handle exception>
3314 * <access okay>
3316 * Where:
3317 * pkt_end == dst_reg, r2 == src_reg
3318 * r2=pkt(id=n,off=8,r=0)
3319 * r3=pkt(id=n,off=0,r=0)
3321 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3322 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3323 * and [r3, r3 + 8-1) respectively is safe to access depending on
3324 * the check.
3327 /* If our ids match, then we must have the same max_value. And we
3328 * don't care about the other reg's fixed offset, since if it's too big
3329 * the range won't allow anything.
3330 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3332 for (i = 0; i < MAX_BPF_REG; i++)
3333 if (regs[i].type == type && regs[i].id == dst_reg->id)
3334 /* keep the maximum range already checked */
3335 regs[i].range = max(regs[i].range, new_range);
3337 for (j = 0; j <= vstate->curframe; j++) {
3338 state = vstate->frame[j];
3339 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3340 if (state->stack[i].slot_type[0] != STACK_SPILL)
3341 continue;
3342 reg = &state->stack[i].spilled_ptr;
3343 if (reg->type == type && reg->id == dst_reg->id)
3344 reg->range = max(reg->range, new_range);
3349 /* Adjusts the register min/max values in the case that the dst_reg is the
3350 * variable register that we are working on, and src_reg is a constant or we're
3351 * simply doing a BPF_K check.
3352 * In JEQ/JNE cases we also adjust the var_off values.
3354 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3355 struct bpf_reg_state *false_reg, u64 val,
3356 u8 opcode)
3358 /* If the dst_reg is a pointer, we can't learn anything about its
3359 * variable offset from the compare (unless src_reg were a pointer into
3360 * the same object, but we don't bother with that.
3361 * Since false_reg and true_reg have the same type by construction, we
3362 * only need to check one of them for pointerness.
3364 if (__is_pointer_value(false, false_reg))
3365 return;
3367 switch (opcode) {
3368 case BPF_JEQ:
3369 /* If this is false then we know nothing Jon Snow, but if it is
3370 * true then we know for sure.
3372 __mark_reg_known(true_reg, val);
3373 break;
3374 case BPF_JNE:
3375 /* If this is true we know nothing Jon Snow, but if it is false
3376 * we know the value for sure;
3378 __mark_reg_known(false_reg, val);
3379 break;
3380 case BPF_JGT:
3381 false_reg->umax_value = min(false_reg->umax_value, val);
3382 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3383 break;
3384 case BPF_JSGT:
3385 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3386 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3387 break;
3388 case BPF_JLT:
3389 false_reg->umin_value = max(false_reg->umin_value, val);
3390 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3391 break;
3392 case BPF_JSLT:
3393 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3394 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3395 break;
3396 case BPF_JGE:
3397 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3398 true_reg->umin_value = max(true_reg->umin_value, val);
3399 break;
3400 case BPF_JSGE:
3401 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3402 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3403 break;
3404 case BPF_JLE:
3405 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3406 true_reg->umax_value = min(true_reg->umax_value, val);
3407 break;
3408 case BPF_JSLE:
3409 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3410 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3411 break;
3412 default:
3413 break;
3416 __reg_deduce_bounds(false_reg);
3417 __reg_deduce_bounds(true_reg);
3418 /* We might have learned some bits from the bounds. */
3419 __reg_bound_offset(false_reg);
3420 __reg_bound_offset(true_reg);
3421 /* Intersecting with the old var_off might have improved our bounds
3422 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3423 * then new var_off is (0; 0x7f...fc) which improves our umax.
3425 __update_reg_bounds(false_reg);
3426 __update_reg_bounds(true_reg);
3429 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3430 * the variable reg.
3432 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3433 struct bpf_reg_state *false_reg, u64 val,
3434 u8 opcode)
3436 if (__is_pointer_value(false, false_reg))
3437 return;
3439 switch (opcode) {
3440 case BPF_JEQ:
3441 /* If this is false then we know nothing Jon Snow, but if it is
3442 * true then we know for sure.
3444 __mark_reg_known(true_reg, val);
3445 break;
3446 case BPF_JNE:
3447 /* If this is true we know nothing Jon Snow, but if it is false
3448 * we know the value for sure;
3450 __mark_reg_known(false_reg, val);
3451 break;
3452 case BPF_JGT:
3453 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3454 false_reg->umin_value = max(false_reg->umin_value, val);
3455 break;
3456 case BPF_JSGT:
3457 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3458 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3459 break;
3460 case BPF_JLT:
3461 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3462 false_reg->umax_value = min(false_reg->umax_value, val);
3463 break;
3464 case BPF_JSLT:
3465 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3466 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3467 break;
3468 case BPF_JGE:
3469 true_reg->umax_value = min(true_reg->umax_value, val);
3470 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3471 break;
3472 case BPF_JSGE:
3473 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3474 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3475 break;
3476 case BPF_JLE:
3477 true_reg->umin_value = max(true_reg->umin_value, val);
3478 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3479 break;
3480 case BPF_JSLE:
3481 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3482 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3483 break;
3484 default:
3485 break;
3488 __reg_deduce_bounds(false_reg);
3489 __reg_deduce_bounds(true_reg);
3490 /* We might have learned some bits from the bounds. */
3491 __reg_bound_offset(false_reg);
3492 __reg_bound_offset(true_reg);
3493 /* Intersecting with the old var_off might have improved our bounds
3494 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3495 * then new var_off is (0; 0x7f...fc) which improves our umax.
3497 __update_reg_bounds(false_reg);
3498 __update_reg_bounds(true_reg);
3501 /* Regs are known to be equal, so intersect their min/max/var_off */
3502 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3503 struct bpf_reg_state *dst_reg)
3505 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3506 dst_reg->umin_value);
3507 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3508 dst_reg->umax_value);
3509 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3510 dst_reg->smin_value);
3511 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3512 dst_reg->smax_value);
3513 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3514 dst_reg->var_off);
3515 /* We might have learned new bounds from the var_off. */
3516 __update_reg_bounds(src_reg);
3517 __update_reg_bounds(dst_reg);
3518 /* We might have learned something about the sign bit. */
3519 __reg_deduce_bounds(src_reg);
3520 __reg_deduce_bounds(dst_reg);
3521 /* We might have learned some bits from the bounds. */
3522 __reg_bound_offset(src_reg);
3523 __reg_bound_offset(dst_reg);
3524 /* Intersecting with the old var_off might have improved our bounds
3525 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3526 * then new var_off is (0; 0x7f...fc) which improves our umax.
3528 __update_reg_bounds(src_reg);
3529 __update_reg_bounds(dst_reg);
3532 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3533 struct bpf_reg_state *true_dst,
3534 struct bpf_reg_state *false_src,
3535 struct bpf_reg_state *false_dst,
3536 u8 opcode)
3538 switch (opcode) {
3539 case BPF_JEQ:
3540 __reg_combine_min_max(true_src, true_dst);
3541 break;
3542 case BPF_JNE:
3543 __reg_combine_min_max(false_src, false_dst);
3544 break;
3548 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3549 bool is_null)
3551 struct bpf_reg_state *reg = &regs[regno];
3553 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3554 /* Old offset (both fixed and variable parts) should
3555 * have been known-zero, because we don't allow pointer
3556 * arithmetic on pointers that might be NULL.
3558 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3559 !tnum_equals_const(reg->var_off, 0) ||
3560 reg->off)) {
3561 __mark_reg_known_zero(reg);
3562 reg->off = 0;
3564 if (is_null) {
3565 reg->type = SCALAR_VALUE;
3566 } else if (reg->map_ptr->inner_map_meta) {
3567 reg->type = CONST_PTR_TO_MAP;
3568 reg->map_ptr = reg->map_ptr->inner_map_meta;
3569 } else {
3570 reg->type = PTR_TO_MAP_VALUE;
3572 /* We don't need id from this point onwards anymore, thus we
3573 * should better reset it, so that state pruning has chances
3574 * to take effect.
3576 reg->id = 0;
3580 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3581 * be folded together at some point.
