1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 #include <linux/bsearch.h>
24 #include <linux/sort.h>
25 #include <linux/perf_event.h>
29 static const struct bpf_verifier_ops
* const bpf_verifier_ops
[] = {
30 #define BPF_PROG_TYPE(_id, _name) \
31 [_id] = & _name ## _verifier_ops,
32 #define BPF_MAP_TYPE(_id, _ops)
33 #include <linux/bpf_types.h>
38 /* bpf_check() is a static code analyzer that walks eBPF program
39 * instruction by instruction and updates register/stack state.
40 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 * The first pass is depth-first-search to check that the program is a DAG.
43 * It rejects the following programs:
44 * - larger than BPF_MAXINSNS insns
45 * - if loop is present (detected via back-edge)
46 * - unreachable insns exist (shouldn't be a forest. program = one function)
47 * - out of bounds or malformed jumps
48 * The second pass is all possible path descent from the 1st insn.
49 * Since it's analyzing all pathes through the program, the length of the
50 * analysis is limited to 64k insn, which may be hit even if total number of
51 * insn is less then 4K, but there are too many branches that change stack/regs.
52 * Number of 'branches to be analyzed' is limited to 1k
54 * On entry to each instruction, each register has a type, and the instruction
55 * changes the types of the registers depending on instruction semantics.
56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
59 * All registers are 64-bit.
60 * R0 - return register
61 * R1-R5 argument passing registers
62 * R6-R9 callee saved registers
63 * R10 - frame pointer read-only
65 * At the start of BPF program the register R1 contains a pointer to bpf_context
66 * and has type PTR_TO_CTX.
68 * Verifier tracks arithmetic operations on pointers in case:
69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71 * 1st insn copies R10 (which has FRAME_PTR) type into R1
72 * and 2nd arithmetic instruction is pattern matched to recognize
73 * that it wants to construct a pointer to some element within stack.
74 * So after 2nd insn, the register R1 has type PTR_TO_STACK
75 * (and -20 constant is saved for further stack bounds checking).
76 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 * Most of the time the registers have SCALAR_VALUE type, which
79 * means the register has some value, but it's not a valid pointer.
80 * (like pointer plus pointer becomes SCALAR_VALUE type)
82 * When verifier sees load or store instructions the type of base register
83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
84 * types recognized by check_mem_access() function.
86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87 * and the range of [ptr, ptr + map's value_size) is accessible.
89 * registers used to pass values to function calls are checked against
90 * function argument constraints.
92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93 * It means that the register type passed to this function must be
94 * PTR_TO_STACK and it will be used inside the function as
95 * 'pointer to map element key'
97 * For example the argument constraints for bpf_map_lookup_elem():
98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99 * .arg1_type = ARG_CONST_MAP_PTR,
100 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 * ret_type says that this function returns 'pointer to map elem value or null'
103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104 * 2nd argument should be a pointer to stack, which will be used inside
105 * the helper function as a pointer to map element key.
107 * On the kernel side the helper function looks like:
108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111 * void *key = (void *) (unsigned long) r2;
114 * here kernel can access 'key' and 'map' pointers safely, knowing that
115 * [key, key + map->key_size) bytes are valid and were initialized on
116 * the stack of eBPF program.
119 * Corresponding eBPF program may look like:
120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124 * here verifier looks at prototype of map_lookup_elem() and sees:
125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130 * and were initialized prior to this call.
131 * If it's ok, then verifier allows this BPF_CALL insn and looks at
132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134 * returns ether pointer to map value or NULL.
136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137 * insn, the register holding that pointer in the true branch changes state to
138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139 * branch. See check_cond_jmp_op().
141 * After the call R0 is set to return type of the function and registers R1-R5
142 * are set to NOT_INIT to indicate that they are no longer readable.
145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
146 struct bpf_verifier_stack_elem
{
147 /* verifer state is 'st'
148 * before processing instruction 'insn_idx'
149 * and after processing instruction 'prev_insn_idx'
151 struct bpf_verifier_state st
;
154 struct bpf_verifier_stack_elem
*next
;
157 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
158 #define BPF_COMPLEXITY_LIMIT_STACK 1024
160 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
162 struct bpf_call_arg_meta
{
163 struct bpf_map
*map_ptr
;
168 s64 msize_smax_value
;
169 u64 msize_umax_value
;
172 static DEFINE_MUTEX(bpf_verifier_lock
);
174 void bpf_verifier_vlog(struct bpf_verifier_log
*log
, const char *fmt
,
179 n
= vscnprintf(log
->kbuf
, BPF_VERIFIER_TMP_LOG_SIZE
, fmt
, args
);
181 WARN_ONCE(n
>= BPF_VERIFIER_TMP_LOG_SIZE
- 1,
182 "verifier log line truncated - local buffer too short\n");
184 n
= min(log
->len_total
- log
->len_used
- 1, n
);
187 if (!copy_to_user(log
->ubuf
+ log
->len_used
, log
->kbuf
, n
+ 1))
193 /* log_level controls verbosity level of eBPF verifier.
194 * bpf_verifier_log_write() is used to dump the verification trace to the log,
195 * so the user can figure out what's wrong with the program
197 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env
*env
,
198 const char *fmt
, ...)
202 if (!bpf_verifier_log_needed(&env
->log
))
206 bpf_verifier_vlog(&env
->log
, fmt
, args
);
209 EXPORT_SYMBOL_GPL(bpf_verifier_log_write
);
211 __printf(2, 3) static void verbose(void *private_data
, const char *fmt
, ...)
213 struct bpf_verifier_env
*env
= private_data
;
216 if (!bpf_verifier_log_needed(&env
->log
))
220 bpf_verifier_vlog(&env
->log
, fmt
, args
);
224 static bool type_is_pkt_pointer(enum bpf_reg_type type
)
226 return type
== PTR_TO_PACKET
||
227 type
== PTR_TO_PACKET_META
;
230 /* string representation of 'enum bpf_reg_type' */
231 static const char * const reg_type_str
[] = {
233 [SCALAR_VALUE
] = "inv",
234 [PTR_TO_CTX
] = "ctx",
235 [CONST_PTR_TO_MAP
] = "map_ptr",
236 [PTR_TO_MAP_VALUE
] = "map_value",
237 [PTR_TO_MAP_VALUE_OR_NULL
] = "map_value_or_null",
238 [PTR_TO_STACK
] = "fp",
239 [PTR_TO_PACKET
] = "pkt",
240 [PTR_TO_PACKET_META
] = "pkt_meta",
241 [PTR_TO_PACKET_END
] = "pkt_end",
244 static void print_liveness(struct bpf_verifier_env
*env
,
245 enum bpf_reg_liveness live
)
247 if (live
& (REG_LIVE_READ
| REG_LIVE_WRITTEN
))
249 if (live
& REG_LIVE_READ
)
251 if (live
& REG_LIVE_WRITTEN
)
255 static struct bpf_func_state
*func(struct bpf_verifier_env
*env
,
256 const struct bpf_reg_state
*reg
)
258 struct bpf_verifier_state
*cur
= env
->cur_state
;
260 return cur
->frame
[reg
->frameno
];
263 static void print_verifier_state(struct bpf_verifier_env
*env
,
264 const struct bpf_func_state
*state
)
266 const struct bpf_reg_state
*reg
;
271 verbose(env
, " frame%d:", state
->frameno
);
272 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
273 reg
= &state
->regs
[i
];
277 verbose(env
, " R%d", i
);
278 print_liveness(env
, reg
->live
);
279 verbose(env
, "=%s", reg_type_str
[t
]);
280 if ((t
== SCALAR_VALUE
|| t
== PTR_TO_STACK
) &&
281 tnum_is_const(reg
->var_off
)) {
282 /* reg->off should be 0 for SCALAR_VALUE */
283 verbose(env
, "%lld", reg
->var_off
.value
+ reg
->off
);
284 if (t
== PTR_TO_STACK
)
285 verbose(env
, ",call_%d", func(env
, reg
)->callsite
);
287 verbose(env
, "(id=%d", reg
->id
);
288 if (t
!= SCALAR_VALUE
)
289 verbose(env
, ",off=%d", reg
->off
);
290 if (type_is_pkt_pointer(t
))
291 verbose(env
, ",r=%d", reg
->range
);
292 else if (t
== CONST_PTR_TO_MAP
||
293 t
== PTR_TO_MAP_VALUE
||
294 t
== PTR_TO_MAP_VALUE_OR_NULL
)
295 verbose(env
, ",ks=%d,vs=%d",
296 reg
->map_ptr
->key_size
,
297 reg
->map_ptr
->value_size
);
298 if (tnum_is_const(reg
->var_off
)) {
299 /* Typically an immediate SCALAR_VALUE, but
300 * could be a pointer whose offset is too big
303 verbose(env
, ",imm=%llx", reg
->var_off
.value
);
305 if (reg
->smin_value
!= reg
->umin_value
&&
306 reg
->smin_value
!= S64_MIN
)
307 verbose(env
, ",smin_value=%lld",
308 (long long)reg
->smin_value
);
309 if (reg
->smax_value
!= reg
->umax_value
&&
310 reg
->smax_value
!= S64_MAX
)
311 verbose(env
, ",smax_value=%lld",
312 (long long)reg
->smax_value
);
313 if (reg
->umin_value
!= 0)
314 verbose(env
, ",umin_value=%llu",
315 (unsigned long long)reg
->umin_value
);
316 if (reg
->umax_value
!= U64_MAX
)
317 verbose(env
, ",umax_value=%llu",
318 (unsigned long long)reg
->umax_value
);
319 if (!tnum_is_unknown(reg
->var_off
)) {
322 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
323 verbose(env
, ",var_off=%s", tn_buf
);
329 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
330 if (state
->stack
[i
].slot_type
[0] == STACK_SPILL
) {
331 verbose(env
, " fp%d",
332 (-i
- 1) * BPF_REG_SIZE
);
333 print_liveness(env
, state
->stack
[i
].spilled_ptr
.live
);
335 reg_type_str
[state
->stack
[i
].spilled_ptr
.type
]);
337 if (state
->stack
[i
].slot_type
[0] == STACK_ZERO
)
338 verbose(env
, " fp%d=0", (-i
- 1) * BPF_REG_SIZE
);
343 static int copy_stack_state(struct bpf_func_state
*dst
,
344 const struct bpf_func_state
*src
)
348 if (WARN_ON_ONCE(dst
->allocated_stack
< src
->allocated_stack
)) {
349 /* internal bug, make state invalid to reject the program */
350 memset(dst
, 0, sizeof(*dst
));
353 memcpy(dst
->stack
, src
->stack
,
354 sizeof(*src
->stack
) * (src
->allocated_stack
/ BPF_REG_SIZE
));
358 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
359 * make it consume minimal amount of memory. check_stack_write() access from
360 * the program calls into realloc_func_state() to grow the stack size.
361 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
362 * which this function copies over. It points to previous bpf_verifier_state
363 * which is never reallocated
365 static int realloc_func_state(struct bpf_func_state
*state
, int size
,
368 u32 old_size
= state
->allocated_stack
;
369 struct bpf_stack_state
*new_stack
;
370 int slot
= size
/ BPF_REG_SIZE
;
372 if (size
<= old_size
|| !size
) {
375 state
->allocated_stack
= slot
* BPF_REG_SIZE
;
376 if (!size
&& old_size
) {
382 new_stack
= kmalloc_array(slot
, sizeof(struct bpf_stack_state
),
388 memcpy(new_stack
, state
->stack
,
389 sizeof(*new_stack
) * (old_size
/ BPF_REG_SIZE
));
390 memset(new_stack
+ old_size
/ BPF_REG_SIZE
, 0,
391 sizeof(*new_stack
) * (size
- old_size
) / BPF_REG_SIZE
);
393 state
->allocated_stack
= slot
* BPF_REG_SIZE
;
395 state
->stack
= new_stack
;
399 static void free_func_state(struct bpf_func_state
*state
)
407 static void free_verifier_state(struct bpf_verifier_state
*state
,
412 for (i
= 0; i
<= state
->curframe
; i
++) {
413 free_func_state(state
->frame
[i
]);
414 state
->frame
[i
] = NULL
;
420 /* copy verifier state from src to dst growing dst stack space
421 * when necessary to accommodate larger src stack
423 static int copy_func_state(struct bpf_func_state
*dst
,
424 const struct bpf_func_state
*src
)
428 err
= realloc_func_state(dst
, src
->allocated_stack
, false);
431 memcpy(dst
, src
, offsetof(struct bpf_func_state
, allocated_stack
));
432 return copy_stack_state(dst
, src
);
435 static int copy_verifier_state(struct bpf_verifier_state
*dst_state
,
436 const struct bpf_verifier_state
*src
)
438 struct bpf_func_state
*dst
;
441 /* if dst has more stack frames then src frame, free them */
442 for (i
= src
->curframe
+ 1; i
<= dst_state
->curframe
; i
++) {
443 free_func_state(dst_state
->frame
[i
]);
444 dst_state
->frame
[i
] = NULL
;
446 dst_state
->curframe
= src
->curframe
;
447 dst_state
->parent
= src
->parent
;
448 for (i
= 0; i
<= src
->curframe
; i
++) {
449 dst
= dst_state
->frame
[i
];
451 dst
= kzalloc(sizeof(*dst
), GFP_KERNEL
);
454 dst_state
->frame
[i
] = dst
;
456 err
= copy_func_state(dst
, src
->frame
[i
]);
463 static int pop_stack(struct bpf_verifier_env
*env
, int *prev_insn_idx
,
466 struct bpf_verifier_state
*cur
= env
->cur_state
;
467 struct bpf_verifier_stack_elem
*elem
, *head
= env
->head
;
470 if (env
->head
== NULL
)
474 err
= copy_verifier_state(cur
, &head
->st
);
479 *insn_idx
= head
->insn_idx
;
481 *prev_insn_idx
= head
->prev_insn_idx
;
483 free_verifier_state(&head
->st
, false);
490 static struct bpf_verifier_state
*push_stack(struct bpf_verifier_env
*env
,
491 int insn_idx
, int prev_insn_idx
)
493 struct bpf_verifier_state
*cur
= env
->cur_state
;
494 struct bpf_verifier_stack_elem
*elem
;
497 elem
= kzalloc(sizeof(struct bpf_verifier_stack_elem
), GFP_KERNEL
);
501 elem
->insn_idx
= insn_idx
;
502 elem
->prev_insn_idx
= prev_insn_idx
;
503 elem
->next
= env
->head
;
506 err
= copy_verifier_state(&elem
->st
, cur
);
509 if (env
->stack_size
> BPF_COMPLEXITY_LIMIT_STACK
) {
510 verbose(env
, "BPF program is too complex\n");
515 free_verifier_state(env
->cur_state
, true);
516 env
->cur_state
= NULL
;
517 /* pop all elements and return */
518 while (!pop_stack(env
, NULL
, NULL
));
522 #define CALLER_SAVED_REGS 6
523 static const int caller_saved
[CALLER_SAVED_REGS
] = {
524 BPF_REG_0
, BPF_REG_1
, BPF_REG_2
, BPF_REG_3
, BPF_REG_4
, BPF_REG_5
527 static void __mark_reg_not_init(struct bpf_reg_state
*reg
);
529 /* Mark the unknown part of a register (variable offset or scalar value) as
530 * known to have the value @imm.
532 static void __mark_reg_known(struct bpf_reg_state
*reg
, u64 imm
)
535 reg
->var_off
= tnum_const(imm
);
536 reg
->smin_value
= (s64
)imm
;
537 reg
->smax_value
= (s64
)imm
;
538 reg
->umin_value
= imm
;
539 reg
->umax_value
= imm
;
542 /* Mark the 'variable offset' part of a register as zero. This should be
543 * used only on registers holding a pointer type.
545 static void __mark_reg_known_zero(struct bpf_reg_state
*reg
)
547 __mark_reg_known(reg
, 0);
550 static void __mark_reg_const_zero(struct bpf_reg_state
*reg
)
552 __mark_reg_known(reg
, 0);
554 reg
->type
= SCALAR_VALUE
;
557 static void mark_reg_known_zero(struct bpf_verifier_env
*env
,
558 struct bpf_reg_state
*regs
, u32 regno
)
560 if (WARN_ON(regno
>= MAX_BPF_REG
)) {
561 verbose(env
, "mark_reg_known_zero(regs, %u)\n", regno
);
562 /* Something bad happened, let's kill all regs */
563 for (regno
= 0; regno
< MAX_BPF_REG
; regno
++)
564 __mark_reg_not_init(regs
+ regno
);
567 __mark_reg_known_zero(regs
+ regno
);
570 static bool reg_is_pkt_pointer(const struct bpf_reg_state
*reg
)
572 return type_is_pkt_pointer(reg
->type
);
575 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state
*reg
)
577 return reg_is_pkt_pointer(reg
) ||
578 reg
->type
== PTR_TO_PACKET_END
;
581 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
582 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state
*reg
,
583 enum bpf_reg_type which
)
585 /* The register can already have a range from prior markings.
586 * This is fine as long as it hasn't been advanced from its
589 return reg
->type
== which
&&
592 tnum_equals_const(reg
->var_off
, 0);
595 /* Attempts to improve min/max values based on var_off information */
596 static void __update_reg_bounds(struct bpf_reg_state
*reg
)
598 /* min signed is max(sign bit) | min(other bits) */
599 reg
->smin_value
= max_t(s64
, reg
->smin_value
,
600 reg
->var_off
.value
| (reg
->var_off
.mask
& S64_MIN
));
601 /* max signed is min(sign bit) | max(other bits) */
602 reg
->smax_value
= min_t(s64
, reg
->smax_value
,
603 reg
->var_off
.value
| (reg
->var_off
.mask
& S64_MAX
));
604 reg
->umin_value
= max(reg
->umin_value
, reg
->var_off
.value
);
605 reg
->umax_value
= min(reg
->umax_value
,
606 reg
->var_off
.value
| reg
->var_off
.mask
);
609 /* Uses signed min/max values to inform unsigned, and vice-versa */
610 static void __reg_deduce_bounds(struct bpf_reg_state
*reg
)
612 /* Learn sign from signed bounds.
613 * If we cannot cross the sign boundary, then signed and unsigned bounds
614 * are the same, so combine. This works even in the negative case, e.g.
615 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
617 if (reg
->smin_value
>= 0 || reg
->smax_value
< 0) {
618 reg
->smin_value
= reg
->umin_value
= max_t(u64
, reg
->smin_value
,
620 reg
->smax_value
= reg
->umax_value
= min_t(u64
, reg
->smax_value
,
624 /* Learn sign from unsigned bounds. Signed bounds cross the sign
625 * boundary, so we must be careful.
627 if ((s64
)reg
->umax_value
>= 0) {
628 /* Positive. We can't learn anything from the smin, but smax
629 * is positive, hence safe.
631 reg
->smin_value
= reg
->umin_value
;
632 reg
->smax_value
= reg
->umax_value
= min_t(u64
, reg
->smax_value
,
634 } else if ((s64
)reg
->umin_value
< 0) {
635 /* Negative. We can't learn anything from the smax, but smin
636 * is negative, hence safe.
638 reg
->smin_value
= reg
->umin_value
= max_t(u64
, reg
->smin_value
,
640 reg
->smax_value
= reg
->umax_value
;
644 /* Attempts to improve var_off based on unsigned min/max information */
645 static void __reg_bound_offset(struct bpf_reg_state
*reg
)
647 reg
->var_off
= tnum_intersect(reg
->var_off
,
648 tnum_range(reg
->umin_value
,
652 /* Reset the min/max bounds of a register */
653 static void __mark_reg_unbounded(struct bpf_reg_state
*reg
)
655 reg
->smin_value
= S64_MIN
;
656 reg
->smax_value
= S64_MAX
;
658 reg
->umax_value
= U64_MAX
;
661 /* Mark a register as having a completely unknown (scalar) value. */
662 static void __mark_reg_unknown(struct bpf_reg_state
*reg
)
664 reg
->type
= SCALAR_VALUE
;
667 reg
->var_off
= tnum_unknown
;
669 __mark_reg_unbounded(reg
);
672 static void mark_reg_unknown(struct bpf_verifier_env
*env
,
673 struct bpf_reg_state
*regs
, u32 regno
)
675 if (WARN_ON(regno
>= MAX_BPF_REG
)) {
676 verbose(env
, "mark_reg_unknown(regs, %u)\n", regno
);
677 /* Something bad happened, let's kill all regs except FP */
678 for (regno
= 0; regno
< BPF_REG_FP
; regno
++)
679 __mark_reg_not_init(regs
+ regno
);
682 __mark_reg_unknown(regs
+ regno
);
685 static void __mark_reg_not_init(struct bpf_reg_state
*reg
)
687 __mark_reg_unknown(reg
);
688 reg
->type
= NOT_INIT
;
691 static void mark_reg_not_init(struct bpf_verifier_env
*env
,
692 struct bpf_reg_state
*regs
, u32 regno
)
694 if (WARN_ON(regno
>= MAX_BPF_REG
)) {
695 verbose(env
, "mark_reg_not_init(regs, %u)\n", regno
);
696 /* Something bad happened, let's kill all regs except FP */
697 for (regno
= 0; regno
< BPF_REG_FP
; regno
++)
698 __mark_reg_not_init(regs
+ regno
);
701 __mark_reg_not_init(regs
+ regno
);
704 static void init_reg_state(struct bpf_verifier_env
*env
,
705 struct bpf_func_state
*state
)
707 struct bpf_reg_state
*regs
= state
->regs
;
710 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
711 mark_reg_not_init(env
, regs
, i
);
712 regs
[i
].live
= REG_LIVE_NONE
;
716 regs
[BPF_REG_FP
].type
= PTR_TO_STACK
;
717 mark_reg_known_zero(env
, regs
, BPF_REG_FP
);
718 regs
[BPF_REG_FP
].frameno
= state
->frameno
;
720 /* 1st arg to a function */
721 regs
[BPF_REG_1
].type
= PTR_TO_CTX
;
722 mark_reg_known_zero(env
, regs
, BPF_REG_1
);
725 #define BPF_MAIN_FUNC (-1)
726 static void init_func_state(struct bpf_verifier_env
*env
,
727 struct bpf_func_state
*state
,
728 int callsite
, int frameno
, int subprogno
)
730 state
->callsite
= callsite
;
731 state
->frameno
= frameno
;
732 state
->subprogno
= subprogno
;
733 init_reg_state(env
, state
);
737 SRC_OP
, /* register is used as source operand */
738 DST_OP
, /* register is used as destination operand */
739 DST_OP_NO_MARK
/* same as above, check only, don't mark */
742 static int cmp_subprogs(const void *a
, const void *b
)
744 return ((struct bpf_subprog_info
*)a
)->start
-
745 ((struct bpf_subprog_info
*)b
)->start
;
748 static int find_subprog(struct bpf_verifier_env
*env
, int off
)
750 struct bpf_subprog_info
*p
;
752 p
= bsearch(&off
, env
->subprog_info
, env
->subprog_cnt
,
753 sizeof(env
->subprog_info
[0]), cmp_subprogs
);
756 return p
- env
->subprog_info
;
760 static int add_subprog(struct bpf_verifier_env
*env
, int off
)
762 int insn_cnt
= env
->prog
->len
;
765 if (off
>= insn_cnt
|| off
< 0) {
766 verbose(env
, "call to invalid destination\n");
769 ret
= find_subprog(env
, off
);
772 if (env
->subprog_cnt
>= BPF_MAX_SUBPROGS
) {
773 verbose(env
, "too many subprograms\n");
776 env
->subprog_info
[env
->subprog_cnt
++].start
= off
;
777 sort(env
->subprog_info
, env
->subprog_cnt
,
778 sizeof(env
->subprog_info
[0]), cmp_subprogs
, NULL
);
782 static int check_subprogs(struct bpf_verifier_env
*env
)
784 int i
, ret
, subprog_start
, subprog_end
, off
, cur_subprog
= 0;
785 struct bpf_subprog_info
*subprog
= env
->subprog_info
;
786 struct bpf_insn
*insn
= env
->prog
->insnsi
;
787 int insn_cnt
= env
->prog
->len
;
789 /* Add entry function. */
790 ret
= add_subprog(env
, 0);
794 /* determine subprog starts. The end is one before the next starts */
795 for (i
= 0; i
< insn_cnt
; i
++) {
796 if (insn
[i
].code
!= (BPF_JMP
| BPF_CALL
))
798 if (insn
[i
].src_reg
!= BPF_PSEUDO_CALL
)
800 if (!env
->allow_ptr_leaks
) {
801 verbose(env
, "function calls to other bpf functions are allowed for root only\n");
804 if (bpf_prog_is_dev_bound(env
->prog
->aux
)) {
805 verbose(env
, "function calls in offloaded programs are not supported yet\n");
808 ret
= add_subprog(env
, i
+ insn
[i
].imm
+ 1);
813 /* Add a fake 'exit' subprog which could simplify subprog iteration
814 * logic. 'subprog_cnt' should not be increased.
