[MLSXFRM]: Add security context to acquire messages using netlink
[linux/fpc-iii.git] / drivers / scsi / libata-core.c
blob427b73a3886a83e7d0b6b0bc4cf272044db129e7
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include "scsi_priv.h"
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_host.h>
56 #include <linux/libata.h>
57 #include <asm/io.h>
58 #include <asm/semaphore.h>
59 #include <asm/byteorder.h>
61 #include "libata.h"
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static void ata_dev_xfermask(struct ata_device *dev);
73 static unsigned int ata_unique_id = 1;
74 static struct workqueue_struct *ata_wq;
76 struct workqueue_struct *ata_aux_wq;
78 int atapi_enabled = 1;
79 module_param(atapi_enabled, int, 0444);
80 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 int atapi_dmadir = 0;
83 module_param(atapi_dmadir, int, 0444);
84 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86 int libata_fua = 0;
87 module_param_named(fua, libata_fua, int, 0444);
88 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
90 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
91 module_param(ata_probe_timeout, int, 0444);
92 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
94 MODULE_AUTHOR("Jeff Garzik");
95 MODULE_DESCRIPTION("Library module for ATA devices");
96 MODULE_LICENSE("GPL");
97 MODULE_VERSION(DRV_VERSION);
101 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
102 * @tf: Taskfile to convert
103 * @fis: Buffer into which data will output
104 * @pmp: Port multiplier port
106 * Converts a standard ATA taskfile to a Serial ATA
107 * FIS structure (Register - Host to Device).
109 * LOCKING:
110 * Inherited from caller.
113 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
115 fis[0] = 0x27; /* Register - Host to Device FIS */
116 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
117 bit 7 indicates Command FIS */
118 fis[2] = tf->command;
119 fis[3] = tf->feature;
121 fis[4] = tf->lbal;
122 fis[5] = tf->lbam;
123 fis[6] = tf->lbah;
124 fis[7] = tf->device;
126 fis[8] = tf->hob_lbal;
127 fis[9] = tf->hob_lbam;
128 fis[10] = tf->hob_lbah;
129 fis[11] = tf->hob_feature;
131 fis[12] = tf->nsect;
132 fis[13] = tf->hob_nsect;
133 fis[14] = 0;
134 fis[15] = tf->ctl;
136 fis[16] = 0;
137 fis[17] = 0;
138 fis[18] = 0;
139 fis[19] = 0;
143 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
144 * @fis: Buffer from which data will be input
145 * @tf: Taskfile to output
147 * Converts a serial ATA FIS structure to a standard ATA taskfile.
149 * LOCKING:
150 * Inherited from caller.
153 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
155 tf->command = fis[2]; /* status */
156 tf->feature = fis[3]; /* error */
158 tf->lbal = fis[4];
159 tf->lbam = fis[5];
160 tf->lbah = fis[6];
161 tf->device = fis[7];
163 tf->hob_lbal = fis[8];
164 tf->hob_lbam = fis[9];
165 tf->hob_lbah = fis[10];
167 tf->nsect = fis[12];
168 tf->hob_nsect = fis[13];
171 static const u8 ata_rw_cmds[] = {
172 /* pio multi */
173 ATA_CMD_READ_MULTI,
174 ATA_CMD_WRITE_MULTI,
175 ATA_CMD_READ_MULTI_EXT,
176 ATA_CMD_WRITE_MULTI_EXT,
180 ATA_CMD_WRITE_MULTI_FUA_EXT,
181 /* pio */
182 ATA_CMD_PIO_READ,
183 ATA_CMD_PIO_WRITE,
184 ATA_CMD_PIO_READ_EXT,
185 ATA_CMD_PIO_WRITE_EXT,
190 /* dma */
191 ATA_CMD_READ,
192 ATA_CMD_WRITE,
193 ATA_CMD_READ_EXT,
194 ATA_CMD_WRITE_EXT,
198 ATA_CMD_WRITE_FUA_EXT
202 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
203 * @qc: command to examine and configure
205 * Examine the device configuration and tf->flags to calculate
206 * the proper read/write commands and protocol to use.
208 * LOCKING:
209 * caller.
211 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
213 struct ata_taskfile *tf = &qc->tf;
214 struct ata_device *dev = qc->dev;
215 u8 cmd;
217 int index, fua, lba48, write;
219 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
220 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
221 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
223 if (dev->flags & ATA_DFLAG_PIO) {
224 tf->protocol = ATA_PROT_PIO;
225 index = dev->multi_count ? 0 : 8;
226 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
227 /* Unable to use DMA due to host limitation */
228 tf->protocol = ATA_PROT_PIO;
229 index = dev->multi_count ? 0 : 8;
230 } else {
231 tf->protocol = ATA_PROT_DMA;
232 index = 16;
235 cmd = ata_rw_cmds[index + fua + lba48 + write];
236 if (cmd) {
237 tf->command = cmd;
238 return 0;
240 return -1;
244 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
245 * @pio_mask: pio_mask
246 * @mwdma_mask: mwdma_mask
247 * @udma_mask: udma_mask
249 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
250 * unsigned int xfer_mask.
252 * LOCKING:
253 * None.
255 * RETURNS:
256 * Packed xfer_mask.
258 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
259 unsigned int mwdma_mask,
260 unsigned int udma_mask)
262 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
263 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
264 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
268 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
269 * @xfer_mask: xfer_mask to unpack
270 * @pio_mask: resulting pio_mask
271 * @mwdma_mask: resulting mwdma_mask
272 * @udma_mask: resulting udma_mask
274 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
275 * Any NULL distination masks will be ignored.
277 static void ata_unpack_xfermask(unsigned int xfer_mask,
278 unsigned int *pio_mask,
279 unsigned int *mwdma_mask,
280 unsigned int *udma_mask)
282 if (pio_mask)
283 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
284 if (mwdma_mask)
285 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
286 if (udma_mask)
287 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
290 static const struct ata_xfer_ent {
291 int shift, bits;
292 u8 base;
293 } ata_xfer_tbl[] = {
294 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
295 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
296 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
297 { -1, },
301 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
302 * @xfer_mask: xfer_mask of interest
304 * Return matching XFER_* value for @xfer_mask. Only the highest
305 * bit of @xfer_mask is considered.
307 * LOCKING:
308 * None.
310 * RETURNS:
311 * Matching XFER_* value, 0 if no match found.
313 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
315 int highbit = fls(xfer_mask) - 1;
316 const struct ata_xfer_ent *ent;
318 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
319 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
320 return ent->base + highbit - ent->shift;
321 return 0;
325 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
326 * @xfer_mode: XFER_* of interest
328 * Return matching xfer_mask for @xfer_mode.
330 * LOCKING:
331 * None.
333 * RETURNS:
334 * Matching xfer_mask, 0 if no match found.
336 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
338 const struct ata_xfer_ent *ent;
340 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
341 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
342 return 1 << (ent->shift + xfer_mode - ent->base);
343 return 0;
347 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
348 * @xfer_mode: XFER_* of interest
350 * Return matching xfer_shift for @xfer_mode.
352 * LOCKING:
353 * None.
355 * RETURNS:
356 * Matching xfer_shift, -1 if no match found.
358 static int ata_xfer_mode2shift(unsigned int xfer_mode)
360 const struct ata_xfer_ent *ent;
362 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
363 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
364 return ent->shift;
365 return -1;
369 * ata_mode_string - convert xfer_mask to string
370 * @xfer_mask: mask of bits supported; only highest bit counts.
372 * Determine string which represents the highest speed
373 * (highest bit in @modemask).
375 * LOCKING:
376 * None.
378 * RETURNS:
379 * Constant C string representing highest speed listed in
380 * @mode_mask, or the constant C string "<n/a>".
382 static const char *ata_mode_string(unsigned int xfer_mask)
384 static const char * const xfer_mode_str[] = {
385 "PIO0",
386 "PIO1",
387 "PIO2",
388 "PIO3",
389 "PIO4",
390 "MWDMA0",
391 "MWDMA1",
392 "MWDMA2",
393 "UDMA/16",
394 "UDMA/25",
395 "UDMA/33",
396 "UDMA/44",
397 "UDMA/66",
398 "UDMA/100",
399 "UDMA/133",
400 "UDMA7",
402 int highbit;
404 highbit = fls(xfer_mask) - 1;
405 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
406 return xfer_mode_str[highbit];
407 return "<n/a>";
410 static const char *sata_spd_string(unsigned int spd)
412 static const char * const spd_str[] = {
413 "1.5 Gbps",
414 "3.0 Gbps",
417 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
418 return "<unknown>";
419 return spd_str[spd - 1];
422 void ata_dev_disable(struct ata_device *dev)
424 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
425 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
426 dev->class++;
431 * ata_pio_devchk - PATA device presence detection
432 * @ap: ATA channel to examine
433 * @device: Device to examine (starting at zero)
435 * This technique was originally described in
436 * Hale Landis's ATADRVR (www.ata-atapi.com), and
437 * later found its way into the ATA/ATAPI spec.
439 * Write a pattern to the ATA shadow registers,
440 * and if a device is present, it will respond by
441 * correctly storing and echoing back the
442 * ATA shadow register contents.
444 * LOCKING:
445 * caller.
448 static unsigned int ata_pio_devchk(struct ata_port *ap,
449 unsigned int device)
451 struct ata_ioports *ioaddr = &ap->ioaddr;
452 u8 nsect, lbal;
454 ap->ops->dev_select(ap, device);
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
459 outb(0xaa, ioaddr->nsect_addr);
460 outb(0x55, ioaddr->lbal_addr);
462 outb(0x55, ioaddr->nsect_addr);
463 outb(0xaa, ioaddr->lbal_addr);
465 nsect = inb(ioaddr->nsect_addr);
466 lbal = inb(ioaddr->lbal_addr);
468 if ((nsect == 0x55) && (lbal == 0xaa))
469 return 1; /* we found a device */
471 return 0; /* nothing found */
475 * ata_mmio_devchk - PATA device presence detection
476 * @ap: ATA channel to examine
477 * @device: Device to examine (starting at zero)
479 * This technique was originally described in
480 * Hale Landis's ATADRVR (www.ata-atapi.com), and
481 * later found its way into the ATA/ATAPI spec.
483 * Write a pattern to the ATA shadow registers,
484 * and if a device is present, it will respond by
485 * correctly storing and echoing back the
486 * ATA shadow register contents.
488 * LOCKING:
489 * caller.
492 static unsigned int ata_mmio_devchk(struct ata_port *ap,
493 unsigned int device)
495 struct ata_ioports *ioaddr = &ap->ioaddr;
496 u8 nsect, lbal;
498 ap->ops->dev_select(ap, device);
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
503 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
506 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
509 nsect = readb((void __iomem *) ioaddr->nsect_addr);
510 lbal = readb((void __iomem *) ioaddr->lbal_addr);
512 if ((nsect == 0x55) && (lbal == 0xaa))
513 return 1; /* we found a device */
515 return 0; /* nothing found */
519 * ata_devchk - PATA device presence detection
520 * @ap: ATA channel to examine
521 * @device: Device to examine (starting at zero)
523 * Dispatch ATA device presence detection, depending
524 * on whether we are using PIO or MMIO to talk to the
525 * ATA shadow registers.
527 * LOCKING:
528 * caller.
531 static unsigned int ata_devchk(struct ata_port *ap,
532 unsigned int device)
534 if (ap->flags & ATA_FLAG_MMIO)
535 return ata_mmio_devchk(ap, device);
536 return ata_pio_devchk(ap, device);
540 * ata_dev_classify - determine device type based on ATA-spec signature
541 * @tf: ATA taskfile register set for device to be identified
543 * Determine from taskfile register contents whether a device is
544 * ATA or ATAPI, as per "Signature and persistence" section
545 * of ATA/PI spec (volume 1, sect 5.14).
547 * LOCKING:
548 * None.
550 * RETURNS:
551 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
552 * the event of failure.
555 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
557 /* Apple's open source Darwin code hints that some devices only
558 * put a proper signature into the LBA mid/high registers,
559 * So, we only check those. It's sufficient for uniqueness.
562 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
563 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
564 DPRINTK("found ATA device by sig\n");
565 return ATA_DEV_ATA;
568 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
569 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
570 DPRINTK("found ATAPI device by sig\n");
571 return ATA_DEV_ATAPI;
574 DPRINTK("unknown device\n");
575 return ATA_DEV_UNKNOWN;
579 * ata_dev_try_classify - Parse returned ATA device signature
580 * @ap: ATA channel to examine
581 * @device: Device to examine (starting at zero)
582 * @r_err: Value of error register on completion
584 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
585 * an ATA/ATAPI-defined set of values is placed in the ATA
586 * shadow registers, indicating the results of device detection
587 * and diagnostics.
589 * Select the ATA device, and read the values from the ATA shadow
590 * registers. Then parse according to the Error register value,
591 * and the spec-defined values examined by ata_dev_classify().
593 * LOCKING:
594 * caller.
596 * RETURNS:
597 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
600 static unsigned int
601 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
603 struct ata_taskfile tf;
604 unsigned int class;
605 u8 err;
607 ap->ops->dev_select(ap, device);
609 memset(&tf, 0, sizeof(tf));
611 ap->ops->tf_read(ap, &tf);
612 err = tf.feature;
613 if (r_err)
614 *r_err = err;
616 /* see if device passed diags */
617 if (err == 1)
618 /* do nothing */ ;
619 else if ((device == 0) && (err == 0x81))
620 /* do nothing */ ;
621 else
622 return ATA_DEV_NONE;
624 /* determine if device is ATA or ATAPI */
625 class = ata_dev_classify(&tf);
627 if (class == ATA_DEV_UNKNOWN)
628 return ATA_DEV_NONE;
629 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
630 return ATA_DEV_NONE;
631 return class;
635 * ata_id_string - Convert IDENTIFY DEVICE page into string
636 * @id: IDENTIFY DEVICE results we will examine
637 * @s: string into which data is output
638 * @ofs: offset into identify device page
639 * @len: length of string to return. must be an even number.
641 * The strings in the IDENTIFY DEVICE page are broken up into
642 * 16-bit chunks. Run through the string, and output each
643 * 8-bit chunk linearly, regardless of platform.
645 * LOCKING:
646 * caller.
649 void ata_id_string(const u16 *id, unsigned char *s,
650 unsigned int ofs, unsigned int len)
652 unsigned int c;
654 while (len > 0) {
655 c = id[ofs] >> 8;
656 *s = c;
657 s++;
659 c = id[ofs] & 0xff;
660 *s = c;
661 s++;
663 ofs++;
664 len -= 2;
669 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
670 * @id: IDENTIFY DEVICE results we will examine
671 * @s: string into which data is output
672 * @ofs: offset into identify device page
673 * @len: length of string to return. must be an odd number.
675 * This function is identical to ata_id_string except that it
676 * trims trailing spaces and terminates the resulting string with
677 * null. @len must be actual maximum length (even number) + 1.