3583 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3584 bool is_null)
3586 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3587 struct bpf_reg_state *regs = state->regs;
3588 u32 id = regs[regno].id;
3589 int i, j;
3591 for (i = 0; i < MAX_BPF_REG; i++)
3592 mark_map_reg(regs, i, id, is_null);
3594 for (j = 0; j <= vstate->curframe; j++) {
3595 state = vstate->frame[j];
3596 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3597 if (state->stack[i].slot_type[0] != STACK_SPILL)
3598 continue;
3599 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3604 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3605 struct bpf_reg_state *dst_reg,
3606 struct bpf_reg_state *src_reg,
3607 struct bpf_verifier_state *this_branch,
3608 struct bpf_verifier_state *other_branch)
3610 if (BPF_SRC(insn->code) != BPF_X)
3611 return false;
3613 switch (BPF_OP(insn->code)) {
3614 case BPF_JGT:
3615 if ((dst_reg->type == PTR_TO_PACKET &&
3616 src_reg->type == PTR_TO_PACKET_END) ||
3617 (dst_reg->type == PTR_TO_PACKET_META &&
3618 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3619 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3620 find_good_pkt_pointers(this_branch, dst_reg,
3621 dst_reg->type, false);
3622 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3623 src_reg->type == PTR_TO_PACKET) ||
3624 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3625 src_reg->type == PTR_TO_PACKET_META)) {
3626 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
3627 find_good_pkt_pointers(other_branch, src_reg,
3628 src_reg->type, true);
3629 } else {
3630 return false;
3632 break;
3633 case BPF_JLT:
3634 if ((dst_reg->type == PTR_TO_PACKET &&
3635 src_reg->type == PTR_TO_PACKET_END) ||
3636 (dst_reg->type == PTR_TO_PACKET_META &&
3637 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3638 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3639 find_good_pkt_pointers(other_branch, dst_reg,
3640 dst_reg->type, true);
3641 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3642 src_reg->type == PTR_TO_PACKET) ||
3643 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3644 src_reg->type == PTR_TO_PACKET_META)) {
3645 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
3646 find_good_pkt_pointers(this_branch, src_reg,
3647 src_reg->type, false);
3648 } else {
3649 return false;
3651 break;
3652 case BPF_JGE:
3653 if ((dst_reg->type == PTR_TO_PACKET &&
3654 src_reg->type == PTR_TO_PACKET_END) ||
3655 (dst_reg->type == PTR_TO_PACKET_META &&
3656 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3657 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3658 find_good_pkt_pointers(this_branch, dst_reg,
3659 dst_reg->type, true);
3660 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3661 src_reg->type == PTR_TO_PACKET) ||
3662 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3663 src_reg->type == PTR_TO_PACKET_META)) {
3664 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3665 find_good_pkt_pointers(other_branch, src_reg,
3666 src_reg->type, false);
3667 } else {
3668 return false;
3670 break;
3671 case BPF_JLE:
3672 if ((dst_reg->type == PTR_TO_PACKET &&
3673 src_reg->type == PTR_TO_PACKET_END) ||
3674 (dst_reg->type == PTR_TO_PACKET_META &&
3675 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3676 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3677 find_good_pkt_pointers(other_branch, dst_reg,
3678 dst_reg->type, false);
3679 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3680 src_reg->type == PTR_TO_PACKET) ||
3681 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3682 src_reg->type == PTR_TO_PACKET_META)) {
3683 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3684 find_good_pkt_pointers(this_branch, src_reg,
3685 src_reg->type, true);
3686 } else {
3687 return false;
3689 break;
3690 default:
3691 return false;
3694 return true;
3697 static int check_cond_jmp_op(struct bpf_verifier_env *env,
3698 struct bpf_insn *insn, int *insn_idx)
3700 struct bpf_verifier_state *this_branch = env->cur_state;
3701 struct bpf_verifier_state *other_branch;
3702 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3703 struct bpf_reg_state *dst_reg, *other_branch_regs;
3704 u8 opcode = BPF_OP(insn->code);
3705 int err;
3707 if (opcode > BPF_JSLE) {
3708 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3709 return -EINVAL;
3712 if (BPF_SRC(insn->code) == BPF_X) {
3713 if (insn->imm != 0) {
3714 verbose(env, "BPF_JMP uses reserved fields\n");
3715 return -EINVAL;
3718 /* check src1 operand */
3719 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3720 if (err)
3721 return err;
3723 if (is_pointer_value(env, insn->src_reg)) {
3724 verbose(env, "R%d pointer comparison prohibited\n",
3725 insn->src_reg);
3726 return -EACCES;
3728 } else {
3729 if (insn->src_reg != BPF_REG_0) {
3730 verbose(env, "BPF_JMP uses reserved fields\n");
3731 return -EINVAL;
3735 /* check src2 operand */
3736 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3737 if (err)
3738 return err;
3740 dst_reg = &regs[insn->dst_reg];
3742 /* detect if R == 0 where R was initialized to zero earlier */
3743 if (BPF_SRC(insn->code) == BPF_K &&
3744 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3745 dst_reg->type == SCALAR_VALUE &&
3746 tnum_is_const(dst_reg->var_off)) {
3747 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3748 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3749 /* if (imm == imm) goto pc+off;
3750 * only follow the goto, ignore fall-through
3752 *insn_idx += insn->off;
3753 return 0;
3754 } else {
3755 /* if (imm != imm) goto pc+off;
3756 * only follow fall-through branch, since
3757 * that's where the program will go
3759 return 0;
3763 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3764 if (!other_branch)
3765 return -EFAULT;
3766 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3768 /* detect if we are comparing against a constant value so we can adjust
3769 * our min/max values for our dst register.
3770 * this is only legit if both are scalars (or pointers to the same
3771 * object, I suppose, but we don't support that right now), because
3772 * otherwise the different base pointers mean the offsets aren't
3773 * comparable.
3775 if (BPF_SRC(insn->code) == BPF_X) {
3776 if (dst_reg->type == SCALAR_VALUE &&
3777 regs[insn->src_reg].type == SCALAR_VALUE) {
3778 if (tnum_is_const(regs[insn->src_reg].var_off))
3779 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3780 dst_reg, regs[insn->src_reg].var_off.value,
3781 opcode);
3782 else if (tnum_is_const(dst_reg->var_off))
3783 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3784 &regs[insn->src_reg],
3785 dst_reg->var_off.value, opcode);
3786 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3787 /* Comparing for equality, we can combine knowledge */
3788 reg_combine_min_max(&other_branch_regs[insn->src_reg],
3789 &other_branch_regs[insn->dst_reg],
3790 &regs[insn->src_reg],
3791 &regs[insn->dst_reg], opcode);
3793 } else if (dst_reg->type == SCALAR_VALUE) {
3794 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3795 dst_reg, insn->imm, opcode);
3798 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3799 if (BPF_SRC(insn->code) == BPF_K &&
3800 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3801 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3802 /* Mark all identical map registers in each branch as either
3803 * safe or unknown depending R == 0 or R != 0 conditional.
3805 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3806 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3807 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3808 this_branch, other_branch) &&
3809 is_pointer_value(env, insn->dst_reg)) {
3810 verbose(env, "R%d pointer comparison prohibited\n",
3811 insn->dst_reg);
3812 return -EACCES;
3814 if (env->log.level)
3815 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3816 return 0;
3819 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3820 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3822 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3824 return (struct bpf_map *) (unsigned long) imm64;
3827 /* verify BPF_LD_IMM64 instruction */
3828 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3830 struct bpf_reg_state *regs = cur_regs(env);
3831 int err;
3833 if (BPF_SIZE(insn->code) != BPF_DW) {
3834 verbose(env, "invalid BPF_LD_IMM insn\n");
3835 return -EINVAL;
3837 if (insn->off != 0) {
3838 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3839 return -EINVAL;
3842 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3843 if (err)
3844 return err;
3846 if (insn->src_reg == 0) {
3847 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3849 regs[insn->dst_reg].type = SCALAR_VALUE;
3850 __mark_reg_known(&regs[insn->dst_reg], imm);
3851 return 0;
3854 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3855 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3857 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3858 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3859 return 0;
3862 static bool may_access_skb(enum bpf_prog_type type)
3864 switch (type) {
3865 case BPF_PROG_TYPE_SOCKET_FILTER:
3866 case BPF_PROG_TYPE_SCHED_CLS:
3867 case BPF_PROG_TYPE_SCHED_ACT:
3868 return true;
3869 default:
3870 return false;
3874 /* verify safety of LD_ABS|LD_IND instructions:
3875 * - they can only appear in the programs where ctx == skb
3876 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3877 * preserve R6-R9, and store return value into R0
3879 * Implicit input:
3880 * ctx == skb == R6 == CTX
3882 * Explicit input:
3883 * SRC == any register
3884 * IMM == 32-bit immediate
3886 * Output:
3887 * R0 - 8/16/32-bit skb data converted to cpu endianness
3889 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3891 struct bpf_reg_state *regs = cur_regs(env);
3892 u8 mode = BPF_MODE(insn->code);
3893 int i, err;
3895 if (!may_access_skb(env->prog->type)) {
3896 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3897 return -EINVAL;
3900 if (!env->ops->gen_ld_abs) {
3901 verbose(env, "bpf verifier is misconfigured\n");
3902 return -EINVAL;
3905 if (env->subprog_cnt > 1) {
3906 /* when program has LD_ABS insn JITs and interpreter assume
3907 * that r1 == ctx == skb which is not the case for callees
3908 * that can have arbitrary arguments. It's problematic
3909 * for main prog as well since JITs would need to analyze
3910 * all functions in order to make proper register save/restore
3911 * decisions in the main prog. Hence disallow LD_ABS with calls
3913 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3914 return -EINVAL;
3917 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3918 BPF_SIZE(insn->code) == BPF_DW ||
3919 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3920 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3921 return -EINVAL;
3924 /* check whether implicit source operand (register R6) is readable */
3925 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3926 if (err)
3927 return err;
3929 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3930 verbose(env,
3931 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3932 return -EINVAL;
3935 if (mode == BPF_IND) {
3936 /* check explicit source operand */
3937 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3938 if (err)
3939 return err;
3942 /* reset caller saved regs to unreadable */
3943 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3944 mark_reg_not_init(env, regs, caller_saved[i]);
3945 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3948 /* mark destination R0 register as readable, since it contains
3949 * the value fetched from the packet.
3950 * Already marked as written above.