816 subprog
[env
->subprog_cnt
].start
= insn_cnt
;
818 if (env
->log
.level
> 1)
819 for (i
= 0; i
< env
->subprog_cnt
; i
++)
820 verbose(env
, "func#%d @%d\n", i
, subprog
[i
].start
);
822 /* now check that all jumps are within the same subprog */
823 subprog_start
= subprog
[cur_subprog
].start
;
824 subprog_end
= subprog
[cur_subprog
+ 1].start
;
825 for (i
= 0; i
< insn_cnt
; i
++) {
826 u8 code
= insn
[i
].code
;
828 if (BPF_CLASS(code
) != BPF_JMP
)
830 if (BPF_OP(code
) == BPF_EXIT
|| BPF_OP(code
) == BPF_CALL
)
832 off
= i
+ insn
[i
].off
+ 1;
833 if (off
< subprog_start
|| off
>= subprog_end
) {
834 verbose(env
, "jump out of range from insn %d to %d\n", i
, off
);
838 if (i
== subprog_end
- 1) {
839 /* to avoid fall-through from one subprog into another
840 * the last insn of the subprog should be either exit
841 * or unconditional jump back
843 if (code
!= (BPF_JMP
| BPF_EXIT
) &&
844 code
!= (BPF_JMP
| BPF_JA
)) {
845 verbose(env
, "last insn is not an exit or jmp\n");
848 subprog_start
= subprog_end
;
850 if (cur_subprog
< env
->subprog_cnt
)
851 subprog_end
= subprog
[cur_subprog
+ 1].start
;
858 struct bpf_verifier_state
*skip_callee(struct bpf_verifier_env
*env
,
859 const struct bpf_verifier_state
*state
,
860 struct bpf_verifier_state
*parent
,
863 struct bpf_verifier_state
*tmp
= NULL
;
865 /* 'parent' could be a state of caller and
866 * 'state' could be a state of callee. In such case
867 * parent->curframe < state->curframe
868 * and it's ok for r1 - r5 registers
870 * 'parent' could be a callee's state after it bpf_exit-ed.
871 * In such case parent->curframe > state->curframe
872 * and it's ok for r0 only
874 if (parent
->curframe
== state
->curframe
||
875 (parent
->curframe
< state
->curframe
&&
876 regno
>= BPF_REG_1
&& regno
<= BPF_REG_5
) ||
877 (parent
->curframe
> state
->curframe
&&
881 if (parent
->curframe
> state
->curframe
&&
882 regno
>= BPF_REG_6
) {
883 /* for callee saved regs we have to skip the whole chain
884 * of states that belong to callee and mark as LIVE_READ
885 * the registers before the call
888 while (tmp
&& tmp
->curframe
!= state
->curframe
) {
899 verbose(env
, "verifier bug regno %d tmp %p\n", regno
, tmp
);
900 verbose(env
, "regno %d parent frame %d current frame %d\n",
901 regno
, parent
->curframe
, state
->curframe
);
905 static int mark_reg_read(struct bpf_verifier_env
*env
,
906 const struct bpf_verifier_state
*state
,
907 struct bpf_verifier_state
*parent
,
910 bool writes
= parent
== state
->parent
; /* Observe write marks */
912 if (regno
== BPF_REG_FP
)
913 /* We don't need to worry about FP liveness because it's read-only */
917 /* if read wasn't screened by an earlier write ... */
918 if (writes
&& state
->frame
[state
->curframe
]->regs
[regno
].live
& REG_LIVE_WRITTEN
)
920 parent
= skip_callee(env
, state
, parent
, regno
);
923 /* ... then we depend on parent's value */
924 parent
->frame
[parent
->curframe
]->regs
[regno
].live
|= REG_LIVE_READ
;
926 parent
= state
->parent
;
932 static int check_reg_arg(struct bpf_verifier_env
*env
, u32 regno
,
935 struct bpf_verifier_state
*vstate
= env
->cur_state
;
936 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
937 struct bpf_reg_state
*regs
= state
->regs
;
939 if (regno
>= MAX_BPF_REG
) {
940 verbose(env
, "R%d is invalid\n", regno
);
945 /* check whether register used as source operand can be read */
946 if (regs
[regno
].type
== NOT_INIT
) {
947 verbose(env
, "R%d !read_ok\n", regno
);
950 return mark_reg_read(env
, vstate
, vstate
->parent
, regno
);
952 /* check whether register used as dest operand can be written to */
953 if (regno
== BPF_REG_FP
) {
954 verbose(env
, "frame pointer is read only\n");
957 regs
[regno
].live
|= REG_LIVE_WRITTEN
;
959 mark_reg_unknown(env
, regs
, regno
);
964 static bool is_spillable_regtype(enum bpf_reg_type type
)
967 case PTR_TO_MAP_VALUE
:
968 case PTR_TO_MAP_VALUE_OR_NULL
:
972 case PTR_TO_PACKET_META
:
973 case PTR_TO_PACKET_END
:
974 case CONST_PTR_TO_MAP
:
981 /* Does this register contain a constant zero? */
982 static bool register_is_null(struct bpf_reg_state
*reg
)
984 return reg
->type
== SCALAR_VALUE
&& tnum_equals_const(reg
->var_off
, 0);
987 /* check_stack_read/write functions track spill/fill of registers,
988 * stack boundary and alignment are checked in check_mem_access()
990 static int check_stack_write(struct bpf_verifier_env
*env
,
991 struct bpf_func_state
*state
, /* func where register points to */
992 int off
, int size
, int value_regno
)
994 struct bpf_func_state
*cur
; /* state of the current function */
995 int i
, slot
= -off
- 1, spi
= slot
/ BPF_REG_SIZE
, err
;
996 enum bpf_reg_type type
;
998 err
= realloc_func_state(state
, round_up(slot
+ 1, BPF_REG_SIZE
),
1002 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1003 * so it's aligned access and [off, off + size) are within stack limits
1005 if (!env
->allow_ptr_leaks
&&
1006 state
->stack
[spi
].slot_type
[0] == STACK_SPILL
&&
1007 size
!= BPF_REG_SIZE
) {
1008 verbose(env
, "attempt to corrupt spilled pointer on stack\n");
1012 cur
= env
->cur_state
->frame
[env
->cur_state
->curframe
];
1013 if (value_regno
>= 0 &&
1014 is_spillable_regtype((type
= cur
->regs
[value_regno
].type
))) {
1016 /* register containing pointer is being spilled into stack */
1017 if (size
!= BPF_REG_SIZE
) {
1018 verbose(env
, "invalid size of register spill\n");
1022 if (state
!= cur
&& type
== PTR_TO_STACK
) {
1023 verbose(env
, "cannot spill pointers to stack into stack frame of the caller\n");
1027 /* save register state */
1028 state
->stack
[spi
].spilled_ptr
= cur
->regs
[value_regno
];
1029 state
->stack
[spi
].spilled_ptr
.live
|= REG_LIVE_WRITTEN
;
1031 for (i
= 0; i
< BPF_REG_SIZE
; i
++)
1032 state
->stack
[spi
].slot_type
[i
] = STACK_SPILL
;
1034 u8 type
= STACK_MISC
;
1036 /* regular write of data into stack */
1037 state
->stack
[spi
].spilled_ptr
= (struct bpf_reg_state
) {};
1039 /* only mark the slot as written if all 8 bytes were written
1040 * otherwise read propagation may incorrectly stop too soon
1041 * when stack slots are partially written.
1042 * This heuristic means that read propagation will be
1043 * conservative, since it will add reg_live_read marks
1044 * to stack slots all the way to first state when programs
1045 * writes+reads less than 8 bytes
1047 if (size
== BPF_REG_SIZE
)
1048 state
->stack
[spi
].spilled_ptr
.live
|= REG_LIVE_WRITTEN
;
1050 /* when we zero initialize stack slots mark them as such */
1051 if (value_regno
>= 0 &&
1052 register_is_null(&cur
->regs
[value_regno
]))
1055 for (i
= 0; i
< size
; i
++)
1056 state
->stack
[spi
].slot_type
[(slot
- i
) % BPF_REG_SIZE
] =
1062 /* registers of every function are unique and mark_reg_read() propagates
1063 * the liveness in the following cases:
1064 * - from callee into caller for R1 - R5 that were used as arguments
1065 * - from caller into callee for R0 that used as result of the call
1066 * - from caller to the same caller skipping states of the callee for R6 - R9,
1067 * since R6 - R9 are callee saved by implicit function prologue and
1068 * caller's R6 != callee's R6, so when we propagate liveness up to
1069 * parent states we need to skip callee states for R6 - R9.
1071 * stack slot marking is different, since stacks of caller and callee are
1072 * accessible in both (since caller can pass a pointer to caller's stack to
1073 * callee which can pass it to another function), hence mark_stack_slot_read()
1074 * has to propagate the stack liveness to all parent states at given frame number.
1084 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1085 * to mark liveness at the f1's frame and not f2's frame.
1086 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1087 * to propagate liveness to f2 states at f1's frame level and further into
1088 * f1 states at f1's frame level until write into that stack slot
1090 static void mark_stack_slot_read(struct bpf_verifier_env
*env
,
1091 const struct bpf_verifier_state
*state
,
1092 struct bpf_verifier_state
*parent
,
1093 int slot
, int frameno
)
1095 bool writes
= parent
== state
->parent
; /* Observe write marks */
1098 if (parent
->frame
[frameno
]->allocated_stack
<= slot
* BPF_REG_SIZE
)
1099 /* since LIVE_WRITTEN mark is only done for full 8-byte
1100 * write the read marks are conservative and parent
1101 * state may not even have the stack allocated. In such case
1102 * end the propagation, since the loop reached beginning
1106 /* if read wasn't screened by an earlier write ... */
1107 if (writes
&& state
->frame
[frameno
]->stack
[slot
].spilled_ptr
.live
& REG_LIVE_WRITTEN
)
1109 /* ... then we depend on parent's value */
1110 parent
->frame
[frameno
]->stack
[slot
].spilled_ptr
.live
|= REG_LIVE_READ
;
1112 parent
= state
->parent
;
1117 static int check_stack_read(struct bpf_verifier_env
*env
,
1118 struct bpf_func_state
*reg_state
/* func where register points to */,
1119 int off
, int size
, int value_regno
)
1121 struct bpf_verifier_state
*vstate
= env
->cur_state
;
1122 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
1123 int i
, slot
= -off
- 1, spi
= slot
/ BPF_REG_SIZE
;
1126 if (reg_state
->allocated_stack
<= slot
) {
1127 verbose(env
, "invalid read from stack off %d+0 size %d\n",
1131 stype
= reg_state
->stack
[spi
].slot_type
;
1133 if (stype
[0] == STACK_SPILL
) {
1134 if (size
!= BPF_REG_SIZE
) {
1135 verbose(env
, "invalid size of register spill\n");
1138 for (i
= 1; i
< BPF_REG_SIZE
; i
++) {
1139 if (stype
[(slot
- i
) % BPF_REG_SIZE
] != STACK_SPILL
) {
1140 verbose(env
, "corrupted spill memory\n");
1145 if (value_regno
>= 0) {
1146 /* restore register state from stack */
1147 state
->regs
[value_regno
] = reg_state
->stack
[spi
].spilled_ptr
;
1148 /* mark reg as written since spilled pointer state likely
1149 * has its liveness marks cleared by is_state_visited()
1150 * which resets stack/reg liveness for state transitions
1152 state
->regs
[value_regno
].live
|= REG_LIVE_WRITTEN
;
1154 mark_stack_slot_read(env
, vstate
, vstate
->parent
, spi
,
1155 reg_state
->frameno
);
1160 for (i
= 0; i
< size
; i
++) {
1161 if (stype
[(slot
- i
) % BPF_REG_SIZE
] == STACK_MISC
)
1163 if (stype
[(slot
- i
) % BPF_REG_SIZE
] == STACK_ZERO
) {
1167 verbose(env
, "invalid read from stack off %d+%d size %d\n",
1171 mark_stack_slot_read(env
, vstate
, vstate
->parent
, spi
,
1172 reg_state
->frameno
);
1173 if (value_regno
>= 0) {
1174 if (zeros
== size
) {
1175 /* any size read into register is zero extended,
1176 * so the whole register == const_zero
1178 __mark_reg_const_zero(&state
->regs
[value_regno
]);
1180 /* have read misc data from the stack */
1181 mark_reg_unknown(env
, state
->regs
, value_regno
);
1183 state
->regs
[value_regno
].live
|= REG_LIVE_WRITTEN
;
1189 /* check read/write into map element returned by bpf_map_lookup_elem() */
1190 static int __check_map_access(struct bpf_verifier_env
*env
, u32 regno
, int off
,
1191 int size
, bool zero_size_allowed
)
1193 struct bpf_reg_state
*regs
= cur_regs(env
);
1194 struct bpf_map
*map
= regs
[regno
].map_ptr
;
1196 if (off
< 0 || size
< 0 || (size
== 0 && !zero_size_allowed
) ||
1197 off
+ size
> map
->value_size
) {
1198 verbose(env
, "invalid access to map value, value_size=%d off=%d size=%d\n",
1199 map
->value_size
, off
, size
);
1205 /* check read/write into a map element with possible variable offset */
1206 static int check_map_access(struct bpf_verifier_env
*env
, u32 regno
,
1207 int off
, int size
, bool zero_size_allowed
)
1209 struct bpf_verifier_state
*vstate
= env
->cur_state
;
1210 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
1211 struct bpf_reg_state
*reg
= &state
->regs
[regno
];
1214 /* We may have adjusted the register to this map value, so we
1215 * need to try adding each of min_value and max_value to off
1216 * to make sure our theoretical access will be safe.
1219 print_verifier_state(env
, state
);
1220 /* The minimum value is only important with signed
1221 * comparisons where we can't assume the floor of a
1222 * value is 0. If we are using signed variables for our
1223 * index'es we need to make sure that whatever we use
1224 * will have a set floor within our range.
1226 if (reg
->smin_value
< 0) {
1227 verbose(env
, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1231 err
= __check_map_access(env
, regno
, reg
->smin_value
+ off
, size
,
1234 verbose(env
, "R%d min value is outside of the array range\n",
1239 /* If we haven't set a max value then we need to bail since we can't be
1240 * sure we won't do bad things.
1241 * If reg->umax_value + off could overflow, treat that as unbounded too.
1243 if (reg
->umax_value
>= BPF_MAX_VAR_OFF
) {
1244 verbose(env
, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1248 err
= __check_map_access(env
, regno
, reg
->umax_value
+ off
, size
,
1251 verbose(env
, "R%d max value is outside of the array range\n",
1256 #define MAX_PACKET_OFF 0xffff
1258 static bool may_access_direct_pkt_data(struct bpf_verifier_env
*env
,
1259 const struct bpf_call_arg_meta
*meta
,
1260 enum bpf_access_type t
)
1262 switch (env
->prog
->type
) {
1263 case BPF_PROG_TYPE_LWT_IN
:
1264 case BPF_PROG_TYPE_LWT_OUT
:
1265 /* dst_input() and dst_output() can't write for now */
1269 case BPF_PROG_TYPE_SCHED_CLS
:
1270 case BPF_PROG_TYPE_SCHED_ACT
:
1271 case BPF_PROG_TYPE_XDP
:
1272 case BPF_PROG_TYPE_LWT_XMIT
:
1273 case BPF_PROG_TYPE_SK_SKB
:
1274 case BPF_PROG_TYPE_SK_MSG
:
1276 return meta
->pkt_access
;
1278 env
->seen_direct_write
= true;
1285 static int __check_packet_access(struct bpf_verifier_env
*env
, u32 regno
,
1286 int off
, int size
, bool zero_size_allowed
)
1288 struct bpf_reg_state
*regs
= cur_regs(env
);
1289 struct bpf_reg_state
*reg
= ®s
[regno
];
1291 if (off
< 0 || size
< 0 || (size
== 0 && !zero_size_allowed
) ||
1292 (u64
)off
+ size
> reg
->range
) {
1293 verbose(env
, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1294 off
, size
, regno
, reg
->id
, reg
->off
, reg
->range
);
1300 static int check_packet_access(struct bpf_verifier_env
*env
, u32 regno
, int off
,
1301 int size
, bool zero_size_allowed
)
1303 struct bpf_reg_state
*regs
= cur_regs(env
);
1304 struct bpf_reg_state
*reg
= ®s
[regno
];
1307 /* We may have added a variable offset to the packet pointer; but any
1308 * reg->range we have comes after that. We are only checking the fixed
1312 /* We don't allow negative numbers, because we aren't tracking enough
1313 * detail to prove they're safe.
1315 if (reg
->smin_value
< 0) {
1316 verbose(env
, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1320 err
= __check_packet_access(env
, regno
, off
, size
, zero_size_allowed
);
1322 verbose(env
, "R%d offset is outside of the packet\n", regno
);
1328 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
1329 static int check_ctx_access(struct bpf_verifier_env
*env
, int insn_idx
, int off
, int size
,
1330 enum bpf_access_type t
, enum bpf_reg_type
*reg_type
)
1332 struct bpf_insn_access_aux info
= {
1333 .reg_type
= *reg_type
,
1336 if (env
->ops
->is_valid_access
&&
1337 env
->ops
->is_valid_access(off
, size
, t
, env
->prog
, &info
)) {
1338 /* A non zero info.ctx_field_size indicates that this field is a
1339 * candidate for later verifier transformation to load the whole
1340 * field and then apply a mask when accessed with a narrower
1341 * access than actual ctx access size. A zero info.ctx_field_size
1342 * will only allow for whole field access and rejects any other
1343 * type of narrower access.
1345 *reg_type
= info
.reg_type
;
1347 env
->insn_aux_data
[insn_idx
].ctx_field_size
= info
.ctx_field_size
;
1348 /* remember the offset of last byte accessed in ctx */
1349 if (env
->prog
->aux
->max_ctx_offset
< off
+ size
)
1350 env
->prog
->aux
->max_ctx_offset
= off
+ size
;
1354 verbose(env
, "invalid bpf_context access off=%d size=%d\n", off
, size
);
1358 static bool __is_pointer_value(bool allow_ptr_leaks
,
1359 const struct bpf_reg_state
*reg
)
1361 if (allow_ptr_leaks
)
1364 return reg
->type
!= SCALAR_VALUE
;
1367 static bool is_pointer_value(struct bpf_verifier_env
*env
, int regno
)
1369 return __is_pointer_value(env
->allow_ptr_leaks
, cur_regs(env
) + regno
);
1372 static bool is_ctx_reg(struct bpf_verifier_env
*env
, int regno
)
1374 const struct bpf_reg_state
*reg
= cur_regs(env
) + regno
;
1376 return reg
->type
== PTR_TO_CTX
;
1379 static bool is_pkt_reg(struct bpf_verifier_env
*env
, int regno
)
1381 const struct bpf_reg_state
*reg
= cur_regs(env
) + regno
;
1383 return type_is_pkt_pointer(reg
->type
);
1386 static int check_pkt_ptr_alignment(struct bpf_verifier_env
*env
,
1387 const struct bpf_reg_state
*reg
,
1388 int off
, int size
, bool strict
)
1390 struct tnum reg_off
;
1393 /* Byte size accesses are always allowed. */
1394 if (!strict
|| size
== 1)
1397 /* For platforms that do not have a Kconfig enabling
1398 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1399 * NET_IP_ALIGN is universally set to '2'. And on platforms
1400 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1401 * to this code only in strict mode where we want to emulate
1402 * the NET_IP_ALIGN==2 checking. Therefore use an
1403 * unconditional IP align value of '2'.
1407 reg_off
= tnum_add(reg
->var_off
, tnum_const(ip_align
+ reg
->off
+ off
));
1408 if (!tnum_is_aligned(reg_off
, size
)) {
1411 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1413 "misaligned packet access off %d+%s+%d+%d size %d\n",
1414 ip_align
, tn_buf
, reg
->off
, off
, size
);
1421 static int check_generic_ptr_alignment(struct bpf_verifier_env
*env
,
1422 const struct bpf_reg_state
*reg
,
1423 const char *pointer_desc
,
1424 int off
, int size
, bool strict
)
1426 struct tnum reg_off
;
1428 /* Byte size accesses are always allowed. */
1429 if (!strict
|| size
== 1)
1432 reg_off
= tnum_add(reg
->var_off
, tnum_const(reg
->off
+ off
));
1433 if (!tnum_is_aligned(reg_off
, size
)) {
1436 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1437 verbose(env
, "misaligned %saccess off %s+%d+%d size %d\n",
1438 pointer_desc
, tn_buf
, reg
->off
, off
, size
);
1445 static int check_ptr_alignment(struct bpf_verifier_env
*env
,
1446 const struct bpf_reg_state
*reg
, int off
,
1447 int size
, bool strict_alignment_once
)
1449 bool strict
= env
->strict_alignment
|| strict_alignment_once
;
1450 const char *pointer_desc
= "";
1452 switch (reg
->type
) {
1454 case PTR_TO_PACKET_META
:
1455 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1456 * right in front, treat it the very same way.
1458 return check_pkt_ptr_alignment(env
, reg
, off
, size
, strict
);
1459 case PTR_TO_MAP_VALUE
:
1460 pointer_desc
= "value ";
1463 pointer_desc
= "context ";
1466 pointer_desc
= "stack ";
1467 /* The stack spill tracking logic in check_stack_write()
1468 * and check_stack_read() relies on stack accesses being
1476 return check_generic_ptr_alignment(env
, reg
, pointer_desc
, off
, size
,
1480 static int update_stack_depth(struct bpf_verifier_env
*env
,
1481 const struct bpf_func_state
*func
,
1484 u16 stack
= env
->subprog_info
[func
->subprogno
].stack_depth
;
1489 /* update known max for given subprogram */
1490 env
->subprog_info
[func
->subprogno
].stack_depth
= -off
;
1494 /* starting from main bpf function walk all instructions of the function
1495 * and recursively walk all callees that given function can call.
1496 * Ignore jump and exit insns.