679 * LOCKING:
680 * caller.
682 void ata_id_c_string(const u16 *id, unsigned char *s,
683 unsigned int ofs, unsigned int len)
685 unsigned char *p;
687 WARN_ON(!(len & 1));
689 ata_id_string(id, s, ofs, len - 1);
691 p = s + strnlen(s, len - 1);
692 while (p > s && p[-1] == ' ')
693 p--;
694 *p = '\0';
697 static u64 ata_id_n_sectors(const u16 *id)
699 if (ata_id_has_lba(id)) {
700 if (ata_id_has_lba48(id))
701 return ata_id_u64(id, 100);
702 else
703 return ata_id_u32(id, 60);
704 } else {
705 if (ata_id_current_chs_valid(id))
706 return ata_id_u32(id, 57);
707 else
708 return id[1] * id[3] * id[6];
713 * ata_noop_dev_select - Select device 0/1 on ATA bus
714 * @ap: ATA channel to manipulate
715 * @device: ATA device (numbered from zero) to select
717 * This function performs no actual function.
719 * May be used as the dev_select() entry in ata_port_operations.
721 * LOCKING:
722 * caller.
724 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
730 * ata_std_dev_select - Select device 0/1 on ATA bus
731 * @ap: ATA channel to manipulate
732 * @device: ATA device (numbered from zero) to select
734 * Use the method defined in the ATA specification to
735 * make either device 0, or device 1, active on the
736 * ATA channel. Works with both PIO and MMIO.
738 * May be used as the dev_select() entry in ata_port_operations.
740 * LOCKING:
741 * caller.
744 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
746 u8 tmp;
748 if (device == 0)
749 tmp = ATA_DEVICE_OBS;
750 else
751 tmp = ATA_DEVICE_OBS | ATA_DEV1;
753 if (ap->flags & ATA_FLAG_MMIO) {
754 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
755 } else {
756 outb(tmp, ap->ioaddr.device_addr);
758 ata_pause(ap); /* needed; also flushes, for mmio */
762 * ata_dev_select - Select device 0/1 on ATA bus
763 * @ap: ATA channel to manipulate
764 * @device: ATA device (numbered from zero) to select
765 * @wait: non-zero to wait for Status register BSY bit to clear
766 * @can_sleep: non-zero if context allows sleeping
768 * Use the method defined in the ATA specification to
769 * make either device 0, or device 1, active on the
770 * ATA channel.
772 * This is a high-level version of ata_std_dev_select(),
773 * which additionally provides the services of inserting
774 * the proper pauses and status polling, where needed.
776 * LOCKING:
777 * caller.
780 void ata_dev_select(struct ata_port *ap, unsigned int device,
781 unsigned int wait, unsigned int can_sleep)
783 if (ata_msg_probe(ap))
784 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
785 "device %u, wait %u\n", ap->id, device, wait);
787 if (wait)
788 ata_wait_idle(ap);
790 ap->ops->dev_select(ap, device);
792 if (wait) {
793 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
794 msleep(150);
795 ata_wait_idle(ap);
800 * ata_dump_id - IDENTIFY DEVICE info debugging output
801 * @id: IDENTIFY DEVICE page to dump
803 * Dump selected 16-bit words from the given IDENTIFY DEVICE
804 * page.
806 * LOCKING:
807 * caller.
810 static inline void ata_dump_id(const u16 *id)
812 DPRINTK("49==0x%04x "
813 "53==0x%04x "
814 "63==0x%04x "
815 "64==0x%04x "
816 "75==0x%04x \n",
817 id[49],
818 id[53],
819 id[63],
820 id[64],
821 id[75]);
822 DPRINTK("80==0x%04x "
823 "81==0x%04x "
824 "82==0x%04x "
825 "83==0x%04x "
826 "84==0x%04x \n",
827 id[80],
828 id[81],
829 id[82],
830 id[83],
831 id[84]);
832 DPRINTK("88==0x%04x "
833 "93==0x%04x\n",
834 id[88],
835 id[93]);
839 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
840 * @id: IDENTIFY data to compute xfer mask from
842 * Compute the xfermask for this device. This is not as trivial
843 * as it seems if we must consider early devices correctly.
845 * FIXME: pre IDE drive timing (do we care ?).
847 * LOCKING:
848 * None.
850 * RETURNS:
851 * Computed xfermask
853 static unsigned int ata_id_xfermask(const u16 *id)
855 unsigned int pio_mask, mwdma_mask, udma_mask;
857 /* Usual case. Word 53 indicates word 64 is valid */
858 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
859 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
860 pio_mask <<= 3;
861 pio_mask |= 0x7;
862 } else {
863 /* If word 64 isn't valid then Word 51 high byte holds
864 * the PIO timing number for the maximum. Turn it into
865 * a mask.
867 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
869 /* But wait.. there's more. Design your standards by
870 * committee and you too can get a free iordy field to
871 * process. However its the speeds not the modes that
872 * are supported... Note drivers using the timing API
873 * will get this right anyway
877 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
879 udma_mask = 0;
880 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
881 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
883 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
887 * ata_port_queue_task - Queue port_task
888 * @ap: The ata_port to queue port_task for
889 * @fn: workqueue function to be scheduled
890 * @data: data value to pass to workqueue function
891 * @delay: delay time for workqueue function
893 * Schedule @fn(@data) for execution after @delay jiffies using
894 * port_task. There is one port_task per port and it's the
895 * user(low level driver)'s responsibility to make sure that only
896 * one task is active at any given time.
898 * libata core layer takes care of synchronization between
899 * port_task and EH. ata_port_queue_task() may be ignored for EH
900 * synchronization.
902 * LOCKING:
903 * Inherited from caller.
905 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
906 unsigned long delay)
908 int rc;
910 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
911 return;
913 PREPARE_WORK(&ap->port_task, fn, data);
915 if (!delay)
916 rc = queue_work(ata_wq, &ap->port_task);
917 else
918 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
920 /* rc == 0 means that another user is using port task */
921 WARN_ON(rc == 0);
925 * ata_port_flush_task - Flush port_task
926 * @ap: The ata_port to flush port_task for
928 * After this function completes, port_task is guranteed not to
929 * be running or scheduled.
931 * LOCKING:
932 * Kernel thread context (may sleep)
934 void ata_port_flush_task(struct ata_port *ap)
936 unsigned long flags;
938 DPRINTK("ENTER\n");
940 spin_lock_irqsave(ap->lock, flags);
941 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
942 spin_unlock_irqrestore(ap->lock, flags);
944 DPRINTK("flush #1\n");
945 flush_workqueue(ata_wq);
948 * At this point, if a task is running, it's guaranteed to see
949 * the FLUSH flag; thus, it will never queue pio tasks again.
950 * Cancel and flush.
952 if (!cancel_delayed_work(&ap->port_task)) {
953 if (ata_msg_ctl(ap))
954 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
955 __FUNCTION__);
956 flush_workqueue(ata_wq);
959 spin_lock_irqsave(ap->lock, flags);
960 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
961 spin_unlock_irqrestore(ap->lock, flags);
963 if (ata_msg_ctl(ap))
964 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
967 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
969 struct completion *waiting = qc->private_data;
971 complete(waiting);
975 * ata_exec_internal - execute libata internal command
976 * @dev: Device to which the command is sent
977 * @tf: Taskfile registers for the command and the result
978 * @cdb: CDB for packet command
979 * @dma_dir: Data tranfer direction of the command
980 * @buf: Data buffer of the command
981 * @buflen: Length of data buffer
983 * Executes libata internal command with timeout. @tf contains
984 * command on entry and result on return. Timeout and error
985 * conditions are reported via return value. No recovery action
986 * is taken after a command times out. It's caller's duty to
987 * clean up after timeout.
989 * LOCKING:
990 * None. Should be called with kernel context, might sleep.
992 * RETURNS:
993 * Zero on success, AC_ERR_* mask on failure
995 unsigned ata_exec_internal(struct ata_device *dev,
996 struct ata_taskfile *tf, const u8 *cdb,
997 int dma_dir, void *buf, unsigned int buflen)
999 struct ata_port *ap = dev->ap;
1000 u8 command = tf->command;
1001 struct ata_queued_cmd *qc;
1002 unsigned int tag, preempted_tag;
1003 u32 preempted_sactive, preempted_qc_active;
1004 DECLARE_COMPLETION_ONSTACK(wait);
1005 unsigned long flags;
1006 unsigned int err_mask;
1007 int rc;
1009 spin_lock_irqsave(ap->lock, flags);
1011 /* no internal command while frozen */
1012 if (ap->pflags & ATA_PFLAG_FROZEN) {
1013 spin_unlock_irqrestore(ap->lock, flags);
1014 return AC_ERR_SYSTEM;
1017 /* initialize internal qc */
1019 /* XXX: Tag 0 is used for drivers with legacy EH as some
1020 * drivers choke if any other tag is given. This breaks
1021 * ata_tag_internal() test for those drivers. Don't use new
1022 * EH stuff without converting to it.
1024 if (ap->ops->error_handler)
1025 tag = ATA_TAG_INTERNAL;
1026 else
1027 tag = 0;
1029 if (test_and_set_bit(tag, &ap->qc_allocated))
1030 BUG();
1031 qc = __ata_qc_from_tag(ap, tag);
1033 qc->tag = tag;
1034 qc->scsicmd = NULL;
1035 qc->ap = ap;
1036 qc->dev = dev;
1037 ata_qc_reinit(qc);
1039 preempted_tag = ap->active_tag;
1040 preempted_sactive = ap->sactive;
1041 preempted_qc_active = ap->qc_active;
1042 ap->active_tag = ATA_TAG_POISON;
1043 ap->sactive = 0;
1044 ap->qc_active = 0;
1046 /* prepare & issue qc */
1047 qc->tf = *tf;
1048 if (cdb)
1049 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1050 qc->flags |= ATA_QCFLAG_RESULT_TF;
1051 qc->dma_dir = dma_dir;
1052 if (dma_dir != DMA_NONE) {
1053 ata_sg_init_one(qc, buf, buflen);
1054 qc->nsect = buflen / ATA_SECT_SIZE;
1057 qc->private_data = &wait;
1058 qc->complete_fn = ata_qc_complete_internal;
1060 ata_qc_issue(qc);
1062 spin_unlock_irqrestore(ap->lock, flags);
1064 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1066 ata_port_flush_task(ap);
1068 if (!rc) {
1069 spin_lock_irqsave(ap->lock, flags);
1071 /* We're racing with irq here. If we lose, the
1072 * following test prevents us from completing the qc
1073 * twice. If we win, the port is frozen and will be
1074 * cleaned up by ->post_internal_cmd().
1076 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1077 qc->err_mask |= AC_ERR_TIMEOUT;
1079 if (ap->ops->error_handler)
1080 ata_port_freeze(ap);
1081 else
1082 ata_qc_complete(qc);
1084 if (ata_msg_warn(ap))
1085 ata_dev_printk(dev, KERN_WARNING,
1086 "qc timeout (cmd 0x%x)\n", command);
1089 spin_unlock_irqrestore(ap->lock, flags);
1092 /* do post_internal_cmd */
1093 if (ap->ops->post_internal_cmd)
1094 ap->ops->post_internal_cmd(qc);
1096 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1097 if (ata_msg_warn(ap))
1098 ata_dev_printk(dev, KERN_WARNING,
1099 "zero err_mask for failed "
1100 "internal command, assuming AC_ERR_OTHER\n");
1101 qc->err_mask |= AC_ERR_OTHER;
1104 /* finish up */
1105 spin_lock_irqsave(ap->lock, flags);
1107 *tf = qc->result_tf;
1108 err_mask = qc->err_mask;
1110 ata_qc_free(qc);
1111 ap->active_tag = preempted_tag;
1112 ap->sactive = preempted_sactive;
1113 ap->qc_active = preempted_qc_active;
1115 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1116 * Until those drivers are fixed, we detect the condition
1117 * here, fail the command with AC_ERR_SYSTEM and reenable the
1118 * port.
1120 * Note that this doesn't change any behavior as internal
1121 * command failure results in disabling the device in the
1122 * higher layer for LLDDs without new reset/EH callbacks.
1124 * Kill the following code as soon as those drivers are fixed.
1126 if (ap->flags & ATA_FLAG_DISABLED) {
1127 err_mask |= AC_ERR_SYSTEM;
1128 ata_port_probe(ap);
1131 spin_unlock_irqrestore(ap->lock, flags);
1133 return err_mask;
1137 * ata_do_simple_cmd - execute simple internal command
1138 * @dev: Device to which the command is sent
1139 * @cmd: Opcode to execute
1141 * Execute a 'simple' command, that only consists of the opcode
1142 * 'cmd' itself, without filling any other registers
1144 * LOCKING:
1145 * Kernel thread context (may sleep).
1147 * RETURNS:
1148 * Zero on success, AC_ERR_* mask on failure
1150 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1152 struct ata_taskfile tf;
1154 ata_tf_init(dev, &tf);
1156 tf.command = cmd;
1157 tf.flags |= ATA_TFLAG_DEVICE;
1158 tf.protocol = ATA_PROT_NODATA;
1160 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1164 * ata_pio_need_iordy - check if iordy needed
1165 * @adev: ATA device
1167 * Check if the current speed of the device requires IORDY. Used
1168 * by various controllers for chip configuration.
1171 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1173 int pio;
1174 int speed = adev->pio_mode - XFER_PIO_0;
1176 if (speed < 2)
1177 return 0;
1178 if (speed > 2)
1179 return 1;
1181 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1183 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1184 pio = adev->id[ATA_ID_EIDE_PIO];
1185 /* Is the speed faster than the drive allows non IORDY ? */
1186 if (pio) {
1187 /* This is cycle times not frequency - watch the logic! */
1188 if (pio > 240) /* PIO2 is 240nS per cycle */
1189 return 1;
1190 return 0;
1193 return 0;
1197 * ata_dev_read_id - Read ID data from the specified device
1198 * @dev: target device
1199 * @p_class: pointer to class of the target device (may be changed)
1200 * @post_reset: is this read ID post-reset?
1201 * @id: buffer to read IDENTIFY data into
1203 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1204 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1205 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1206 * for pre-ATA4 drives.
1208 * LOCKING:
1209 * Kernel thread context (may sleep)
1211 * RETURNS:
1212 * 0 on success, -errno otherwise.