3952 mark_reg_unknown(env, regs, BPF_REG_0);
3953 return 0;
3956 static int check_return_code(struct bpf_verifier_env *env)
3958 struct bpf_reg_state *reg;
3959 struct tnum range = tnum_range(0, 1);
3961 switch (env->prog->type) {
3962 case BPF_PROG_TYPE_CGROUP_SKB:
3963 case BPF_PROG_TYPE_CGROUP_SOCK:
3964 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
3965 case BPF_PROG_TYPE_SOCK_OPS:
3966 case BPF_PROG_TYPE_CGROUP_DEVICE:
3967 break;
3968 default:
3969 return 0;
3972 reg = cur_regs(env) + BPF_REG_0;
3973 if (reg->type != SCALAR_VALUE) {
3974 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3975 reg_type_str[reg->type]);
3976 return -EINVAL;
3979 if (!tnum_in(range, reg->var_off)) {
3980 verbose(env, "At program exit the register R0 ");
3981 if (!tnum_is_unknown(reg->var_off)) {
3982 char tn_buf[48];
3984 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3985 verbose(env, "has value %s", tn_buf);
3986 } else {
3987 verbose(env, "has unknown scalar value");
3989 verbose(env, " should have been 0 or 1\n");
3990 return -EINVAL;
3992 return 0;
3995 /* non-recursive DFS pseudo code
3996 * 1 procedure DFS-iterative(G,v):
3997 * 2 label v as discovered
3998 * 3 let S be a stack
3999 * 4 S.push(v)
4000 * 5 while S is not empty
4001 * 6 t <- S.pop()
4002 * 7 if t is what we're looking for:
4003 * 8 return t
4004 * 9 for all edges e in G.adjacentEdges(t) do
4005 * 10 if edge e is already labelled
4006 * 11 continue with the next edge
4007 * 12 w <- G.adjacentVertex(t,e)
4008 * 13 if vertex w is not discovered and not explored
4009 * 14 label e as tree-edge
4010 * 15 label w as discovered
4011 * 16 S.push(w)
4012 * 17 continue at 5
4013 * 18 else if vertex w is discovered
4014 * 19 label e as back-edge
4015 * 20 else
4016 * 21 // vertex w is explored
4017 * 22 label e as forward- or cross-edge
4018 * 23 label t as explored
4019 * 24 S.pop()
4021 * convention:
4022 * 0x10 - discovered
4023 * 0x11 - discovered and fall-through edge labelled
4024 * 0x12 - discovered and fall-through and branch edges labelled
4025 * 0x20 - explored
4028 enum {
4029 DISCOVERED = 0x10,
4030 EXPLORED = 0x20,
4031 FALLTHROUGH = 1,
4032 BRANCH = 2,
4035 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4037 static int *insn_stack; /* stack of insns to process */
4038 static int cur_stack; /* current stack index */
4039 static int *insn_state;
4041 /* t, w, e - match pseudo-code above:
4042 * t - index of current instruction
4043 * w - next instruction
4044 * e - edge
4046 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4048 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4049 return 0;
4051 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4052 return 0;
4054 if (w < 0 || w >= env->prog->len) {
4055 verbose(env, "jump out of range from insn %d to %d\n", t, w);
4056 return -EINVAL;
4059 if (e == BRANCH)
4060 /* mark branch target for state pruning */
4061 env->explored_states[w] = STATE_LIST_MARK;
4063 if (insn_state[w] == 0) {
4064 /* tree-edge */
4065 insn_state[t] = DISCOVERED | e;
4066 insn_state[w] = DISCOVERED;
4067 if (cur_stack >= env->prog->len)
4068 return -E2BIG;
4069 insn_stack[cur_stack++] = w;
4070 return 1;
4071 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4072 verbose(env, "back-edge from insn %d to %d\n", t, w);
4073 return -EINVAL;
4074 } else if (insn_state[w] == EXPLORED) {
4075 /* forward- or cross-edge */
4076 insn_state[t] = DISCOVERED | e;
4077 } else {
4078 verbose(env, "insn state internal bug\n");
4079 return -EFAULT;
4081 return 0;
4084 /* non-recursive depth-first-search to detect loops in BPF program
4085 * loop == back-edge in directed graph
4087 static int check_cfg(struct bpf_verifier_env *env)
4089 struct bpf_insn *insns = env->prog->insnsi;
4090 int insn_cnt = env->prog->len;
4091 int ret = 0;
4092 int i, t;
4094 ret = check_subprogs(env);
4095 if (ret < 0)
4096 return ret;
4098 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4099 if (!insn_state)
4100 return -ENOMEM;
4102 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4103 if (!insn_stack) {
4104 kfree(insn_state);
4105 return -ENOMEM;
4108 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4109 insn_stack[0] = 0; /* 0 is the first instruction */
4110 cur_stack = 1;
4112 peek_stack:
4113 if (cur_stack == 0)
4114 goto check_state;
4115 t = insn_stack[cur_stack - 1];
4117 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4118 u8 opcode = BPF_OP(insns[t].code);
4120 if (opcode == BPF_EXIT) {
4121 goto mark_explored;
4122 } else if (opcode == BPF_CALL) {
4123 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4124 if (ret == 1)
4125 goto peek_stack;
4126 else if (ret < 0)
4127 goto err_free;
4128 if (t + 1 < insn_cnt)
4129 env->explored_states[t + 1] = STATE_LIST_MARK;
4130 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4131 env->explored_states[t] = STATE_LIST_MARK;
4132 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4133 if (ret == 1)
4134 goto peek_stack;
4135 else if (ret < 0)
4136 goto err_free;
4138 } else if (opcode == BPF_JA) {
4139 if (BPF_SRC(insns[t].code) != BPF_K) {
4140 ret = -EINVAL;
4141 goto err_free;
4143 /* unconditional jump with single edge */
4144 ret = push_insn(t, t + insns[t].off + 1,
4145 FALLTHROUGH, env);
4146 if (ret == 1)
4147 goto peek_stack;
4148 else if (ret < 0)
4149 goto err_free;
4150 /* tell verifier to check for equivalent states
4151 * after every call and jump
4153 if (t + 1 < insn_cnt)
4154 env->explored_states[t + 1] = STATE_LIST_MARK;
4155 } else {
4156 /* conditional jump with two edges */
4157 env->explored_states[t] = STATE_LIST_MARK;
4158 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4159 if (ret == 1)
4160 goto peek_stack;
4161 else if (ret < 0)
4162 goto err_free;
4164 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4165 if (ret == 1)
4166 goto peek_stack;
4167 else if (ret < 0)
4168 goto err_free;
4170 } else {
4171 /* all other non-branch instructions with single
4172 * fall-through edge
4174 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4175 if (ret == 1)
4176 goto peek_stack;
4177 else if (ret < 0)
4178 goto err_free;
4181 mark_explored:
4182 insn_state[t] = EXPLORED;
4183 if (cur_stack-- <= 0) {
4184 verbose(env, "pop stack internal bug\n");
4185 ret = -EFAULT;
4186 goto err_free;
4188 goto peek_stack;
4190 check_state:
4191 for (i = 0; i < insn_cnt; i++) {
4192 if (insn_state[i] != EXPLORED) {
4193 verbose(env, "unreachable insn %d\n", i);
4194 ret = -EINVAL;
4195 goto err_free;
4198 ret = 0; /* cfg looks good */
4200 err_free:
4201 kfree(insn_state);
4202 kfree(insn_stack);
4203 return ret;
4206 /* check %cur's range satisfies %old's */
4207 static bool range_within(struct bpf_reg_state *old,
4208 struct bpf_reg_state *cur)
4210 return old->umin_value <= cur->umin_value &&
4211 old->umax_value >= cur->umax_value &&
4212 old->smin_value <= cur->smin_value &&
4213 old->smax_value >= cur->smax_value;
4216 /* Maximum number of register states that can exist at once */
4217 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4218 struct idpair {
4219 u32 old;
4220 u32 cur;
4223 /* If in the old state two registers had the same id, then they need to have
4224 * the same id in the new state as well. But that id could be different from
4225 * the old state, so we need to track the mapping from old to new ids.
4226 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4227 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4228 * regs with a different old id could still have new id 9, we don't care about
4229 * that.
4230 * So we look through our idmap to see if this old id has been seen before. If
4231 * so, we require the new id to match; otherwise, we add the id pair to the map.
4233 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4235 unsigned int i;
4237 for (i = 0; i < ID_MAP_SIZE; i++) {
4238 if (!idmap[i].old) {
4239 /* Reached an empty slot; haven't seen this id before */
4240 idmap[i].old = old_id;
4241 idmap[i].cur = cur_id;
4242 return true;
4244 if (idmap[i].old == old_id)
4245 return idmap[i].cur == cur_id;
4247 /* We ran out of idmap slots, which should be impossible */
4248 WARN_ON_ONCE(1);
4249 return false;
4252 /* Returns true if (rold safe implies rcur safe) */
4253 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4254 struct idpair *idmap)
4256 bool equal;
4258 if (!(rold->live & REG_LIVE_READ))
4259 /* explored state didn't use this */
4260 return true;
4262 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
4264 if (rold->type == PTR_TO_STACK)
4265 /* two stack pointers are equal only if they're pointing to
4266 * the same stack frame, since fp-8 in foo != fp-8 in bar
4268 return equal && rold->frameno == rcur->frameno;
4270 if (equal)
4271 return true;
4273 if (rold->type == NOT_INIT)
4274 /* explored state can't have used this */
4275 return true;
4276 if (rcur->type == NOT_INIT)
4277 return false;
4278 switch (rold->type) {
4279 case SCALAR_VALUE:
4280 if (rcur->type == SCALAR_VALUE) {
4281 /* new val must satisfy old val knowledge */
4282 return range_within(rold, rcur) &&
4283 tnum_in(rold->var_off, rcur->var_off);
4284 } else {
4285 /* We're trying to use a pointer in place of a scalar.