1497 * Since recursion is prevented by check_cfg() this algorithm
1498 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1500 static int check_max_stack_depth(struct bpf_verifier_env
*env
)
1502 int depth
= 0, frame
= 0, idx
= 0, i
= 0, subprog_end
;
1503 struct bpf_subprog_info
*subprog
= env
->subprog_info
;
1504 struct bpf_insn
*insn
= env
->prog
->insnsi
;
1505 int ret_insn
[MAX_CALL_FRAMES
];
1506 int ret_prog
[MAX_CALL_FRAMES
];
1509 /* round up to 32-bytes, since this is granularity
1510 * of interpreter stack size
1512 depth
+= round_up(max_t(u32
, subprog
[idx
].stack_depth
, 1), 32);
1513 if (depth
> MAX_BPF_STACK
) {
1514 verbose(env
, "combined stack size of %d calls is %d. Too large\n",
1519 subprog_end
= subprog
[idx
+ 1].start
;
1520 for (; i
< subprog_end
; i
++) {
1521 if (insn
[i
].code
!= (BPF_JMP
| BPF_CALL
))
1523 if (insn
[i
].src_reg
!= BPF_PSEUDO_CALL
)
1525 /* remember insn and function to return to */
1526 ret_insn
[frame
] = i
+ 1;
1527 ret_prog
[frame
] = idx
;
1529 /* find the callee */
1530 i
= i
+ insn
[i
].imm
+ 1;
1531 idx
= find_subprog(env
, i
);
1533 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1538 if (frame
>= MAX_CALL_FRAMES
) {
1539 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1544 /* end of for() loop means the last insn of the 'subprog'
1545 * was reached. Doesn't matter whether it was JA or EXIT
1549 depth
-= round_up(max_t(u32
, subprog
[idx
].stack_depth
, 1), 32);
1551 i
= ret_insn
[frame
];
1552 idx
= ret_prog
[frame
];
1556 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1557 static int get_callee_stack_depth(struct bpf_verifier_env
*env
,
1558 const struct bpf_insn
*insn
, int idx
)
1560 int start
= idx
+ insn
->imm
+ 1, subprog
;
1562 subprog
= find_subprog(env
, start
);
1564 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1568 return env
->subprog_info
[subprog
].stack_depth
;
1572 /* truncate register to smaller size (in bytes)
1573 * must be called with size < BPF_REG_SIZE
1575 static void coerce_reg_to_size(struct bpf_reg_state
*reg
, int size
)
1579 /* clear high bits in bit representation */
1580 reg
->var_off
= tnum_cast(reg
->var_off
, size
);
1582 /* fix arithmetic bounds */
1583 mask
= ((u64
)1 << (size
* 8)) - 1;
1584 if ((reg
->umin_value
& ~mask
) == (reg
->umax_value
& ~mask
)) {
1585 reg
->umin_value
&= mask
;
1586 reg
->umax_value
&= mask
;
1588 reg
->umin_value
= 0;
1589 reg
->umax_value
= mask
;
1591 reg
->smin_value
= reg
->umin_value
;
1592 reg
->smax_value
= reg
->umax_value
;
1595 /* check whether memory at (regno + off) is accessible for t = (read | write)
1596 * if t==write, value_regno is a register which value is stored into memory
1597 * if t==read, value_regno is a register which will receive the value from memory
1598 * if t==write && value_regno==-1, some unknown value is stored into memory
1599 * if t==read && value_regno==-1, don't care what we read from memory
1601 static int check_mem_access(struct bpf_verifier_env
*env
, int insn_idx
, u32 regno
,
1602 int off
, int bpf_size
, enum bpf_access_type t
,
1603 int value_regno
, bool strict_alignment_once
)
1605 struct bpf_reg_state
*regs
= cur_regs(env
);
1606 struct bpf_reg_state
*reg
= regs
+ regno
;
1607 struct bpf_func_state
*state
;
1610 size
= bpf_size_to_bytes(bpf_size
);
1614 /* alignment checks will add in reg->off themselves */
1615 err
= check_ptr_alignment(env
, reg
, off
, size
, strict_alignment_once
);
1619 /* for access checks, reg->off is just part of off */
1622 if (reg
->type
== PTR_TO_MAP_VALUE
) {
1623 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
1624 is_pointer_value(env
, value_regno
)) {
1625 verbose(env
, "R%d leaks addr into map\n", value_regno
);
1629 err
= check_map_access(env
, regno
, off
, size
, false);
1630 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
1631 mark_reg_unknown(env
, regs
, value_regno
);
1633 } else if (reg
->type
== PTR_TO_CTX
) {
1634 enum bpf_reg_type reg_type
= SCALAR_VALUE
;
1636 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
1637 is_pointer_value(env
, value_regno
)) {
1638 verbose(env
, "R%d leaks addr into ctx\n", value_regno
);
1641 /* ctx accesses must be at a fixed offset, so that we can
1642 * determine what type of data were returned.
1646 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1647 regno
, reg
->off
, off
- reg
->off
);
1650 if (!tnum_is_const(reg
->var_off
) || reg
->var_off
.value
) {
1653 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1655 "variable ctx access var_off=%s off=%d size=%d",
1659 err
= check_ctx_access(env
, insn_idx
, off
, size
, t
, ®_type
);
1660 if (!err
&& t
== BPF_READ
&& value_regno
>= 0) {
1661 /* ctx access returns either a scalar, or a
1662 * PTR_TO_PACKET[_META,_END]. In the latter
1663 * case, we know the offset is zero.
1665 if (reg_type
== SCALAR_VALUE
)
1666 mark_reg_unknown(env
, regs
, value_regno
);
1668 mark_reg_known_zero(env
, regs
,
1670 regs
[value_regno
].id
= 0;
1671 regs
[value_regno
].off
= 0;
1672 regs
[value_regno
].range
= 0;
1673 regs
[value_regno
].type
= reg_type
;
1676 } else if (reg
->type
== PTR_TO_STACK
) {
1677 /* stack accesses must be at a fixed offset, so that we can
1678 * determine what type of data were returned.
1679 * See check_stack_read().
1681 if (!tnum_is_const(reg
->var_off
)) {
1684 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1685 verbose(env
, "variable stack access var_off=%s off=%d size=%d",
1689 off
+= reg
->var_off
.value
;
1690 if (off
>= 0 || off
< -MAX_BPF_STACK
) {
1691 verbose(env
, "invalid stack off=%d size=%d\n", off
,
1696 state
= func(env
, reg
);
1697 err
= update_stack_depth(env
, state
, off
);
1702 err
= check_stack_write(env
, state
, off
, size
,
1705 err
= check_stack_read(env
, state
, off
, size
,
1707 } else if (reg_is_pkt_pointer(reg
)) {
1708 if (t
== BPF_WRITE
&& !may_access_direct_pkt_data(env
, NULL
, t
)) {
1709 verbose(env
, "cannot write into packet\n");
1712 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
1713 is_pointer_value(env
, value_regno
)) {
1714 verbose(env
, "R%d leaks addr into packet\n",
1718 err
= check_packet_access(env
, regno
, off
, size
, false);
1719 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
1720 mark_reg_unknown(env
, regs
, value_regno
);
1722 verbose(env
, "R%d invalid mem access '%s'\n", regno
,
1723 reg_type_str
[reg
->type
]);
1727 if (!err
&& size
< BPF_REG_SIZE
&& value_regno
>= 0 && t
== BPF_READ
&&
1728 regs
[value_regno
].type
== SCALAR_VALUE
) {
1729 /* b/h/w load zero-extends, mark upper bits as known 0 */
1730 coerce_reg_to_size(®s
[value_regno
], size
);
1735 static int check_xadd(struct bpf_verifier_env
*env
, int insn_idx
, struct bpf_insn
*insn
)
1739 if ((BPF_SIZE(insn
->code
) != BPF_W
&& BPF_SIZE(insn
->code
) != BPF_DW
) ||
1741 verbose(env
, "BPF_XADD uses reserved fields\n");
1745 /* check src1 operand */
1746 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
1750 /* check src2 operand */
1751 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
1755 if (is_pointer_value(env
, insn
->src_reg
)) {
1756 verbose(env
, "R%d leaks addr into mem\n", insn
->src_reg
);
1760 if (is_ctx_reg(env
, insn
->dst_reg
) ||
1761 is_pkt_reg(env
, insn
->dst_reg
)) {
1762 verbose(env
, "BPF_XADD stores into R%d %s is not allowed\n",
1763 insn
->dst_reg
, is_ctx_reg(env
, insn
->dst_reg
) ?
1764 "context" : "packet");
1768 /* check whether atomic_add can read the memory */
1769 err
= check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
1770 BPF_SIZE(insn
->code
), BPF_READ
, -1, true);
1774 /* check whether atomic_add can write into the same memory */
1775 return check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
1776 BPF_SIZE(insn
->code
), BPF_WRITE
, -1, true);
1779 /* when register 'regno' is passed into function that will read 'access_size'
1780 * bytes from that pointer, make sure that it's within stack boundary
1781 * and all elements of stack are initialized.
1782 * Unlike most pointer bounds-checking functions, this one doesn't take an
1783 * 'off' argument, so it has to add in reg->off itself.
1785 static int check_stack_boundary(struct bpf_verifier_env
*env
, int regno
,
1786 int access_size
, bool zero_size_allowed
,
1787 struct bpf_call_arg_meta
*meta
)
1789 struct bpf_reg_state
*reg
= cur_regs(env
) + regno
;
1790 struct bpf_func_state
*state
= func(env
, reg
);
1791 int off
, i
, slot
, spi
;
1793 if (reg
->type
!= PTR_TO_STACK
) {
1794 /* Allow zero-byte read from NULL, regardless of pointer type */
1795 if (zero_size_allowed
&& access_size
== 0 &&
1796 register_is_null(reg
))
1799 verbose(env
, "R%d type=%s expected=%s\n", regno
,
1800 reg_type_str
[reg
->type
],
1801 reg_type_str
[PTR_TO_STACK
]);
1805 /* Only allow fixed-offset stack reads */
1806 if (!tnum_is_const(reg
->var_off
)) {
1809 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1810 verbose(env
, "invalid variable stack read R%d var_off=%s\n",
1814 off
= reg
->off
+ reg
->var_off
.value
;
1815 if (off
>= 0 || off
< -MAX_BPF_STACK
|| off
+ access_size
> 0 ||
1816 access_size
< 0 || (access_size
== 0 && !zero_size_allowed
)) {
1817 verbose(env
, "invalid stack type R%d off=%d access_size=%d\n",
1818 regno
, off
, access_size
);
1822 if (meta
&& meta
->raw_mode
) {
1823 meta
->access_size
= access_size
;
1824 meta
->regno
= regno
;
1828 for (i
= 0; i
< access_size
; i
++) {
1831 slot
= -(off
+ i
) - 1;
1832 spi
= slot
/ BPF_REG_SIZE
;
1833 if (state
->allocated_stack
<= slot
)
1835 stype
= &state
->stack
[spi
].slot_type
[slot
% BPF_REG_SIZE
];
1836 if (*stype
== STACK_MISC
)
1838 if (*stype
== STACK_ZERO
) {
1839 /* helper can write anything into the stack */
1840 *stype
= STACK_MISC
;
1844 verbose(env
, "invalid indirect read from stack off %d+%d size %d\n",
1845 off
, i
, access_size
);
1848 /* reading any byte out of 8-byte 'spill_slot' will cause
1849 * the whole slot to be marked as 'read'
1851 mark_stack_slot_read(env
, env
->cur_state
, env
->cur_state
->parent
,
1852 spi
, state
->frameno
);
1854 return update_stack_depth(env
, state
, off
);
1857 static int check_helper_mem_access(struct bpf_verifier_env
*env
, int regno
,
1858 int access_size
, bool zero_size_allowed
,
1859 struct bpf_call_arg_meta
*meta
)
1861 struct bpf_reg_state
*regs
= cur_regs(env
), *reg
= ®s
[regno
];
1863 switch (reg
->type
) {
1865 case PTR_TO_PACKET_META
:
1866 return check_packet_access(env
, regno
, reg
->off
, access_size
,
1868 case PTR_TO_MAP_VALUE
:
1869 return check_map_access(env
, regno
, reg
->off
, access_size
,
1871 default: /* scalar_value|ptr_to_stack or invalid ptr */
1872 return check_stack_boundary(env
, regno
, access_size
,
1873 zero_size_allowed
, meta
);
1877 static bool arg_type_is_mem_ptr(enum bpf_arg_type type
)
1879 return type
== ARG_PTR_TO_MEM
||
1880 type
== ARG_PTR_TO_MEM_OR_NULL
||
1881 type
== ARG_PTR_TO_UNINIT_MEM
;
1884 static bool arg_type_is_mem_size(enum bpf_arg_type type
)
1886 return type
== ARG_CONST_SIZE
||
1887 type
== ARG_CONST_SIZE_OR_ZERO
;
1890 static int check_func_arg(struct bpf_verifier_env
*env
, u32 regno
,
1891 enum bpf_arg_type arg_type
,
1892 struct bpf_call_arg_meta
*meta
)
1894 struct bpf_reg_state
*regs
= cur_regs(env
), *reg
= ®s
[regno
];
1895 enum bpf_reg_type expected_type
, type
= reg
->type
;
1898 if (arg_type
== ARG_DONTCARE
)
1901 err
= check_reg_arg(env
, regno
, SRC_OP
);
1905 if (arg_type
== ARG_ANYTHING
) {
1906 if (is_pointer_value(env
, regno
)) {
1907 verbose(env
, "R%d leaks addr into helper function\n",
1914 if (type_is_pkt_pointer(type
) &&
1915 !may_access_direct_pkt_data(env
, meta
, BPF_READ
)) {
1916 verbose(env
, "helper access to the packet is not allowed\n");
1920 if (arg_type
== ARG_PTR_TO_MAP_KEY
||
1921 arg_type
== ARG_PTR_TO_MAP_VALUE
) {
1922 expected_type
= PTR_TO_STACK
;
1923 if (!type_is_pkt_pointer(type
) && type
!= PTR_TO_MAP_VALUE
&&
1924 type
!= expected_type
)
1926 } else if (arg_type
== ARG_CONST_SIZE
||
1927 arg_type
== ARG_CONST_SIZE_OR_ZERO
) {
1928 expected_type
= SCALAR_VALUE
;
1929 if (type
!= expected_type
)
1931 } else if (arg_type
== ARG_CONST_MAP_PTR
) {
1932 expected_type
= CONST_PTR_TO_MAP
;
1933 if (type
!= expected_type
)
1935 } else if (arg_type
== ARG_PTR_TO_CTX
) {
1936 expected_type
= PTR_TO_CTX
;
1937 if (type
!= expected_type
)
1939 } else if (arg_type_is_mem_ptr(arg_type
)) {
1940 expected_type
= PTR_TO_STACK
;
1941 /* One exception here. In case function allows for NULL to be
1942 * passed in as argument, it's a SCALAR_VALUE type. Final test
1943 * happens during stack boundary checking.
1945 if (register_is_null(reg
) &&
1946 arg_type
== ARG_PTR_TO_MEM_OR_NULL
)
1947 /* final test in check_stack_boundary() */;
1948 else if (!type_is_pkt_pointer(type
) &&
1949 type
!= PTR_TO_MAP_VALUE
&&
1950 type
!= expected_type
)
1952 meta
->raw_mode
= arg_type
== ARG_PTR_TO_UNINIT_MEM
;
1954 verbose(env
, "unsupported arg_type %d\n", arg_type
);
1958 if (arg_type
== ARG_CONST_MAP_PTR
) {
1959 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1960 meta
->map_ptr
= reg
->map_ptr
;
1961 } else if (arg_type
== ARG_PTR_TO_MAP_KEY
) {
1962 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1963 * check that [key, key + map->key_size) are within
1964 * stack limits and initialized
1966 if (!meta
->map_ptr
) {
1967 /* in function declaration map_ptr must come before
1968 * map_key, so that it's verified and known before
1969 * we have to check map_key here. Otherwise it means
1970 * that kernel subsystem misconfigured verifier
1972 verbose(env
, "invalid map_ptr to access map->key\n");
1975 err
= check_helper_mem_access(env
, regno
,
1976 meta
->map_ptr
->key_size
, false,
1978 } else if (arg_type
== ARG_PTR_TO_MAP_VALUE
) {
1979 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1980 * check [value, value + map->value_size) validity
1982 if (!meta
->map_ptr
) {
1983 /* kernel subsystem misconfigured verifier */
1984 verbose(env
, "invalid map_ptr to access map->value\n");
1987 err
= check_helper_mem_access(env
, regno
,
1988 meta
->map_ptr
->value_size
, false,
1990 } else if (arg_type_is_mem_size(arg_type
)) {
1991 bool zero_size_allowed
= (arg_type
== ARG_CONST_SIZE_OR_ZERO
);
1993 /* remember the mem_size which may be used later
1994 * to refine return values.
1996 meta
->msize_smax_value
= reg
->smax_value
;
1997 meta
->msize_umax_value
= reg
->umax_value
;
1999 /* The register is SCALAR_VALUE; the access check
2000 * happens using its boundaries.
2002 if (!tnum_is_const(reg
->var_off
))
2003 /* For unprivileged variable accesses, disable raw
2004 * mode so that the program is required to
2005 * initialize all the memory that the helper could
2006 * just partially fill up.
2010 if (reg
->smin_value
< 0) {
2011 verbose(env
, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2016 if (reg
->umin_value
== 0) {
2017 err
= check_helper_mem_access(env
, regno
- 1, 0,
2024 if (reg
->umax_value
>= BPF_MAX_VAR_SIZ
) {
2025 verbose(env
, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2029 err
= check_helper_mem_access(env
, regno
- 1,
2031 zero_size_allowed
, meta
);
2036 verbose(env
, "R%d type=%s expected=%s\n", regno
,
2037 reg_type_str
[type
], reg_type_str
[expected_type
]);
2041 static int check_map_func_compatibility(struct bpf_verifier_env
*env
,
2042 struct bpf_map
*map
, int func_id
)
2047 /* We need a two way check, first is from map perspective ... */
2048 switch (map
->map_type
) {
2049 case BPF_MAP_TYPE_PROG_ARRAY
:
2050 if (func_id
!= BPF_FUNC_tail_call
)
2053 case BPF_MAP_TYPE_PERF_EVENT_ARRAY
:
2054 if (func_id
!= BPF_FUNC_perf_event_read
&&
2055 func_id
!= BPF_FUNC_perf_event_output
&&
2056 func_id
!= BPF_FUNC_perf_event_read_value
)
2059 case BPF_MAP_TYPE_STACK_TRACE
:
2060 if (func_id
!= BPF_FUNC_get_stackid
)
2063 case BPF_MAP_TYPE_CGROUP_ARRAY
:
2064 if (func_id
!= BPF_FUNC_skb_under_cgroup
&&
2065 func_id
!= BPF_FUNC_current_task_under_cgroup
)
2068 /* devmap returns a pointer to a live net_device ifindex that we cannot
2069 * allow to be modified from bpf side. So do not allow lookup elements
2072 case BPF_MAP_TYPE_DEVMAP
:
2073 if (func_id
!= BPF_FUNC_redirect_map
)
2076 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2079 case BPF_MAP_TYPE_CPUMAP
:
2080 case BPF_MAP_TYPE_XSKMAP
:
2081 if (func_id
!= BPF_FUNC_redirect_map
)
2084 case BPF_MAP_TYPE_ARRAY_OF_MAPS
:
2085 case BPF_MAP_TYPE_HASH_OF_MAPS
:
2086 if (func_id
!= BPF_FUNC_map_lookup_elem
)
2089 case BPF_MAP_TYPE_SOCKMAP
:
2090 if (func_id
!= BPF_FUNC_sk_redirect_map
&&
2091 func_id
!= BPF_FUNC_sock_map_update
&&
2092 func_id
!= BPF_FUNC_map_delete_elem
&&
2093 func_id
!= BPF_FUNC_msg_redirect_map
)
2096 case BPF_MAP_TYPE_SOCKHASH
:
2097 if (func_id
!= BPF_FUNC_sk_redirect_hash
&&
2098 func_id
!= BPF_FUNC_sock_hash_update
&&
2099 func_id
!= BPF_FUNC_map_delete_elem
&&
2100 func_id
!= BPF_FUNC_msg_redirect_hash
)
2107 /* ... and second from the function itself. */
2109 case BPF_FUNC_tail_call
:
2110 if (map
->map_type
!= BPF_MAP_TYPE_PROG_ARRAY
)
2112 if (env
->subprog_cnt
> 1) {
2113 verbose(env
, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2117 case BPF_FUNC_perf_event_read
:
2118 case BPF_FUNC_perf_event_output
:
2119 case BPF_FUNC_perf_event_read_value
:
2120 if (map
->map_type
!= BPF_MAP_TYPE_PERF_EVENT_ARRAY
)
2123 case BPF_FUNC_get_stackid
:
2124 if (map
->map_type
!= BPF_MAP_TYPE_STACK_TRACE
)
2127 case BPF_FUNC_current_task_under_cgroup
:
2128 case BPF_FUNC_skb_under_cgroup
:
2129 if (map
->map_type
!= BPF_MAP_TYPE_CGROUP_ARRAY
)
2132 case BPF_FUNC_redirect_map
:
2133 if (map
->map_type
!= BPF_MAP_TYPE_DEVMAP
&&
2134 map
->map_type
!= BPF_MAP_TYPE_CPUMAP
&&
2135 map
->map_type
!= BPF_MAP_TYPE_XSKMAP
)
2138 case BPF_FUNC_sk_redirect_map
:
2139 case BPF_FUNC_msg_redirect_map
:
2140 case BPF_FUNC_sock_map_update
:
2141 if (map
->map_type
!= BPF_MAP_TYPE_SOCKMAP
)
2144 case BPF_FUNC_sk_redirect_hash
:
2145 case BPF_FUNC_msg_redirect_hash
:
2146 case BPF_FUNC_sock_hash_update
:
2147 if (map
->map_type
!= BPF_MAP_TYPE_SOCKHASH
)
2156 verbose(env
, "cannot pass map_type %d into func %s#%d\n",
2157 map
->map_type
, func_id_name(func_id
), func_id
);
2161 static bool check_raw_mode_ok(const struct bpf_func_proto
*fn
)
2165 if (fn
->arg1_type
== ARG_PTR_TO_UNINIT_MEM
)
2167 if (fn
->arg2_type
== ARG_PTR_TO_UNINIT_MEM
)
2169 if (fn
->arg3_type
== ARG_PTR_TO_UNINIT_MEM
)
2171 if (fn
->arg4_type
== ARG_PTR_TO_UNINIT_MEM
)
2173 if (fn
->arg5_type
== ARG_PTR_TO_UNINIT_MEM
)
2176 /* We only support one arg being in raw mode at the moment,
2177 * which is sufficient for the helper functions we have
2183 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr
,
2184 enum bpf_arg_type arg_next
)
2186 return (arg_type_is_mem_ptr(arg_curr
) &&
2187 !arg_type_is_mem_size(arg_next
)) ||
2188 (!arg_type_is_mem_ptr(arg_curr
) &&
2189 arg_type_is_mem_size(arg_next
));
2192 static bool check_arg_pair_ok(const struct bpf_func_proto
*fn
)
2194 /* bpf_xxx(..., buf, len) call will access 'len'
2195 * bytes from memory 'buf'. Both arg types need
2196 * to be paired, so make sure there's no buggy
2197 * helper function specification.
2199 if (arg_type_is_mem_size(fn
->arg1_type
) ||
2200 arg_type_is_mem_ptr(fn
->arg5_type
) ||
2201 check_args_pair_invalid(fn
->arg1_type
, fn
->arg2_type
) ||
2202 check_args_pair_invalid(fn
->arg2_type
, fn
->arg3_type
) ||
2203 check_args_pair_invalid(fn
->arg3_type
, fn
->arg4_type
) ||
2204 check_args_pair_invalid(fn
->arg4_type
, fn
->arg5_type
))
2210 static int check_func_proto(const struct bpf_func_proto
*fn
)
2212 return check_raw_mode_ok(fn
) &&
2213 check_arg_pair_ok(fn
) ? 0 : -EINVAL
;
2216 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2217 * are now invalid, so turn them into unknown SCALAR_VALUE.