1214 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1215 int post_reset, u16 *id)
1217 struct ata_port *ap = dev->ap;
1218 unsigned int class = *p_class;
1219 struct ata_taskfile tf;
1220 unsigned int err_mask = 0;
1221 const char *reason;
1222 int rc;
1224 if (ata_msg_ctl(ap))
1225 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1226 __FUNCTION__, ap->id, dev->devno);
1228 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1230 retry:
1231 ata_tf_init(dev, &tf);
1233 switch (class) {
1234 case ATA_DEV_ATA:
1235 tf.command = ATA_CMD_ID_ATA;
1236 break;
1237 case ATA_DEV_ATAPI:
1238 tf.command = ATA_CMD_ID_ATAPI;
1239 break;
1240 default:
1241 rc = -ENODEV;
1242 reason = "unsupported class";
1243 goto err_out;
1246 tf.protocol = ATA_PROT_PIO;
1248 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1249 id, sizeof(id[0]) * ATA_ID_WORDS);
1250 if (err_mask) {
1251 rc = -EIO;
1252 reason = "I/O error";
1253 goto err_out;
1256 swap_buf_le16(id, ATA_ID_WORDS);
1258 /* sanity check */
1259 rc = -EINVAL;
1260 reason = "device reports illegal type";
1262 if (class == ATA_DEV_ATA) {
1263 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1264 goto err_out;
1265 } else {
1266 if (ata_id_is_ata(id))
1267 goto err_out;
1270 if (post_reset && class == ATA_DEV_ATA) {
1272 * The exact sequence expected by certain pre-ATA4 drives is:
1273 * SRST RESET
1274 * IDENTIFY
1275 * INITIALIZE DEVICE PARAMETERS
1276 * anything else..
1277 * Some drives were very specific about that exact sequence.
1279 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1280 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1281 if (err_mask) {
1282 rc = -EIO;
1283 reason = "INIT_DEV_PARAMS failed";
1284 goto err_out;
1287 /* current CHS translation info (id[53-58]) might be
1288 * changed. reread the identify device info.
1290 post_reset = 0;
1291 goto retry;
1295 *p_class = class;
1297 return 0;
1299 err_out:
1300 if (ata_msg_warn(ap))
1301 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1302 "(%s, err_mask=0x%x)\n", reason, err_mask);
1303 return rc;
1306 static inline u8 ata_dev_knobble(struct ata_device *dev)
1308 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1311 static void ata_dev_config_ncq(struct ata_device *dev,
1312 char *desc, size_t desc_sz)
1314 struct ata_port *ap = dev->ap;
1315 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1317 if (!ata_id_has_ncq(dev->id)) {
1318 desc[0] = '\0';
1319 return;
1322 if (ap->flags & ATA_FLAG_NCQ) {
1323 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1324 dev->flags |= ATA_DFLAG_NCQ;
1327 if (hdepth >= ddepth)
1328 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1329 else
1330 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1333 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1335 int i;
1337 if (ap->host) {
1338 ap->host->max_cmd_len = 0;
1339 for (i = 0; i < ATA_MAX_DEVICES; i++)
1340 ap->host->max_cmd_len = max_t(unsigned int,
1341 ap->host->max_cmd_len,
1342 ap->device[i].cdb_len);
1347 * ata_dev_configure - Configure the specified ATA/ATAPI device
1348 * @dev: Target device to configure
1349 * @print_info: Enable device info printout
1351 * Configure @dev according to @dev->id. Generic and low-level
1352 * driver specific fixups are also applied.
1354 * LOCKING:
1355 * Kernel thread context (may sleep)
1357 * RETURNS:
1358 * 0 on success, -errno otherwise
1360 int ata_dev_configure(struct ata_device *dev, int print_info)
1362 struct ata_port *ap = dev->ap;
1363 const u16 *id = dev->id;
1364 unsigned int xfer_mask;
1365 int rc;
1367 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1368 ata_dev_printk(dev, KERN_INFO,
1369 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1370 __FUNCTION__, ap->id, dev->devno);
1371 return 0;
1374 if (ata_msg_probe(ap))
1375 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1376 __FUNCTION__, ap->id, dev->devno);
1378 /* print device capabilities */
1379 if (ata_msg_probe(ap))
1380 ata_dev_printk(dev, KERN_DEBUG,
1381 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1382 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1383 __FUNCTION__,
1384 id[49], id[82], id[83], id[84],
1385 id[85], id[86], id[87], id[88]);
1387 /* initialize to-be-configured parameters */
1388 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1389 dev->max_sectors = 0;
1390 dev->cdb_len = 0;
1391 dev->n_sectors = 0;
1392 dev->cylinders = 0;
1393 dev->heads = 0;
1394 dev->sectors = 0;
1397 * common ATA, ATAPI feature tests
1400 /* find max transfer mode; for printk only */
1401 xfer_mask = ata_id_xfermask(id);
1403 if (ata_msg_probe(ap))
1404 ata_dump_id(id);
1406 /* ATA-specific feature tests */
1407 if (dev->class == ATA_DEV_ATA) {
1408 dev->n_sectors = ata_id_n_sectors(id);
1410 if (ata_id_has_lba(id)) {
1411 const char *lba_desc;
1412 char ncq_desc[20];
1414 lba_desc = "LBA";
1415 dev->flags |= ATA_DFLAG_LBA;
1416 if (ata_id_has_lba48(id)) {
1417 dev->flags |= ATA_DFLAG_LBA48;
1418 lba_desc = "LBA48";
1421 /* config NCQ */
1422 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1424 /* print device info to dmesg */
1425 if (ata_msg_drv(ap) && print_info)
1426 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1427 "max %s, %Lu sectors: %s %s\n",
1428 ata_id_major_version(id),
1429 ata_mode_string(xfer_mask),
1430 (unsigned long long)dev->n_sectors,
1431 lba_desc, ncq_desc);
1432 } else {
1433 /* CHS */
1435 /* Default translation */
1436 dev->cylinders = id[1];
1437 dev->heads = id[3];
1438 dev->sectors = id[6];
1440 if (ata_id_current_chs_valid(id)) {
1441 /* Current CHS translation is valid. */
1442 dev->cylinders = id[54];
1443 dev->heads = id[55];
1444 dev->sectors = id[56];
1447 /* print device info to dmesg */
1448 if (ata_msg_drv(ap) && print_info)
1449 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1450 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1451 ata_id_major_version(id),
1452 ata_mode_string(xfer_mask),
1453 (unsigned long long)dev->n_sectors,
1454 dev->cylinders, dev->heads,
1455 dev->sectors);
1458 if (dev->id[59] & 0x100) {
1459 dev->multi_count = dev->id[59] & 0xff;
1460 if (ata_msg_drv(ap) && print_info)
1461 ata_dev_printk(dev, KERN_INFO,
1462 "ata%u: dev %u multi count %u\n",
1463 ap->id, dev->devno, dev->multi_count);
1466 dev->cdb_len = 16;
1469 /* ATAPI-specific feature tests */
1470 else if (dev->class == ATA_DEV_ATAPI) {
1471 char *cdb_intr_string = "";
1473 rc = atapi_cdb_len(id);
1474 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1475 if (ata_msg_warn(ap))
1476 ata_dev_printk(dev, KERN_WARNING,
1477 "unsupported CDB len\n");
1478 rc = -EINVAL;
1479 goto err_out_nosup;
1481 dev->cdb_len = (unsigned int) rc;
1483 if (ata_id_cdb_intr(dev->id)) {
1484 dev->flags |= ATA_DFLAG_CDB_INTR;
1485 cdb_intr_string = ", CDB intr";
1488 /* print device info to dmesg */
1489 if (ata_msg_drv(ap) && print_info)
1490 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1491 ata_mode_string(xfer_mask),
1492 cdb_intr_string);
1495 ata_set_port_max_cmd_len(ap);
1497 /* limit bridge transfers to udma5, 200 sectors */
1498 if (ata_dev_knobble(dev)) {
1499 if (ata_msg_drv(ap) && print_info)
1500 ata_dev_printk(dev, KERN_INFO,
1501 "applying bridge limits\n");
1502 dev->udma_mask &= ATA_UDMA5;
1503 dev->max_sectors = ATA_MAX_SECTORS;
1506 if (ap->ops->dev_config)
1507 ap->ops->dev_config(ap, dev);
1509 if (ata_msg_probe(ap))
1510 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1511 __FUNCTION__, ata_chk_status(ap));
1512 return 0;
1514 err_out_nosup:
1515 if (ata_msg_probe(ap))
1516 ata_dev_printk(dev, KERN_DEBUG,
1517 "%s: EXIT, err\n", __FUNCTION__);
1518 return rc;
1522 * ata_bus_probe - Reset and probe ATA bus
1523 * @ap: Bus to probe
1525 * Master ATA bus probing function. Initiates a hardware-dependent
1526 * bus reset, then attempts to identify any devices found on
1527 * the bus.
1529 * LOCKING:
1530 * PCI/etc. bus probe sem.
1532 * RETURNS:
1533 * Zero on success, negative errno otherwise.
1536 static int ata_bus_probe(struct ata_port *ap)
1538 unsigned int classes[ATA_MAX_DEVICES];
1539 int tries[ATA_MAX_DEVICES];
1540 int i, rc, down_xfermask;
1541 struct ata_device *dev;
1543 ata_port_probe(ap);
1545 for (i = 0; i < ATA_MAX_DEVICES; i++)
1546 tries[i] = ATA_PROBE_MAX_TRIES;
1548 retry:
1549 down_xfermask = 0;
1551 /* reset and determine device classes */
1552 ap->ops->phy_reset(ap);
1554 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1555 dev = &ap->device[i];
1557 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1558 dev->class != ATA_DEV_UNKNOWN)
1559 classes[dev->devno] = dev->class;
1560 else
1561 classes[dev->devno] = ATA_DEV_NONE;
1563 dev->class = ATA_DEV_UNKNOWN;
1566 ata_port_probe(ap);
1568 /* after the reset the device state is PIO 0 and the controller
1569 state is undefined. Record the mode */
1571 for (i = 0; i < ATA_MAX_DEVICES; i++)
1572 ap->device[i].pio_mode = XFER_PIO_0;
1574 /* read IDENTIFY page and configure devices */
1575 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1576 dev = &ap->device[i];
1578 if (tries[i])
1579 dev->class = classes[i];
1581 if (!ata_dev_enabled(dev))
1582 continue;
1584 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1585 if (rc)
1586 goto fail;
1588 rc = ata_dev_configure(dev, 1);
1589 if (rc)
1590 goto fail;
1593 /* configure transfer mode */
1594 rc = ata_set_mode(ap, &dev);
1595 if (rc) {
1596 down_xfermask = 1;
1597 goto fail;
1600 for (i = 0; i < ATA_MAX_DEVICES; i++)
1601 if (ata_dev_enabled(&ap->device[i]))
1602 return 0;
1604 /* no device present, disable port */
1605 ata_port_disable(ap);
1606 ap->ops->port_disable(ap);
1607 return -ENODEV;
1609 fail:
1610 switch (rc) {
1611 case -EINVAL:
1612 case -ENODEV:
1613 tries[dev->devno] = 0;
1614 break;
1615 case -EIO:
1616 sata_down_spd_limit(ap);
1617 /* fall through */
1618 default:
1619 tries[dev->devno]--;
1620 if (down_xfermask &&
1621 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1622 tries[dev->devno] = 0;
1625 if (!tries[dev->devno]) {
1626 ata_down_xfermask_limit(dev, 1);
1627 ata_dev_disable(dev);
1630 goto retry;
1634 * ata_port_probe - Mark port as enabled
1635 * @ap: Port for which we indicate enablement
1637 * Modify @ap data structure such that the system
1638 * thinks that the entire port is enabled.
1640 * LOCKING: host_set lock, or some other form of
1641 * serialization.
1644 void ata_port_probe(struct ata_port *ap)
1646 ap->flags &= ~ATA_FLAG_DISABLED;
1650 * sata_print_link_status - Print SATA link status
1651 * @ap: SATA port to printk link status about
1653 * This function prints link speed and status of a SATA link.
1655 * LOCKING:
1656 * None.
1658 static void sata_print_link_status(struct ata_port *ap)
1660 u32 sstatus, scontrol, tmp;
1662 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1663 return;
1664 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1666 if (ata_port_online(ap)) {
1667 tmp = (sstatus >> 4) & 0xf;
1668 ata_port_printk(ap, KERN_INFO,
1669 "SATA link up %s (SStatus %X SControl %X)\n",
1670 sata_spd_string(tmp), sstatus, scontrol);
1671 } else {
1672 ata_port_printk(ap, KERN_INFO,
1673 "SATA link down (SStatus %X SControl %X)\n",
1674 sstatus, scontrol);
1679 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1680 * @ap: SATA port associated with target SATA PHY.
1682 * This function issues commands to standard SATA Sxxx
1683 * PHY registers, to wake up the phy (and device), and
1684 * clear any reset condition.
1686 * LOCKING:
1687 * PCI/etc. bus probe sem.
1690 void __sata_phy_reset(struct ata_port *ap)
1692 u32 sstatus;
1693 unsigned long timeout = jiffies + (HZ * 5);
1695 if (ap->flags & ATA_FLAG_SATA_RESET) {
1696 /* issue phy wake/reset */
1697 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1698 /* Couldn't find anything in SATA I/II specs, but
1699 * AHCI-1.1 10.4.2 says at least 1 ms. */
1700 mdelay(1);
1702 /* phy wake/clear reset */
1703 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1705 /* wait for phy to become ready, if necessary */
1706 do {
1707 msleep(200);
1708 sata_scr_read(ap, SCR_STATUS, &sstatus);
1709 if ((sstatus & 0xf) != 1)
1710 break;
1711 } while (time_before(jiffies, timeout));
1713 /* print link status */
1714 sata_print_link_status(ap);
1716 /* TODO: phy layer with polling, timeouts, etc. */
1717 if (!ata_port_offline(ap))
1718 ata_port_probe(ap);
1719 else
1720 ata_port_disable(ap);
1722 if (ap->flags & ATA_FLAG_DISABLED)
1723 return;
1725 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1726 ata_port_disable(ap);
1727 return;
1730 ap->cbl = ATA_CBL_SATA;
1734 * sata_phy_reset - Reset SATA bus.
1735 * @ap: SATA port associated with target SATA PHY.
1737 * This function resets the SATA bus, and then probes
1738 * the bus for devices.
1740 * LOCKING:
1741 * PCI/etc. bus probe sem.
1744 void sata_phy_reset(struct ata_port *ap)
1746 __sata_phy_reset(ap);
1747 if (ap->flags & ATA_FLAG_DISABLED)
1748 return;
1749 ata_bus_reset(ap);
1753 * ata_dev_pair - return other device on cable
1754 * @adev: device
1756 * Obtain the other device on the same cable, or if none is
1757 * present NULL is returned
1760 struct ata_device *ata_dev_pair(struct ata_device *adev)
1762 struct ata_port *ap = adev->ap;
1763 struct ata_device *pair = &ap->device[1 - adev->devno];
1764 if (!ata_dev_enabled(pair))
1765 return NULL;
1766 return pair;
1770 * ata_port_disable - Disable port.
1771 * @ap: Port to be disabled.