4286 * Even if the scalar was unbounded, this could lead to
4287 * pointer leaks because scalars are allowed to leak
4288 * while pointers are not. We could make this safe in
4289 * special cases if root is calling us, but it's
4290 * probably not worth the hassle.
4292 return false;
4294 case PTR_TO_MAP_VALUE:
4295 /* If the new min/max/var_off satisfy the old ones and
4296 * everything else matches, we are OK.
4297 * We don't care about the 'id' value, because nothing
4298 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4300 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4301 range_within(rold, rcur) &&
4302 tnum_in(rold->var_off, rcur->var_off);
4303 case PTR_TO_MAP_VALUE_OR_NULL:
4304 /* a PTR_TO_MAP_VALUE could be safe to use as a
4305 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4306 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4307 * checked, doing so could have affected others with the same
4308 * id, and we can't check for that because we lost the id when
4309 * we converted to a PTR_TO_MAP_VALUE.
4311 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4312 return false;
4313 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4314 return false;
4315 /* Check our ids match any regs they're supposed to */
4316 return check_ids(rold->id, rcur->id, idmap);
4317 case PTR_TO_PACKET_META:
4318 case PTR_TO_PACKET:
4319 if (rcur->type != rold->type)
4320 return false;
4321 /* We must have at least as much range as the old ptr
4322 * did, so that any accesses which were safe before are
4323 * still safe. This is true even if old range < old off,
4324 * since someone could have accessed through (ptr - k), or
4325 * even done ptr -= k in a register, to get a safe access.
4327 if (rold->range > rcur->range)
4328 return false;
4329 /* If the offsets don't match, we can't trust our alignment;
4330 * nor can we be sure that we won't fall out of range.
4332 if (rold->off != rcur->off)
4333 return false;
4334 /* id relations must be preserved */
4335 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4336 return false;
4337 /* new val must satisfy old val knowledge */
4338 return range_within(rold, rcur) &&
4339 tnum_in(rold->var_off, rcur->var_off);
4340 case PTR_TO_CTX:
4341 case CONST_PTR_TO_MAP:
4342 case PTR_TO_PACKET_END:
4343 /* Only valid matches are exact, which memcmp() above
4344 * would have accepted
4346 default:
4347 /* Don't know what's going on, just say it's not safe */
4348 return false;
4351 /* Shouldn't get here; if we do, say it's not safe */
4352 WARN_ON_ONCE(1);
4353 return false;
4356 static bool stacksafe(struct bpf_func_state *old,
4357 struct bpf_func_state *cur,
4358 struct idpair *idmap)
4360 int i, spi;
4362 /* if explored stack has more populated slots than current stack
4363 * such stacks are not equivalent
4365 if (old->allocated_stack > cur->allocated_stack)
4366 return false;
4368 /* walk slots of the explored stack and ignore any additional
4369 * slots in the current stack, since explored(safe) state
4370 * didn't use them
4372 for (i = 0; i < old->allocated_stack; i++) {
4373 spi = i / BPF_REG_SIZE;
4375 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4376 /* explored state didn't use this */
4377 continue;
4379 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4380 continue;
4381 /* if old state was safe with misc data in the stack
4382 * it will be safe with zero-initialized stack.
4383 * The opposite is not true
4385 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4386 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4387 continue;
4388 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4389 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4390 /* Ex: old explored (safe) state has STACK_SPILL in
4391 * this stack slot, but current has has STACK_MISC ->
4392 * this verifier states are not equivalent,
4393 * return false to continue verification of this path
4395 return false;
4396 if (i % BPF_REG_SIZE)
4397 continue;
4398 if (old->stack[spi].slot_type[0] != STACK_SPILL)
4399 continue;
4400 if (!regsafe(&old->stack[spi].spilled_ptr,
4401 &cur->stack[spi].spilled_ptr,
4402 idmap))
4403 /* when explored and current stack slot are both storing
4404 * spilled registers, check that stored pointers types
4405 * are the same as well.
4406 * Ex: explored safe path could have stored
4407 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4408 * but current path has stored:
4409 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4410 * such verifier states are not equivalent.
4411 * return false to continue verification of this path
4413 return false;
4415 return true;
4418 /* compare two verifier states
4420 * all states stored in state_list are known to be valid, since
4421 * verifier reached 'bpf_exit' instruction through them
4423 * this function is called when verifier exploring different branches of
4424 * execution popped from the state stack. If it sees an old state that has
4425 * more strict register state and more strict stack state then this execution
4426 * branch doesn't need to be explored further, since verifier already
4427 * concluded that more strict state leads to valid finish.
4429 * Therefore two states are equivalent if register state is more conservative
4430 * and explored stack state is more conservative than the current one.
4431 * Example:
4432 * explored current
4433 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4434 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4436 * In other words if current stack state (one being explored) has more
4437 * valid slots than old one that already passed validation, it means
4438 * the verifier can stop exploring and conclude that current state is valid too
4440 * Similarly with registers. If explored state has register type as invalid
4441 * whereas register type in current state is meaningful, it means that
4442 * the current state will reach 'bpf_exit' instruction safely
4444 static bool func_states_equal(struct bpf_func_state *old,
4445 struct bpf_func_state *cur)
4447 struct idpair *idmap;
4448 bool ret = false;
4449 int i;
4451 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4452 /* If we failed to allocate the idmap, just say it's not safe */
4453 if (!idmap)
4454 return false;
4456 for (i = 0; i < MAX_BPF_REG; i++) {
4457 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4458 goto out_free;
4461 if (!stacksafe(old, cur, idmap))
4462 goto out_free;
4463 ret = true;
4464 out_free:
4465 kfree(idmap);
4466 return ret;
4469 static bool states_equal(struct bpf_verifier_env *env,
4470 struct bpf_verifier_state *old,
4471 struct bpf_verifier_state *cur)
4473 int i;
4475 if (old->curframe != cur->curframe)
4476 return false;
4478 /* for states to be equal callsites have to be the same
4479 * and all frame states need to be equivalent
4481 for (i = 0; i <= old->curframe; i++) {
4482 if (old->frame[i]->callsite != cur->frame[i]->callsite)
4483 return false;
4484 if (!func_states_equal(old->frame[i], cur->frame[i]))
4485 return false;
4487 return true;
4490 /* A write screens off any subsequent reads; but write marks come from the
4491 * straight-line code between a state and its parent. When we arrive at an
4492 * equivalent state (jump target or such) we didn't arrive by the straight-line
4493 * code, so read marks in the state must propagate to the parent regardless
4494 * of the state's write marks. That's what 'parent == state->parent' comparison
4495 * in mark_reg_read() and mark_stack_slot_read() is for.
4497 static int propagate_liveness(struct bpf_verifier_env *env,
4498 const struct bpf_verifier_state *vstate,
4499 struct bpf_verifier_state *vparent)
4501 int i, frame, err = 0;
4502 struct bpf_func_state *state, *parent;
4504 if (vparent->curframe != vstate->curframe) {
4505 WARN(1, "propagate_live: parent frame %d current frame %d\n",
4506 vparent->curframe, vstate->curframe);
4507 return -EFAULT;
4509 /* Propagate read liveness of registers... */
4510 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4511 /* We don't need to worry about FP liveness because it's read-only */
4512 for (i = 0; i < BPF_REG_FP; i++) {
4513 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4514 continue;
4515 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4516 err = mark_reg_read(env, vstate, vparent, i);
4517 if (err)
4518 return err;
4522 /* ... and stack slots */
4523 for (frame = 0; frame <= vstate->curframe; frame++) {
4524 state = vstate->frame[frame];
4525 parent = vparent->frame[frame];
4526 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4527 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
4528 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4529 continue;
4530 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4531 mark_stack_slot_read(env, vstate, vparent, i, frame);
4534 return err;
4537 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4539 struct bpf_verifier_state_list *new_sl;
4540 struct bpf_verifier_state_list *sl;
4541 struct bpf_verifier_state *cur = env->cur_state;
4542 int i, j, err;
4544 sl = env->explored_states[insn_idx];
4545 if (!sl)
4546 /* this 'insn_idx' instruction wasn't marked, so we will not
4547 * be doing state search here
4549 return 0;
4551 while (sl != STATE_LIST_MARK) {
4552 if (states_equal(env, &sl->state, cur)) {
4553 /* reached equivalent register/stack state,
4554 * prune the search.
4555 * Registers read by the continuation are read by us.
4556 * If we have any write marks in env->cur_state, they
4557 * will prevent corresponding reads in the continuation
4558 * from reaching our parent (an explored_state). Our
4559 * own state will get the read marks recorded, but
4560 * they'll be immediately forgotten as we're pruning
4561 * this state and will pop a new one.
4563 err = propagate_liveness(env, &sl->state, cur);
4564 if (err)
4565 return err;
4566 return 1;
4568 sl = sl->next;
4571 /* there were no equivalent states, remember current one.