2219 static void __clear_all_pkt_pointers(struct bpf_verifier_env
*env
,
2220 struct bpf_func_state
*state
)
2222 struct bpf_reg_state
*regs
= state
->regs
, *reg
;
2225 for (i
= 0; i
< MAX_BPF_REG
; i
++)
2226 if (reg_is_pkt_pointer_any(®s
[i
]))
2227 mark_reg_unknown(env
, regs
, i
);
2229 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
2230 if (state
->stack
[i
].slot_type
[0] != STACK_SPILL
)
2232 reg
= &state
->stack
[i
].spilled_ptr
;
2233 if (reg_is_pkt_pointer_any(reg
))
2234 __mark_reg_unknown(reg
);
2238 static void clear_all_pkt_pointers(struct bpf_verifier_env
*env
)
2240 struct bpf_verifier_state
*vstate
= env
->cur_state
;
2243 for (i
= 0; i
<= vstate
->curframe
; i
++)
2244 __clear_all_pkt_pointers(env
, vstate
->frame
[i
]);
2247 static int check_func_call(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
,
2250 struct bpf_verifier_state
*state
= env
->cur_state
;
2251 struct bpf_func_state
*caller
, *callee
;
2252 int i
, subprog
, target_insn
;
2254 if (state
->curframe
+ 1 >= MAX_CALL_FRAMES
) {
2255 verbose(env
, "the call stack of %d frames is too deep\n",
2256 state
->curframe
+ 2);
2260 target_insn
= *insn_idx
+ insn
->imm
;
2261 subprog
= find_subprog(env
, target_insn
+ 1);
2263 verbose(env
, "verifier bug. No program starts at insn %d\n",
2268 caller
= state
->frame
[state
->curframe
];
2269 if (state
->frame
[state
->curframe
+ 1]) {
2270 verbose(env
, "verifier bug. Frame %d already allocated\n",
2271 state
->curframe
+ 1);
2275 callee
= kzalloc(sizeof(*callee
), GFP_KERNEL
);
2278 state
->frame
[state
->curframe
+ 1] = callee
;
2280 /* callee cannot access r0, r6 - r9 for reading and has to write
2281 * into its own stack before reading from it.
2282 * callee can read/write into caller's stack
2284 init_func_state(env
, callee
,
2285 /* remember the callsite, it will be used by bpf_exit */
2286 *insn_idx
/* callsite */,
2287 state
->curframe
+ 1 /* frameno within this callchain */,
2288 subprog
/* subprog number within this prog */);
2290 /* copy r1 - r5 args that callee can access */
2291 for (i
= BPF_REG_1
; i
<= BPF_REG_5
; i
++)
2292 callee
->regs
[i
] = caller
->regs
[i
];
2294 /* after the call regsiters r0 - r5 were scratched */
2295 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
2296 mark_reg_not_init(env
, caller
->regs
, caller_saved
[i
]);
2297 check_reg_arg(env
, caller_saved
[i
], DST_OP_NO_MARK
);
2300 /* only increment it after check_reg_arg() finished */
2303 /* and go analyze first insn of the callee */
2304 *insn_idx
= target_insn
;
2306 if (env
->log
.level
) {
2307 verbose(env
, "caller:\n");
2308 print_verifier_state(env
, caller
);
2309 verbose(env
, "callee:\n");
2310 print_verifier_state(env
, callee
);
2315 static int prepare_func_exit(struct bpf_verifier_env
*env
, int *insn_idx
)
2317 struct bpf_verifier_state
*state
= env
->cur_state
;
2318 struct bpf_func_state
*caller
, *callee
;
2319 struct bpf_reg_state
*r0
;
2321 callee
= state
->frame
[state
->curframe
];
2322 r0
= &callee
->regs
[BPF_REG_0
];
2323 if (r0
->type
== PTR_TO_STACK
) {
2324 /* technically it's ok to return caller's stack pointer
2325 * (or caller's caller's pointer) back to the caller,
2326 * since these pointers are valid. Only current stack
2327 * pointer will be invalid as soon as function exits,
2328 * but let's be conservative
2330 verbose(env
, "cannot return stack pointer to the caller\n");
2335 caller
= state
->frame
[state
->curframe
];
2336 /* return to the caller whatever r0 had in the callee */
2337 caller
->regs
[BPF_REG_0
] = *r0
;
2339 *insn_idx
= callee
->callsite
+ 1;
2340 if (env
->log
.level
) {
2341 verbose(env
, "returning from callee:\n");
2342 print_verifier_state(env
, callee
);
2343 verbose(env
, "to caller at %d:\n", *insn_idx
);
2344 print_verifier_state(env
, caller
);
2346 /* clear everything in the callee */
2347 free_func_state(callee
);
2348 state
->frame
[state
->curframe
+ 1] = NULL
;
2352 static void do_refine_retval_range(struct bpf_reg_state
*regs
, int ret_type
,
2354 struct bpf_call_arg_meta
*meta
)
2356 struct bpf_reg_state
*ret_reg
= ®s
[BPF_REG_0
];
2358 if (ret_type
!= RET_INTEGER
||
2359 (func_id
!= BPF_FUNC_get_stack
&&
2360 func_id
!= BPF_FUNC_probe_read_str
))
2363 ret_reg
->smax_value
= meta
->msize_smax_value
;
2364 ret_reg
->umax_value
= meta
->msize_umax_value
;
2365 __reg_deduce_bounds(ret_reg
);
2366 __reg_bound_offset(ret_reg
);
2369 static int check_helper_call(struct bpf_verifier_env
*env
, int func_id
, int insn_idx
)
2371 const struct bpf_func_proto
*fn
= NULL
;
2372 struct bpf_reg_state
*regs
;
2373 struct bpf_call_arg_meta meta
;
2377 /* find function prototype */
2378 if (func_id
< 0 || func_id
>= __BPF_FUNC_MAX_ID
) {
2379 verbose(env
, "invalid func %s#%d\n", func_id_name(func_id
),
2384 if (env
->ops
->get_func_proto
)
2385 fn
= env
->ops
->get_func_proto(func_id
, env
->prog
);
2387 verbose(env
, "unknown func %s#%d\n", func_id_name(func_id
),
2392 /* eBPF programs must be GPL compatible to use GPL-ed functions */
2393 if (!env
->prog
->gpl_compatible
&& fn
->gpl_only
) {
2394 verbose(env
, "cannot call GPL only function from proprietary program\n");
2398 /* With LD_ABS/IND some JITs save/restore skb from r1. */
2399 changes_data
= bpf_helper_changes_pkt_data(fn
->func
);
2400 if (changes_data
&& fn
->arg1_type
!= ARG_PTR_TO_CTX
) {
2401 verbose(env
, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2402 func_id_name(func_id
), func_id
);
2406 memset(&meta
, 0, sizeof(meta
));
2407 meta
.pkt_access
= fn
->pkt_access
;
2409 err
= check_func_proto(fn
);
2411 verbose(env
, "kernel subsystem misconfigured func %s#%d\n",
2412 func_id_name(func_id
), func_id
);
2417 err
= check_func_arg(env
, BPF_REG_1
, fn
->arg1_type
, &meta
);
2420 err
= check_func_arg(env
, BPF_REG_2
, fn
->arg2_type
, &meta
);
2423 if (func_id
== BPF_FUNC_tail_call
) {
2424 if (meta
.map_ptr
== NULL
) {
2425 verbose(env
, "verifier bug\n");
2428 env
->insn_aux_data
[insn_idx
].map_ptr
= meta
.map_ptr
;
2430 err
= check_func_arg(env
, BPF_REG_3
, fn
->arg3_type
, &meta
);
2433 err
= check_func_arg(env
, BPF_REG_4
, fn
->arg4_type
, &meta
);
2436 err
= check_func_arg(env
, BPF_REG_5
, fn
->arg5_type
, &meta
);
2440 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2441 * is inferred from register state.
2443 for (i
= 0; i
< meta
.access_size
; i
++) {
2444 err
= check_mem_access(env
, insn_idx
, meta
.regno
, i
, BPF_B
,
2445 BPF_WRITE
, -1, false);
2450 regs
= cur_regs(env
);
2451 /* reset caller saved regs */
2452 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
2453 mark_reg_not_init(env
, regs
, caller_saved
[i
]);
2454 check_reg_arg(env
, caller_saved
[i
], DST_OP_NO_MARK
);
2457 /* update return register (already marked as written above) */
2458 if (fn
->ret_type
== RET_INTEGER
) {
2459 /* sets type to SCALAR_VALUE */
2460 mark_reg_unknown(env
, regs
, BPF_REG_0
);
2461 } else if (fn
->ret_type
== RET_VOID
) {
2462 regs
[BPF_REG_0
].type
= NOT_INIT
;
2463 } else if (fn
->ret_type
== RET_PTR_TO_MAP_VALUE_OR_NULL
) {
2464 struct bpf_insn_aux_data
*insn_aux
;
2466 regs
[BPF_REG_0
].type
= PTR_TO_MAP_VALUE_OR_NULL
;
2467 /* There is no offset yet applied, variable or fixed */
2468 mark_reg_known_zero(env
, regs
, BPF_REG_0
);
2469 regs
[BPF_REG_0
].off
= 0;
2470 /* remember map_ptr, so that check_map_access()
2471 * can check 'value_size' boundary of memory access
2472 * to map element returned from bpf_map_lookup_elem()
2474 if (meta
.map_ptr
== NULL
) {
2476 "kernel subsystem misconfigured verifier\n");
2479 regs
[BPF_REG_0
].map_ptr
= meta
.map_ptr
;
2480 regs
[BPF_REG_0
].id
= ++env
->id_gen
;
2481 insn_aux
= &env
->insn_aux_data
[insn_idx
];
2482 if (!insn_aux
->map_ptr
)
2483 insn_aux
->map_ptr
= meta
.map_ptr
;
2484 else if (insn_aux
->map_ptr
!= meta
.map_ptr
)
2485 insn_aux
->map_ptr
= BPF_MAP_PTR_POISON
;
2487 verbose(env
, "unknown return type %d of func %s#%d\n",
2488 fn
->ret_type
, func_id_name(func_id
), func_id
);
2492 do_refine_retval_range(regs
, fn
->ret_type
, func_id
, &meta
);
2494 err
= check_map_func_compatibility(env
, meta
.map_ptr
, func_id
);
2498 if (func_id
== BPF_FUNC_get_stack
&& !env
->prog
->has_callchain_buf
) {
2499 const char *err_str
;
2501 #ifdef CONFIG_PERF_EVENTS
2502 err
= get_callchain_buffers(sysctl_perf_event_max_stack
);
2503 err_str
= "cannot get callchain buffer for func %s#%d\n";
2506 err_str
= "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2509 verbose(env
, err_str
, func_id_name(func_id
), func_id
);
2513 env
->prog
->has_callchain_buf
= true;
2517 clear_all_pkt_pointers(env
);
2521 static bool signed_add_overflows(s64 a
, s64 b
)
2523 /* Do the add in u64, where overflow is well-defined */
2524 s64 res
= (s64
)((u64
)a
+ (u64
)b
);
2531 static bool signed_sub_overflows(s64 a
, s64 b
)
2533 /* Do the sub in u64, where overflow is well-defined */
2534 s64 res
= (s64
)((u64
)a
- (u64
)b
);
2541 static bool check_reg_sane_offset(struct bpf_verifier_env
*env
,
2542 const struct bpf_reg_state
*reg
,
2543 enum bpf_reg_type type
)
2545 bool known
= tnum_is_const(reg
->var_off
);
2546 s64 val
= reg
->var_off
.value
;
2547 s64 smin
= reg
->smin_value
;
2549 if (known
&& (val
>= BPF_MAX_VAR_OFF
|| val
<= -BPF_MAX_VAR_OFF
)) {
2550 verbose(env
, "math between %s pointer and %lld is not allowed\n",
2551 reg_type_str
[type
], val
);
2555 if (reg
->off
>= BPF_MAX_VAR_OFF
|| reg
->off
<= -BPF_MAX_VAR_OFF
) {
2556 verbose(env
, "%s pointer offset %d is not allowed\n",
2557 reg_type_str
[type
], reg
->off
);
2561 if (smin
== S64_MIN
) {
2562 verbose(env
, "math between %s pointer and register with unbounded min value is not allowed\n",
2563 reg_type_str
[type
]);
2567 if (smin
>= BPF_MAX_VAR_OFF
|| smin
<= -BPF_MAX_VAR_OFF
) {
2568 verbose(env
, "value %lld makes %s pointer be out of bounds\n",
2569 smin
, reg_type_str
[type
]);
2576 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2577 * Caller should also handle BPF_MOV case separately.
2578 * If we return -EACCES, caller may want to try again treating pointer as a
2579 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2581 static int adjust_ptr_min_max_vals(struct bpf_verifier_env
*env
,
2582 struct bpf_insn
*insn
,
2583 const struct bpf_reg_state
*ptr_reg
,
2584 const struct bpf_reg_state
*off_reg
)
2586 struct bpf_verifier_state
*vstate
= env
->cur_state
;
2587 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
2588 struct bpf_reg_state
*regs
= state
->regs
, *dst_reg
;
2589 bool known
= tnum_is_const(off_reg
->var_off
);
2590 s64 smin_val
= off_reg
->smin_value
, smax_val
= off_reg
->smax_value
,
2591 smin_ptr
= ptr_reg
->smin_value
, smax_ptr
= ptr_reg
->smax_value
;
2592 u64 umin_val
= off_reg
->umin_value
, umax_val
= off_reg
->umax_value
,
2593 umin_ptr
= ptr_reg
->umin_value
, umax_ptr
= ptr_reg
->umax_value
;
2594 u8 opcode
= BPF_OP(insn
->code
);
2595 u32 dst
= insn
->dst_reg
;
2597 dst_reg
= ®s
[dst
];
2599 if ((known
&& (smin_val
!= smax_val
|| umin_val
!= umax_val
)) ||
2600 smin_val
> smax_val
|| umin_val
> umax_val
) {
2601 /* Taint dst register if offset had invalid bounds derived from
2602 * e.g. dead branches.
2604 __mark_reg_unknown(dst_reg
);
2608 if (BPF_CLASS(insn
->code
) != BPF_ALU64
) {
2609 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
2611 "R%d 32-bit pointer arithmetic prohibited\n",
2616 if (ptr_reg
->type
== PTR_TO_MAP_VALUE_OR_NULL
) {
2617 verbose(env
, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2621 if (ptr_reg
->type
== CONST_PTR_TO_MAP
) {
2622 verbose(env
, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2626 if (ptr_reg
->type
== PTR_TO_PACKET_END
) {
2627 verbose(env
, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2632 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2633 * The id may be overwritten later if we create a new variable offset.
2635 dst_reg
->type
= ptr_reg
->type
;
2636 dst_reg
->id
= ptr_reg
->id
;
2638 if (!check_reg_sane_offset(env
, off_reg
, ptr_reg
->type
) ||
2639 !check_reg_sane_offset(env
, ptr_reg
, ptr_reg
->type
))
2644 /* We can take a fixed offset as long as it doesn't overflow
2645 * the s32 'off' field
2647 if (known
&& (ptr_reg
->off
+ smin_val
==
2648 (s64
)(s32
)(ptr_reg
->off
+ smin_val
))) {
2649 /* pointer += K. Accumulate it into fixed offset */
2650 dst_reg
->smin_value
= smin_ptr
;
2651 dst_reg
->smax_value
= smax_ptr
;
2652 dst_reg
->umin_value
= umin_ptr
;
2653 dst_reg
->umax_value
= umax_ptr
;
2654 dst_reg
->var_off
= ptr_reg
->var_off
;
2655 dst_reg
->off
= ptr_reg
->off
+ smin_val
;
2656 dst_reg
->range
= ptr_reg
->range
;
2659 /* A new variable offset is created. Note that off_reg->off
2660 * == 0, since it's a scalar.
2661 * dst_reg gets the pointer type and since some positive
2662 * integer value was added to the pointer, give it a new 'id'
2663 * if it's a PTR_TO_PACKET.
2664 * this creates a new 'base' pointer, off_reg (variable) gets
2665 * added into the variable offset, and we copy the fixed offset
2668 if (signed_add_overflows(smin_ptr
, smin_val
) ||
2669 signed_add_overflows(smax_ptr
, smax_val
)) {
2670 dst_reg
->smin_value
= S64_MIN
;
2671 dst_reg
->smax_value
= S64_MAX
;
2673 dst_reg
->smin_value
= smin_ptr
+ smin_val
;
2674 dst_reg
->smax_value
= smax_ptr
+ smax_val
;
2676 if (umin_ptr
+ umin_val
< umin_ptr
||
2677 umax_ptr
+ umax_val
< umax_ptr
) {
2678 dst_reg
->umin_value
= 0;
2679 dst_reg
->umax_value
= U64_MAX
;
2681 dst_reg
->umin_value
= umin_ptr
+ umin_val
;
2682 dst_reg
->umax_value
= umax_ptr
+ umax_val
;
2684 dst_reg
->var_off
= tnum_add(ptr_reg
->var_off
, off_reg
->var_off
);
2685 dst_reg
->off
= ptr_reg
->off
;
2686 if (reg_is_pkt_pointer(ptr_reg
)) {
2687 dst_reg
->id
= ++env
->id_gen
;
2688 /* something was added to pkt_ptr, set range to zero */
2693 if (dst_reg
== off_reg
) {
2694 /* scalar -= pointer. Creates an unknown scalar */
2695 verbose(env
, "R%d tried to subtract pointer from scalar\n",
2699 /* We don't allow subtraction from FP, because (according to
2700 * test_verifier.c test "invalid fp arithmetic", JITs might not
2701 * be able to deal with it.
2703 if (ptr_reg
->type
== PTR_TO_STACK
) {
2704 verbose(env
, "R%d subtraction from stack pointer prohibited\n",
2708 if (known
&& (ptr_reg
->off
- smin_val
==
2709 (s64
)(s32
)(ptr_reg
->off
- smin_val
))) {
2710 /* pointer -= K. Subtract it from fixed offset */
2711 dst_reg
->smin_value
= smin_ptr
;
2712 dst_reg
->smax_value
= smax_ptr
;
2713 dst_reg
->umin_value
= umin_ptr
;
2714 dst_reg
->umax_value
= umax_ptr
;
2715 dst_reg
->var_off
= ptr_reg
->var_off
;
2716 dst_reg
->id
= ptr_reg
->id
;
2717 dst_reg
->off
= ptr_reg
->off
- smin_val
;
2718 dst_reg
->range
= ptr_reg
->range
;
2721 /* A new variable offset is created. If the subtrahend is known
2722 * nonnegative, then any reg->range we had before is still good.
2724 if (signed_sub_overflows(smin_ptr
, smax_val
) ||
2725 signed_sub_overflows(smax_ptr
, smin_val
)) {
2726 /* Overflow possible, we know nothing */
2727 dst_reg
->smin_value
= S64_MIN
;
2728 dst_reg
->smax_value
= S64_MAX
;
2730 dst_reg
->smin_value
= smin_ptr
- smax_val
;
2731 dst_reg
->smax_value
= smax_ptr
- smin_val
;
2733 if (umin_ptr
< umax_val
) {
2734 /* Overflow possible, we know nothing */
2735 dst_reg
->umin_value
= 0;
2736 dst_reg
->umax_value
= U64_MAX
;
2738 /* Cannot overflow (as long as bounds are consistent) */
2739 dst_reg
->umin_value
= umin_ptr
- umax_val
;
2740 dst_reg
->umax_value
= umax_ptr
- umin_val
;
2742 dst_reg
->var_off
= tnum_sub(ptr_reg
->var_off
, off_reg
->var_off
);
2743 dst_reg
->off
= ptr_reg
->off
;
2744 if (reg_is_pkt_pointer(ptr_reg
)) {
2745 dst_reg
->id
= ++env
->id_gen
;
2746 /* something was added to pkt_ptr, set range to zero */
2754 /* bitwise ops on pointers are troublesome, prohibit. */
2755 verbose(env
, "R%d bitwise operator %s on pointer prohibited\n",
2756 dst
, bpf_alu_string
[opcode
>> 4]);
2759 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2760 verbose(env
, "R%d pointer arithmetic with %s operator prohibited\n",
2761 dst
, bpf_alu_string
[opcode
>> 4]);
2765 if (!check_reg_sane_offset(env
, dst_reg
, ptr_reg
->type
))
2768 __update_reg_bounds(dst_reg
);
2769 __reg_deduce_bounds(dst_reg
);
2770 __reg_bound_offset(dst_reg
);
2774 /* WARNING: This function does calculations on 64-bit values, but the actual
2775 * execution may occur on 32-bit values. Therefore, things like bitshifts
2776 * need extra checks in the 32-bit case.
2778 static int adjust_scalar_min_max_vals(struct bpf_verifier_env
*env
,
2779 struct bpf_insn
*insn
,
2780 struct bpf_reg_state
*dst_reg
,
2781 struct bpf_reg_state src_reg
)
2783 struct bpf_reg_state
*regs
= cur_regs(env
);
2784 u8 opcode
= BPF_OP(insn
->code
);
2785 bool src_known
, dst_known
;
2786 s64 smin_val
, smax_val
;
2787 u64 umin_val
, umax_val
;
2788 u64 insn_bitness
= (BPF_CLASS(insn
->code
) == BPF_ALU64
) ? 64 : 32;
2790 smin_val
= src_reg
.smin_value
;
2791 smax_val
= src_reg
.smax_value
;
2792 umin_val
= src_reg
.umin_value
;
2793 umax_val
= src_reg
.umax_value
;
2794 src_known
= tnum_is_const(src_reg
.var_off
);
2795 dst_known
= tnum_is_const(dst_reg
->var_off
);
2797 if ((src_known
&& (smin_val
!= smax_val
|| umin_val
!= umax_val
)) ||
2798 smin_val
> smax_val
|| umin_val
> umax_val
) {
2799 /* Taint dst register if offset had invalid bounds derived from
2800 * e.g. dead branches.
2802 __mark_reg_unknown(dst_reg
);
2807 opcode
!= BPF_ADD
&& opcode
!= BPF_SUB
&& opcode
!= BPF_AND
) {
2808 __mark_reg_unknown(dst_reg
);
2814 if (signed_add_overflows(dst_reg
->smin_value
, smin_val
) ||
2815 signed_add_overflows(dst_reg
->smax_value
, smax_val
)) {
2816 dst_reg
->smin_value
= S64_MIN
;
2817 dst_reg
->smax_value
= S64_MAX
;
2819 dst_reg
->smin_value
+= smin_val
;
2820 dst_reg
->smax_value
+= smax_val
;
2822 if (dst_reg
->umin_value
+ umin_val
< umin_val
||
2823 dst_reg
->umax_value
+ umax_val
< umax_val
) {
2824 dst_reg
->umin_value
= 0;
2825 dst_reg
->umax_value
= U64_MAX
;
2827 dst_reg
->umin_value
+= umin_val
;
2828 dst_reg
->umax_value
+= umax_val
;
2830 dst_reg
->var_off
= tnum_add(dst_reg
->var_off
, src_reg
.var_off
);
2833 if (signed_sub_overflows(dst_reg
->smin_value
, smax_val
) ||
2834 signed_sub_overflows(dst_reg
->smax_value
, smin_val
)) {
2835 /* Overflow possible, we know nothing */
2836 dst_reg
->smin_value
= S64_MIN
;
2837 dst_reg
->smax_value
= S64_MAX
;
2839 dst_reg
->smin_value
-= smax_val
;
2840 dst_reg
->smax_value
-= smin_val
;
2842 if (dst_reg
->umin_value
< umax_val
) {
2843 /* Overflow possible, we know nothing */
2844 dst_reg
->umin_value
= 0;
2845 dst_reg
->umax_value
= U64_MAX
;
2847 /* Cannot overflow (as long as bounds are consistent) */
2848 dst_reg
->umin_value
-= umax_val
;
2849 dst_reg
->umax_value
-= umin_val
;
2851 dst_reg
->var_off
= tnum_sub(dst_reg
->var_off
, src_reg
.var_off
);
2854 dst_reg
->var_off
= tnum_mul(dst_reg
->var_off
, src_reg
.var_off
);
2855 if (smin_val
< 0 || dst_reg
->smin_value
< 0) {
2856 /* Ain't nobody got time to multiply that sign */
2857 __mark_reg_unbounded(dst_reg
);
2858 __update_reg_bounds(dst_reg
);
2861 /* Both values are positive, so we can work with unsigned and
2862 * copy the result to signed (unless it exceeds S64_MAX).