1773 * Modify @ap data structure such that the system
1774 * thinks that the entire port is disabled, and should
1775 * never attempt to probe or communicate with devices
1776 * on this port.
1778 * LOCKING: host_set lock, or some other form of
1779 * serialization.
1782 void ata_port_disable(struct ata_port *ap)
1784 ap->device[0].class = ATA_DEV_NONE;
1785 ap->device[1].class = ATA_DEV_NONE;
1786 ap->flags |= ATA_FLAG_DISABLED;
1790 * sata_down_spd_limit - adjust SATA spd limit downward
1791 * @ap: Port to adjust SATA spd limit for
1793 * Adjust SATA spd limit of @ap downward. Note that this
1794 * function only adjusts the limit. The change must be applied
1795 * using sata_set_spd().
1797 * LOCKING:
1798 * Inherited from caller.
1800 * RETURNS:
1801 * 0 on success, negative errno on failure
1803 int sata_down_spd_limit(struct ata_port *ap)
1805 u32 sstatus, spd, mask;
1806 int rc, highbit;
1808 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1809 if (rc)
1810 return rc;
1812 mask = ap->sata_spd_limit;
1813 if (mask <= 1)
1814 return -EINVAL;
1815 highbit = fls(mask) - 1;
1816 mask &= ~(1 << highbit);
1818 spd = (sstatus >> 4) & 0xf;
1819 if (spd <= 1)
1820 return -EINVAL;
1821 spd--;
1822 mask &= (1 << spd) - 1;
1823 if (!mask)
1824 return -EINVAL;
1826 ap->sata_spd_limit = mask;
1828 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1829 sata_spd_string(fls(mask)));
1831 return 0;
1834 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1836 u32 spd, limit;
1838 if (ap->sata_spd_limit == UINT_MAX)
1839 limit = 0;
1840 else
1841 limit = fls(ap->sata_spd_limit);
1843 spd = (*scontrol >> 4) & 0xf;
1844 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1846 return spd != limit;
1850 * sata_set_spd_needed - is SATA spd configuration needed
1851 * @ap: Port in question
1853 * Test whether the spd limit in SControl matches
1854 * @ap->sata_spd_limit. This function is used to determine
1855 * whether hardreset is necessary to apply SATA spd
1856 * configuration.
1858 * LOCKING:
1859 * Inherited from caller.
1861 * RETURNS:
1862 * 1 if SATA spd configuration is needed, 0 otherwise.
1864 int sata_set_spd_needed(struct ata_port *ap)
1866 u32 scontrol;
1868 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1869 return 0;
1871 return __sata_set_spd_needed(ap, &scontrol);
1875 * sata_set_spd - set SATA spd according to spd limit
1876 * @ap: Port to set SATA spd for
1878 * Set SATA spd of @ap according to sata_spd_limit.
1880 * LOCKING:
1881 * Inherited from caller.
1883 * RETURNS:
1884 * 0 if spd doesn't need to be changed, 1 if spd has been
1885 * changed. Negative errno if SCR registers are inaccessible.
1887 int sata_set_spd(struct ata_port *ap)
1889 u32 scontrol;
1890 int rc;
1892 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1893 return rc;
1895 if (!__sata_set_spd_needed(ap, &scontrol))
1896 return 0;
1898 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1899 return rc;
1901 return 1;
1905 * This mode timing computation functionality is ported over from
1906 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1909 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1910 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1911 * for PIO 5, which is a nonstandard extension and UDMA6, which
1912 * is currently supported only by Maxtor drives.
1915 static const struct ata_timing ata_timing[] = {
1917 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1918 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1919 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1920 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1922 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1923 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1924 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1926 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1928 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1929 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1930 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1932 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1933 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1934 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1936 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1937 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1938 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1940 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1941 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1942 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1944 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1946 { 0xFF }
1949 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1950 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1952 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1954 q->setup = EZ(t->setup * 1000, T);
1955 q->act8b = EZ(t->act8b * 1000, T);
1956 q->rec8b = EZ(t->rec8b * 1000, T);
1957 q->cyc8b = EZ(t->cyc8b * 1000, T);
1958 q->active = EZ(t->active * 1000, T);
1959 q->recover = EZ(t->recover * 1000, T);
1960 q->cycle = EZ(t->cycle * 1000, T);
1961 q->udma = EZ(t->udma * 1000, UT);
1964 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1965 struct ata_timing *m, unsigned int what)
1967 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1968 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1969 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1970 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1971 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1972 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1973 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1974 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1977 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1979 const struct ata_timing *t;
1981 for (t = ata_timing; t->mode != speed; t++)
1982 if (t->mode == 0xFF)
1983 return NULL;
1984 return t;
1987 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1988 struct ata_timing *t, int T, int UT)
1990 const struct ata_timing *s;
1991 struct ata_timing p;
1994 * Find the mode.
1997 if (!(s = ata_timing_find_mode(speed)))
1998 return -EINVAL;
2000 memcpy(t, s, sizeof(*s));
2003 * If the drive is an EIDE drive, it can tell us it needs extended
2004 * PIO/MW_DMA cycle timing.
2007 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2008 memset(&p, 0, sizeof(p));
2009 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2010 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2011 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2012 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2013 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2015 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2019 * Convert the timing to bus clock counts.
2022 ata_timing_quantize(t, t, T, UT);
2025 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2026 * S.M.A.R.T * and some other commands. We have to ensure that the
2027 * DMA cycle timing is slower/equal than the fastest PIO timing.
2030 if (speed > XFER_PIO_4) {
2031 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2032 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2036 * Lengthen active & recovery time so that cycle time is correct.
2039 if (t->act8b + t->rec8b < t->cyc8b) {
2040 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2041 t->rec8b = t->cyc8b - t->act8b;
2044 if (t->active + t->recover < t->cycle) {
2045 t->active += (t->cycle - (t->active + t->recover)) / 2;
2046 t->recover = t->cycle - t->active;
2049 return 0;
2053 * ata_down_xfermask_limit - adjust dev xfer masks downward
2054 * @dev: Device to adjust xfer masks
2055 * @force_pio0: Force PIO0
2057 * Adjust xfer masks of @dev downward. Note that this function
2058 * does not apply the change. Invoking ata_set_mode() afterwards
2059 * will apply the limit.
2061 * LOCKING:
2062 * Inherited from caller.
2064 * RETURNS:
2065 * 0 on success, negative errno on failure
2067 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2069 unsigned long xfer_mask;
2070 int highbit;
2072 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2073 dev->udma_mask);
2075 if (!xfer_mask)
2076 goto fail;
2077 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2078 if (xfer_mask & ATA_MASK_UDMA)
2079 xfer_mask &= ~ATA_MASK_MWDMA;
2081 highbit = fls(xfer_mask) - 1;
2082 xfer_mask &= ~(1 << highbit);
2083 if (force_pio0)
2084 xfer_mask &= 1 << ATA_SHIFT_PIO;
2085 if (!xfer_mask)
2086 goto fail;
2088 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2089 &dev->udma_mask);
2091 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2092 ata_mode_string(xfer_mask));
2094 return 0;
2096 fail:
2097 return -EINVAL;
2100 static int ata_dev_set_mode(struct ata_device *dev)
2102 unsigned int err_mask;
2103 int rc;
2105 dev->flags &= ~ATA_DFLAG_PIO;
2106 if (dev->xfer_shift == ATA_SHIFT_PIO)
2107 dev->flags |= ATA_DFLAG_PIO;
2109 err_mask = ata_dev_set_xfermode(dev);
2110 if (err_mask) {
2111 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2112 "(err_mask=0x%x)\n", err_mask);
2113 return -EIO;
2116 rc = ata_dev_revalidate(dev, 0);
2117 if (rc)
2118 return rc;
2120 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2121 dev->xfer_shift, (int)dev->xfer_mode);
2123 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2124 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2125 return 0;
2129 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2130 * @ap: port on which timings will be programmed
2131 * @r_failed_dev: out paramter for failed device
2133 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2134 * ata_set_mode() fails, pointer to the failing device is
2135 * returned in @r_failed_dev.
2137 * LOCKING:
2138 * PCI/etc. bus probe sem.
2140 * RETURNS:
2141 * 0 on success, negative errno otherwise
2143 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2145 struct ata_device *dev;
2146 int i, rc = 0, used_dma = 0, found = 0;
2148 /* has private set_mode? */
2149 if (ap->ops->set_mode) {
2150 /* FIXME: make ->set_mode handle no device case and
2151 * return error code and failing device on failure.
2153 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2154 if (ata_dev_ready(&ap->device[i])) {
2155 ap->ops->set_mode(ap);
2156 break;
2159 return 0;
2162 /* step 1: calculate xfer_mask */
2163 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2164 unsigned int pio_mask, dma_mask;
2166 dev = &ap->device[i];
2168 if (!ata_dev_enabled(dev))
2169 continue;
2171 ata_dev_xfermask(dev);
2173 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2174 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2175 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2176 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2178 found = 1;
2179 if (dev->dma_mode)
2180 used_dma = 1;
2182 if (!found)
2183 goto out;
2185 /* step 2: always set host PIO timings */
2186 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2187 dev = &ap->device[i];
2188 if (!ata_dev_enabled(dev))
2189 continue;
2191 if (!dev->pio_mode) {
2192 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2193 rc = -EINVAL;
2194 goto out;
2197 dev->xfer_mode = dev->pio_mode;
2198 dev->xfer_shift = ATA_SHIFT_PIO;
2199 if (ap->ops->set_piomode)
2200 ap->ops->set_piomode(ap, dev);
2203 /* step 3: set host DMA timings */
2204 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2205 dev = &ap->device[i];
2207 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2208 continue;
2210 dev->xfer_mode = dev->dma_mode;
2211 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2212 if (ap->ops->set_dmamode)
2213 ap->ops->set_dmamode(ap, dev);
2216 /* step 4: update devices' xfer mode */
2217 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2218 dev = &ap->device[i];
2220 /* don't udpate suspended devices' xfer mode */
2221 if (!ata_dev_ready(dev))
2222 continue;
2224 rc = ata_dev_set_mode(dev);
2225 if (rc)
2226 goto out;
2229 /* Record simplex status. If we selected DMA then the other
2230 * host channels are not permitted to do so.
2232 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2233 ap->host_set->simplex_claimed = 1;
2235 /* step5: chip specific finalisation */
2236 if (ap->ops->post_set_mode)
2237 ap->ops->post_set_mode(ap);
2239 out:
2240 if (rc)
2241 *r_failed_dev = dev;
2242 return rc;
2246 * ata_tf_to_host - issue ATA taskfile to host controller
2247 * @ap: port to which command is being issued
2248 * @tf: ATA taskfile register set
2250 * Issues ATA taskfile register set to ATA host controller,
2251 * with proper synchronization with interrupt handler and
2252 * other threads.
2254 * LOCKING:
2255 * spin_lock_irqsave(host_set lock)
2258 static inline void ata_tf_to_host(struct ata_port *ap,
2259 const struct ata_taskfile *tf)
2261 ap->ops->tf_load(ap, tf);
2262 ap->ops->exec_command(ap, tf);
2266 * ata_busy_sleep - sleep until BSY clears, or timeout
2267 * @ap: port containing status register to be polled
2268 * @tmout_pat: impatience timeout
2269 * @tmout: overall timeout
2271 * Sleep until ATA Status register bit BSY clears,
2272 * or a timeout occurs.
2274 * LOCKING: None.
2277 unsigned int ata_busy_sleep (struct ata_port *ap,
2278 unsigned long tmout_pat, unsigned long tmout)
2280 unsigned long timer_start, timeout;
2281 u8 status;
2283 status = ata_busy_wait(ap, ATA_BUSY, 300);
2284 timer_start = jiffies;
2285 timeout = timer_start + tmout_pat;
2286 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2287 msleep(50);
2288 status = ata_busy_wait(ap, ATA_BUSY, 3);
2291 if (status & ATA_BUSY)
2292 ata_port_printk(ap, KERN_WARNING,
2293 "port is slow to respond, please be patient\n");
2295 timeout = timer_start + tmout;
2296 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2297 msleep(50);
2298 status = ata_chk_status(ap);
2301 if (status & ATA_BUSY) {
2302 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2303 "(%lu secs)\n", tmout / HZ);
2304 return 1;
2307 return 0;
2310 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2312 struct ata_ioports *ioaddr = &ap->ioaddr;
2313 unsigned int dev0 = devmask & (1 << 0);
2314 unsigned int dev1 = devmask & (1 << 1);
2315 unsigned long timeout;
2317 /* if device 0 was found in ata_devchk, wait for its
2318 * BSY bit to clear
2320 if (dev0)
2321 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2323 /* if device 1 was found in ata_devchk, wait for
2324 * register access, then wait for BSY to clear
2326 timeout = jiffies + ATA_TMOUT_BOOT;
2327 while (dev1) {
2328 u8 nsect, lbal;
2330 ap->ops->dev_select(ap, 1);
2331 if (ap->flags & ATA_FLAG_MMIO) {
2332 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2333 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2334 } else {
2335 nsect = inb(ioaddr->nsect_addr);
2336 lbal = inb(ioaddr->lbal_addr);
2338 if ((nsect == 1) && (lbal == 1))
2339 break;
2340 if (time_after(jiffies, timeout)) {
2341 dev1 = 0;
2342 break;
2344 msleep(50); /* give drive a breather */
2346 if (dev1)
2347 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2349 /* is all this really necessary? */
2350 ap->ops->dev_select(ap, 0);
2351 if (dev1)
2352 ap->ops->dev_select(ap, 1);
2353 if (dev0)
2354 ap->ops->dev_select(ap, 0);
2357 static unsigned int ata_bus_softreset(struct ata_port *ap,
2358 unsigned int devmask)
2360 struct ata_ioports *ioaddr = &ap->ioaddr;
2362 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2364 /* software reset. causes dev0 to be selected */
2365 if (ap->flags & ATA_FLAG_MMIO) {
2366 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2367 udelay(20); /* FIXME: flush */
2368 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2369 udelay(20); /* FIXME: flush */
2370 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2371 } else {
2372 outb(ap->ctl, ioaddr->ctl_addr);
2373 udelay(10);
2374 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2375 udelay(10);
2376 outb(ap->ctl, ioaddr->ctl_addr);
2379 /* spec mandates ">= 2ms" before checking status.
2380 * We wait 150ms, because that was the magic delay used for
2381 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2382 * between when the ATA command register is written, and then
2383 * status is checked. Because waiting for "a while" before
2384 * checking status is fine, post SRST, we perform this magic
2385 * delay here as well.
2387 * Old drivers/ide uses the 2mS rule and then waits for ready
2389 msleep(150);
2391 /* Before we perform post reset processing we want to see if
2392 * the bus shows 0xFF because the odd clown forgets the D7
2393 * pulldown resistor.