4572 * technically the current state is not proven to be safe yet,
4573 * but it will either reach outer most bpf_exit (which means it's safe)
4574 * or it will be rejected. Since there are no loops, we won't be
4575 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4576 * again on the way to bpf_exit
4578 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4579 if (!new_sl)
4580 return -ENOMEM;
4582 /* add new state to the head of linked list */
4583 err = copy_verifier_state(&new_sl->state, cur);
4584 if (err) {
4585 free_verifier_state(&new_sl->state, false);
4586 kfree(new_sl);
4587 return err;
4589 new_sl->next = env->explored_states[insn_idx];
4590 env->explored_states[insn_idx] = new_sl;
4591 /* connect new state to parentage chain */
4592 cur->parent = &new_sl->state;
4593 /* clear write marks in current state: the writes we did are not writes
4594 * our child did, so they don't screen off its reads from us.
4595 * (There are no read marks in current state, because reads always mark
4596 * their parent and current state never has children yet. Only
4597 * explored_states can get read marks.)
4599 for (i = 0; i < BPF_REG_FP; i++)
4600 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4602 /* all stack frames are accessible from callee, clear them all */
4603 for (j = 0; j <= cur->curframe; j++) {
4604 struct bpf_func_state *frame = cur->frame[j];
4606 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4607 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4609 return 0;
4612 static int do_check(struct bpf_verifier_env *env)
4614 struct bpf_verifier_state *state;
4615 struct bpf_insn *insns = env->prog->insnsi;
4616 struct bpf_reg_state *regs;
4617 int insn_cnt = env->prog->len, i;
4618 int insn_idx, prev_insn_idx = 0;
4619 int insn_processed = 0;
4620 bool do_print_state = false;
4622 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4623 if (!state)
4624 return -ENOMEM;
4625 state->curframe = 0;
4626 state->parent = NULL;
4627 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4628 if (!state->frame[0]) {
4629 kfree(state);
4630 return -ENOMEM;
4632 env->cur_state = state;
4633 init_func_state(env, state->frame[0],
4634 BPF_MAIN_FUNC /* callsite */,
4635 0 /* frameno */,
4636 0 /* subprogno, zero == main subprog */);
4637 insn_idx = 0;
4638 for (;;) {
4639 struct bpf_insn *insn;
4640 u8 class;
4641 int err;
4643 if (insn_idx >= insn_cnt) {
4644 verbose(env, "invalid insn idx %d insn_cnt %d\n",
4645 insn_idx, insn_cnt);
4646 return -EFAULT;
4649 insn = &insns[insn_idx];
4650 class = BPF_CLASS(insn->code);
4652 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4653 verbose(env,
4654 "BPF program is too large. Processed %d insn\n",
4655 insn_processed);
4656 return -E2BIG;
4659 err = is_state_visited(env, insn_idx);
4660 if (err < 0)
4661 return err;
4662 if (err == 1) {
4663 /* found equivalent state, can prune the search */
4664 if (env->log.level) {
4665 if (do_print_state)
4666 verbose(env, "\nfrom %d to %d: safe\n",
4667 prev_insn_idx, insn_idx);
4668 else
4669 verbose(env, "%d: safe\n", insn_idx);
4671 goto process_bpf_exit;
4674 if (need_resched())
4675 cond_resched();
4677 if (env->log.level > 1 || (env->log.level && do_print_state)) {
4678 if (env->log.level > 1)
4679 verbose(env, "%d:", insn_idx);
4680 else
4681 verbose(env, "\nfrom %d to %d:",
4682 prev_insn_idx, insn_idx);
4683 print_verifier_state(env, state->frame[state->curframe]);
4684 do_print_state = false;
4687 if (env->log.level) {
4688 const struct bpf_insn_cbs cbs = {
4689 .cb_print = verbose,
4690 .private_data = env,
4693 verbose(env, "%d: ", insn_idx);
4694 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4697 if (bpf_prog_is_dev_bound(env->prog->aux)) {
4698 err = bpf_prog_offload_verify_insn(env, insn_idx,
4699 prev_insn_idx);
4700 if (err)
4701 return err;
4704 regs = cur_regs(env);
4705 env->insn_aux_data[insn_idx].seen = true;
4706 if (class == BPF_ALU || class == BPF_ALU64) {
4707 err = check_alu_op(env, insn);
4708 if (err)
4709 return err;
4711 } else if (class == BPF_LDX) {
4712 enum bpf_reg_type *prev_src_type, src_reg_type;
4714 /* check for reserved fields is already done */
4716 /* check src operand */
4717 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4718 if (err)
4719 return err;
4721 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4722 if (err)
4723 return err;
4725 src_reg_type = regs[insn->src_reg].type;
4727 /* check that memory (src_reg + off) is readable,
4728 * the state of dst_reg will be updated by this func
4730 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4731 BPF_SIZE(insn->code), BPF_READ,
4732 insn->dst_reg, false);
4733 if (err)
4734 return err;
4736 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4738 if (*prev_src_type == NOT_INIT) {
4739 /* saw a valid insn
4740 * dst_reg = *(u32 *)(src_reg + off)
4741 * save type to validate intersecting paths
4743 *prev_src_type = src_reg_type;
4745 } else if (src_reg_type != *prev_src_type &&
4746 (src_reg_type == PTR_TO_CTX ||
4747 *prev_src_type == PTR_TO_CTX)) {
4748 /* ABuser program is trying to use the same insn
4749 * dst_reg = *(u32*) (src_reg + off)
4750 * with different pointer types:
4751 * src_reg == ctx in one branch and
4752 * src_reg == stack|map in some other branch.
4753 * Reject it.
4755 verbose(env, "same insn cannot be used with different pointers\n");
4756 return -EINVAL;
4759 } else if (class == BPF_STX) {
4760 enum bpf_reg_type *prev_dst_type, dst_reg_type;
4762 if (BPF_MODE(insn->code) == BPF_XADD) {
4763 err = check_xadd(env, insn_idx, insn);
4764 if (err)
4765 return err;
4766 insn_idx++;
4767 continue;
4770 /* check src1 operand */
4771 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4772 if (err)
4773 return err;
4774 /* check src2 operand */
4775 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4776 if (err)
4777 return err;
4779 dst_reg_type = regs[insn->dst_reg].type;
4781 /* check that memory (dst_reg + off) is writeable */
4782 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4783 BPF_SIZE(insn->code), BPF_WRITE,
4784 insn->src_reg, false);
4785 if (err)
4786 return err;
4788 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4790 if (*prev_dst_type == NOT_INIT) {
4791 *prev_dst_type = dst_reg_type;
4792 } else if (dst_reg_type != *prev_dst_type &&
4793 (dst_reg_type == PTR_TO_CTX ||
4794 *prev_dst_type == PTR_TO_CTX)) {
4795 verbose(env, "same insn cannot be used with different pointers\n");
4796 return -EINVAL;
4799 } else if (class == BPF_ST) {
4800 if (BPF_MODE(insn->code) != BPF_MEM ||
4801 insn->src_reg != BPF_REG_0) {
4802 verbose(env, "BPF_ST uses reserved fields\n");
4803 return -EINVAL;
4805 /* check src operand */
4806 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4807 if (err)
4808 return err;
4810 if (is_ctx_reg(env, insn->dst_reg)) {
4811 verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4812 insn->dst_reg);
4813 return -EACCES;
4816 /* check that memory (dst_reg + off) is writeable */
4817 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4818 BPF_SIZE(insn->code), BPF_WRITE,
4819 -1, false);
4820 if (err)
4821 return err;
4823 } else if (class == BPF_JMP) {
4824 u8 opcode = BPF_OP(insn->code);
4826 if (opcode == BPF_CALL) {
4827 if (BPF_SRC(insn->code) != BPF_K ||
4828 insn->off != 0 ||
4829 (insn->src_reg != BPF_REG_0 &&
4830 insn->src_reg != BPF_PSEUDO_CALL) ||
4831 insn->dst_reg != BPF_REG_0) {
4832 verbose(env, "BPF_CALL uses reserved fields\n");
4833 return -EINVAL;
4836 if (insn->src_reg == BPF_PSEUDO_CALL)
4837 err = check_func_call(env, insn, &insn_idx);
4838 else
4839 err = check_helper_call(env, insn->imm, insn_idx);
4840 if (err)
4841 return err;
4843 } else if (opcode == BPF_JA) {
4844 if (BPF_SRC(insn->code) != BPF_K ||
4845 insn->imm != 0 ||
4846 insn->src_reg != BPF_REG_0 ||
4847 insn->dst_reg != BPF_REG_0) {
4848 verbose(env, "BPF_JA uses reserved fields\n");
4849 return -EINVAL;
4852 insn_idx += insn->off + 1;
4853 continue;
4855 } else if (opcode == BPF_EXIT) {
4856 if (BPF_SRC(insn->code) != BPF_K ||
4857 insn->imm != 0 ||
4858 insn->src_reg != BPF_REG_0 ||
4859 insn->dst_reg != BPF_REG_0) {
4860 verbose(env, "BPF_EXIT uses reserved fields\n");
4861 return -EINVAL;
4864 if (state->curframe) {
4865 /* exit from nested function */
4866 prev_insn_idx = insn_idx;
4867 err = prepare_func_exit(env, &insn_idx);
4868 if (err)
4869 return err;
4870 do_print_state = true;
4871 continue;
4874 /* eBPF calling convetion is such that R0 is used
4875 * to return the value from eBPF program.