2864 if (umax_val
> U32_MAX
|| dst_reg
->umax_value
> U32_MAX
) {
2865 /* Potential overflow, we know nothing */
2866 __mark_reg_unbounded(dst_reg
);
2867 /* (except what we can learn from the var_off) */
2868 __update_reg_bounds(dst_reg
);
2871 dst_reg
->umin_value
*= umin_val
;
2872 dst_reg
->umax_value
*= umax_val
;
2873 if (dst_reg
->umax_value
> S64_MAX
) {
2874 /* Overflow possible, we know nothing */
2875 dst_reg
->smin_value
= S64_MIN
;
2876 dst_reg
->smax_value
= S64_MAX
;
2878 dst_reg
->smin_value
= dst_reg
->umin_value
;
2879 dst_reg
->smax_value
= dst_reg
->umax_value
;
2883 if (src_known
&& dst_known
) {
2884 __mark_reg_known(dst_reg
, dst_reg
->var_off
.value
&
2885 src_reg
.var_off
.value
);
2888 /* We get our minimum from the var_off, since that's inherently
2889 * bitwise. Our maximum is the minimum of the operands' maxima.
2891 dst_reg
->var_off
= tnum_and(dst_reg
->var_off
, src_reg
.var_off
);
2892 dst_reg
->umin_value
= dst_reg
->var_off
.value
;
2893 dst_reg
->umax_value
= min(dst_reg
->umax_value
, umax_val
);
2894 if (dst_reg
->smin_value
< 0 || smin_val
< 0) {
2895 /* Lose signed bounds when ANDing negative numbers,
2896 * ain't nobody got time for that.
2898 dst_reg
->smin_value
= S64_MIN
;
2899 dst_reg
->smax_value
= S64_MAX
;
2901 /* ANDing two positives gives a positive, so safe to
2902 * cast result into s64.
2904 dst_reg
->smin_value
= dst_reg
->umin_value
;
2905 dst_reg
->smax_value
= dst_reg
->umax_value
;
2907 /* We may learn something more from the var_off */
2908 __update_reg_bounds(dst_reg
);
2911 if (src_known
&& dst_known
) {
2912 __mark_reg_known(dst_reg
, dst_reg
->var_off
.value
|
2913 src_reg
.var_off
.value
);
2916 /* We get our maximum from the var_off, and our minimum is the
2917 * maximum of the operands' minima
2919 dst_reg
->var_off
= tnum_or(dst_reg
->var_off
, src_reg
.var_off
);
2920 dst_reg
->umin_value
= max(dst_reg
->umin_value
, umin_val
);
2921 dst_reg
->umax_value
= dst_reg
->var_off
.value
|
2922 dst_reg
->var_off
.mask
;
2923 if (dst_reg
->smin_value
< 0 || smin_val
< 0) {
2924 /* Lose signed bounds when ORing negative numbers,
2925 * ain't nobody got time for that.
2927 dst_reg
->smin_value
= S64_MIN
;
2928 dst_reg
->smax_value
= S64_MAX
;
2930 /* ORing two positives gives a positive, so safe to
2931 * cast result into s64.
2933 dst_reg
->smin_value
= dst_reg
->umin_value
;
2934 dst_reg
->smax_value
= dst_reg
->umax_value
;
2936 /* We may learn something more from the var_off */
2937 __update_reg_bounds(dst_reg
);
2940 if (umax_val
>= insn_bitness
) {
2941 /* Shifts greater than 31 or 63 are undefined.
2942 * This includes shifts by a negative number.
2944 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
2947 /* We lose all sign bit information (except what we can pick
2950 dst_reg
->smin_value
= S64_MIN
;
2951 dst_reg
->smax_value
= S64_MAX
;
2952 /* If we might shift our top bit out, then we know nothing */
2953 if (dst_reg
->umax_value
> 1ULL << (63 - umax_val
)) {
2954 dst_reg
->umin_value
= 0;
2955 dst_reg
->umax_value
= U64_MAX
;
2957 dst_reg
->umin_value
<<= umin_val
;
2958 dst_reg
->umax_value
<<= umax_val
;
2960 dst_reg
->var_off
= tnum_lshift(dst_reg
->var_off
, umin_val
);
2961 /* We may learn something more from the var_off */
2962 __update_reg_bounds(dst_reg
);
2965 if (umax_val
>= insn_bitness
) {
2966 /* Shifts greater than 31 or 63 are undefined.
2967 * This includes shifts by a negative number.
2969 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
2972 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2973 * be negative, then either:
2974 * 1) src_reg might be zero, so the sign bit of the result is
2975 * unknown, so we lose our signed bounds
2976 * 2) it's known negative, thus the unsigned bounds capture the
2978 * 3) the signed bounds cross zero, so they tell us nothing
2980 * If the value in dst_reg is known nonnegative, then again the
2981 * unsigned bounts capture the signed bounds.
2982 * Thus, in all cases it suffices to blow away our signed bounds
2983 * and rely on inferring new ones from the unsigned bounds and
2984 * var_off of the result.
2986 dst_reg
->smin_value
= S64_MIN
;
2987 dst_reg
->smax_value
= S64_MAX
;
2988 dst_reg
->var_off
= tnum_rshift(dst_reg
->var_off
, umin_val
);
2989 dst_reg
->umin_value
>>= umax_val
;
2990 dst_reg
->umax_value
>>= umin_val
;
2991 /* We may learn something more from the var_off */
2992 __update_reg_bounds(dst_reg
);
2995 if (umax_val
>= insn_bitness
) {
2996 /* Shifts greater than 31 or 63 are undefined.
2997 * This includes shifts by a negative number.
2999 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
3003 /* Upon reaching here, src_known is true and
3004 * umax_val is equal to umin_val.
3006 dst_reg
->smin_value
>>= umin_val
;
3007 dst_reg
->smax_value
>>= umin_val
;
3008 dst_reg
->var_off
= tnum_arshift(dst_reg
->var_off
, umin_val
);
3010 /* blow away the dst_reg umin_value/umax_value and rely on
3011 * dst_reg var_off to refine the result.
3013 dst_reg
->umin_value
= 0;
3014 dst_reg
->umax_value
= U64_MAX
;
3015 __update_reg_bounds(dst_reg
);
3018 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
3022 if (BPF_CLASS(insn
->code
) != BPF_ALU64
) {
3023 /* 32-bit ALU ops are (32,32)->32 */
3024 coerce_reg_to_size(dst_reg
, 4);
3025 coerce_reg_to_size(&src_reg
, 4);
3028 __reg_deduce_bounds(dst_reg
);
3029 __reg_bound_offset(dst_reg
);
3033 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3036 static int adjust_reg_min_max_vals(struct bpf_verifier_env
*env
,
3037 struct bpf_insn
*insn
)
3039 struct bpf_verifier_state
*vstate
= env
->cur_state
;
3040 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
3041 struct bpf_reg_state
*regs
= state
->regs
, *dst_reg
, *src_reg
;
3042 struct bpf_reg_state
*ptr_reg
= NULL
, off_reg
= {0};
3043 u8 opcode
= BPF_OP(insn
->code
);
3045 dst_reg
= ®s
[insn
->dst_reg
];
3047 if (dst_reg
->type
!= SCALAR_VALUE
)
3049 if (BPF_SRC(insn
->code
) == BPF_X
) {
3050 src_reg
= ®s
[insn
->src_reg
];
3051 if (src_reg
->type
!= SCALAR_VALUE
) {
3052 if (dst_reg
->type
!= SCALAR_VALUE
) {
3053 /* Combining two pointers by any ALU op yields
3054 * an arbitrary scalar. Disallow all math except
3055 * pointer subtraction
3057 if (opcode
== BPF_SUB
){
3058 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
3061 verbose(env
, "R%d pointer %s pointer prohibited\n",
3063 bpf_alu_string
[opcode
>> 4]);
3066 /* scalar += pointer
3067 * This is legal, but we have to reverse our
3068 * src/dest handling in computing the range
3070 return adjust_ptr_min_max_vals(env
, insn
,
3073 } else if (ptr_reg
) {
3074 /* pointer += scalar */
3075 return adjust_ptr_min_max_vals(env
, insn
,
3079 /* Pretend the src is a reg with a known value, since we only
3080 * need to be able to read from this state.
3082 off_reg
.type
= SCALAR_VALUE
;
3083 __mark_reg_known(&off_reg
, insn
->imm
);
3085 if (ptr_reg
) /* pointer += K */
3086 return adjust_ptr_min_max_vals(env
, insn
,
3090 /* Got here implies adding two SCALAR_VALUEs */
3091 if (WARN_ON_ONCE(ptr_reg
)) {
3092 print_verifier_state(env
, state
);
3093 verbose(env
, "verifier internal error: unexpected ptr_reg\n");
3096 if (WARN_ON(!src_reg
)) {
3097 print_verifier_state(env
, state
);
3098 verbose(env
, "verifier internal error: no src_reg\n");
3101 return adjust_scalar_min_max_vals(env
, insn
, dst_reg
, *src_reg
);
3104 /* check validity of 32-bit and 64-bit arithmetic operations */
3105 static int check_alu_op(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
3107 struct bpf_reg_state
*regs
= cur_regs(env
);
3108 u8 opcode
= BPF_OP(insn
->code
);
3111 if (opcode
== BPF_END
|| opcode
== BPF_NEG
) {
3112 if (opcode
== BPF_NEG
) {
3113 if (BPF_SRC(insn
->code
) != 0 ||
3114 insn
->src_reg
!= BPF_REG_0
||
3115 insn
->off
!= 0 || insn
->imm
!= 0) {
3116 verbose(env
, "BPF_NEG uses reserved fields\n");
3120 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0 ||
3121 (insn
->imm
!= 16 && insn
->imm
!= 32 && insn
->imm
!= 64) ||
3122 BPF_CLASS(insn
->code
) == BPF_ALU64
) {
3123 verbose(env
, "BPF_END uses reserved fields\n");
3128 /* check src operand */
3129 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
3133 if (is_pointer_value(env
, insn
->dst_reg
)) {
3134 verbose(env
, "R%d pointer arithmetic prohibited\n",
3139 /* check dest operand */
3140 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP
);
3144 } else if (opcode
== BPF_MOV
) {
3146 if (BPF_SRC(insn
->code
) == BPF_X
) {
3147 if (insn
->imm
!= 0 || insn
->off
!= 0) {
3148 verbose(env
, "BPF_MOV uses reserved fields\n");
3152 /* check src operand */
3153 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
3157 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0) {
3158 verbose(env
, "BPF_MOV uses reserved fields\n");
3163 /* check dest operand */
3164 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP
);
3168 if (BPF_SRC(insn
->code
) == BPF_X
) {
3169 if (BPF_CLASS(insn
->code
) == BPF_ALU64
) {
3171 * copy register state to dest reg
3173 regs
[insn
->dst_reg
] = regs
[insn
->src_reg
];
3174 regs
[insn
->dst_reg
].live
|= REG_LIVE_WRITTEN
;
3177 if (is_pointer_value(env
, insn
->src_reg
)) {
3179 "R%d partial copy of pointer\n",
3183 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
3184 coerce_reg_to_size(®s
[insn
->dst_reg
], 4);
3188 * remember the value we stored into this reg
3190 regs
[insn
->dst_reg
].type
= SCALAR_VALUE
;
3191 if (BPF_CLASS(insn
->code
) == BPF_ALU64
) {
3192 __mark_reg_known(regs
+ insn
->dst_reg
,
3195 __mark_reg_known(regs
+ insn
->dst_reg
,
3200 } else if (opcode
> BPF_END
) {
3201 verbose(env
, "invalid BPF_ALU opcode %x\n", opcode
);
3204 } else { /* all other ALU ops: and, sub, xor, add, ... */
3206 if (BPF_SRC(insn
->code
) == BPF_X
) {
3207 if (insn
->imm
!= 0 || insn
->off
!= 0) {
3208 verbose(env
, "BPF_ALU uses reserved fields\n");
3211 /* check src1 operand */
3212 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
3216 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0) {
3217 verbose(env
, "BPF_ALU uses reserved fields\n");
3222 /* check src2 operand */
3223 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
3227 if ((opcode
== BPF_MOD
|| opcode
== BPF_DIV
) &&
3228 BPF_SRC(insn
->code
) == BPF_K
&& insn
->imm
== 0) {
3229 verbose(env
, "div by zero\n");
3233 if (opcode
== BPF_ARSH
&& BPF_CLASS(insn
->code
) != BPF_ALU64
) {
3234 verbose(env
, "BPF_ARSH not supported for 32 bit ALU\n");
3238 if ((opcode
== BPF_LSH
|| opcode
== BPF_RSH
||
3239 opcode
== BPF_ARSH
) && BPF_SRC(insn
->code
) == BPF_K
) {
3240 int size
= BPF_CLASS(insn
->code
) == BPF_ALU64
? 64 : 32;
3242 if (insn
->imm
< 0 || insn
->imm
>= size
) {
3243 verbose(env
, "invalid shift %d\n", insn
->imm
);
3248 /* check dest operand */
3249 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP_NO_MARK
);
3253 return adjust_reg_min_max_vals(env
, insn
);
3259 static void find_good_pkt_pointers(struct bpf_verifier_state
*vstate
,
3260 struct bpf_reg_state
*dst_reg
,
3261 enum bpf_reg_type type
,
3262 bool range_right_open
)
3264 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
3265 struct bpf_reg_state
*regs
= state
->regs
, *reg
;
3269 if (dst_reg
->off
< 0 ||
3270 (dst_reg
->off
== 0 && range_right_open
))
3271 /* This doesn't give us any range */
3274 if (dst_reg
->umax_value
> MAX_PACKET_OFF
||
3275 dst_reg
->umax_value
+ dst_reg
->off
> MAX_PACKET_OFF
)
3276 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3277 * than pkt_end, but that's because it's also less than pkt.
3281 new_range
= dst_reg
->off
;
3282 if (range_right_open
)
3285 /* Examples for register markings:
3287 * pkt_data in dst register:
3291 * if (r2 > pkt_end) goto <handle exception>
3296 * if (r2 < pkt_end) goto <access okay>
3297 * <handle exception>
3300 * r2 == dst_reg, pkt_end == src_reg
3301 * r2=pkt(id=n,off=8,r=0)
3302 * r3=pkt(id=n,off=0,r=0)
3304 * pkt_data in src register:
3308 * if (pkt_end >= r2) goto <access okay>
3309 * <handle exception>
3313 * if (pkt_end <= r2) goto <handle exception>
3317 * pkt_end == dst_reg, r2 == src_reg
3318 * r2=pkt(id=n,off=8,r=0)
3319 * r3=pkt(id=n,off=0,r=0)
3321 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3322 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3323 * and [r3, r3 + 8-1) respectively is safe to access depending on
3327 /* If our ids match, then we must have the same max_value. And we
3328 * don't care about the other reg's fixed offset, since if it's too big
3329 * the range won't allow anything.
3330 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3332 for (i
= 0; i
< MAX_BPF_REG
; i
++)
3333 if (regs
[i
].type
== type
&& regs
[i
].id
== dst_reg
->id
)
3334 /* keep the maximum range already checked */
3335 regs
[i
].range
= max(regs
[i
].range
, new_range
);
3337 for (j
= 0; j
<= vstate
->curframe
; j
++) {
3338 state
= vstate
->frame
[j
];
3339 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
3340 if (state
->stack
[i
].slot_type
[0] != STACK_SPILL
)
3342 reg
= &state
->stack
[i
].spilled_ptr
;
3343 if (reg
->type
== type
&& reg
->id
== dst_reg
->id
)
3344 reg
->range
= max(reg
->range
, new_range
);
3349 /* Adjusts the register min/max values in the case that the dst_reg is the
3350 * variable register that we are working on, and src_reg is a constant or we're
3351 * simply doing a BPF_K check.
3352 * In JEQ/JNE cases we also adjust the var_off values.
3354 static void reg_set_min_max(struct bpf_reg_state
*true_reg
,
3355 struct bpf_reg_state
*false_reg
, u64 val
,
3358 /* If the dst_reg is a pointer, we can't learn anything about its
3359 * variable offset from the compare (unless src_reg were a pointer into
3360 * the same object, but we don't bother with that.
3361 * Since false_reg and true_reg have the same type by construction, we
3362 * only need to check one of them for pointerness.
3364 if (__is_pointer_value(false, false_reg
))
3369 /* If this is false then we know nothing Jon Snow, but if it is
3370 * true then we know for sure.
3372 __mark_reg_known(true_reg
, val
);
3375 /* If this is true we know nothing Jon Snow, but if it is false
3376 * we know the value for sure;
3378 __mark_reg_known(false_reg
, val
);
3381 false_reg
->umax_value
= min(false_reg
->umax_value
, val
);
3382 true_reg
->umin_value
= max(true_reg
->umin_value
, val
+ 1);
3385 false_reg
->smax_value
= min_t(s64
, false_reg
->smax_value
, val
);
3386 true_reg
->smin_value
= max_t(s64
, true_reg
->smin_value
, val
+ 1);
3389 false_reg
->umin_value
= max(false_reg
->umin_value
, val
);
3390 true_reg
->umax_value
= min(true_reg
->umax_value
, val
- 1);
3393 false_reg
->smin_value
= max_t(s64
, false_reg
->smin_value
, val
);
3394 true_reg
->smax_value
= min_t(s64
, true_reg
->smax_value
, val
- 1);
3397 false_reg
->umax_value
= min(false_reg
->umax_value
, val
- 1);
3398 true_reg
->umin_value
= max(true_reg
->umin_value
, val
);
3401 false_reg
->smax_value
= min_t(s64
, false_reg
->smax_value
, val
- 1);
3402 true_reg
->smin_value
= max_t(s64
, true_reg
->smin_value
, val
);
3405 false_reg
->umin_value
= max(false_reg
->umin_value
, val
+ 1);
3406 true_reg
->umax_value
= min(true_reg
->umax_value
, val
);
3409 false_reg
->smin_value
= max_t(s64
, false_reg
->smin_value
, val
+ 1);
3410 true_reg
->smax_value
= min_t(s64
, true_reg
->smax_value
, val
);
3416 __reg_deduce_bounds(false_reg
);
3417 __reg_deduce_bounds(true_reg
);
3418 /* We might have learned some bits from the bounds. */
3419 __reg_bound_offset(false_reg
);
3420 __reg_bound_offset(true_reg
);
3421 /* Intersecting with the old var_off might have improved our bounds
3422 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3423 * then new var_off is (0; 0x7f...fc) which improves our umax.
3425 __update_reg_bounds(false_reg
);
3426 __update_reg_bounds(true_reg
);
3429 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3432 static void reg_set_min_max_inv(struct bpf_reg_state
*true_reg
,
3433 struct bpf_reg_state
*false_reg
, u64 val
,
3436 if (__is_pointer_value(false, false_reg
))
3441 /* If this is false then we know nothing Jon Snow, but if it is
3442 * true then we know for sure.
3444 __mark_reg_known(true_reg
, val
);
3447 /* If this is true we know nothing Jon Snow, but if it is false
3448 * we know the value for sure;
3450 __mark_reg_known(false_reg
, val
);
3453 true_reg
->umax_value
= min(true_reg
->umax_value
, val
- 1);
3454 false_reg
->umin_value
= max(false_reg
->umin_value
, val
);
3457 true_reg
->smax_value
= min_t(s64
, true_reg
->smax_value
, val
- 1);
3458 false_reg
->smin_value
= max_t(s64
, false_reg
->smin_value
, val
);
3461 true_reg
->umin_value
= max(true_reg
->umin_value
, val
+ 1);
3462 false_reg
->umax_value
= min(false_reg
->umax_value
, val
);
3465 true_reg
->smin_value
= max_t(s64
, true_reg
->smin_value
, val
+ 1);
3466 false_reg
->smax_value
= min_t(s64
, false_reg
->smax_value
, val
);
3469 true_reg
->umax_value
= min(true_reg
->umax_value
, val
);
3470 false_reg
->umin_value
= max(false_reg
->umin_value
, val
+ 1);
3473 true_reg
->smax_value
= min_t(s64
, true_reg
->smax_value
, val
);
3474 false_reg
->smin_value
= max_t(s64
, false_reg
->smin_value
, val
+ 1);
3477 true_reg
->umin_value
= max(true_reg
->umin_value
, val
);
3478 false_reg
->umax_value
= min(false_reg
->umax_value
, val
- 1);
3481 true_reg
->smin_value
= max_t(s64
, true_reg
->smin_value
, val
);
3482 false_reg
->smax_value
= min_t(s64
, false_reg
->smax_value
, val
- 1);
3488 __reg_deduce_bounds(false_reg
);
3489 __reg_deduce_bounds(true_reg
);
3490 /* We might have learned some bits from the bounds. */
3491 __reg_bound_offset(false_reg
);
3492 __reg_bound_offset(true_reg
);
3493 /* Intersecting with the old var_off might have improved our bounds
3494 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3495 * then new var_off is (0; 0x7f...fc) which improves our umax.
3497 __update_reg_bounds(false_reg
);
3498 __update_reg_bounds(true_reg
);
3501 /* Regs are known to be equal, so intersect their min/max/var_off */
3502 static void __reg_combine_min_max(struct bpf_reg_state
*src_reg
,
3503 struct bpf_reg_state
*dst_reg
)
3505 src_reg
->umin_value
= dst_reg
->umin_value
= max(src_reg
->umin_value
,
3506 dst_reg
->umin_value
);
3507 src_reg
->umax_value
= dst_reg
->umax_value
= min(src_reg
->umax_value
,
3508 dst_reg
->umax_value
);
3509 src_reg
->smin_value
= dst_reg
->smin_value
= max(src_reg
->smin_value
,
3510 dst_reg
->smin_value
);
3511 src_reg
->smax_value
= dst_reg
->smax_value
= min(src_reg
->smax_value
,
3512 dst_reg
->smax_value
);
3513 src_reg
->var_off
= dst_reg
->var_off
= tnum_intersect(src_reg
->var_off
,
3515 /* We might have learned new bounds from the var_off. */
3516 __update_reg_bounds(src_reg
);
3517 __update_reg_bounds(dst_reg
);
3518 /* We might have learned something about the sign bit. */
3519 __reg_deduce_bounds(src_reg
);
3520 __reg_deduce_bounds(dst_reg
);
3521 /* We might have learned some bits from the bounds. */
3522 __reg_bound_offset(src_reg
);
3523 __reg_bound_offset(dst_reg
);
3524 /* Intersecting with the old var_off might have improved our bounds
3525 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3526 * then new var_off is (0; 0x7f...fc) which improves our umax.
3528 __update_reg_bounds(src_reg
);
3529 __update_reg_bounds(dst_reg
);
3532 static void reg_combine_min_max(struct bpf_reg_state
*true_src
,
3533 struct bpf_reg_state
*true_dst
,
3534 struct bpf_reg_state
*false_src
,
3535 struct bpf_reg_state
*false_dst
,
3540 __reg_combine_min_max(true_src
, true_dst
);
3543 __reg_combine_min_max(false_src
, false_dst
);
3548 static void mark_map_reg(struct bpf_reg_state
*regs
, u32 regno
, u32 id
,
3551 struct bpf_reg_state
*reg
= ®s
[regno
];
3553 if (reg
->type
== PTR_TO_MAP_VALUE_OR_NULL
&& reg
->id
== id
) {
3554 /* Old offset (both fixed and variable parts) should
3555 * have been known-zero, because we don't allow pointer
3556 * arithmetic on pointers that might be NULL.