2395 if (ata_check_status(ap) == 0xFF) {
2396 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2397 return AC_ERR_OTHER;
2400 ata_bus_post_reset(ap, devmask);
2402 return 0;
2406 * ata_bus_reset - reset host port and associated ATA channel
2407 * @ap: port to reset
2409 * This is typically the first time we actually start issuing
2410 * commands to the ATA channel. We wait for BSY to clear, then
2411 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2412 * result. Determine what devices, if any, are on the channel
2413 * by looking at the device 0/1 error register. Look at the signature
2414 * stored in each device's taskfile registers, to determine if
2415 * the device is ATA or ATAPI.
2417 * LOCKING:
2418 * PCI/etc. bus probe sem.
2419 * Obtains host_set lock.
2421 * SIDE EFFECTS:
2422 * Sets ATA_FLAG_DISABLED if bus reset fails.
2425 void ata_bus_reset(struct ata_port *ap)
2427 struct ata_ioports *ioaddr = &ap->ioaddr;
2428 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2429 u8 err;
2430 unsigned int dev0, dev1 = 0, devmask = 0;
2432 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2434 /* determine if device 0/1 are present */
2435 if (ap->flags & ATA_FLAG_SATA_RESET)
2436 dev0 = 1;
2437 else {
2438 dev0 = ata_devchk(ap, 0);
2439 if (slave_possible)
2440 dev1 = ata_devchk(ap, 1);
2443 if (dev0)
2444 devmask |= (1 << 0);
2445 if (dev1)
2446 devmask |= (1 << 1);
2448 /* select device 0 again */
2449 ap->ops->dev_select(ap, 0);
2451 /* issue bus reset */
2452 if (ap->flags & ATA_FLAG_SRST)
2453 if (ata_bus_softreset(ap, devmask))
2454 goto err_out;
2457 * determine by signature whether we have ATA or ATAPI devices
2459 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2460 if ((slave_possible) && (err != 0x81))
2461 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2463 /* re-enable interrupts */
2464 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2465 ata_irq_on(ap);
2467 /* is double-select really necessary? */
2468 if (ap->device[1].class != ATA_DEV_NONE)
2469 ap->ops->dev_select(ap, 1);
2470 if (ap->device[0].class != ATA_DEV_NONE)
2471 ap->ops->dev_select(ap, 0);
2473 /* if no devices were detected, disable this port */
2474 if ((ap->device[0].class == ATA_DEV_NONE) &&
2475 (ap->device[1].class == ATA_DEV_NONE))
2476 goto err_out;
2478 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2479 /* set up device control for ATA_FLAG_SATA_RESET */
2480 if (ap->flags & ATA_FLAG_MMIO)
2481 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2482 else
2483 outb(ap->ctl, ioaddr->ctl_addr);
2486 DPRINTK("EXIT\n");
2487 return;
2489 err_out:
2490 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2491 ap->ops->port_disable(ap);
2493 DPRINTK("EXIT\n");
2497 * sata_phy_debounce - debounce SATA phy status
2498 * @ap: ATA port to debounce SATA phy status for
2499 * @params: timing parameters { interval, duratinon, timeout } in msec
2501 * Make sure SStatus of @ap reaches stable state, determined by
2502 * holding the same value where DET is not 1 for @duration polled
2503 * every @interval, before @timeout. Timeout constraints the
2504 * beginning of the stable state. Because, after hot unplugging,
2505 * DET gets stuck at 1 on some controllers, this functions waits
2506 * until timeout then returns 0 if DET is stable at 1.
2508 * LOCKING:
2509 * Kernel thread context (may sleep)
2511 * RETURNS:
2512 * 0 on success, -errno on failure.
2514 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2516 unsigned long interval_msec = params[0];
2517 unsigned long duration = params[1] * HZ / 1000;
2518 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2519 unsigned long last_jiffies;
2520 u32 last, cur;
2521 int rc;
2523 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2524 return rc;
2525 cur &= 0xf;
2527 last = cur;
2528 last_jiffies = jiffies;
2530 while (1) {
2531 msleep(interval_msec);
2532 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2533 return rc;
2534 cur &= 0xf;
2536 /* DET stable? */
2537 if (cur == last) {
2538 if (cur == 1 && time_before(jiffies, timeout))
2539 continue;
2540 if (time_after(jiffies, last_jiffies + duration))
2541 return 0;
2542 continue;
2545 /* unstable, start over */
2546 last = cur;
2547 last_jiffies = jiffies;
2549 /* check timeout */
2550 if (time_after(jiffies, timeout))
2551 return -EBUSY;
2556 * sata_phy_resume - resume SATA phy
2557 * @ap: ATA port to resume SATA phy for
2558 * @params: timing parameters { interval, duratinon, timeout } in msec
2560 * Resume SATA phy of @ap and debounce it.
2562 * LOCKING:
2563 * Kernel thread context (may sleep)
2565 * RETURNS:
2566 * 0 on success, -errno on failure.
2568 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2570 u32 scontrol;
2571 int rc;
2573 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2574 return rc;
2576 scontrol = (scontrol & 0x0f0) | 0x300;
2578 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2579 return rc;
2581 /* Some PHYs react badly if SStatus is pounded immediately
2582 * after resuming. Delay 200ms before debouncing.
2584 msleep(200);
2586 return sata_phy_debounce(ap, params);
2589 static void ata_wait_spinup(struct ata_port *ap)
2591 struct ata_eh_context *ehc = &ap->eh_context;
2592 unsigned long end, secs;
2593 int rc;
2595 /* first, debounce phy if SATA */
2596 if (ap->cbl == ATA_CBL_SATA) {
2597 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2599 /* if debounced successfully and offline, no need to wait */
2600 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2601 return;
2604 /* okay, let's give the drive time to spin up */
2605 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2606 secs = ((end - jiffies) + HZ - 1) / HZ;
2608 if (time_after(jiffies, end))
2609 return;
2611 if (secs > 5)
2612 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2613 "(%lu secs)\n", secs);
2615 schedule_timeout_uninterruptible(end - jiffies);
2619 * ata_std_prereset - prepare for reset
2620 * @ap: ATA port to be reset
2622 * @ap is about to be reset. Initialize it.
2624 * LOCKING:
2625 * Kernel thread context (may sleep)
2627 * RETURNS:
2628 * 0 on success, -errno otherwise.
2630 int ata_std_prereset(struct ata_port *ap)
2632 struct ata_eh_context *ehc = &ap->eh_context;
2633 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2634 int rc;
2636 /* handle link resume & hotplug spinup */
2637 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2638 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2639 ehc->i.action |= ATA_EH_HARDRESET;
2641 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2642 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2643 ata_wait_spinup(ap);
2645 /* if we're about to do hardreset, nothing more to do */
2646 if (ehc->i.action & ATA_EH_HARDRESET)
2647 return 0;
2649 /* if SATA, resume phy */
2650 if (ap->cbl == ATA_CBL_SATA) {
2651 rc = sata_phy_resume(ap, timing);
2652 if (rc && rc != -EOPNOTSUPP) {
2653 /* phy resume failed */
2654 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2655 "link for reset (errno=%d)\n", rc);
2656 return rc;
2660 /* Wait for !BSY if the controller can wait for the first D2H
2661 * Reg FIS and we don't know that no device is attached.
2663 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2664 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2666 return 0;
2670 * ata_std_softreset - reset host port via ATA SRST
2671 * @ap: port to reset
2672 * @classes: resulting classes of attached devices
2674 * Reset host port using ATA SRST.
2676 * LOCKING:
2677 * Kernel thread context (may sleep)
2679 * RETURNS:
2680 * 0 on success, -errno otherwise.
2682 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2684 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2685 unsigned int devmask = 0, err_mask;
2686 u8 err;
2688 DPRINTK("ENTER\n");
2690 if (ata_port_offline(ap)) {
2691 classes[0] = ATA_DEV_NONE;
2692 goto out;
2695 /* determine if device 0/1 are present */
2696 if (ata_devchk(ap, 0))
2697 devmask |= (1 << 0);
2698 if (slave_possible && ata_devchk(ap, 1))
2699 devmask |= (1 << 1);
2701 /* select device 0 again */
2702 ap->ops->dev_select(ap, 0);
2704 /* issue bus reset */
2705 DPRINTK("about to softreset, devmask=%x\n", devmask);
2706 err_mask = ata_bus_softreset(ap, devmask);
2707 if (err_mask) {
2708 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2709 err_mask);
2710 return -EIO;
2713 /* determine by signature whether we have ATA or ATAPI devices */
2714 classes[0] = ata_dev_try_classify(ap, 0, &err);
2715 if (slave_possible && err != 0x81)
2716 classes[1] = ata_dev_try_classify(ap, 1, &err);
2718 out:
2719 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2720 return 0;
2724 * sata_std_hardreset - reset host port via SATA phy reset
2725 * @ap: port to reset
2726 * @class: resulting class of attached device
2728 * SATA phy-reset host port using DET bits of SControl register.
2730 * LOCKING:
2731 * Kernel thread context (may sleep)
2733 * RETURNS:
2734 * 0 on success, -errno otherwise.
2736 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2738 struct ata_eh_context *ehc = &ap->eh_context;
2739 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2740 u32 scontrol;
2741 int rc;
2743 DPRINTK("ENTER\n");
2745 if (sata_set_spd_needed(ap)) {
2746 /* SATA spec says nothing about how to reconfigure
2747 * spd. To be on the safe side, turn off phy during
2748 * reconfiguration. This works for at least ICH7 AHCI
2749 * and Sil3124.
2751 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2752 return rc;
2754 scontrol = (scontrol & 0x0f0) | 0x304;
2756 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2757 return rc;
2759 sata_set_spd(ap);
2762 /* issue phy wake/reset */
2763 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2764 return rc;
2766 scontrol = (scontrol & 0x0f0) | 0x301;
2768 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2769 return rc;
2771 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2772 * 10.4.2 says at least 1 ms.
2774 msleep(1);
2776 /* bring phy back */
2777 sata_phy_resume(ap, timing);
2779 /* TODO: phy layer with polling, timeouts, etc. */
2780 if (ata_port_offline(ap)) {
2781 *class = ATA_DEV_NONE;
2782 DPRINTK("EXIT, link offline\n");
2783 return 0;
2786 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2787 ata_port_printk(ap, KERN_ERR,
2788 "COMRESET failed (device not ready)\n");
2789 return -EIO;
2792 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2794 *class = ata_dev_try_classify(ap, 0, NULL);
2796 DPRINTK("EXIT, class=%u\n", *class);
2797 return 0;
2801 * ata_std_postreset - standard postreset callback
2802 * @ap: the target ata_port
2803 * @classes: classes of attached devices
2805 * This function is invoked after a successful reset. Note that
2806 * the device might have been reset more than once using
2807 * different reset methods before postreset is invoked.
2809 * LOCKING:
2810 * Kernel thread context (may sleep)
2812 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2814 u32 serror;
2816 DPRINTK("ENTER\n");
2818 /* print link status */
2819 sata_print_link_status(ap);
2821 /* clear SError */
2822 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2823 sata_scr_write(ap, SCR_ERROR, serror);
2825 /* re-enable interrupts */
2826 if (!ap->ops->error_handler) {
2827 /* FIXME: hack. create a hook instead */
2828 if (ap->ioaddr.ctl_addr)
2829 ata_irq_on(ap);
2832 /* is double-select really necessary? */
2833 if (classes[0] != ATA_DEV_NONE)
2834 ap->ops->dev_select(ap, 1);
2835 if (classes[1] != ATA_DEV_NONE)
2836 ap->ops->dev_select(ap, 0);
2838 /* bail out if no device is present */
2839 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2840 DPRINTK("EXIT, no device\n");
2841 return;
2844 /* set up device control */
2845 if (ap->ioaddr.ctl_addr) {
2846 if (ap->flags & ATA_FLAG_MMIO)
2847 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2848 else
2849 outb(ap->ctl, ap->ioaddr.ctl_addr);
2852 DPRINTK("EXIT\n");
2856 * ata_dev_same_device - Determine whether new ID matches configured device
2857 * @dev: device to compare against
2858 * @new_class: class of the new device
2859 * @new_id: IDENTIFY page of the new device
2861 * Compare @new_class and @new_id against @dev and determine
2862 * whether @dev is the device indicated by @new_class and
2863 * @new_id.
2865 * LOCKING:
2866 * None.
2868 * RETURNS:
2869 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2871 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2872 const u16 *new_id)
2874 const u16 *old_id = dev->id;
2875 unsigned char model[2][41], serial[2][21];
2876 u64 new_n_sectors;
2878 if (dev->class != new_class) {
2879 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2880 dev->class, new_class);
2881 return 0;
2884 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2885 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2886 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2887 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2888 new_n_sectors = ata_id_n_sectors(new_id);
2890 if (strcmp(model[0], model[1])) {
2891 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2892 "'%s' != '%s'\n", model[0], model[1]);
2893 return 0;
2896 if (strcmp(serial[0], serial[1])) {
2897 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2898 "'%s' != '%s'\n", serial[0], serial[1]);
2899 return 0;
2902 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2903 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2904 "%llu != %llu\n",
2905 (unsigned long long)dev->n_sectors,
2906 (unsigned long long)new_n_sectors);
2907 return 0;
2910 return 1;
2914 * ata_dev_revalidate - Revalidate ATA device
2915 * @dev: device to revalidate
2916 * @post_reset: is this revalidation after reset?
2918 * Re-read IDENTIFY page and make sure @dev is still attached to
2919 * the port.
2921 * LOCKING:
2922 * Kernel thread context (may sleep)
2924 * RETURNS:
2925 * 0 on success, negative errno otherwise
2927 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2929 unsigned int class = dev->class;
2930 u16 *id = (void *)dev->ap->sector_buf;
2931 int rc;
2933 if (!ata_dev_enabled(dev)) {
2934 rc = -ENODEV;
2935 goto fail;
2938 /* read ID data */
2939 rc = ata_dev_read_id(dev, &class, post_reset, id);
2940 if (rc)
2941 goto fail;
2943 /* is the device still there? */
2944 if (!ata_dev_same_device(dev, class, id)) {
2945 rc = -ENODEV;
2946 goto fail;
2949 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2951 /* configure device according to the new ID */
2952 rc = ata_dev_configure(dev, 0);
2953 if (rc == 0)
2954 return 0;
2956 fail:
2957 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2958 return rc;
2961 static const char * const ata_dma_blacklist [] = {
2962 "WDC AC11000H", NULL,
2963 "WDC AC22100H", NULL,
2964 "WDC AC32500H", NULL,
2965 "WDC AC33100H", NULL,
2966 "WDC AC31600H", NULL,
2967 "WDC AC32100H", "24.09P07",
2968 "WDC AC23200L", "21.10N21",
2969 "Compaq CRD-8241B", NULL,
2970 "CRD-8400B", NULL,
2971 "CRD-8480B", NULL,
2972 "CRD-8482B", NULL,
2973 "CRD-84", NULL,
2974 "SanDisk SDP3B", NULL,
2975 "SanDisk SDP3B-64", NULL,
2976 "SANYO CD-ROM CRD", NULL,
2977 "HITACHI CDR-8", NULL,
2978 "HITACHI CDR-8335", NULL,
2979 "HITACHI CDR-8435", NULL,
2980 "Toshiba CD-ROM XM-6202B", NULL,
2981 "TOSHIBA CD-ROM XM-1702BC", NULL,
2982 "CD-532E-A", NULL,
2983 "E-IDE CD-ROM CR-840", NULL,
2984 "CD-ROM Drive/F5A", NULL,
2985 "WPI CDD-820", NULL,
2986 "SAMSUNG CD-ROM SC-148C", NULL,
2987 "SAMSUNG CD-ROM SC", NULL,
2988 "SanDisk SDP3B-64", NULL,
2989 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2990 "_NEC DV5800A", NULL,
2991 "SAMSUNG CD-ROM SN-124", "N001"
2994 static int ata_strim(char *s, size_t len)
2996 len = strnlen(s, len);
2998 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2999 while ((len > 0) && (s[len - 1] == ' ')) {
3000 len--;
3001 s[len] = 0;
3003 return len;
3006 static int ata_dma_blacklisted(const struct ata_device *dev)
3008 unsigned char model_num[40];
3009 unsigned char model_rev[16];
3010 unsigned int nlen, rlen;
3011 int i;
3013 /* We don't support polling DMA.