4876 * Make sure that it's readable at this time
4877 * of bpf_exit, which means that program wrote
4878 * something into it earlier
4880 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4881 if (err)
4882 return err;
4884 if (is_pointer_value(env, BPF_REG_0)) {
4885 verbose(env, "R0 leaks addr as return value\n");
4886 return -EACCES;
4889 err = check_return_code(env);
4890 if (err)
4891 return err;
4892 process_bpf_exit:
4893 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4894 if (err < 0) {
4895 if (err != -ENOENT)
4896 return err;
4897 break;
4898 } else {
4899 do_print_state = true;
4900 continue;
4902 } else {
4903 err = check_cond_jmp_op(env, insn, &insn_idx);
4904 if (err)
4905 return err;
4907 } else if (class == BPF_LD) {
4908 u8 mode = BPF_MODE(insn->code);
4910 if (mode == BPF_ABS || mode == BPF_IND) {
4911 err = check_ld_abs(env, insn);
4912 if (err)
4913 return err;
4915 } else if (mode == BPF_IMM) {
4916 err = check_ld_imm(env, insn);
4917 if (err)
4918 return err;
4920 insn_idx++;
4921 env->insn_aux_data[insn_idx].seen = true;
4922 } else {
4923 verbose(env, "invalid BPF_LD mode\n");
4924 return -EINVAL;
4926 } else {
4927 verbose(env, "unknown insn class %d\n", class);
4928 return -EINVAL;
4931 insn_idx++;
4934 verbose(env, "processed %d insns (limit %d), stack depth ",
4935 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
4936 for (i = 0; i < env->subprog_cnt; i++) {
4937 u32 depth = env->subprog_info[i].stack_depth;
4939 verbose(env, "%d", depth);
4940 if (i + 1 < env->subprog_cnt)
4941 verbose(env, "+");
4943 verbose(env, "\n");
4944 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
4945 return 0;
4948 static int check_map_prealloc(struct bpf_map *map)
4950 return (map->map_type != BPF_MAP_TYPE_HASH &&
4951 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4952 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4953 !(map->map_flags & BPF_F_NO_PREALLOC);
4956 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4957 struct bpf_map *map,
4958 struct bpf_prog *prog)
4961 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4962 * preallocated hash maps, since doing memory allocation
4963 * in overflow_handler can crash depending on where nmi got
4964 * triggered.
4966 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4967 if (!check_map_prealloc(map)) {
4968 verbose(env, "perf_event programs can only use preallocated hash map\n");
4969 return -EINVAL;
4971 if (map->inner_map_meta &&
4972 !check_map_prealloc(map->inner_map_meta)) {
4973 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4974 return -EINVAL;
4978 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
4979 !bpf_offload_dev_match(prog, map)) {
4980 verbose(env, "offload device mismatch between prog and map\n");
4981 return -EINVAL;
4984 return 0;
4987 /* look for pseudo eBPF instructions that access map FDs and
4988 * replace them with actual map pointers
4990 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4992 struct bpf_insn *insn = env->prog->insnsi;
4993 int insn_cnt = env->prog->len;
4994 int i, j, err;
4996 err = bpf_prog_calc_tag(env->prog);
4997 if (err)
4998 return err;
5000 for (i = 0; i < insn_cnt; i++, insn++) {
5001 if (BPF_CLASS(insn->code) == BPF_LDX &&
5002 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5003 verbose(env, "BPF_LDX uses reserved fields\n");
5004 return -EINVAL;
5007 if (BPF_CLASS(insn->code) == BPF_STX &&
5008 ((BPF_MODE(insn->code) != BPF_MEM &&
5009 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5010 verbose(env, "BPF_STX uses reserved fields\n");
5011 return -EINVAL;
5014 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5015 struct bpf_map *map;
5016 struct fd f;
5018 if (i == insn_cnt - 1 || insn[1].code != 0 ||
5019 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5020 insn[1].off != 0) {
5021 verbose(env, "invalid bpf_ld_imm64 insn\n");
5022 return -EINVAL;
5025 if (insn->src_reg == 0)
5026 /* valid generic load 64-bit imm */
5027 goto next_insn;
5029 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5030 verbose(env,
5031 "unrecognized bpf_ld_imm64 insn\n");
5032 return -EINVAL;
5035 f = fdget(insn->imm);
5036 map = __bpf_map_get(f);
5037 if (IS_ERR(map)) {
5038 verbose(env, "fd %d is not pointing to valid bpf_map\n",
5039 insn->imm);
5040 return PTR_ERR(map);
5043 err = check_map_prog_compatibility(env, map, env->prog);
5044 if (err) {
5045 fdput(f);
5046 return err;
5049 /* store map pointer inside BPF_LD_IMM64 instruction */
5050 insn[0].imm = (u32) (unsigned long) map;
5051 insn[1].imm = ((u64) (unsigned long) map) >> 32;
5053 /* check whether we recorded this map already */
5054 for (j = 0; j < env->used_map_cnt; j++)
5055 if (env->used_maps[j] == map) {
5056 fdput(f);
5057 goto next_insn;
5060 if (env->used_map_cnt >= MAX_USED_MAPS) {
5061 fdput(f);
5062 return -E2BIG;
5065 /* hold the map. If the program is rejected by verifier,
5066 * the map will be released by release_maps() or it
5067 * will be used by the valid program until it's unloaded
5068 * and all maps are released in free_used_maps()
5070 map = bpf_map_inc(map, false);
5071 if (IS_ERR(map)) {
5072 fdput(f);
5073 return PTR_ERR(map);
5075 env->used_maps[env->used_map_cnt++] = map;
5077 fdput(f);
5078 next_insn:
5079 insn++;
5080 i++;
5081 continue;
5084 /* Basic sanity check before we invest more work here. */
5085 if (!bpf_opcode_in_insntable(insn->code)) {
5086 verbose(env, "unknown opcode %02x\n", insn->code);
5087 return -EINVAL;
5091 /* now all pseudo BPF_LD_IMM64 instructions load valid
5092 * 'struct bpf_map *' into a register instead of user map_fd.
5093 * These pointers will be used later by verifier to validate map access.
5095 return 0;
5098 /* drop refcnt of maps used by the rejected program */
5099 static void release_maps(struct bpf_verifier_env *env)
5101 int i;
5103 for (i = 0; i < env->used_map_cnt; i++)
5104 bpf_map_put(env->used_maps[i]);
5107 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5108 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5110 struct bpf_insn *insn = env->prog->insnsi;
5111 int insn_cnt = env->prog->len;
5112 int i;
5114 for (i = 0; i < insn_cnt; i++, insn++)
5115 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5116 insn->src_reg = 0;
5119 /* single env->prog->insni[off] instruction was replaced with the range
5120 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5121 * [0, off) and [off, end) to new locations, so the patched range stays zero
5123 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5124 u32 off, u32 cnt)
5126 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5127 int i;
5129 if (cnt == 1)
5130 return 0;
5131 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
5132 if (!new_data)
5133 return -ENOMEM;
5134 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5135 memcpy(new_data + off + cnt - 1, old_data + off,
5136 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5137 for (i = off; i < off + cnt - 1; i++)
5138 new_data[i].seen = true;
5139 env->insn_aux_data = new_data;
5140 vfree(old_data);
5141 return 0;
5144 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5146 int i;
5148 if (len == 1)
5149 return;
5150 /* NOTE: fake 'exit' subprog should be updated as well. */
5151 for (i = 0; i <= env->subprog_cnt; i++) {
5152 if (env->subprog_info[i].start < off)
5153 continue;
5154 env->subprog_info[i].start += len - 1;
5158 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5159 const struct bpf_insn *patch, u32 len)
5161 struct bpf_prog *new_prog;
5163 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5164 if (!new_prog)
5165 return NULL;
5166 if (adjust_insn_aux_data(env, new_prog->len, off, len))
5167 return NULL;
5168 adjust_subprog_starts(env, off, len);
5169 return new_prog;
5172 /* The verifier does more data flow analysis than llvm and will not
5173 * explore branches that are dead at run time. Malicious programs can
5174 * have dead code too. Therefore replace all dead at-run-time code
5175 * with 'ja -1'.
5177 * Just nops are not optimal, e.g. if they would sit at the end of the
5178 * program and through another bug we would manage to jump there, then
5179 * we'd execute beyond program memory otherwise. Returning exception
5180 * code also wouldn't work since we can have subprogs where the dead
5181 * code could be located.
5183 static void sanitize_dead_code(struct bpf_verifier_env *env)
5185 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5186 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5187 struct bpf_insn *insn = env->prog->insnsi;
5188 const int insn_cnt = env->prog->len;
5189 int i;
5191 for (i = 0; i < insn_cnt; i++) {
5192 if (aux_data[i].seen)
5193 continue;
5194 memcpy(insn + i, &trap, sizeof(trap));
5198 /* convert load instructions that access fields of 'struct __sk_buff'
5199 * into sequence of instructions that access fields of 'struct sk_buff'
5201 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5203 const struct bpf_verifier_ops *ops = env->ops;
5204 int i, cnt, size, ctx_field_size, delta = 0;
5205 const int insn_cnt = env->prog->len;
5206 struct bpf_insn insn_buf[16], *insn;
5207 struct bpf_prog *new_prog;
5208 enum bpf_access_type type;
5209 bool is_narrower_load;
5210 u32 target_size;
5212 if (ops->gen_prologue) {
5213 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5214 env->prog);
5215 if (cnt >= ARRAY_SIZE(insn_buf)) {
5216 verbose(env, "bpf verifier is misconfigured\n");
5217 return -EINVAL;
5218 } else if (cnt) {
5219 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5220 if (!new_prog)
5221 return -ENOMEM;
5223 env->prog = new_prog;
5224 delta += cnt - 1;
5228 if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux))
5229 return 0;
5231 insn = env->prog->insnsi + delta;
5233 for (i = 0; i < insn_cnt; i++, insn++) {
5234 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5235 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5236 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5237 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5238 type = BPF_READ;
5239 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5240 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5241 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5242 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5243 type = BPF_WRITE;
5244 else
5245 continue;
5247 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5248 continue;
5250 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5251 size = BPF_LDST_BYTES(insn);
5253 /* If the read access is a narrower load of the field,
5254 * convert to a 4/8-byte load, to minimum program type specific
5255 * convert_ctx_access changes. If conversion is successful,
5256 * we will apply proper mask to the result.