3558 if (WARN_ON_ONCE(reg
->smin_value
|| reg
->smax_value
||
3559 !tnum_equals_const(reg
->var_off
, 0) ||
3561 __mark_reg_known_zero(reg
);
3565 reg
->type
= SCALAR_VALUE
;
3566 } else if (reg
->map_ptr
->inner_map_meta
) {
3567 reg
->type
= CONST_PTR_TO_MAP
;
3568 reg
->map_ptr
= reg
->map_ptr
->inner_map_meta
;
3570 reg
->type
= PTR_TO_MAP_VALUE
;
3572 /* We don't need id from this point onwards anymore, thus we
3573 * should better reset it, so that state pruning has chances
3580 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3581 * be folded together at some point.
3583 static void mark_map_regs(struct bpf_verifier_state
*vstate
, u32 regno
,
3586 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
3587 struct bpf_reg_state
*regs
= state
->regs
;
3588 u32 id
= regs
[regno
].id
;
3591 for (i
= 0; i
< MAX_BPF_REG
; i
++)
3592 mark_map_reg(regs
, i
, id
, is_null
);
3594 for (j
= 0; j
<= vstate
->curframe
; j
++) {
3595 state
= vstate
->frame
[j
];
3596 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
3597 if (state
->stack
[i
].slot_type
[0] != STACK_SPILL
)
3599 mark_map_reg(&state
->stack
[i
].spilled_ptr
, 0, id
, is_null
);
3604 static bool try_match_pkt_pointers(const struct bpf_insn
*insn
,
3605 struct bpf_reg_state
*dst_reg
,
3606 struct bpf_reg_state
*src_reg
,
3607 struct bpf_verifier_state
*this_branch
,
3608 struct bpf_verifier_state
*other_branch
)
3610 if (BPF_SRC(insn
->code
) != BPF_X
)
3613 switch (BPF_OP(insn
->code
)) {
3615 if ((dst_reg
->type
== PTR_TO_PACKET
&&
3616 src_reg
->type
== PTR_TO_PACKET_END
) ||
3617 (dst_reg
->type
== PTR_TO_PACKET_META
&&
3618 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
3619 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3620 find_good_pkt_pointers(this_branch
, dst_reg
,
3621 dst_reg
->type
, false);
3622 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
3623 src_reg
->type
== PTR_TO_PACKET
) ||
3624 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
3625 src_reg
->type
== PTR_TO_PACKET_META
)) {
3626 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
3627 find_good_pkt_pointers(other_branch
, src_reg
,
3628 src_reg
->type
, true);
3634 if ((dst_reg
->type
== PTR_TO_PACKET
&&
3635 src_reg
->type
== PTR_TO_PACKET_END
) ||
3636 (dst_reg
->type
== PTR_TO_PACKET_META
&&
3637 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
3638 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3639 find_good_pkt_pointers(other_branch
, dst_reg
,
3640 dst_reg
->type
, true);
3641 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
3642 src_reg
->type
== PTR_TO_PACKET
) ||
3643 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
3644 src_reg
->type
== PTR_TO_PACKET_META
)) {
3645 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
3646 find_good_pkt_pointers(this_branch
, src_reg
,
3647 src_reg
->type
, false);
3653 if ((dst_reg
->type
== PTR_TO_PACKET
&&
3654 src_reg
->type
== PTR_TO_PACKET_END
) ||
3655 (dst_reg
->type
== PTR_TO_PACKET_META
&&
3656 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
3657 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3658 find_good_pkt_pointers(this_branch
, dst_reg
,
3659 dst_reg
->type
, true);
3660 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
3661 src_reg
->type
== PTR_TO_PACKET
) ||
3662 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
3663 src_reg
->type
== PTR_TO_PACKET_META
)) {
3664 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3665 find_good_pkt_pointers(other_branch
, src_reg
,
3666 src_reg
->type
, false);
3672 if ((dst_reg
->type
== PTR_TO_PACKET
&&
3673 src_reg
->type
== PTR_TO_PACKET_END
) ||
3674 (dst_reg
->type
== PTR_TO_PACKET_META
&&
3675 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
3676 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3677 find_good_pkt_pointers(other_branch
, dst_reg
,
3678 dst_reg
->type
, false);
3679 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
3680 src_reg
->type
== PTR_TO_PACKET
) ||
3681 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
3682 src_reg
->type
== PTR_TO_PACKET_META
)) {
3683 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3684 find_good_pkt_pointers(this_branch
, src_reg
,
3685 src_reg
->type
, true);
3697 static int check_cond_jmp_op(struct bpf_verifier_env
*env
,
3698 struct bpf_insn
*insn
, int *insn_idx
)
3700 struct bpf_verifier_state
*this_branch
= env
->cur_state
;
3701 struct bpf_verifier_state
*other_branch
;
3702 struct bpf_reg_state
*regs
= this_branch
->frame
[this_branch
->curframe
]->regs
;
3703 struct bpf_reg_state
*dst_reg
, *other_branch_regs
;
3704 u8 opcode
= BPF_OP(insn
->code
);
3707 if (opcode
> BPF_JSLE
) {
3708 verbose(env
, "invalid BPF_JMP opcode %x\n", opcode
);
3712 if (BPF_SRC(insn
->code
) == BPF_X
) {
3713 if (insn
->imm
!= 0) {
3714 verbose(env
, "BPF_JMP uses reserved fields\n");
3718 /* check src1 operand */
3719 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
3723 if (is_pointer_value(env
, insn
->src_reg
)) {
3724 verbose(env
, "R%d pointer comparison prohibited\n",
3729 if (insn
->src_reg
!= BPF_REG_0
) {
3730 verbose(env
, "BPF_JMP uses reserved fields\n");
3735 /* check src2 operand */
3736 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
3740 dst_reg
= ®s
[insn
->dst_reg
];
3742 /* detect if R == 0 where R was initialized to zero earlier */
3743 if (BPF_SRC(insn
->code
) == BPF_K
&&
3744 (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
) &&
3745 dst_reg
->type
== SCALAR_VALUE
&&
3746 tnum_is_const(dst_reg
->var_off
)) {
3747 if ((opcode
== BPF_JEQ
&& dst_reg
->var_off
.value
== insn
->imm
) ||
3748 (opcode
== BPF_JNE
&& dst_reg
->var_off
.value
!= insn
->imm
)) {
3749 /* if (imm == imm) goto pc+off;
3750 * only follow the goto, ignore fall-through
3752 *insn_idx
+= insn
->off
;
3755 /* if (imm != imm) goto pc+off;
3756 * only follow fall-through branch, since
3757 * that's where the program will go
3763 other_branch
= push_stack(env
, *insn_idx
+ insn
->off
+ 1, *insn_idx
);
3766 other_branch_regs
= other_branch
->frame
[other_branch
->curframe
]->regs
;
3768 /* detect if we are comparing against a constant value so we can adjust
3769 * our min/max values for our dst register.
3770 * this is only legit if both are scalars (or pointers to the same
3771 * object, I suppose, but we don't support that right now), because
3772 * otherwise the different base pointers mean the offsets aren't
3775 if (BPF_SRC(insn
->code
) == BPF_X
) {
3776 if (dst_reg
->type
== SCALAR_VALUE
&&
3777 regs
[insn
->src_reg
].type
== SCALAR_VALUE
) {
3778 if (tnum_is_const(regs
[insn
->src_reg
].var_off
))
3779 reg_set_min_max(&other_branch_regs
[insn
->dst_reg
],
3780 dst_reg
, regs
[insn
->src_reg
].var_off
.value
,
3782 else if (tnum_is_const(dst_reg
->var_off
))
3783 reg_set_min_max_inv(&other_branch_regs
[insn
->src_reg
],
3784 ®s
[insn
->src_reg
],
3785 dst_reg
->var_off
.value
, opcode
);
3786 else if (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
)
3787 /* Comparing for equality, we can combine knowledge */
3788 reg_combine_min_max(&other_branch_regs
[insn
->src_reg
],
3789 &other_branch_regs
[insn
->dst_reg
],
3790 ®s
[insn
->src_reg
],
3791 ®s
[insn
->dst_reg
], opcode
);
3793 } else if (dst_reg
->type
== SCALAR_VALUE
) {
3794 reg_set_min_max(&other_branch_regs
[insn
->dst_reg
],
3795 dst_reg
, insn
->imm
, opcode
);
3798 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3799 if (BPF_SRC(insn
->code
) == BPF_K
&&
3800 insn
->imm
== 0 && (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
) &&
3801 dst_reg
->type
== PTR_TO_MAP_VALUE_OR_NULL
) {
3802 /* Mark all identical map registers in each branch as either
3803 * safe or unknown depending R == 0 or R != 0 conditional.
3805 mark_map_regs(this_branch
, insn
->dst_reg
, opcode
== BPF_JNE
);
3806 mark_map_regs(other_branch
, insn
->dst_reg
, opcode
== BPF_JEQ
);
3807 } else if (!try_match_pkt_pointers(insn
, dst_reg
, ®s
[insn
->src_reg
],
3808 this_branch
, other_branch
) &&
3809 is_pointer_value(env
, insn
->dst_reg
)) {
3810 verbose(env
, "R%d pointer comparison prohibited\n",
3815 print_verifier_state(env
, this_branch
->frame
[this_branch
->curframe
]);
3819 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3820 static struct bpf_map
*ld_imm64_to_map_ptr(struct bpf_insn
*insn
)
3822 u64 imm64
= ((u64
) (u32
) insn
[0].imm
) | ((u64
) (u32
) insn
[1].imm
) << 32;
3824 return (struct bpf_map
*) (unsigned long) imm64
;
3827 /* verify BPF_LD_IMM64 instruction */
3828 static int check_ld_imm(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
3830 struct bpf_reg_state
*regs
= cur_regs(env
);
3833 if (BPF_SIZE(insn
->code
) != BPF_DW
) {
3834 verbose(env
, "invalid BPF_LD_IMM insn\n");
3837 if (insn
->off
!= 0) {
3838 verbose(env
, "BPF_LD_IMM64 uses reserved fields\n");
3842 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP
);
3846 if (insn
->src_reg
== 0) {
3847 u64 imm
= ((u64
)(insn
+ 1)->imm
<< 32) | (u32
)insn
->imm
;
3849 regs
[insn
->dst_reg
].type
= SCALAR_VALUE
;
3850 __mark_reg_known(®s
[insn
->dst_reg
], imm
);
3854 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3855 BUG_ON(insn
->src_reg
!= BPF_PSEUDO_MAP_FD
);
3857 regs
[insn
->dst_reg
].type
= CONST_PTR_TO_MAP
;
3858 regs
[insn
->dst_reg
].map_ptr
= ld_imm64_to_map_ptr(insn
);
3862 static bool may_access_skb(enum bpf_prog_type type
)
3865 case BPF_PROG_TYPE_SOCKET_FILTER
:
3866 case BPF_PROG_TYPE_SCHED_CLS
:
3867 case BPF_PROG_TYPE_SCHED_ACT
:
3874 /* verify safety of LD_ABS|LD_IND instructions:
3875 * - they can only appear in the programs where ctx == skb
3876 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3877 * preserve R6-R9, and store return value into R0
3880 * ctx == skb == R6 == CTX
3883 * SRC == any register
3884 * IMM == 32-bit immediate
3887 * R0 - 8/16/32-bit skb data converted to cpu endianness
3889 static int check_ld_abs(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
3891 struct bpf_reg_state
*regs
= cur_regs(env
);
3892 u8 mode
= BPF_MODE(insn
->code
);
3895 if (!may_access_skb(env
->prog
->type
)) {
3896 verbose(env
, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3900 if (!env
->ops
->gen_ld_abs
) {
3901 verbose(env
, "bpf verifier is misconfigured\n");
3905 if (env
->subprog_cnt
> 1) {
3906 /* when program has LD_ABS insn JITs and interpreter assume
3907 * that r1 == ctx == skb which is not the case for callees
3908 * that can have arbitrary arguments. It's problematic
3909 * for main prog as well since JITs would need to analyze
3910 * all functions in order to make proper register save/restore
3911 * decisions in the main prog. Hence disallow LD_ABS with calls
3913 verbose(env
, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3917 if (insn
->dst_reg
!= BPF_REG_0
|| insn
->off
!= 0 ||
3918 BPF_SIZE(insn
->code
) == BPF_DW
||
3919 (mode
== BPF_ABS
&& insn
->src_reg
!= BPF_REG_0
)) {
3920 verbose(env
, "BPF_LD_[ABS|IND] uses reserved fields\n");
3924 /* check whether implicit source operand (register R6) is readable */
3925 err
= check_reg_arg(env
, BPF_REG_6
, SRC_OP
);
3929 if (regs
[BPF_REG_6
].type
!= PTR_TO_CTX
) {
3931 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3935 if (mode
== BPF_IND
) {
3936 /* check explicit source operand */
3937 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
3942 /* reset caller saved regs to unreadable */
3943 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
3944 mark_reg_not_init(env
, regs
, caller_saved
[i
]);
3945 check_reg_arg(env
, caller_saved
[i
], DST_OP_NO_MARK
);
3948 /* mark destination R0 register as readable, since it contains
3949 * the value fetched from the packet.
3950 * Already marked as written above.
3952 mark_reg_unknown(env
, regs
, BPF_REG_0
);
3956 static int check_return_code(struct bpf_verifier_env
*env
)
3958 struct bpf_reg_state
*reg
;
3959 struct tnum range
= tnum_range(0, 1);
3961 switch (env
->prog
->type
) {
3962 case BPF_PROG_TYPE_CGROUP_SKB
:
3963 case BPF_PROG_TYPE_CGROUP_SOCK
:
3964 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR
:
3965 case BPF_PROG_TYPE_SOCK_OPS
:
3966 case BPF_PROG_TYPE_CGROUP_DEVICE
:
3972 reg
= cur_regs(env
) + BPF_REG_0
;
3973 if (reg
->type
!= SCALAR_VALUE
) {
3974 verbose(env
, "At program exit the register R0 is not a known value (%s)\n",
3975 reg_type_str
[reg
->type
]);
3979 if (!tnum_in(range
, reg
->var_off
)) {
3980 verbose(env
, "At program exit the register R0 ");
3981 if (!tnum_is_unknown(reg
->var_off
)) {
3984 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
3985 verbose(env
, "has value %s", tn_buf
);
3987 verbose(env
, "has unknown scalar value");
3989 verbose(env
, " should have been 0 or 1\n");
3995 /* non-recursive DFS pseudo code
3996 * 1 procedure DFS-iterative(G,v):
3997 * 2 label v as discovered
3998 * 3 let S be a stack
4000 * 5 while S is not empty
4002 * 7 if t is what we're looking for:
4004 * 9 for all edges e in G.adjacentEdges(t) do
4005 * 10 if edge e is already labelled
4006 * 11 continue with the next edge
4007 * 12 w <- G.adjacentVertex(t,e)
4008 * 13 if vertex w is not discovered and not explored
4009 * 14 label e as tree-edge
4010 * 15 label w as discovered
4013 * 18 else if vertex w is discovered
4014 * 19 label e as back-edge
4016 * 21 // vertex w is explored
4017 * 22 label e as forward- or cross-edge
4018 * 23 label t as explored
4023 * 0x11 - discovered and fall-through edge labelled
4024 * 0x12 - discovered and fall-through and branch edges labelled
4035 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4037 static int *insn_stack
; /* stack of insns to process */
4038 static int cur_stack
; /* current stack index */
4039 static int *insn_state
;
4041 /* t, w, e - match pseudo-code above:
4042 * t - index of current instruction
4043 * w - next instruction
4046 static int push_insn(int t
, int w
, int e
, struct bpf_verifier_env
*env
)
4048 if (e
== FALLTHROUGH
&& insn_state
[t
] >= (DISCOVERED
| FALLTHROUGH
))
4051 if (e
== BRANCH
&& insn_state
[t
] >= (DISCOVERED
| BRANCH
))
4054 if (w
< 0 || w
>= env
->prog
->len
) {
4055 verbose(env
, "jump out of range from insn %d to %d\n", t
, w
);
4060 /* mark branch target for state pruning */
4061 env
->explored_states
[w
] = STATE_LIST_MARK
;
4063 if (insn_state
[w
] == 0) {
4065 insn_state
[t
] = DISCOVERED
| e
;
4066 insn_state
[w
] = DISCOVERED
;
4067 if (cur_stack
>= env
->prog
->len
)
4069 insn_stack
[cur_stack
++] = w
;
4071 } else if ((insn_state
[w
] & 0xF0) == DISCOVERED
) {
4072 verbose(env
, "back-edge from insn %d to %d\n", t
, w
);
4074 } else if (insn_state
[w
] == EXPLORED
) {
4075 /* forward- or cross-edge */
4076 insn_state
[t
] = DISCOVERED
| e
;
4078 verbose(env
, "insn state internal bug\n");
4084 /* non-recursive depth-first-search to detect loops in BPF program
4085 * loop == back-edge in directed graph
4087 static int check_cfg(struct bpf_verifier_env
*env
)
4089 struct bpf_insn
*insns
= env
->prog
->insnsi
;
4090 int insn_cnt
= env
->prog
->len
;
4094 ret
= check_subprogs(env
);
4098 insn_state
= kcalloc(insn_cnt
, sizeof(int), GFP_KERNEL
);
4102 insn_stack
= kcalloc(insn_cnt
, sizeof(int), GFP_KERNEL
);
4108 insn_state
[0] = DISCOVERED
; /* mark 1st insn as discovered */
4109 insn_stack
[0] = 0; /* 0 is the first instruction */
4115 t
= insn_stack
[cur_stack
- 1];
4117 if (BPF_CLASS(insns
[t
].code
) == BPF_JMP
) {
4118 u8 opcode
= BPF_OP(insns
[t
].code
);
4120 if (opcode
== BPF_EXIT
) {
4122 } else if (opcode
== BPF_CALL
) {
4123 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
4128 if (t
+ 1 < insn_cnt
)
4129 env
->explored_states
[t
+ 1] = STATE_LIST_MARK
;
4130 if (insns
[t
].src_reg
== BPF_PSEUDO_CALL
) {
4131 env
->explored_states
[t
] = STATE_LIST_MARK
;
4132 ret
= push_insn(t
, t
+ insns
[t
].imm
+ 1, BRANCH
, env
);
4138 } else if (opcode
== BPF_JA
) {
4139 if (BPF_SRC(insns
[t
].code
) != BPF_K
) {
4143 /* unconditional jump with single edge */
4144 ret
= push_insn(t
, t
+ insns
[t
].off
+ 1,
4150 /* tell verifier to check for equivalent states
4151 * after every call and jump
4153 if (t
+ 1 < insn_cnt
)
4154 env
->explored_states
[t
+ 1] = STATE_LIST_MARK
;
4156 /* conditional jump with two edges */
4157 env
->explored_states
[t
] = STATE_LIST_MARK
;
4158 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
4164 ret
= push_insn(t
, t
+ insns
[t
].off
+ 1, BRANCH
, env
);
4171 /* all other non-branch instructions with single
4174 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
4182 insn_state
[t
] = EXPLORED
;
4183 if (cur_stack
-- <= 0) {
4184 verbose(env
, "pop stack internal bug\n");
4191 for (i
= 0; i
< insn_cnt
; i
++) {
4192 if (insn_state
[i
] != EXPLORED
) {
4193 verbose(env
, "unreachable insn %d\n", i
);
4198 ret
= 0; /* cfg looks good */
4206 /* check %cur's range satisfies %old's */
4207 static bool range_within(struct bpf_reg_state
*old
,
4208 struct bpf_reg_state
*cur
)
4210 return old
->umin_value
<= cur
->umin_value
&&
4211 old
->umax_value
>= cur
->umax_value
&&
4212 old
->smin_value
<= cur
->smin_value
&&
4213 old
->smax_value
>= cur
->smax_value
;
4216 /* Maximum number of register states that can exist at once */
4217 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4223 /* If in the old state two registers had the same id, then they need to have
4224 * the same id in the new state as well. But that id could be different from
4225 * the old state, so we need to track the mapping from old to new ids.
4226 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4227 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4228 * regs with a different old id could still have new id 9, we don't care about
4230 * So we look through our idmap to see if this old id has been seen before. If
4231 * so, we require the new id to match; otherwise, we add the id pair to the map.
4233 static bool check_ids(u32 old_id
, u32 cur_id
, struct idpair
*idmap
)
4237 for (i
= 0; i
< ID_MAP_SIZE
; i
++) {
4238 if (!idmap
[i
].old
) {
4239 /* Reached an empty slot; haven't seen this id before */
4240 idmap
[i
].old
= old_id
;
4241 idmap
[i
].cur
= cur_id
;
4244 if (idmap
[i
].old
== old_id
)
4245 return idmap
[i
].cur
== cur_id
;
4247 /* We ran out of idmap slots, which should be impossible */
4252 /* Returns true if (rold safe implies rcur safe) */
4253 static bool regsafe(struct bpf_reg_state
*rold
, struct bpf_reg_state
*rcur
,
4254 struct idpair
*idmap
)
4258 if (!(rold
->live
& REG_LIVE_READ
))
4259 /* explored state didn't use this */
4262 equal
= memcmp(rold
, rcur
, offsetof(struct bpf_reg_state
, frameno
)) == 0;
4264 if (rold
->type
== PTR_TO_STACK
)
4265 /* two stack pointers are equal only if they're pointing to
4266 * the same stack frame, since fp-8 in foo != fp-8 in bar
4268 return equal
&& rold
->frameno
== rcur
->frameno
;
4273 if (rold
->type
== NOT_INIT
)
4274 /* explored state can't have used this */
4276 if (rcur
->type
== NOT_INIT
)
4278 switch (rold
->type
) {
4280 if (rcur
->type
== SCALAR_VALUE
) {
4281 /* new val must satisfy old val knowledge */
4282 return range_within(rold
, rcur
) &&
4283 tnum_in(rold
->var_off
, rcur
->var_off
);
4285 /* We're trying to use a pointer in place of a scalar.
4286 * Even if the scalar was unbounded, this could lead to
4287 * pointer leaks because scalars are allowed to leak
4288 * while pointers are not. We could make this safe in
4289 * special cases if root is calling us, but it's
4290 * probably not worth the hassle.
4294 case PTR_TO_MAP_VALUE
:
4295 /* If the new min/max/var_off satisfy the old ones and
4296 * everything else matches, we are OK.
4297 * We don't care about the 'id' value, because nothing
4298 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4300 return memcmp(rold
, rcur
, offsetof(struct bpf_reg_state
, id
)) == 0 &&
4301 range_within(rold
, rcur
) &&
4302 tnum_in(rold
->var_off
, rcur
->var_off
);
4303 case PTR_TO_MAP_VALUE_OR_NULL
:
4304 /* a PTR_TO_MAP_VALUE could be safe to use as a
4305 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4306 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4307 * checked, doing so could have affected others with the same
4308 * id, and we can't check for that because we lost the id when
4309 * we converted to a PTR_TO_MAP_VALUE.
4311 if (rcur
->type
!= PTR_TO_MAP_VALUE_OR_NULL
)
4313 if (memcmp(rold
, rcur
, offsetof(struct bpf_reg_state
, id
)))
4315 /* Check our ids match any regs they're supposed to */
4316 return check_ids(rold
->id
, rcur
->id
, idmap
);
4317 case PTR_TO_PACKET_META
:
4319 if (rcur
->type
!= rold
->type
)
4321 /* We must have at least as much range as the old ptr
4322 * did, so that any accesses which were safe before are
4323 * still safe. This is true even if old range < old off,
4324 * since someone could have accessed through (ptr - k), or
4325 * even done ptr -= k in a register, to get a safe access.