3014 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3015 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3017 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3018 (dev->flags & ATA_DFLAG_CDB_INTR))
3019 return 1;
3021 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3022 sizeof(model_num));
3023 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3024 sizeof(model_rev));
3025 nlen = ata_strim(model_num, sizeof(model_num));
3026 rlen = ata_strim(model_rev, sizeof(model_rev));
3028 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3029 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3030 if (ata_dma_blacklist[i+1] == NULL)
3031 return 1;
3032 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3033 return 1;
3036 return 0;
3040 * ata_dev_xfermask - Compute supported xfermask of the given device
3041 * @dev: Device to compute xfermask for
3043 * Compute supported xfermask of @dev and store it in
3044 * dev->*_mask. This function is responsible for applying all
3045 * known limits including host controller limits, device
3046 * blacklist, etc...
3048 * FIXME: The current implementation limits all transfer modes to
3049 * the fastest of the lowested device on the port. This is not
3050 * required on most controllers.
3052 * LOCKING:
3053 * None.
3055 static void ata_dev_xfermask(struct ata_device *dev)
3057 struct ata_port *ap = dev->ap;
3058 struct ata_host_set *hs = ap->host_set;
3059 unsigned long xfer_mask;
3060 int i;
3062 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3063 ap->mwdma_mask, ap->udma_mask);
3065 /* Apply cable rule here. Don't apply it early because when
3066 * we handle hot plug the cable type can itself change.
3068 if (ap->cbl == ATA_CBL_PATA40)
3069 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3071 /* FIXME: Use port-wide xfermask for now */
3072 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3073 struct ata_device *d = &ap->device[i];
3075 if (ata_dev_absent(d))
3076 continue;
3078 if (ata_dev_disabled(d)) {
3079 /* to avoid violating device selection timing */
3080 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3081 UINT_MAX, UINT_MAX);
3082 continue;
3085 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3086 d->mwdma_mask, d->udma_mask);
3087 xfer_mask &= ata_id_xfermask(d->id);
3088 if (ata_dma_blacklisted(d))
3089 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3092 if (ata_dma_blacklisted(dev))
3093 ata_dev_printk(dev, KERN_WARNING,
3094 "device is on DMA blacklist, disabling DMA\n");
3096 if (hs->flags & ATA_HOST_SIMPLEX) {
3097 if (hs->simplex_claimed)
3098 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3101 if (ap->ops->mode_filter)
3102 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3104 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3105 &dev->mwdma_mask, &dev->udma_mask);
3109 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3110 * @dev: Device to which command will be sent
3112 * Issue SET FEATURES - XFER MODE command to device @dev
3113 * on port @ap.
3115 * LOCKING:
3116 * PCI/etc. bus probe sem.
3118 * RETURNS:
3119 * 0 on success, AC_ERR_* mask otherwise.
3122 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3124 struct ata_taskfile tf;
3125 unsigned int err_mask;
3127 /* set up set-features taskfile */
3128 DPRINTK("set features - xfer mode\n");
3130 ata_tf_init(dev, &tf);
3131 tf.command = ATA_CMD_SET_FEATURES;
3132 tf.feature = SETFEATURES_XFER;
3133 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3134 tf.protocol = ATA_PROT_NODATA;
3135 tf.nsect = dev->xfer_mode;
3137 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3139 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3140 return err_mask;
3144 * ata_dev_init_params - Issue INIT DEV PARAMS command
3145 * @dev: Device to which command will be sent
3146 * @heads: Number of heads (taskfile parameter)
3147 * @sectors: Number of sectors (taskfile parameter)
3149 * LOCKING:
3150 * Kernel thread context (may sleep)
3152 * RETURNS:
3153 * 0 on success, AC_ERR_* mask otherwise.
3155 static unsigned int ata_dev_init_params(struct ata_device *dev,
3156 u16 heads, u16 sectors)
3158 struct ata_taskfile tf;
3159 unsigned int err_mask;
3161 /* Number of sectors per track 1-255. Number of heads 1-16 */
3162 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3163 return AC_ERR_INVALID;
3165 /* set up init dev params taskfile */
3166 DPRINTK("init dev params \n");
3168 ata_tf_init(dev, &tf);
3169 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3170 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3171 tf.protocol = ATA_PROT_NODATA;
3172 tf.nsect = sectors;
3173 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3175 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3177 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3178 return err_mask;
3182 * ata_sg_clean - Unmap DMA memory associated with command
3183 * @qc: Command containing DMA memory to be released
3185 * Unmap all mapped DMA memory associated with this command.
3187 * LOCKING:
3188 * spin_lock_irqsave(host_set lock)
3191 static void ata_sg_clean(struct ata_queued_cmd *qc)
3193 struct ata_port *ap = qc->ap;
3194 struct scatterlist *sg = qc->__sg;
3195 int dir = qc->dma_dir;
3196 void *pad_buf = NULL;
3198 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3199 WARN_ON(sg == NULL);
3201 if (qc->flags & ATA_QCFLAG_SINGLE)
3202 WARN_ON(qc->n_elem > 1);
3204 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3206 /* if we padded the buffer out to 32-bit bound, and data
3207 * xfer direction is from-device, we must copy from the
3208 * pad buffer back into the supplied buffer
3210 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3211 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3213 if (qc->flags & ATA_QCFLAG_SG) {
3214 if (qc->n_elem)
3215 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3216 /* restore last sg */
3217 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3218 if (pad_buf) {
3219 struct scatterlist *psg = &qc->pad_sgent;
3220 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3221 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3222 kunmap_atomic(addr, KM_IRQ0);
3224 } else {
3225 if (qc->n_elem)
3226 dma_unmap_single(ap->dev,
3227 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3228 dir);
3229 /* restore sg */
3230 sg->length += qc->pad_len;
3231 if (pad_buf)
3232 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3233 pad_buf, qc->pad_len);
3236 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3237 qc->__sg = NULL;
3241 * ata_fill_sg - Fill PCI IDE PRD table
3242 * @qc: Metadata associated with taskfile to be transferred
3244 * Fill PCI IDE PRD (scatter-gather) table with segments
3245 * associated with the current disk command.
3247 * LOCKING:
3248 * spin_lock_irqsave(host_set lock)
3251 static void ata_fill_sg(struct ata_queued_cmd *qc)
3253 struct ata_port *ap = qc->ap;
3254 struct scatterlist *sg;
3255 unsigned int idx;
3257 WARN_ON(qc->__sg == NULL);
3258 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3260 idx = 0;
3261 ata_for_each_sg(sg, qc) {
3262 u32 addr, offset;
3263 u32 sg_len, len;
3265 /* determine if physical DMA addr spans 64K boundary.
3266 * Note h/w doesn't support 64-bit, so we unconditionally
3267 * truncate dma_addr_t to u32.
3269 addr = (u32) sg_dma_address(sg);
3270 sg_len = sg_dma_len(sg);
3272 while (sg_len) {
3273 offset = addr & 0xffff;
3274 len = sg_len;
3275 if ((offset + sg_len) > 0x10000)
3276 len = 0x10000 - offset;
3278 ap->prd[idx].addr = cpu_to_le32(addr);
3279 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3280 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3282 idx++;
3283 sg_len -= len;
3284 addr += len;
3288 if (idx)
3289 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3292 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3293 * @qc: Metadata associated with taskfile to check
3295 * Allow low-level driver to filter ATA PACKET commands, returning
3296 * a status indicating whether or not it is OK to use DMA for the
3297 * supplied PACKET command.
3299 * LOCKING:
3300 * spin_lock_irqsave(host_set lock)
3302 * RETURNS: 0 when ATAPI DMA can be used
3303 * nonzero otherwise
3305 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3307 struct ata_port *ap = qc->ap;
3308 int rc = 0; /* Assume ATAPI DMA is OK by default */
3310 if (ap->ops->check_atapi_dma)
3311 rc = ap->ops->check_atapi_dma(qc);
3313 return rc;
3316 * ata_qc_prep - Prepare taskfile for submission
3317 * @qc: Metadata associated with taskfile to be prepared
3319 * Prepare ATA taskfile for submission.
3321 * LOCKING:
3322 * spin_lock_irqsave(host_set lock)
3324 void ata_qc_prep(struct ata_queued_cmd *qc)
3326 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3327 return;
3329 ata_fill_sg(qc);
3332 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3335 * ata_sg_init_one - Associate command with memory buffer
3336 * @qc: Command to be associated
3337 * @buf: Memory buffer
3338 * @buflen: Length of memory buffer, in bytes.
3340 * Initialize the data-related elements of queued_cmd @qc
3341 * to point to a single memory buffer, @buf of byte length @buflen.
3343 * LOCKING:
3344 * spin_lock_irqsave(host_set lock)
3347 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3349 struct scatterlist *sg;
3351 qc->flags |= ATA_QCFLAG_SINGLE;
3353 memset(&qc->sgent, 0, sizeof(qc->sgent));
3354 qc->__sg = &qc->sgent;
3355 qc->n_elem = 1;
3356 qc->orig_n_elem = 1;
3357 qc->buf_virt = buf;
3358 qc->nbytes = buflen;
3360 sg = qc->__sg;
3361 sg_init_one(sg, buf, buflen);
3365 * ata_sg_init - Associate command with scatter-gather table.
3366 * @qc: Command to be associated
3367 * @sg: Scatter-gather table.
3368 * @n_elem: Number of elements in s/g table.
3370 * Initialize the data-related elements of queued_cmd @qc
3371 * to point to a scatter-gather table @sg, containing @n_elem
3372 * elements.
3374 * LOCKING:
3375 * spin_lock_irqsave(host_set lock)
3378 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3379 unsigned int n_elem)
3381 qc->flags |= ATA_QCFLAG_SG;
3382 qc->__sg = sg;
3383 qc->n_elem = n_elem;
3384 qc->orig_n_elem = n_elem;
3388 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3389 * @qc: Command with memory buffer to be mapped.
3391 * DMA-map the memory buffer associated with queued_cmd @qc.
3393 * LOCKING:
3394 * spin_lock_irqsave(host_set lock)
3396 * RETURNS:
3397 * Zero on success, negative on error.
3400 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3402 struct ata_port *ap = qc->ap;
3403 int dir = qc->dma_dir;
3404 struct scatterlist *sg = qc->__sg;
3405 dma_addr_t dma_address;
3406 int trim_sg = 0;
3408 /* we must lengthen transfers to end on a 32-bit boundary */
3409 qc->pad_len = sg->length & 3;
3410 if (qc->pad_len) {
3411 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3412 struct scatterlist *psg = &qc->pad_sgent;
3414 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3416 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3418 if (qc->tf.flags & ATA_TFLAG_WRITE)
3419 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3420 qc->pad_len);
3422 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3423 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3424 /* trim sg */
3425 sg->length -= qc->pad_len;
3426 if (sg->length == 0)
3427 trim_sg = 1;
3429 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3430 sg->length, qc->pad_len);
3433 if (trim_sg) {
3434 qc->n_elem--;
3435 goto skip_map;
3438 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3439 sg->length, dir);
3440 if (dma_mapping_error(dma_address)) {
3441 /* restore sg */
3442 sg->length += qc->pad_len;
3443 return -1;
3446 sg_dma_address(sg) = dma_address;
3447 sg_dma_len(sg) = sg->length;
3449 skip_map:
3450 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3451 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3453 return 0;
3457 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3458 * @qc: Command with scatter-gather table to be mapped.
3460 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3462 * LOCKING:
3463 * spin_lock_irqsave(host_set lock)
3465 * RETURNS:
3466 * Zero on success, negative on error.
3470 static int ata_sg_setup(struct ata_queued_cmd *qc)
3472 struct ata_port *ap = qc->ap;
3473 struct scatterlist *sg = qc->__sg;
3474 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3475 int n_elem, pre_n_elem, dir, trim_sg = 0;
3477 VPRINTK("ENTER, ata%u\n", ap->id);
3478 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3480 /* we must lengthen transfers to end on a 32-bit boundary */
3481 qc->pad_len = lsg->length & 3;
3482 if (qc->pad_len) {
3483 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3484 struct scatterlist *psg = &qc->pad_sgent;
3485 unsigned int offset;
3487 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3489 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3492 * psg->page/offset are used to copy to-be-written
3493 * data in this function or read data in ata_sg_clean.
3495 offset = lsg->offset + lsg->length - qc->pad_len;
3496 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3497 psg->offset = offset_in_page(offset);
3499 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3500 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3501 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3502 kunmap_atomic(addr, KM_IRQ0);
3505 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3506 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3507 /* trim last sg */
3508 lsg->length -= qc->pad_len;
3509 if (lsg->length == 0)
3510 trim_sg = 1;
3512 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3513 qc->n_elem - 1, lsg->length, qc->pad_len);
3516 pre_n_elem = qc->n_elem;
3517 if (trim_sg && pre_n_elem)
3518 pre_n_elem--;
3520 if (!pre_n_elem) {
3521 n_elem = 0;
3522 goto skip_map;
3525 dir = qc->dma_dir;
3526 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3527 if (n_elem < 1) {
3528 /* restore last sg */
3529 lsg->length += qc->pad_len;
3530 return -1;
3533 DPRINTK("%d sg elements mapped\n", n_elem);
3535 skip_map:
3536 qc->n_elem = n_elem;
3538 return 0;
3542 * swap_buf_le16 - swap halves of 16-bit words in place
3543 * @buf: Buffer to swap
3544 * @buf_words: Number of 16-bit words in buffer.