5258 is_narrower_load = size < ctx_field_size;
5259 if (is_narrower_load) {
5260 u32 off = insn->off;
5261 u8 size_code;
5263 if (type == BPF_WRITE) {
5264 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5265 return -EINVAL;
5268 size_code = BPF_H;
5269 if (ctx_field_size == 4)
5270 size_code = BPF_W;
5271 else if (ctx_field_size == 8)
5272 size_code = BPF_DW;
5274 insn->off = off & ~(ctx_field_size - 1);
5275 insn->code = BPF_LDX | BPF_MEM | size_code;
5278 target_size = 0;
5279 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
5280 &target_size);
5281 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5282 (ctx_field_size && !target_size)) {
5283 verbose(env, "bpf verifier is misconfigured\n");
5284 return -EINVAL;
5287 if (is_narrower_load && size < target_size) {
5288 if (ctx_field_size <= 4)
5289 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5290 (1 << size * 8) - 1);
5291 else
5292 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5293 (1 << size * 8) - 1);
5296 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5297 if (!new_prog)
5298 return -ENOMEM;
5300 delta += cnt - 1;
5302 /* keep walking new program and skip insns we just inserted */
5303 env->prog = new_prog;
5304 insn = new_prog->insnsi + i + delta;
5307 return 0;
5310 static int jit_subprogs(struct bpf_verifier_env *env)
5312 struct bpf_prog *prog = env->prog, **func, *tmp;
5313 int i, j, subprog_start, subprog_end = 0, len, subprog;
5314 struct bpf_insn *insn;
5315 void *old_bpf_func;
5316 int err = -ENOMEM;
5318 if (env->subprog_cnt <= 1)
5319 return 0;
5321 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5322 if (insn->code != (BPF_JMP | BPF_CALL) ||
5323 insn->src_reg != BPF_PSEUDO_CALL)
5324 continue;
5325 subprog = find_subprog(env, i + insn->imm + 1);
5326 if (subprog < 0) {
5327 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5328 i + insn->imm + 1);
5329 return -EFAULT;
5331 /* temporarily remember subprog id inside insn instead of
5332 * aux_data, since next loop will split up all insns into funcs
5334 insn->off = subprog;
5335 /* remember original imm in case JIT fails and fallback
5336 * to interpreter will be needed
5338 env->insn_aux_data[i].call_imm = insn->imm;
5339 /* point imm to __bpf_call_base+1 from JITs point of view */
5340 insn->imm = 1;
5343 func = kzalloc(sizeof(prog) * env->subprog_cnt, GFP_KERNEL);
5344 if (!func)
5345 return -ENOMEM;
5347 for (i = 0; i < env->subprog_cnt; i++) {
5348 subprog_start = subprog_end;
5349 subprog_end = env->subprog_info[i + 1].start;
5351 len = subprog_end - subprog_start;
5352 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5353 if (!func[i])
5354 goto out_free;
5355 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5356 len * sizeof(struct bpf_insn));
5357 func[i]->type = prog->type;
5358 func[i]->len = len;
5359 if (bpf_prog_calc_tag(func[i]))
5360 goto out_free;
5361 func[i]->is_func = 1;
5362 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5363 * Long term would need debug info to populate names
5365 func[i]->aux->name[0] = 'F';
5366 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5367 func[i]->jit_requested = 1;
5368 func[i] = bpf_int_jit_compile(func[i]);
5369 if (!func[i]->jited) {
5370 err = -ENOTSUPP;
5371 goto out_free;
5373 cond_resched();
5375 /* at this point all bpf functions were successfully JITed
5376 * now populate all bpf_calls with correct addresses and
5377 * run last pass of JIT
5379 for (i = 0; i < env->subprog_cnt; i++) {
5380 insn = func[i]->insnsi;
5381 for (j = 0; j < func[i]->len; j++, insn++) {
5382 if (insn->code != (BPF_JMP | BPF_CALL) ||
5383 insn->src_reg != BPF_PSEUDO_CALL)
5384 continue;
5385 subprog = insn->off;
5386 insn->off = 0;
5387 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5388 func[subprog]->bpf_func -
5389 __bpf_call_base;
5392 for (i = 0; i < env->subprog_cnt; i++) {
5393 old_bpf_func = func[i]->bpf_func;
5394 tmp = bpf_int_jit_compile(func[i]);
5395 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5396 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5397 err = -EFAULT;
5398 goto out_free;
5400 cond_resched();
5403 /* finally lock prog and jit images for all functions and
5404 * populate kallsysm
5406 for (i = 0; i < env->subprog_cnt; i++) {
5407 bpf_prog_lock_ro(func[i]);
5408 bpf_prog_kallsyms_add(func[i]);
5411 /* Last step: make now unused interpreter insns from main
5412 * prog consistent for later dump requests, so they can
5413 * later look the same as if they were interpreted only.
5415 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5416 unsigned long addr;
5418 if (insn->code != (BPF_JMP | BPF_CALL) ||
5419 insn->src_reg != BPF_PSEUDO_CALL)
5420 continue;
5421 insn->off = env->insn_aux_data[i].call_imm;
5422 subprog = find_subprog(env, i + insn->off + 1);
5423 addr = (unsigned long)func[subprog]->bpf_func;
5424 addr &= PAGE_MASK;
5425 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5426 addr - __bpf_call_base;
5429 prog->jited = 1;
5430 prog->bpf_func = func[0]->bpf_func;
5431 prog->aux->func = func;
5432 prog->aux->func_cnt = env->subprog_cnt;
5433 return 0;
5434 out_free:
5435 for (i = 0; i < env->subprog_cnt; i++)
5436 if (func[i])
5437 bpf_jit_free(func[i]);
5438 kfree(func);
5439 /* cleanup main prog to be interpreted */
5440 prog->jit_requested = 0;
5441 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5442 if (insn->code != (BPF_JMP | BPF_CALL) ||
5443 insn->src_reg != BPF_PSEUDO_CALL)
5444 continue;
5445 insn->off = 0;
5446 insn->imm = env->insn_aux_data[i].call_imm;
5448 return err;
5451 static int fixup_call_args(struct bpf_verifier_env *env)
5453 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5454 struct bpf_prog *prog = env->prog;
5455 struct bpf_insn *insn = prog->insnsi;
5456 int i, depth;
5457 #endif
5458 int err;
5460 err = 0;
5461 if (env->prog->jit_requested) {
5462 err = jit_subprogs(env);
5463 if (err == 0)
5464 return 0;
5466 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5467 for (i = 0; i < prog->len; i++, insn++) {
5468 if (insn->code != (BPF_JMP | BPF_CALL) ||
5469 insn->src_reg != BPF_PSEUDO_CALL)
5470 continue;
5471 depth = get_callee_stack_depth(env, insn, i);
5472 if (depth < 0)
5473 return depth;
5474 bpf_patch_call_args(insn, depth);
5476 err = 0;
5477 #endif
5478 return err;
5481 /* fixup insn->imm field of bpf_call instructions
5482 * and inline eligible helpers as explicit sequence of BPF instructions
5484 * this function is called after eBPF program passed verification
5486 static int fixup_bpf_calls(struct bpf_verifier_env *env)
5488 struct bpf_prog *prog = env->prog;
5489 struct bpf_insn *insn = prog->insnsi;
5490 const struct bpf_func_proto *fn;
5491 const int insn_cnt = prog->len;
5492 struct bpf_insn insn_buf[16];
5493 struct bpf_prog *new_prog;
5494 struct bpf_map *map_ptr;
5495 int i, cnt, delta = 0;
5497 for (i = 0; i < insn_cnt; i++, insn++) {
5498 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
5499 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5500 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5501 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5502 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
5503 struct bpf_insn mask_and_div[] = {
5504 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5505 /* Rx div 0 -> 0 */
5506 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
5507 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
5508 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
5509 *insn,
5511 struct bpf_insn mask_and_mod[] = {
5512 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5513 /* Rx mod 0 -> Rx */
5514 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
5515 *insn,
5517 struct bpf_insn *patchlet;
5519 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5520 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5521 patchlet = mask_and_div + (is64 ? 1 : 0);
5522 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
5523 } else {
5524 patchlet = mask_and_mod + (is64 ? 1 : 0);
5525 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
5528 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5529 if (!new_prog)
5530 return -ENOMEM;
5532 delta += cnt - 1;
5533 env->prog = prog = new_prog;
5534 insn = new_prog->insnsi + i + delta;
5535 continue;
5538 if (BPF_CLASS(insn->code) == BPF_LD &&
5539 (BPF_MODE(insn->code) == BPF_ABS ||
5540 BPF_MODE(insn->code) == BPF_IND)) {
5541 cnt = env->ops->gen_ld_abs(insn, insn_buf);
5542 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5543 verbose(env, "bpf verifier is misconfigured\n");
5544 return -EINVAL;
5547 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5548 if (!new_prog)
5549 return -ENOMEM;
5551 delta += cnt - 1;
5552 env->prog = prog = new_prog;
5553 insn = new_prog->insnsi + i + delta;
5554 continue;
5557 if (insn->code != (BPF_JMP | BPF_CALL))
5558 continue;
5559 if (insn->src_reg == BPF_PSEUDO_CALL)
5560 continue;
5562 if (insn->imm == BPF_FUNC_get_route_realm)
5563 prog->dst_needed = 1;
5564 if (insn->imm == BPF_FUNC_get_prandom_u32)
5565 bpf_user_rnd_init_once();
5566 if (insn->imm == BPF_FUNC_override_return)
5567 prog->kprobe_override = 1;
5568 if (insn->imm == BPF_FUNC_tail_call) {
5569 /* If we tail call into other programs, we
5570 * cannot make any assumptions since they can
5571 * be replaced dynamically during runtime in
5572 * the program array.