4327 if (rold
->range
> rcur
->range
)
4329 /* If the offsets don't match, we can't trust our alignment;
4330 * nor can we be sure that we won't fall out of range.
4332 if (rold
->off
!= rcur
->off
)
4334 /* id relations must be preserved */
4335 if (rold
->id
&& !check_ids(rold
->id
, rcur
->id
, idmap
))
4337 /* new val must satisfy old val knowledge */
4338 return range_within(rold
, rcur
) &&
4339 tnum_in(rold
->var_off
, rcur
->var_off
);
4341 case CONST_PTR_TO_MAP
:
4342 case PTR_TO_PACKET_END
:
4343 /* Only valid matches are exact, which memcmp() above
4344 * would have accepted
4347 /* Don't know what's going on, just say it's not safe */
4351 /* Shouldn't get here; if we do, say it's not safe */
4356 static bool stacksafe(struct bpf_func_state
*old
,
4357 struct bpf_func_state
*cur
,
4358 struct idpair
*idmap
)
4362 /* if explored stack has more populated slots than current stack
4363 * such stacks are not equivalent
4365 if (old
->allocated_stack
> cur
->allocated_stack
)
4368 /* walk slots of the explored stack and ignore any additional
4369 * slots in the current stack, since explored(safe) state
4372 for (i
= 0; i
< old
->allocated_stack
; i
++) {
4373 spi
= i
/ BPF_REG_SIZE
;
4375 if (!(old
->stack
[spi
].spilled_ptr
.live
& REG_LIVE_READ
))
4376 /* explored state didn't use this */
4379 if (old
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] == STACK_INVALID
)
4381 /* if old state was safe with misc data in the stack
4382 * it will be safe with zero-initialized stack.
4383 * The opposite is not true
4385 if (old
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] == STACK_MISC
&&
4386 cur
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] == STACK_ZERO
)
4388 if (old
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] !=
4389 cur
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
])
4390 /* Ex: old explored (safe) state has STACK_SPILL in
4391 * this stack slot, but current has has STACK_MISC ->
4392 * this verifier states are not equivalent,
4393 * return false to continue verification of this path
4396 if (i
% BPF_REG_SIZE
)
4398 if (old
->stack
[spi
].slot_type
[0] != STACK_SPILL
)
4400 if (!regsafe(&old
->stack
[spi
].spilled_ptr
,
4401 &cur
->stack
[spi
].spilled_ptr
,
4403 /* when explored and current stack slot are both storing
4404 * spilled registers, check that stored pointers types
4405 * are the same as well.
4406 * Ex: explored safe path could have stored
4407 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4408 * but current path has stored:
4409 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4410 * such verifier states are not equivalent.
4411 * return false to continue verification of this path
4418 /* compare two verifier states
4420 * all states stored in state_list are known to be valid, since
4421 * verifier reached 'bpf_exit' instruction through them
4423 * this function is called when verifier exploring different branches of
4424 * execution popped from the state stack. If it sees an old state that has
4425 * more strict register state and more strict stack state then this execution
4426 * branch doesn't need to be explored further, since verifier already
4427 * concluded that more strict state leads to valid finish.
4429 * Therefore two states are equivalent if register state is more conservative
4430 * and explored stack state is more conservative than the current one.
4433 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4434 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4436 * In other words if current stack state (one being explored) has more
4437 * valid slots than old one that already passed validation, it means
4438 * the verifier can stop exploring and conclude that current state is valid too
4440 * Similarly with registers. If explored state has register type as invalid
4441 * whereas register type in current state is meaningful, it means that
4442 * the current state will reach 'bpf_exit' instruction safely
4444 static bool func_states_equal(struct bpf_func_state
*old
,
4445 struct bpf_func_state
*cur
)
4447 struct idpair
*idmap
;
4451 idmap
= kcalloc(ID_MAP_SIZE
, sizeof(struct idpair
), GFP_KERNEL
);
4452 /* If we failed to allocate the idmap, just say it's not safe */
4456 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
4457 if (!regsafe(&old
->regs
[i
], &cur
->regs
[i
], idmap
))
4461 if (!stacksafe(old
, cur
, idmap
))
4469 static bool states_equal(struct bpf_verifier_env
*env
,
4470 struct bpf_verifier_state
*old
,
4471 struct bpf_verifier_state
*cur
)
4475 if (old
->curframe
!= cur
->curframe
)
4478 /* for states to be equal callsites have to be the same
4479 * and all frame states need to be equivalent
4481 for (i
= 0; i
<= old
->curframe
; i
++) {
4482 if (old
->frame
[i
]->callsite
!= cur
->frame
[i
]->callsite
)
4484 if (!func_states_equal(old
->frame
[i
], cur
->frame
[i
]))
4490 /* A write screens off any subsequent reads; but write marks come from the
4491 * straight-line code between a state and its parent. When we arrive at an
4492 * equivalent state (jump target or such) we didn't arrive by the straight-line
4493 * code, so read marks in the state must propagate to the parent regardless
4494 * of the state's write marks. That's what 'parent == state->parent' comparison
4495 * in mark_reg_read() and mark_stack_slot_read() is for.
4497 static int propagate_liveness(struct bpf_verifier_env
*env
,
4498 const struct bpf_verifier_state
*vstate
,
4499 struct bpf_verifier_state
*vparent
)
4501 int i
, frame
, err
= 0;
4502 struct bpf_func_state
*state
, *parent
;
4504 if (vparent
->curframe
!= vstate
->curframe
) {
4505 WARN(1, "propagate_live: parent frame %d current frame %d\n",
4506 vparent
->curframe
, vstate
->curframe
);
4509 /* Propagate read liveness of registers... */
4510 BUILD_BUG_ON(BPF_REG_FP
+ 1 != MAX_BPF_REG
);
4511 /* We don't need to worry about FP liveness because it's read-only */
4512 for (i
= 0; i
< BPF_REG_FP
; i
++) {
4513 if (vparent
->frame
[vparent
->curframe
]->regs
[i
].live
& REG_LIVE_READ
)
4515 if (vstate
->frame
[vstate
->curframe
]->regs
[i
].live
& REG_LIVE_READ
) {
4516 err
= mark_reg_read(env
, vstate
, vparent
, i
);
4522 /* ... and stack slots */
4523 for (frame
= 0; frame
<= vstate
->curframe
; frame
++) {
4524 state
= vstate
->frame
[frame
];
4525 parent
= vparent
->frame
[frame
];
4526 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
&&
4527 i
< parent
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
4528 if (parent
->stack
[i
].spilled_ptr
.live
& REG_LIVE_READ
)
4530 if (state
->stack
[i
].spilled_ptr
.live
& REG_LIVE_READ
)
4531 mark_stack_slot_read(env
, vstate
, vparent
, i
, frame
);
4537 static int is_state_visited(struct bpf_verifier_env
*env
, int insn_idx
)
4539 struct bpf_verifier_state_list
*new_sl
;
4540 struct bpf_verifier_state_list
*sl
;
4541 struct bpf_verifier_state
*cur
= env
->cur_state
;
4544 sl
= env
->explored_states
[insn_idx
];
4546 /* this 'insn_idx' instruction wasn't marked, so we will not
4547 * be doing state search here
4551 while (sl
!= STATE_LIST_MARK
) {
4552 if (states_equal(env
, &sl
->state
, cur
)) {
4553 /* reached equivalent register/stack state,
4555 * Registers read by the continuation are read by us.
4556 * If we have any write marks in env->cur_state, they
4557 * will prevent corresponding reads in the continuation
4558 * from reaching our parent (an explored_state). Our
4559 * own state will get the read marks recorded, but
4560 * they'll be immediately forgotten as we're pruning
4561 * this state and will pop a new one.
4563 err
= propagate_liveness(env
, &sl
->state
, cur
);
4571 /* there were no equivalent states, remember current one.
4572 * technically the current state is not proven to be safe yet,
4573 * but it will either reach outer most bpf_exit (which means it's safe)
4574 * or it will be rejected. Since there are no loops, we won't be
4575 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4576 * again on the way to bpf_exit
4578 new_sl
= kzalloc(sizeof(struct bpf_verifier_state_list
), GFP_KERNEL
);
4582 /* add new state to the head of linked list */
4583 err
= copy_verifier_state(&new_sl
->state
, cur
);
4585 free_verifier_state(&new_sl
->state
, false);
4589 new_sl
->next
= env
->explored_states
[insn_idx
];
4590 env
->explored_states
[insn_idx
] = new_sl
;
4591 /* connect new state to parentage chain */
4592 cur
->parent
= &new_sl
->state
;
4593 /* clear write marks in current state: the writes we did are not writes
4594 * our child did, so they don't screen off its reads from us.
4595 * (There are no read marks in current state, because reads always mark
4596 * their parent and current state never has children yet. Only
4597 * explored_states can get read marks.)
4599 for (i
= 0; i
< BPF_REG_FP
; i
++)
4600 cur
->frame
[cur
->curframe
]->regs
[i
].live
= REG_LIVE_NONE
;
4602 /* all stack frames are accessible from callee, clear them all */
4603 for (j
= 0; j
<= cur
->curframe
; j
++) {
4604 struct bpf_func_state
*frame
= cur
->frame
[j
];
4606 for (i
= 0; i
< frame
->allocated_stack
/ BPF_REG_SIZE
; i
++)
4607 frame
->stack
[i
].spilled_ptr
.live
= REG_LIVE_NONE
;
4612 static int do_check(struct bpf_verifier_env
*env
)
4614 struct bpf_verifier_state
*state
;
4615 struct bpf_insn
*insns
= env
->prog
->insnsi
;
4616 struct bpf_reg_state
*regs
;
4617 int insn_cnt
= env
->prog
->len
, i
;
4618 int insn_idx
, prev_insn_idx
= 0;
4619 int insn_processed
= 0;
4620 bool do_print_state
= false;
4622 state
= kzalloc(sizeof(struct bpf_verifier_state
), GFP_KERNEL
);
4625 state
->curframe
= 0;
4626 state
->parent
= NULL
;
4627 state
->frame
[0] = kzalloc(sizeof(struct bpf_func_state
), GFP_KERNEL
);
4628 if (!state
->frame
[0]) {
4632 env
->cur_state
= state
;
4633 init_func_state(env
, state
->frame
[0],
4634 BPF_MAIN_FUNC
/* callsite */,
4636 0 /* subprogno, zero == main subprog */);
4639 struct bpf_insn
*insn
;
4643 if (insn_idx
>= insn_cnt
) {
4644 verbose(env
, "invalid insn idx %d insn_cnt %d\n",
4645 insn_idx
, insn_cnt
);
4649 insn
= &insns
[insn_idx
];
4650 class = BPF_CLASS(insn
->code
);
4652 if (++insn_processed
> BPF_COMPLEXITY_LIMIT_INSNS
) {
4654 "BPF program is too large. Processed %d insn\n",
4659 err
= is_state_visited(env
, insn_idx
);
4663 /* found equivalent state, can prune the search */
4664 if (env
->log
.level
) {
4666 verbose(env
, "\nfrom %d to %d: safe\n",
4667 prev_insn_idx
, insn_idx
);
4669 verbose(env
, "%d: safe\n", insn_idx
);
4671 goto process_bpf_exit
;
4677 if (env
->log
.level
> 1 || (env
->log
.level
&& do_print_state
)) {
4678 if (env
->log
.level
> 1)
4679 verbose(env
, "%d:", insn_idx
);
4681 verbose(env
, "\nfrom %d to %d:",
4682 prev_insn_idx
, insn_idx
);
4683 print_verifier_state(env
, state
->frame
[state
->curframe
]);
4684 do_print_state
= false;
4687 if (env
->log
.level
) {
4688 const struct bpf_insn_cbs cbs
= {
4689 .cb_print
= verbose
,
4690 .private_data
= env
,
4693 verbose(env
, "%d: ", insn_idx
);
4694 print_bpf_insn(&cbs
, insn
, env
->allow_ptr_leaks
);
4697 if (bpf_prog_is_dev_bound(env
->prog
->aux
)) {
4698 err
= bpf_prog_offload_verify_insn(env
, insn_idx
,
4704 regs
= cur_regs(env
);
4705 env
->insn_aux_data
[insn_idx
].seen
= true;
4706 if (class == BPF_ALU
|| class == BPF_ALU64
) {
4707 err
= check_alu_op(env
, insn
);
4711 } else if (class == BPF_LDX
) {
4712 enum bpf_reg_type
*prev_src_type
, src_reg_type
;
4714 /* check for reserved fields is already done */
4716 /* check src operand */
4717 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
4721 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP_NO_MARK
);
4725 src_reg_type
= regs
[insn
->src_reg
].type
;
4727 /* check that memory (src_reg + off) is readable,
4728 * the state of dst_reg will be updated by this func
4730 err
= check_mem_access(env
, insn_idx
, insn
->src_reg
, insn
->off
,
4731 BPF_SIZE(insn
->code
), BPF_READ
,
4732 insn
->dst_reg
, false);
4736 prev_src_type
= &env
->insn_aux_data
[insn_idx
].ptr_type
;
4738 if (*prev_src_type
== NOT_INIT
) {
4740 * dst_reg = *(u32 *)(src_reg + off)
4741 * save type to validate intersecting paths
4743 *prev_src_type
= src_reg_type
;
4745 } else if (src_reg_type
!= *prev_src_type
&&
4746 (src_reg_type
== PTR_TO_CTX
||
4747 *prev_src_type
== PTR_TO_CTX
)) {
4748 /* ABuser program is trying to use the same insn
4749 * dst_reg = *(u32*) (src_reg + off)
4750 * with different pointer types:
4751 * src_reg == ctx in one branch and
4752 * src_reg == stack|map in some other branch.
4755 verbose(env
, "same insn cannot be used with different pointers\n");
4759 } else if (class == BPF_STX
) {
4760 enum bpf_reg_type
*prev_dst_type
, dst_reg_type
;
4762 if (BPF_MODE(insn
->code
) == BPF_XADD
) {
4763 err
= check_xadd(env
, insn_idx
, insn
);
4770 /* check src1 operand */
4771 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
4774 /* check src2 operand */
4775 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
4779 dst_reg_type
= regs
[insn
->dst_reg
].type
;
4781 /* check that memory (dst_reg + off) is writeable */
4782 err
= check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
4783 BPF_SIZE(insn
->code
), BPF_WRITE
,
4784 insn
->src_reg
, false);
4788 prev_dst_type
= &env
->insn_aux_data
[insn_idx
].ptr_type
;
4790 if (*prev_dst_type
== NOT_INIT
) {
4791 *prev_dst_type
= dst_reg_type
;
4792 } else if (dst_reg_type
!= *prev_dst_type
&&
4793 (dst_reg_type
== PTR_TO_CTX
||
4794 *prev_dst_type
== PTR_TO_CTX
)) {
4795 verbose(env
, "same insn cannot be used with different pointers\n");
4799 } else if (class == BPF_ST
) {
4800 if (BPF_MODE(insn
->code
) != BPF_MEM
||
4801 insn
->src_reg
!= BPF_REG_0
) {
4802 verbose(env
, "BPF_ST uses reserved fields\n");
4805 /* check src operand */
4806 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
4810 if (is_ctx_reg(env
, insn
->dst_reg
)) {
4811 verbose(env
, "BPF_ST stores into R%d context is not allowed\n",
4816 /* check that memory (dst_reg + off) is writeable */
4817 err
= check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
4818 BPF_SIZE(insn
->code
), BPF_WRITE
,
4823 } else if (class == BPF_JMP
) {
4824 u8 opcode
= BPF_OP(insn
->code
);
4826 if (opcode
== BPF_CALL
) {
4827 if (BPF_SRC(insn
->code
) != BPF_K
||
4829 (insn
->src_reg
!= BPF_REG_0
&&
4830 insn
->src_reg
!= BPF_PSEUDO_CALL
) ||
4831 insn
->dst_reg
!= BPF_REG_0
) {
4832 verbose(env
, "BPF_CALL uses reserved fields\n");
4836 if (insn
->src_reg
== BPF_PSEUDO_CALL
)
4837 err
= check_func_call(env
, insn
, &insn_idx
);
4839 err
= check_helper_call(env
, insn
->imm
, insn_idx
);
4843 } else if (opcode
== BPF_JA
) {
4844 if (BPF_SRC(insn
->code
) != BPF_K
||
4846 insn
->src_reg
!= BPF_REG_0
||
4847 insn
->dst_reg
!= BPF_REG_0
) {
4848 verbose(env
, "BPF_JA uses reserved fields\n");
4852 insn_idx
+= insn
->off
+ 1;
4855 } else if (opcode
== BPF_EXIT
) {
4856 if (BPF_SRC(insn
->code
) != BPF_K
||
4858 insn
->src_reg
!= BPF_REG_0
||
4859 insn
->dst_reg
!= BPF_REG_0
) {
4860 verbose(env
, "BPF_EXIT uses reserved fields\n");
4864 if (state
->curframe
) {
4865 /* exit from nested function */
4866 prev_insn_idx
= insn_idx
;
4867 err
= prepare_func_exit(env
, &insn_idx
);
4870 do_print_state
= true;
4874 /* eBPF calling convetion is such that R0 is used
4875 * to return the value from eBPF program.
4876 * Make sure that it's readable at this time
4877 * of bpf_exit, which means that program wrote
4878 * something into it earlier
4880 err
= check_reg_arg(env
, BPF_REG_0
, SRC_OP
);
4884 if (is_pointer_value(env
, BPF_REG_0
)) {
4885 verbose(env
, "R0 leaks addr as return value\n");
4889 err
= check_return_code(env
);
4893 err
= pop_stack(env
, &prev_insn_idx
, &insn_idx
);
4899 do_print_state
= true;
4903 err
= check_cond_jmp_op(env
, insn
, &insn_idx
);
4907 } else if (class == BPF_LD
) {
4908 u8 mode
= BPF_MODE(insn
->code
);
4910 if (mode
== BPF_ABS
|| mode
== BPF_IND
) {
4911 err
= check_ld_abs(env
, insn
);
4915 } else if (mode
== BPF_IMM
) {
4916 err
= check_ld_imm(env
, insn
);
4921 env
->insn_aux_data
[insn_idx
].seen
= true;
4923 verbose(env
, "invalid BPF_LD mode\n");
4927 verbose(env
, "unknown insn class %d\n", class);
4934 verbose(env
, "processed %d insns (limit %d), stack depth ",
4935 insn_processed
, BPF_COMPLEXITY_LIMIT_INSNS
);
4936 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
4937 u32 depth
= env
->subprog_info
[i
].stack_depth
;
4939 verbose(env
, "%d", depth
);
4940 if (i
+ 1 < env
->subprog_cnt
)
4944 env
->prog
->aux
->stack_depth
= env
->subprog_info
[0].stack_depth
;
4948 static int check_map_prealloc(struct bpf_map
*map
)
4950 return (map
->map_type
!= BPF_MAP_TYPE_HASH
&&
4951 map
->map_type
!= BPF_MAP_TYPE_PERCPU_HASH
&&
4952 map
->map_type
!= BPF_MAP_TYPE_HASH_OF_MAPS
) ||
4953 !(map
->map_flags
& BPF_F_NO_PREALLOC
);
4956 static int check_map_prog_compatibility(struct bpf_verifier_env
*env
,
4957 struct bpf_map
*map
,
4958 struct bpf_prog
*prog
)
4961 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4962 * preallocated hash maps, since doing memory allocation
4963 * in overflow_handler can crash depending on where nmi got
4966 if (prog
->type
== BPF_PROG_TYPE_PERF_EVENT
) {
4967 if (!check_map_prealloc(map
)) {
4968 verbose(env
, "perf_event programs can only use preallocated hash map\n");
4971 if (map
->inner_map_meta
&&
4972 !check_map_prealloc(map
->inner_map_meta
)) {
4973 verbose(env
, "perf_event programs can only use preallocated inner hash map\n");
4978 if ((bpf_prog_is_dev_bound(prog
->aux
) || bpf_map_is_dev_bound(map
)) &&
4979 !bpf_offload_dev_match(prog
, map
)) {
4980 verbose(env
, "offload device mismatch between prog and map\n");
4987 /* look for pseudo eBPF instructions that access map FDs and
4988 * replace them with actual map pointers
4990 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env
*env
)
4992 struct bpf_insn
*insn
= env
->prog
->insnsi
;
4993 int insn_cnt
= env
->prog
->len
;
4996 err
= bpf_prog_calc_tag(env
->prog
);
5000 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
5001 if (BPF_CLASS(insn
->code
) == BPF_LDX
&&
5002 (BPF_MODE(insn
->code
) != BPF_MEM
|| insn
->imm
!= 0)) {
5003 verbose(env
, "BPF_LDX uses reserved fields\n");
5007 if (BPF_CLASS(insn
->code
) == BPF_STX
&&
5008 ((BPF_MODE(insn
->code
) != BPF_MEM
&&
5009 BPF_MODE(insn
->code
) != BPF_XADD
) || insn
->imm
!= 0)) {
5010 verbose(env
, "BPF_STX uses reserved fields\n");
5014 if (insn
[0].code
== (BPF_LD
| BPF_IMM
| BPF_DW
)) {
5015 struct bpf_map
*map
;
5018 if (i
== insn_cnt
- 1 || insn
[1].code
!= 0 ||
5019 insn
[1].dst_reg
!= 0 || insn
[1].src_reg
!= 0 ||
5021 verbose(env
, "invalid bpf_ld_imm64 insn\n");
5025 if (insn
->src_reg
== 0)
5026 /* valid generic load 64-bit imm */
5029 if (insn
->src_reg
!= BPF_PSEUDO_MAP_FD
) {
5031 "unrecognized bpf_ld_imm64 insn\n");
5035 f
= fdget(insn
->imm
);
5036 map
= __bpf_map_get(f
);
5038 verbose(env
, "fd %d is not pointing to valid bpf_map\n",
5040 return PTR_ERR(map
);
5043 err
= check_map_prog_compatibility(env
, map
, env
->prog
);
5049 /* store map pointer inside BPF_LD_IMM64 instruction */
5050 insn
[0].imm
= (u32
) (unsigned long) map
;
5051 insn
[1].imm
= ((u64
) (unsigned long) map
) >> 32;
5053 /* check whether we recorded this map already */
5054 for (j
= 0; j
< env
->used_map_cnt
; j
++)
5055 if (env
->used_maps
[j
] == map
) {
5060 if (env
->used_map_cnt
>= MAX_USED_MAPS
) {
5065 /* hold the map. If the program is rejected by verifier,
5066 * the map will be released by release_maps() or it
5067 * will be used by the valid program until it's unloaded
5068 * and all maps are released in free_used_maps()
5070 map
= bpf_map_inc(map
, false);
5073 return PTR_ERR(map
);
5075 env
->used_maps
[env
->used_map_cnt
++] = map
;
5084 /* Basic sanity check before we invest more work here. */
5085 if (!bpf_opcode_in_insntable(insn
->code
)) {
5086 verbose(env
, "unknown opcode %02x\n", insn
->code
);
5091 /* now all pseudo BPF_LD_IMM64 instructions load valid
5092 * 'struct bpf_map *' into a register instead of user map_fd.
5093 * These pointers will be used later by verifier to validate map access.