3546 * Swap halves of 16-bit words if needed to convert from
3547 * little-endian byte order to native cpu byte order, or
3548 * vice-versa.
3550 * LOCKING:
3551 * Inherited from caller.
3553 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3555 #ifdef __BIG_ENDIAN
3556 unsigned int i;
3558 for (i = 0; i < buf_words; i++)
3559 buf[i] = le16_to_cpu(buf[i]);
3560 #endif /* __BIG_ENDIAN */
3564 * ata_mmio_data_xfer - Transfer data by MMIO
3565 * @adev: device for this I/O
3566 * @buf: data buffer
3567 * @buflen: buffer length
3568 * @write_data: read/write
3570 * Transfer data from/to the device data register by MMIO.
3572 * LOCKING:
3573 * Inherited from caller.
3576 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3577 unsigned int buflen, int write_data)
3579 struct ata_port *ap = adev->ap;
3580 unsigned int i;
3581 unsigned int words = buflen >> 1;
3582 u16 *buf16 = (u16 *) buf;
3583 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3585 /* Transfer multiple of 2 bytes */
3586 if (write_data) {
3587 for (i = 0; i < words; i++)
3588 writew(le16_to_cpu(buf16[i]), mmio);
3589 } else {
3590 for (i = 0; i < words; i++)
3591 buf16[i] = cpu_to_le16(readw(mmio));
3594 /* Transfer trailing 1 byte, if any. */
3595 if (unlikely(buflen & 0x01)) {
3596 u16 align_buf[1] = { 0 };
3597 unsigned char *trailing_buf = buf + buflen - 1;
3599 if (write_data) {
3600 memcpy(align_buf, trailing_buf, 1);
3601 writew(le16_to_cpu(align_buf[0]), mmio);
3602 } else {
3603 align_buf[0] = cpu_to_le16(readw(mmio));
3604 memcpy(trailing_buf, align_buf, 1);
3610 * ata_pio_data_xfer - Transfer data by PIO
3611 * @adev: device to target
3612 * @buf: data buffer
3613 * @buflen: buffer length
3614 * @write_data: read/write
3616 * Transfer data from/to the device data register by PIO.
3618 * LOCKING:
3619 * Inherited from caller.
3622 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3623 unsigned int buflen, int write_data)
3625 struct ata_port *ap = adev->ap;
3626 unsigned int words = buflen >> 1;
3628 /* Transfer multiple of 2 bytes */
3629 if (write_data)
3630 outsw(ap->ioaddr.data_addr, buf, words);
3631 else
3632 insw(ap->ioaddr.data_addr, buf, words);
3634 /* Transfer trailing 1 byte, if any. */
3635 if (unlikely(buflen & 0x01)) {
3636 u16 align_buf[1] = { 0 };
3637 unsigned char *trailing_buf = buf + buflen - 1;
3639 if (write_data) {
3640 memcpy(align_buf, trailing_buf, 1);
3641 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3642 } else {
3643 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3644 memcpy(trailing_buf, align_buf, 1);
3650 * ata_pio_data_xfer_noirq - Transfer data by PIO
3651 * @adev: device to target
3652 * @buf: data buffer
3653 * @buflen: buffer length
3654 * @write_data: read/write
3656 * Transfer data from/to the device data register by PIO. Do the
3657 * transfer with interrupts disabled.
3659 * LOCKING:
3660 * Inherited from caller.
3663 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3664 unsigned int buflen, int write_data)
3666 unsigned long flags;
3667 local_irq_save(flags);
3668 ata_pio_data_xfer(adev, buf, buflen, write_data);
3669 local_irq_restore(flags);
3674 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3675 * @qc: Command on going
3677 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3679 * LOCKING:
3680 * Inherited from caller.
3683 static void ata_pio_sector(struct ata_queued_cmd *qc)
3685 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3686 struct scatterlist *sg = qc->__sg;
3687 struct ata_port *ap = qc->ap;
3688 struct page *page;
3689 unsigned int offset;
3690 unsigned char *buf;
3692 if (qc->cursect == (qc->nsect - 1))
3693 ap->hsm_task_state = HSM_ST_LAST;
3695 page = sg[qc->cursg].page;
3696 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3698 /* get the current page and offset */
3699 page = nth_page(page, (offset >> PAGE_SHIFT));
3700 offset %= PAGE_SIZE;
3702 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3704 if (PageHighMem(page)) {
3705 unsigned long flags;
3707 /* FIXME: use a bounce buffer */
3708 local_irq_save(flags);
3709 buf = kmap_atomic(page, KM_IRQ0);
3711 /* do the actual data transfer */
3712 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3714 kunmap_atomic(buf, KM_IRQ0);
3715 local_irq_restore(flags);
3716 } else {
3717 buf = page_address(page);
3718 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3721 qc->cursect++;
3722 qc->cursg_ofs++;
3724 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3725 qc->cursg++;
3726 qc->cursg_ofs = 0;
3731 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3732 * @qc: Command on going
3734 * Transfer one or many ATA_SECT_SIZE of data from/to the
3735 * ATA device for the DRQ request.
3737 * LOCKING:
3738 * Inherited from caller.
3741 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3743 if (is_multi_taskfile(&qc->tf)) {
3744 /* READ/WRITE MULTIPLE */
3745 unsigned int nsect;
3747 WARN_ON(qc->dev->multi_count == 0);
3749 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3750 while (nsect--)
3751 ata_pio_sector(qc);
3752 } else
3753 ata_pio_sector(qc);
3757 * atapi_send_cdb - Write CDB bytes to hardware
3758 * @ap: Port to which ATAPI device is attached.
3759 * @qc: Taskfile currently active
3761 * When device has indicated its readiness to accept
3762 * a CDB, this function is called. Send the CDB.
3764 * LOCKING:
3765 * caller.
3768 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3770 /* send SCSI cdb */
3771 DPRINTK("send cdb\n");
3772 WARN_ON(qc->dev->cdb_len < 12);
3774 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3775 ata_altstatus(ap); /* flush */
3777 switch (qc->tf.protocol) {
3778 case ATA_PROT_ATAPI:
3779 ap->hsm_task_state = HSM_ST;
3780 break;
3781 case ATA_PROT_ATAPI_NODATA:
3782 ap->hsm_task_state = HSM_ST_LAST;
3783 break;
3784 case ATA_PROT_ATAPI_DMA:
3785 ap->hsm_task_state = HSM_ST_LAST;
3786 /* initiate bmdma */
3787 ap->ops->bmdma_start(qc);
3788 break;
3793 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3794 * @qc: Command on going
3795 * @bytes: number of bytes
3797 * Transfer Transfer data from/to the ATAPI device.
3799 * LOCKING:
3800 * Inherited from caller.
3804 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3806 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3807 struct scatterlist *sg = qc->__sg;
3808 struct ata_port *ap = qc->ap;
3809 struct page *page;
3810 unsigned char *buf;
3811 unsigned int offset, count;
3813 if (qc->curbytes + bytes >= qc->nbytes)
3814 ap->hsm_task_state = HSM_ST_LAST;
3816 next_sg:
3817 if (unlikely(qc->cursg >= qc->n_elem)) {
3819 * The end of qc->sg is reached and the device expects
3820 * more data to transfer. In order not to overrun qc->sg
3821 * and fulfill length specified in the byte count register,
3822 * - for read case, discard trailing data from the device
3823 * - for write case, padding zero data to the device
3825 u16 pad_buf[1] = { 0 };
3826 unsigned int words = bytes >> 1;
3827 unsigned int i;
3829 if (words) /* warning if bytes > 1 */
3830 ata_dev_printk(qc->dev, KERN_WARNING,
3831 "%u bytes trailing data\n", bytes);
3833 for (i = 0; i < words; i++)
3834 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3836 ap->hsm_task_state = HSM_ST_LAST;
3837 return;
3840 sg = &qc->__sg[qc->cursg];
3842 page = sg->page;
3843 offset = sg->offset + qc->cursg_ofs;
3845 /* get the current page and offset */
3846 page = nth_page(page, (offset >> PAGE_SHIFT));
3847 offset %= PAGE_SIZE;
3849 /* don't overrun current sg */
3850 count = min(sg->length - qc->cursg_ofs, bytes);
3852 /* don't cross page boundaries */
3853 count = min(count, (unsigned int)PAGE_SIZE - offset);
3855 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3857 if (PageHighMem(page)) {
3858 unsigned long flags;
3860 /* FIXME: use bounce buffer */
3861 local_irq_save(flags);
3862 buf = kmap_atomic(page, KM_IRQ0);
3864 /* do the actual data transfer */
3865 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3867 kunmap_atomic(buf, KM_IRQ0);
3868 local_irq_restore(flags);
3869 } else {
3870 buf = page_address(page);
3871 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3874 bytes -= count;
3875 qc->curbytes += count;
3876 qc->cursg_ofs += count;
3878 if (qc->cursg_ofs == sg->length) {
3879 qc->cursg++;
3880 qc->cursg_ofs = 0;
3883 if (bytes)
3884 goto next_sg;
3888 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3889 * @qc: Command on going
3891 * Transfer Transfer data from/to the ATAPI device.
3893 * LOCKING:
3894 * Inherited from caller.
3897 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3899 struct ata_port *ap = qc->ap;
3900 struct ata_device *dev = qc->dev;
3901 unsigned int ireason, bc_lo, bc_hi, bytes;
3902 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3904 /* Abuse qc->result_tf for temp storage of intermediate TF
3905 * here to save some kernel stack usage.
3906 * For normal completion, qc->result_tf is not relevant. For
3907 * error, qc->result_tf is later overwritten by ata_qc_complete().
3908 * So, the correctness of qc->result_tf is not affected.
3910 ap->ops->tf_read(ap, &qc->result_tf);
3911 ireason = qc->result_tf.nsect;
3912 bc_lo = qc->result_tf.lbam;
3913 bc_hi = qc->result_tf.lbah;
3914 bytes = (bc_hi << 8) | bc_lo;
3916 /* shall be cleared to zero, indicating xfer of data */
3917 if (ireason & (1 << 0))
3918 goto err_out;
3920 /* make sure transfer direction matches expected */
3921 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3922 if (do_write != i_write)
3923 goto err_out;
3925 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3927 __atapi_pio_bytes(qc, bytes);
3929 return;
3931 err_out:
3932 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3933 qc->err_mask |= AC_ERR_HSM;
3934 ap->hsm_task_state = HSM_ST_ERR;
3938 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3939 * @ap: the target ata_port
3940 * @qc: qc on going
3942 * RETURNS:
3943 * 1 if ok in workqueue, 0 otherwise.
3946 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3948 if (qc->tf.flags & ATA_TFLAG_POLLING)
3949 return 1;
3951 if (ap->hsm_task_state == HSM_ST_FIRST) {
3952 if (qc->tf.protocol == ATA_PROT_PIO &&
3953 (qc->tf.flags & ATA_TFLAG_WRITE))
3954 return 1;
3956 if (is_atapi_taskfile(&qc->tf) &&
3957 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3958 return 1;
3961 return 0;
3965 * ata_hsm_qc_complete - finish a qc running on standard HSM
3966 * @qc: Command to complete
3967 * @in_wq: 1 if called from workqueue, 0 otherwise
3969 * Finish @qc which is running on standard HSM.
3971 * LOCKING:
3972 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3973 * Otherwise, none on entry and grabs host lock.
3975 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3977 struct ata_port *ap = qc->ap;
3978 unsigned long flags;
3980 if (ap->ops->error_handler) {
3981 if (in_wq) {
3982 spin_lock_irqsave(ap->lock, flags);
3984 /* EH might have kicked in while host_set lock
3985 * is released.
3987 qc = ata_qc_from_tag(ap, qc->tag);
3988 if (qc) {
3989 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3990 ata_irq_on(ap);
3991 ata_qc_complete(qc);
3992 } else
3993 ata_port_freeze(ap);
3996 spin_unlock_irqrestore(ap->lock, flags);
3997 } else {
3998 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3999 ata_qc_complete(qc);
4000 else
4001 ata_port_freeze(ap);
4003 } else {
4004 if (in_wq) {
4005 spin_lock_irqsave(ap->lock, flags);
4006 ata_irq_on(ap);
4007 ata_qc_complete(qc);
4008 spin_unlock_irqrestore(ap->lock, flags);
4009 } else
4010 ata_qc_complete(qc);
4013 ata_altstatus(ap); /* flush */
4017 * ata_hsm_move - move the HSM to the next state.
4018 * @ap: the target ata_port
4019 * @qc: qc on going
4020 * @status: current device status
4021 * @in_wq: 1 if called from workqueue, 0 otherwise
4023 * RETURNS:
4024 * 1 when poll next status needed, 0 otherwise.
4026 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4027 u8 status, int in_wq)
4029 unsigned long flags = 0;
4030 int poll_next;
4032 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4034 /* Make sure ata_qc_issue_prot() does not throw things
4035 * like DMA polling into the workqueue. Notice that
4036 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4038 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4040 fsm_start:
4041 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4042 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4044 switch (ap->hsm_task_state) {
4045 case HSM_ST_FIRST:
4046 /* Send first data block or PACKET CDB */
4048 /* If polling, we will stay in the work queue after
4049 * sending the data. Otherwise, interrupt handler
4050 * takes over after sending the data.
4052 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4054 /* check device status */
4055 if (unlikely((status & ATA_DRQ) == 0)) {
4056 /* handle BSY=0, DRQ=0 as error */
4057 if (likely(status & (ATA_ERR | ATA_DF)))
4058 /* device stops HSM for abort/error */
4059 qc->err_mask |= AC_ERR_DEV;
4060 else
4061 /* HSM violation. Let EH handle this */
4062 qc->err_mask |= AC_ERR_HSM;
4064 ap->hsm_task_state = HSM_ST_ERR;
4065 goto fsm_start;
4068 /* Device should not ask for data transfer (DRQ=1)
4069 * when it finds something wrong.
4070 * We ignore DRQ here and stop the HSM by
4071 * changing hsm_task_state to HSM_ST_ERR and
4072 * let the EH abort the command or reset the device.
4074 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4075 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4076 ap->id, status);
4077 qc->err_mask |= AC_ERR_HSM;
4078 ap->hsm_task_state = HSM_ST_ERR;
4079 goto fsm_start;
4082 /* Send the CDB (atapi) or the first data block (ata pio out).
4083 * During the state transition, interrupt handler shouldn't
4084 * be invoked before the data transfer is complete and
4085 * hsm_task_state is changed. Hence, the following locking.
4087 if (in_wq)
4088 spin_lock_irqsave(ap->lock, flags);
4090 if (qc->tf.protocol == ATA_PROT_PIO) {
4091 /* PIO data out protocol.
4092 * send first data block.
4095 /* ata_pio_sectors() might change the state
4096 * to HSM_ST_LAST. so, the state is changed here
4097 * before ata_pio_sectors().