5574 prog->cb_access = 1;
5575 env->prog->aux->stack_depth = MAX_BPF_STACK;
5577 /* mark bpf_tail_call as different opcode to avoid
5578 * conditional branch in the interpeter for every normal
5579 * call and to prevent accidental JITing by JIT compiler
5580 * that doesn't support bpf_tail_call yet
5582 insn->imm = 0;
5583 insn->code = BPF_JMP | BPF_TAIL_CALL;
5585 /* instead of changing every JIT dealing with tail_call
5586 * emit two extra insns:
5587 * if (index >= max_entries) goto out;
5588 * index &= array->index_mask;
5589 * to avoid out-of-bounds cpu speculation
5591 map_ptr = env->insn_aux_data[i + delta].map_ptr;
5592 if (map_ptr == BPF_MAP_PTR_POISON) {
5593 verbose(env, "tail_call abusing map_ptr\n");
5594 return -EINVAL;
5596 if (!map_ptr->unpriv_array)
5597 continue;
5598 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5599 map_ptr->max_entries, 2);
5600 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5601 container_of(map_ptr,
5602 struct bpf_array,
5603 map)->index_mask);
5604 insn_buf[2] = *insn;
5605 cnt = 3;
5606 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5607 if (!new_prog)
5608 return -ENOMEM;
5610 delta += cnt - 1;
5611 env->prog = prog = new_prog;
5612 insn = new_prog->insnsi + i + delta;
5613 continue;
5616 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5617 * handlers are currently limited to 64 bit only.
5619 if (prog->jit_requested && BITS_PER_LONG == 64 &&
5620 insn->imm == BPF_FUNC_map_lookup_elem) {
5621 map_ptr = env->insn_aux_data[i + delta].map_ptr;
5622 if (map_ptr == BPF_MAP_PTR_POISON ||
5623 !map_ptr->ops->map_gen_lookup)
5624 goto patch_call_imm;
5626 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
5627 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5628 verbose(env, "bpf verifier is misconfigured\n");
5629 return -EINVAL;
5632 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
5633 cnt);
5634 if (!new_prog)
5635 return -ENOMEM;
5637 delta += cnt - 1;
5639 /* keep walking new program and skip insns we just inserted */
5640 env->prog = prog = new_prog;
5641 insn = new_prog->insnsi + i + delta;
5642 continue;
5645 if (insn->imm == BPF_FUNC_redirect_map) {
5646 /* Note, we cannot use prog directly as imm as subsequent
5647 * rewrites would still change the prog pointer. The only
5648 * stable address we can use is aux, which also works with
5649 * prog clones during blinding.
5651 u64 addr = (unsigned long)prog->aux;
5652 struct bpf_insn r4_ld[] = {
5653 BPF_LD_IMM64(BPF_REG_4, addr),
5654 *insn,
5656 cnt = ARRAY_SIZE(r4_ld);
5658 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
5659 if (!new_prog)
5660 return -ENOMEM;
5662 delta += cnt - 1;
5663 env->prog = prog = new_prog;
5664 insn = new_prog->insnsi + i + delta;
5666 patch_call_imm:
5667 fn = env->ops->get_func_proto(insn->imm, env->prog);
5668 /* all functions that have prototype and verifier allowed
5669 * programs to call them, must be real in-kernel functions
5671 if (!fn->func) {
5672 verbose(env,
5673 "kernel subsystem misconfigured func %s#%d\n",
5674 func_id_name(insn->imm), insn->imm);
5675 return -EFAULT;
5677 insn->imm = fn->func - __bpf_call_base;
5680 return 0;
5683 static void free_states(struct bpf_verifier_env *env)
5685 struct bpf_verifier_state_list *sl, *sln;
5686 int i;
5688 if (!env->explored_states)
5689 return;
5691 for (i = 0; i < env->prog->len; i++) {
5692 sl = env->explored_states[i];
5694 if (sl)
5695 while (sl != STATE_LIST_MARK) {
5696 sln = sl->next;
5697 free_verifier_state(&sl->state, false);
5698 kfree(sl);
5699 sl = sln;
5703 kfree(env->explored_states);
5706 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
5708 struct bpf_verifier_env *env;
5709 struct bpf_verifier_log *log;
5710 int ret = -EINVAL;
5712 /* no program is valid */
5713 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5714 return -EINVAL;
5716 /* 'struct bpf_verifier_env' can be global, but since it's not small,
5717 * allocate/free it every time bpf_check() is called
5719 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5720 if (!env)
5721 return -ENOMEM;
5722 log = &env->log;
5724 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5725 (*prog)->len);
5726 ret = -ENOMEM;
5727 if (!env->insn_aux_data)
5728 goto err_free_env;
5729 env->prog = *prog;
5730 env->ops = bpf_verifier_ops[env->prog->type];
5732 /* grab the mutex to protect few globals used by verifier */
5733 mutex_lock(&bpf_verifier_lock);
5735 if (attr->log_level || attr->log_buf || attr->log_size) {
5736 /* user requested verbose verifier output
5737 * and supplied buffer to store the verification trace
5739 log->level = attr->log_level;
5740 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5741 log->len_total = attr->log_size;
5743 ret = -EINVAL;
5744 /* log attributes have to be sane */
5745 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5746 !log->level || !log->ubuf)
5747 goto err_unlock;
5750 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5751 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5752 env->strict_alignment = true;
5754 ret = replace_map_fd_with_map_ptr(env);
5755 if (ret < 0)
5756 goto skip_full_check;
5758 if (bpf_prog_is_dev_bound(env->prog->aux)) {
5759 ret = bpf_prog_offload_verifier_prep(env);
5760 if (ret)
5761 goto skip_full_check;
5764 env->explored_states = kcalloc(env->prog->len,
5765 sizeof(struct bpf_verifier_state_list *),
5766 GFP_USER);
5767 ret = -ENOMEM;
5768 if (!env->explored_states)
5769 goto skip_full_check;
5771 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5773 ret = check_cfg(env);
5774 if (ret < 0)
5775 goto skip_full_check;
5777 ret = do_check(env);
5778 if (env->cur_state) {
5779 free_verifier_state(env->cur_state, true);
5780 env->cur_state = NULL;
5783 skip_full_check:
5784 while (!pop_stack(env, NULL, NULL));
5785 free_states(env);
5787 if (ret == 0)
5788 sanitize_dead_code(env);
5790 if (ret == 0)
5791 ret = check_max_stack_depth(env);
5793 if (ret == 0)
5794 /* program is valid, convert *(u32*)(ctx + off) accesses */
5795 ret = convert_ctx_accesses(env);
5797 if (ret == 0)
5798 ret = fixup_bpf_calls(env);
5800 if (ret == 0)
5801 ret = fixup_call_args(env);
5803 if (log->level && bpf_verifier_log_full(log))
5804 ret = -ENOSPC;
5805 if (log->level && !log->ubuf) {
5806 ret = -EFAULT;
5807 goto err_release_maps;
5810 if (ret == 0 && env->used_map_cnt) {
5811 /* if program passed verifier, update used_maps in bpf_prog_info */
5812 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5813 sizeof(env->used_maps[0]),
5814 GFP_KERNEL);
5816 if (!env->prog->aux->used_maps) {
5817 ret = -ENOMEM;
5818 goto err_release_maps;
5821 memcpy(env->prog->aux->used_maps, env->used_maps,
5822 sizeof(env->used_maps[0]) * env->used_map_cnt);
5823 env->prog->aux->used_map_cnt = env->used_map_cnt;
5825 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
5826 * bpf_ld_imm64 instructions
5828 convert_pseudo_ld_imm64(env);
5831 err_release_maps:
5832 if (!env->prog->aux->used_maps)
5833 /* if we didn't copy map pointers into bpf_prog_info, release
5834 * them now. Otherwise free_used_maps() will release them.
5836 release_maps(env);
5837 *prog = env->prog;
5838 err_unlock:
5839 mutex_unlock(&bpf_verifier_lock);
5840 vfree(env->insn_aux_data);
5841 err_free_env:
5842 kfree(env);
5843 return ret;