5098 /* drop refcnt of maps used by the rejected program */
5099 static void release_maps(struct bpf_verifier_env
*env
)
5103 for (i
= 0; i
< env
->used_map_cnt
; i
++)
5104 bpf_map_put(env
->used_maps
[i
]);
5107 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5108 static void convert_pseudo_ld_imm64(struct bpf_verifier_env
*env
)
5110 struct bpf_insn
*insn
= env
->prog
->insnsi
;
5111 int insn_cnt
= env
->prog
->len
;
5114 for (i
= 0; i
< insn_cnt
; i
++, insn
++)
5115 if (insn
->code
== (BPF_LD
| BPF_IMM
| BPF_DW
))
5119 /* single env->prog->insni[off] instruction was replaced with the range
5120 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5121 * [0, off) and [off, end) to new locations, so the patched range stays zero
5123 static int adjust_insn_aux_data(struct bpf_verifier_env
*env
, u32 prog_len
,
5126 struct bpf_insn_aux_data
*new_data
, *old_data
= env
->insn_aux_data
;
5131 new_data
= vzalloc(sizeof(struct bpf_insn_aux_data
) * prog_len
);
5134 memcpy(new_data
, old_data
, sizeof(struct bpf_insn_aux_data
) * off
);
5135 memcpy(new_data
+ off
+ cnt
- 1, old_data
+ off
,
5136 sizeof(struct bpf_insn_aux_data
) * (prog_len
- off
- cnt
+ 1));
5137 for (i
= off
; i
< off
+ cnt
- 1; i
++)
5138 new_data
[i
].seen
= true;
5139 env
->insn_aux_data
= new_data
;
5144 static void adjust_subprog_starts(struct bpf_verifier_env
*env
, u32 off
, u32 len
)
5150 /* NOTE: fake 'exit' subprog should be updated as well. */
5151 for (i
= 0; i
<= env
->subprog_cnt
; i
++) {
5152 if (env
->subprog_info
[i
].start
< off
)
5154 env
->subprog_info
[i
].start
+= len
- 1;
5158 static struct bpf_prog
*bpf_patch_insn_data(struct bpf_verifier_env
*env
, u32 off
,
5159 const struct bpf_insn
*patch
, u32 len
)
5161 struct bpf_prog
*new_prog
;
5163 new_prog
= bpf_patch_insn_single(env
->prog
, off
, patch
, len
);
5166 if (adjust_insn_aux_data(env
, new_prog
->len
, off
, len
))
5168 adjust_subprog_starts(env
, off
, len
);
5172 /* The verifier does more data flow analysis than llvm and will not
5173 * explore branches that are dead at run time. Malicious programs can
5174 * have dead code too. Therefore replace all dead at-run-time code
5177 * Just nops are not optimal, e.g. if they would sit at the end of the
5178 * program and through another bug we would manage to jump there, then
5179 * we'd execute beyond program memory otherwise. Returning exception
5180 * code also wouldn't work since we can have subprogs where the dead
5181 * code could be located.
5183 static void sanitize_dead_code(struct bpf_verifier_env
*env
)
5185 struct bpf_insn_aux_data
*aux_data
= env
->insn_aux_data
;
5186 struct bpf_insn trap
= BPF_JMP_IMM(BPF_JA
, 0, 0, -1);
5187 struct bpf_insn
*insn
= env
->prog
->insnsi
;
5188 const int insn_cnt
= env
->prog
->len
;
5191 for (i
= 0; i
< insn_cnt
; i
++) {
5192 if (aux_data
[i
].seen
)
5194 memcpy(insn
+ i
, &trap
, sizeof(trap
));
5198 /* convert load instructions that access fields of 'struct __sk_buff'
5199 * into sequence of instructions that access fields of 'struct sk_buff'
5201 static int convert_ctx_accesses(struct bpf_verifier_env
*env
)
5203 const struct bpf_verifier_ops
*ops
= env
->ops
;
5204 int i
, cnt
, size
, ctx_field_size
, delta
= 0;
5205 const int insn_cnt
= env
->prog
->len
;
5206 struct bpf_insn insn_buf
[16], *insn
;
5207 struct bpf_prog
*new_prog
;
5208 enum bpf_access_type type
;
5209 bool is_narrower_load
;
5212 if (ops
->gen_prologue
) {
5213 cnt
= ops
->gen_prologue(insn_buf
, env
->seen_direct_write
,
5215 if (cnt
>= ARRAY_SIZE(insn_buf
)) {
5216 verbose(env
, "bpf verifier is misconfigured\n");
5219 new_prog
= bpf_patch_insn_data(env
, 0, insn_buf
, cnt
);
5223 env
->prog
= new_prog
;
5228 if (!ops
->convert_ctx_access
|| bpf_prog_is_dev_bound(env
->prog
->aux
))
5231 insn
= env
->prog
->insnsi
+ delta
;
5233 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
5234 if (insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_B
) ||
5235 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_H
) ||
5236 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_W
) ||
5237 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_DW
))
5239 else if (insn
->code
== (BPF_STX
| BPF_MEM
| BPF_B
) ||
5240 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_H
) ||
5241 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_W
) ||
5242 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_DW
))
5247 if (env
->insn_aux_data
[i
+ delta
].ptr_type
!= PTR_TO_CTX
)
5250 ctx_field_size
= env
->insn_aux_data
[i
+ delta
].ctx_field_size
;
5251 size
= BPF_LDST_BYTES(insn
);
5253 /* If the read access is a narrower load of the field,
5254 * convert to a 4/8-byte load, to minimum program type specific
5255 * convert_ctx_access changes. If conversion is successful,
5256 * we will apply proper mask to the result.
5258 is_narrower_load
= size
< ctx_field_size
;
5259 if (is_narrower_load
) {
5260 u32 off
= insn
->off
;
5263 if (type
== BPF_WRITE
) {
5264 verbose(env
, "bpf verifier narrow ctx access misconfigured\n");
5269 if (ctx_field_size
== 4)
5271 else if (ctx_field_size
== 8)
5274 insn
->off
= off
& ~(ctx_field_size
- 1);
5275 insn
->code
= BPF_LDX
| BPF_MEM
| size_code
;
5279 cnt
= ops
->convert_ctx_access(type
, insn
, insn_buf
, env
->prog
,
5281 if (cnt
== 0 || cnt
>= ARRAY_SIZE(insn_buf
) ||
5282 (ctx_field_size
&& !target_size
)) {
5283 verbose(env
, "bpf verifier is misconfigured\n");
5287 if (is_narrower_load
&& size
< target_size
) {
5288 if (ctx_field_size
<= 4)
5289 insn_buf
[cnt
++] = BPF_ALU32_IMM(BPF_AND
, insn
->dst_reg
,
5290 (1 << size
* 8) - 1);
5292 insn_buf
[cnt
++] = BPF_ALU64_IMM(BPF_AND
, insn
->dst_reg
,
5293 (1 << size
* 8) - 1);
5296 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
5302 /* keep walking new program and skip insns we just inserted */
5303 env
->prog
= new_prog
;
5304 insn
= new_prog
->insnsi
+ i
+ delta
;
5310 static int jit_subprogs(struct bpf_verifier_env
*env
)
5312 struct bpf_prog
*prog
= env
->prog
, **func
, *tmp
;
5313 int i
, j
, subprog_start
, subprog_end
= 0, len
, subprog
;
5314 struct bpf_insn
*insn
;
5318 if (env
->subprog_cnt
<= 1)
5321 for (i
= 0, insn
= prog
->insnsi
; i
< prog
->len
; i
++, insn
++) {
5322 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
5323 insn
->src_reg
!= BPF_PSEUDO_CALL
)
5325 subprog
= find_subprog(env
, i
+ insn
->imm
+ 1);
5327 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5331 /* temporarily remember subprog id inside insn instead of
5332 * aux_data, since next loop will split up all insns into funcs
5334 insn
->off
= subprog
;
5335 /* remember original imm in case JIT fails and fallback
5336 * to interpreter will be needed
5338 env
->insn_aux_data
[i
].call_imm
= insn
->imm
;
5339 /* point imm to __bpf_call_base+1 from JITs point of view */
5343 func
= kzalloc(sizeof(prog
) * env
->subprog_cnt
, GFP_KERNEL
);
5347 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
5348 subprog_start
= subprog_end
;
5349 subprog_end
= env
->subprog_info
[i
+ 1].start
;
5351 len
= subprog_end
- subprog_start
;
5352 func
[i
] = bpf_prog_alloc(bpf_prog_size(len
), GFP_USER
);
5355 memcpy(func
[i
]->insnsi
, &prog
->insnsi
[subprog_start
],
5356 len
* sizeof(struct bpf_insn
));
5357 func
[i
]->type
= prog
->type
;
5359 if (bpf_prog_calc_tag(func
[i
]))
5361 func
[i
]->is_func
= 1;
5362 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5363 * Long term would need debug info to populate names
5365 func
[i
]->aux
->name
[0] = 'F';
5366 func
[i
]->aux
->stack_depth
= env
->subprog_info
[i
].stack_depth
;
5367 func
[i
]->jit_requested
= 1;
5368 func
[i
] = bpf_int_jit_compile(func
[i
]);
5369 if (!func
[i
]->jited
) {
5375 /* at this point all bpf functions were successfully JITed
5376 * now populate all bpf_calls with correct addresses and
5377 * run last pass of JIT
5379 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
5380 insn
= func
[i
]->insnsi
;
5381 for (j
= 0; j
< func
[i
]->len
; j
++, insn
++) {
5382 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
5383 insn
->src_reg
!= BPF_PSEUDO_CALL
)
5385 subprog
= insn
->off
;
5387 insn
->imm
= (u64 (*)(u64
, u64
, u64
, u64
, u64
))
5388 func
[subprog
]->bpf_func
-
5392 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
5393 old_bpf_func
= func
[i
]->bpf_func
;
5394 tmp
= bpf_int_jit_compile(func
[i
]);
5395 if (tmp
!= func
[i
] || func
[i
]->bpf_func
!= old_bpf_func
) {
5396 verbose(env
, "JIT doesn't support bpf-to-bpf calls\n");
5403 /* finally lock prog and jit images for all functions and
5406 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
5407 bpf_prog_lock_ro(func
[i
]);
5408 bpf_prog_kallsyms_add(func
[i
]);
5411 /* Last step: make now unused interpreter insns from main
5412 * prog consistent for later dump requests, so they can
5413 * later look the same as if they were interpreted only.
5415 for (i
= 0, insn
= prog
->insnsi
; i
< prog
->len
; i
++, insn
++) {
5418 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
5419 insn
->src_reg
!= BPF_PSEUDO_CALL
)
5421 insn
->off
= env
->insn_aux_data
[i
].call_imm
;
5422 subprog
= find_subprog(env
, i
+ insn
->off
+ 1);
5423 addr
= (unsigned long)func
[subprog
]->bpf_func
;
5425 insn
->imm
= (u64 (*)(u64
, u64
, u64
, u64
, u64
))
5426 addr
- __bpf_call_base
;
5430 prog
->bpf_func
= func
[0]->bpf_func
;
5431 prog
->aux
->func
= func
;
5432 prog
->aux
->func_cnt
= env
->subprog_cnt
;
5435 for (i
= 0; i
< env
->subprog_cnt
; i
++)
5437 bpf_jit_free(func
[i
]);
5439 /* cleanup main prog to be interpreted */
5440 prog
->jit_requested
= 0;
5441 for (i
= 0, insn
= prog
->insnsi
; i
< prog
->len
; i
++, insn
++) {
5442 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
5443 insn
->src_reg
!= BPF_PSEUDO_CALL
)
5446 insn
->imm
= env
->insn_aux_data
[i
].call_imm
;
5451 static int fixup_call_args(struct bpf_verifier_env
*env
)
5453 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5454 struct bpf_prog
*prog
= env
->prog
;
5455 struct bpf_insn
*insn
= prog
->insnsi
;
5461 if (env
->prog
->jit_requested
) {
5462 err
= jit_subprogs(env
);
5466 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5467 for (i
= 0; i
< prog
->len
; i
++, insn
++) {
5468 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
5469 insn
->src_reg
!= BPF_PSEUDO_CALL
)
5471 depth
= get_callee_stack_depth(env
, insn
, i
);
5474 bpf_patch_call_args(insn
, depth
);
5481 /* fixup insn->imm field of bpf_call instructions
5482 * and inline eligible helpers as explicit sequence of BPF instructions
5484 * this function is called after eBPF program passed verification
5486 static int fixup_bpf_calls(struct bpf_verifier_env
*env
)
5488 struct bpf_prog
*prog
= env
->prog
;
5489 struct bpf_insn
*insn
= prog
->insnsi
;
5490 const struct bpf_func_proto
*fn
;
5491 const int insn_cnt
= prog
->len
;
5492 struct bpf_insn insn_buf
[16];
5493 struct bpf_prog
*new_prog
;
5494 struct bpf_map
*map_ptr
;
5495 int i
, cnt
, delta
= 0;
5497 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
5498 if (insn
->code
== (BPF_ALU64
| BPF_MOD
| BPF_X
) ||
5499 insn
->code
== (BPF_ALU64
| BPF_DIV
| BPF_X
) ||
5500 insn
->code
== (BPF_ALU
| BPF_MOD
| BPF_X
) ||
5501 insn
->code
== (BPF_ALU
| BPF_DIV
| BPF_X
)) {
5502 bool is64
= BPF_CLASS(insn
->code
) == BPF_ALU64
;
5503 struct bpf_insn mask_and_div
[] = {
5504 BPF_MOV32_REG(insn
->src_reg
, insn
->src_reg
),
5506 BPF_JMP_IMM(BPF_JNE
, insn
->src_reg
, 0, 2),
5507 BPF_ALU32_REG(BPF_XOR
, insn
->dst_reg
, insn
->dst_reg
),
5508 BPF_JMP_IMM(BPF_JA
, 0, 0, 1),
5511 struct bpf_insn mask_and_mod
[] = {
5512 BPF_MOV32_REG(insn
->src_reg
, insn
->src_reg
),
5513 /* Rx mod 0 -> Rx */
5514 BPF_JMP_IMM(BPF_JEQ
, insn
->src_reg
, 0, 1),
5517 struct bpf_insn
*patchlet
;
5519 if (insn
->code
== (BPF_ALU64
| BPF_DIV
| BPF_X
) ||
5520 insn
->code
== (BPF_ALU
| BPF_DIV
| BPF_X
)) {
5521 patchlet
= mask_and_div
+ (is64
? 1 : 0);
5522 cnt
= ARRAY_SIZE(mask_and_div
) - (is64
? 1 : 0);
5524 patchlet
= mask_and_mod
+ (is64
? 1 : 0);
5525 cnt
= ARRAY_SIZE(mask_and_mod
) - (is64
? 1 : 0);
5528 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, patchlet
, cnt
);
5533 env
->prog
= prog
= new_prog
;
5534 insn
= new_prog
->insnsi
+ i
+ delta
;
5538 if (BPF_CLASS(insn
->code
) == BPF_LD
&&
5539 (BPF_MODE(insn
->code
) == BPF_ABS
||
5540 BPF_MODE(insn
->code
) == BPF_IND
)) {
5541 cnt
= env
->ops
->gen_ld_abs(insn
, insn_buf
);
5542 if (cnt
== 0 || cnt
>= ARRAY_SIZE(insn_buf
)) {
5543 verbose(env
, "bpf verifier is misconfigured\n");
5547 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
5552 env
->prog
= prog
= new_prog
;
5553 insn
= new_prog
->insnsi
+ i
+ delta
;
5557 if (insn
->code
!= (BPF_JMP
| BPF_CALL
))
5559 if (insn
->src_reg
== BPF_PSEUDO_CALL
)
5562 if (insn
->imm
== BPF_FUNC_get_route_realm
)
5563 prog
->dst_needed
= 1;
5564 if (insn
->imm
== BPF_FUNC_get_prandom_u32
)
5565 bpf_user_rnd_init_once();
5566 if (insn
->imm
== BPF_FUNC_override_return
)
5567 prog
->kprobe_override
= 1;
5568 if (insn
->imm
== BPF_FUNC_tail_call
) {
5569 /* If we tail call into other programs, we
5570 * cannot make any assumptions since they can
5571 * be replaced dynamically during runtime in
5572 * the program array.
5574 prog
->cb_access
= 1;
5575 env
->prog
->aux
->stack_depth
= MAX_BPF_STACK
;
5577 /* mark bpf_tail_call as different opcode to avoid
5578 * conditional branch in the interpeter for every normal
5579 * call and to prevent accidental JITing by JIT compiler
5580 * that doesn't support bpf_tail_call yet
5583 insn
->code
= BPF_JMP
| BPF_TAIL_CALL
;
5585 /* instead of changing every JIT dealing with tail_call
5586 * emit two extra insns:
5587 * if (index >= max_entries) goto out;
5588 * index &= array->index_mask;
5589 * to avoid out-of-bounds cpu speculation
5591 map_ptr
= env
->insn_aux_data
[i
+ delta
].map_ptr
;
5592 if (map_ptr
== BPF_MAP_PTR_POISON
) {
5593 verbose(env
, "tail_call abusing map_ptr\n");
5596 if (!map_ptr
->unpriv_array
)
5598 insn_buf
[0] = BPF_JMP_IMM(BPF_JGE
, BPF_REG_3
,
5599 map_ptr
->max_entries
, 2);
5600 insn_buf
[1] = BPF_ALU32_IMM(BPF_AND
, BPF_REG_3
,
5601 container_of(map_ptr
,
5604 insn_buf
[2] = *insn
;
5606 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
5611 env
->prog
= prog
= new_prog
;
5612 insn
= new_prog
->insnsi
+ i
+ delta
;
5616 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5617 * handlers are currently limited to 64 bit only.
5619 if (prog
->jit_requested
&& BITS_PER_LONG
== 64 &&
5620 insn
->imm
== BPF_FUNC_map_lookup_elem
) {
5621 map_ptr
= env
->insn_aux_data
[i
+ delta
].map_ptr
;
5622 if (map_ptr
== BPF_MAP_PTR_POISON
||
5623 !map_ptr
->ops
->map_gen_lookup
)
5624 goto patch_call_imm
;
5626 cnt
= map_ptr
->ops
->map_gen_lookup(map_ptr
, insn_buf
);
5627 if (cnt
== 0 || cnt
>= ARRAY_SIZE(insn_buf
)) {
5628 verbose(env
, "bpf verifier is misconfigured\n");
5632 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
,
5639 /* keep walking new program and skip insns we just inserted */
5640 env
->prog
= prog
= new_prog
;
5641 insn
= new_prog
->insnsi
+ i
+ delta
;
5645 if (insn
->imm
== BPF_FUNC_redirect_map
) {
5646 /* Note, we cannot use prog directly as imm as subsequent
5647 * rewrites would still change the prog pointer. The only
5648 * stable address we can use is aux, which also works with
5649 * prog clones during blinding.
5651 u64 addr
= (unsigned long)prog
->aux
;
5652 struct bpf_insn r4_ld
[] = {
5653 BPF_LD_IMM64(BPF_REG_4
, addr
),
5656 cnt
= ARRAY_SIZE(r4_ld
);
5658 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, r4_ld
, cnt
);
5663 env
->prog
= prog
= new_prog
;
5664 insn
= new_prog
->insnsi
+ i
+ delta
;
5667 fn
= env
->ops
->get_func_proto(insn
->imm
, env
->prog
);
5668 /* all functions that have prototype and verifier allowed
5669 * programs to call them, must be real in-kernel functions
5673 "kernel subsystem misconfigured func %s#%d\n",
5674 func_id_name(insn
->imm
), insn
->imm
);
5677 insn
->imm
= fn
->func
- __bpf_call_base
;
5683 static void free_states(struct bpf_verifier_env
*env
)
5685 struct bpf_verifier_state_list
*sl
, *sln
;
5688 if (!env
->explored_states
)
5691 for (i
= 0; i
< env
->prog
->len
; i
++) {
5692 sl
= env
->explored_states
[i
];
5695 while (sl
!= STATE_LIST_MARK
) {
5697 free_verifier_state(&sl
->state
, false);
5703 kfree(env
->explored_states
);
5706 int bpf_check(struct bpf_prog
**prog
, union bpf_attr
*attr
)
5708 struct bpf_verifier_env
*env
;
5709 struct bpf_verifier_log
*log
;
5712 /* no program is valid */
5713 if (ARRAY_SIZE(bpf_verifier_ops
) == 0)
5716 /* 'struct bpf_verifier_env' can be global, but since it's not small,
5717 * allocate/free it every time bpf_check() is called
5719 env
= kzalloc(sizeof(struct bpf_verifier_env
), GFP_KERNEL
);
5724 env
->insn_aux_data
= vzalloc(sizeof(struct bpf_insn_aux_data
) *
5727 if (!env
->insn_aux_data
)
5730 env
->ops
= bpf_verifier_ops
[env
->prog
->type
];
5732 /* grab the mutex to protect few globals used by verifier */
5733 mutex_lock(&bpf_verifier_lock
);
5735 if (attr
->log_level
|| attr
->log_buf
|| attr
->log_size
) {
5736 /* user requested verbose verifier output
5737 * and supplied buffer to store the verification trace
5739 log
->level
= attr
->log_level
;
5740 log
->ubuf
= (char __user
*) (unsigned long) attr
->log_buf
;
5741 log
->len_total
= attr
->log_size
;
5744 /* log attributes have to be sane */
5745 if (log
->len_total
< 128 || log
->len_total
> UINT_MAX
>> 8 ||
5746 !log
->level
|| !log
->ubuf
)
5750 env
->strict_alignment
= !!(attr
->prog_flags
& BPF_F_STRICT_ALIGNMENT
);
5751 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
))
5752 env
->strict_alignment
= true;
5754 ret
= replace_map_fd_with_map_ptr(env
);
5756 goto skip_full_check
;
5758 if (bpf_prog_is_dev_bound(env
->prog
->aux
)) {
5759 ret
= bpf_prog_offload_verifier_prep(env
);
5761 goto skip_full_check
;
5764 env
->explored_states
= kcalloc(env
->prog
->len
,
5765 sizeof(struct bpf_verifier_state_list
*),
5768 if (!env
->explored_states
)
5769 goto skip_full_check
;
5771 env
->allow_ptr_leaks
= capable(CAP_SYS_ADMIN
);
5773 ret
= check_cfg(env
);
5775 goto skip_full_check
;
5777 ret
= do_check(env
);
5778 if (env
->cur_state
) {
5779 free_verifier_state(env
->cur_state
, true);
5780 env
->cur_state
= NULL
;
5784 while (!pop_stack(env
, NULL
, NULL
));
5788 sanitize_dead_code(env
);
5791 ret
= check_max_stack_depth(env
);
5794 /* program is valid, convert *(u32*)(ctx + off) accesses */
5795 ret
= convert_ctx_accesses(env
);
5798 ret
= fixup_bpf_calls(env
);
5801 ret
= fixup_call_args(env
);
5803 if (log
->level
&& bpf_verifier_log_full(log
))
5805 if (log
->level
&& !log
->ubuf
) {
5807 goto err_release_maps
;
5810 if (ret
== 0 && env
->used_map_cnt
) {
5811 /* if program passed verifier, update used_maps in bpf_prog_info */
5812 env
->prog
->aux
->used_maps
= kmalloc_array(env
->used_map_cnt
,
5813 sizeof(env
->used_maps
[0]),
5816 if (!env
->prog
->aux
->used_maps
) {
5818 goto err_release_maps
;
5821 memcpy(env
->prog
->aux
->used_maps
, env
->used_maps
,
5822 sizeof(env
->used_maps
[0]) * env
->used_map_cnt
);
5823 env
->prog
->aux
->used_map_cnt
= env
->used_map_cnt
;
5825 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
5826 * bpf_ld_imm64 instructions
5828 convert_pseudo_ld_imm64(env
);
5832 if (!env
->prog
->aux
->used_maps
)
5833 /* if we didn't copy map pointers into bpf_prog_info, release
5834 * them now. Otherwise free_used_maps() will release them.
5839 mutex_unlock(&bpf_verifier_lock
);
5840 vfree(env
->insn_aux_data
);