4099 ap->hsm_task_state = HSM_ST;
4100 ata_pio_sectors(qc);
4101 ata_altstatus(ap); /* flush */
4102 } else
4103 /* send CDB */
4104 atapi_send_cdb(ap, qc);
4106 if (in_wq)
4107 spin_unlock_irqrestore(ap->lock, flags);
4109 /* if polling, ata_pio_task() handles the rest.
4110 * otherwise, interrupt handler takes over from here.
4112 break;
4114 case HSM_ST:
4115 /* complete command or read/write the data register */
4116 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4117 /* ATAPI PIO protocol */
4118 if ((status & ATA_DRQ) == 0) {
4119 /* No more data to transfer or device error.
4120 * Device error will be tagged in HSM_ST_LAST.
4122 ap->hsm_task_state = HSM_ST_LAST;
4123 goto fsm_start;
4126 /* Device should not ask for data transfer (DRQ=1)
4127 * when it finds something wrong.
4128 * We ignore DRQ here and stop the HSM by
4129 * changing hsm_task_state to HSM_ST_ERR and
4130 * let the EH abort the command or reset the device.
4132 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4133 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4134 ap->id, status);
4135 qc->err_mask |= AC_ERR_HSM;
4136 ap->hsm_task_state = HSM_ST_ERR;
4137 goto fsm_start;
4140 atapi_pio_bytes(qc);
4142 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4143 /* bad ireason reported by device */
4144 goto fsm_start;
4146 } else {
4147 /* ATA PIO protocol */
4148 if (unlikely((status & ATA_DRQ) == 0)) {
4149 /* handle BSY=0, DRQ=0 as error */
4150 if (likely(status & (ATA_ERR | ATA_DF)))
4151 /* device stops HSM for abort/error */
4152 qc->err_mask |= AC_ERR_DEV;
4153 else
4154 /* HSM violation. Let EH handle this */
4155 qc->err_mask |= AC_ERR_HSM;
4157 ap->hsm_task_state = HSM_ST_ERR;
4158 goto fsm_start;
4161 /* For PIO reads, some devices may ask for
4162 * data transfer (DRQ=1) alone with ERR=1.
4163 * We respect DRQ here and transfer one
4164 * block of junk data before changing the
4165 * hsm_task_state to HSM_ST_ERR.
4167 * For PIO writes, ERR=1 DRQ=1 doesn't make
4168 * sense since the data block has been
4169 * transferred to the device.
4171 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4172 /* data might be corrputed */
4173 qc->err_mask |= AC_ERR_DEV;
4175 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4176 ata_pio_sectors(qc);
4177 ata_altstatus(ap);
4178 status = ata_wait_idle(ap);
4181 if (status & (ATA_BUSY | ATA_DRQ))
4182 qc->err_mask |= AC_ERR_HSM;
4184 /* ata_pio_sectors() might change the
4185 * state to HSM_ST_LAST. so, the state
4186 * is changed after ata_pio_sectors().
4188 ap->hsm_task_state = HSM_ST_ERR;
4189 goto fsm_start;
4192 ata_pio_sectors(qc);
4194 if (ap->hsm_task_state == HSM_ST_LAST &&
4195 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4196 /* all data read */
4197 ata_altstatus(ap);
4198 status = ata_wait_idle(ap);
4199 goto fsm_start;
4203 ata_altstatus(ap); /* flush */
4204 poll_next = 1;
4205 break;
4207 case HSM_ST_LAST:
4208 if (unlikely(!ata_ok(status))) {
4209 qc->err_mask |= __ac_err_mask(status);
4210 ap->hsm_task_state = HSM_ST_ERR;
4211 goto fsm_start;
4214 /* no more data to transfer */
4215 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4216 ap->id, qc->dev->devno, status);
4218 WARN_ON(qc->err_mask);
4220 ap->hsm_task_state = HSM_ST_IDLE;
4222 /* complete taskfile transaction */
4223 ata_hsm_qc_complete(qc, in_wq);
4225 poll_next = 0;
4226 break;
4228 case HSM_ST_ERR:
4229 /* make sure qc->err_mask is available to
4230 * know what's wrong and recover
4232 WARN_ON(qc->err_mask == 0);
4234 ap->hsm_task_state = HSM_ST_IDLE;
4236 /* complete taskfile transaction */
4237 ata_hsm_qc_complete(qc, in_wq);
4239 poll_next = 0;
4240 break;
4241 default:
4242 poll_next = 0;
4243 BUG();
4246 return poll_next;
4249 static void ata_pio_task(void *_data)
4251 struct ata_queued_cmd *qc = _data;
4252 struct ata_port *ap = qc->ap;
4253 u8 status;
4254 int poll_next;
4256 fsm_start:
4257 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4260 * This is purely heuristic. This is a fast path.
4261 * Sometimes when we enter, BSY will be cleared in
4262 * a chk-status or two. If not, the drive is probably seeking
4263 * or something. Snooze for a couple msecs, then
4264 * chk-status again. If still busy, queue delayed work.
4266 status = ata_busy_wait(ap, ATA_BUSY, 5);
4267 if (status & ATA_BUSY) {
4268 msleep(2);
4269 status = ata_busy_wait(ap, ATA_BUSY, 10);
4270 if (status & ATA_BUSY) {
4271 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4272 return;
4276 /* move the HSM */
4277 poll_next = ata_hsm_move(ap, qc, status, 1);
4279 /* another command or interrupt handler
4280 * may be running at this point.
4282 if (poll_next)
4283 goto fsm_start;
4287 * ata_qc_new - Request an available ATA command, for queueing
4288 * @ap: Port associated with device @dev
4289 * @dev: Device from whom we request an available command structure
4291 * LOCKING:
4292 * None.
4295 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4297 struct ata_queued_cmd *qc = NULL;
4298 unsigned int i;
4300 /* no command while frozen */
4301 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4302 return NULL;
4304 /* the last tag is reserved for internal command. */
4305 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4306 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4307 qc = __ata_qc_from_tag(ap, i);
4308 break;
4311 if (qc)
4312 qc->tag = i;
4314 return qc;
4318 * ata_qc_new_init - Request an available ATA command, and initialize it
4319 * @dev: Device from whom we request an available command structure
4321 * LOCKING:
4322 * None.
4325 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4327 struct ata_port *ap = dev->ap;
4328 struct ata_queued_cmd *qc;
4330 qc = ata_qc_new(ap);
4331 if (qc) {
4332 qc->scsicmd = NULL;
4333 qc->ap = ap;
4334 qc->dev = dev;
4336 ata_qc_reinit(qc);
4339 return qc;
4343 * ata_qc_free - free unused ata_queued_cmd
4344 * @qc: Command to complete
4346 * Designed to free unused ata_queued_cmd object
4347 * in case something prevents using it.
4349 * LOCKING:
4350 * spin_lock_irqsave(host_set lock)
4352 void ata_qc_free(struct ata_queued_cmd *qc)
4354 struct ata_port *ap = qc->ap;
4355 unsigned int tag;
4357 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4359 qc->flags = 0;
4360 tag = qc->tag;
4361 if (likely(ata_tag_valid(tag))) {
4362 qc->tag = ATA_TAG_POISON;
4363 clear_bit(tag, &ap->qc_allocated);
4367 void __ata_qc_complete(struct ata_queued_cmd *qc)
4369 struct ata_port *ap = qc->ap;
4371 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4372 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4374 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4375 ata_sg_clean(qc);
4377 /* command should be marked inactive atomically with qc completion */
4378 if (qc->tf.protocol == ATA_PROT_NCQ)
4379 ap->sactive &= ~(1 << qc->tag);
4380 else
4381 ap->active_tag = ATA_TAG_POISON;
4383 /* atapi: mark qc as inactive to prevent the interrupt handler
4384 * from completing the command twice later, before the error handler
4385 * is called. (when rc != 0 and atapi request sense is needed)
4387 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4388 ap->qc_active &= ~(1 << qc->tag);
4390 /* call completion callback */
4391 qc->complete_fn(qc);
4395 * ata_qc_complete - Complete an active ATA command
4396 * @qc: Command to complete
4397 * @err_mask: ATA Status register contents
4399 * Indicate to the mid and upper layers that an ATA
4400 * command has completed, with either an ok or not-ok status.
4402 * LOCKING:
4403 * spin_lock_irqsave(host_set lock)
4405 void ata_qc_complete(struct ata_queued_cmd *qc)
4407 struct ata_port *ap = qc->ap;
4409 /* XXX: New EH and old EH use different mechanisms to
4410 * synchronize EH with regular execution path.
4412 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4413 * Normal execution path is responsible for not accessing a
4414 * failed qc. libata core enforces the rule by returning NULL
4415 * from ata_qc_from_tag() for failed qcs.
4417 * Old EH depends on ata_qc_complete() nullifying completion
4418 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4419 * not synchronize with interrupt handler. Only PIO task is
4420 * taken care of.
4422 if (ap->ops->error_handler) {
4423 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4425 if (unlikely(qc->err_mask))
4426 qc->flags |= ATA_QCFLAG_FAILED;
4428 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4429 if (!ata_tag_internal(qc->tag)) {
4430 /* always fill result TF for failed qc */
4431 ap->ops->tf_read(ap, &qc->result_tf);
4432 ata_qc_schedule_eh(qc);
4433 return;
4437 /* read result TF if requested */
4438 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4439 ap->ops->tf_read(ap, &qc->result_tf);
4441 __ata_qc_complete(qc);
4442 } else {
4443 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4444 return;
4446 /* read result TF if failed or requested */
4447 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4448 ap->ops->tf_read(ap, &qc->result_tf);
4450 __ata_qc_complete(qc);
4455 * ata_qc_complete_multiple - Complete multiple qcs successfully
4456 * @ap: port in question
4457 * @qc_active: new qc_active mask
4458 * @finish_qc: LLDD callback invoked before completing a qc
4460 * Complete in-flight commands. This functions is meant to be
4461 * called from low-level driver's interrupt routine to complete
4462 * requests normally. ap->qc_active and @qc_active is compared
4463 * and commands are completed accordingly.
4465 * LOCKING:
4466 * spin_lock_irqsave(host_set lock)
4468 * RETURNS:
4469 * Number of completed commands on success, -errno otherwise.
4471 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4472 void (*finish_qc)(struct ata_queued_cmd *))
4474 int nr_done = 0;
4475 u32 done_mask;
4476 int i;
4478 done_mask = ap->qc_active ^ qc_active;
4480 if (unlikely(done_mask & qc_active)) {
4481 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4482 "(%08x->%08x)\n", ap->qc_active, qc_active);
4483 return -EINVAL;
4486 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4487 struct ata_queued_cmd *qc;
4489 if (!(done_mask & (1 << i)))
4490 continue;
4492 if ((qc = ata_qc_from_tag(ap, i))) {
4493 if (finish_qc)
4494 finish_qc(qc);
4495 ata_qc_complete(qc);
4496 nr_done++;
4500 return nr_done;
4503 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4505 struct ata_port *ap = qc->ap;
4507 switch (qc->tf.protocol) {
4508 case ATA_PROT_NCQ:
4509 case ATA_PROT_DMA:
4510 case ATA_PROT_ATAPI_DMA:
4511 return 1;
4513 case ATA_PROT_ATAPI:
4514 case ATA_PROT_PIO:
4515 if (ap->flags & ATA_FLAG_PIO_DMA)
4516 return 1;
4518 /* fall through */
4520 default:
4521 return 0;
4524 /* never reached */
4528 * ata_qc_issue - issue taskfile to device
4529 * @qc: command to issue to device
4531 * Prepare an ATA command to submission to device.
4532 * This includes mapping the data into a DMA-able
4533 * area, filling in the S/G table, and finally
4534 * writing the taskfile to hardware, starting the command.
4536 * LOCKING:
4537 * spin_lock_irqsave(host_set lock)
4539 void ata_qc_issue(struct ata_queued_cmd *qc)
4541 struct ata_port *ap = qc->ap;
4543 /* Make sure only one non-NCQ command is outstanding. The
4544 * check is skipped for old EH because it reuses active qc to
4545 * request ATAPI sense.
4547 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4549 if (qc->tf.protocol == ATA_PROT_NCQ) {
4550 WARN_ON(ap->sactive & (1 << qc->tag));
4551 ap->sactive |= 1 << qc->tag;
4552 } else {
4553 WARN_ON(ap->sactive);
4554 ap->active_tag = qc->tag;
4557 qc->flags |= ATA_QCFLAG_ACTIVE;
4558 ap->qc_active |= 1 << qc->tag;
4560 if (ata_should_dma_map(qc)) {
4561 if (qc->flags & ATA_QCFLAG_SG) {
4562 if (ata_sg_setup(qc))
4563 goto sg_err;
4564 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4565 if (ata_sg_setup_one(qc))
4566 goto sg_err;
4568 } else {
4569 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4572 ap->ops->qc_prep(qc);
4574 qc->err_mask |= ap->ops->qc_issue(qc);
4575 if (unlikely(qc->err_mask))
4576 goto err;
4577 return;
4579 sg_err:
4580 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4581 qc->err_mask |= AC_ERR_SYSTEM;
4582 err:
4583 ata_qc_complete(qc);
4587 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4588 * @qc: command to issue to device
4590 * Using various libata functions and hooks, this function
4591 * starts an ATA command. ATA commands are grouped into
4592 * classes called "protocols", and issuing each type of protocol
4593 * is slightly different.
4595 * May be used as the qc_issue() entry in ata_port_operations.
4597 * LOCKING:
4598 * spin_lock_irqsave(host_set lock)
4600 * RETURNS:
4601 * Zero on success, AC_ERR_* mask on failure
4604 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4606 struct ata_port *ap = qc->ap;
4608 /* Use polling pio if the LLD doesn't handle
4609 * interrupt driven pio and atapi CDB interrupt.
4611 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4612 switch (qc->tf.protocol) {
4613 case ATA_PROT_PIO:
4614 case ATA_PROT_ATAPI:
4615 case ATA_PROT_ATAPI_NODATA:
4616 qc->tf.flags |= ATA_TFLAG_POLLING;
4617 break;
4618 case ATA_PROT_ATAPI_DMA:
4619 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4620 /* see ata_dma_blacklisted() */
4621 BUG();
4622 break;
4623 default:
4624 break;
4628 /* select the device */
4629 ata_dev_select(ap, qc->dev->devno, 1, 0);
4631 /* start the command */
4632 switch (qc->tf.protocol) {
4633 case ATA_PROT_NODATA:
4634 if (qc->tf.flags & ATA_TFLAG_POLLING)
4635 ata_qc_set_polling(qc);
4637 ata_tf_to_host(ap, &qc->tf);
4638 ap->hsm_task_state = HSM_ST_LAST;
4640 if (qc->tf.flags & ATA_TFLAG_POLLING)
4641 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4643 break;
4645 case ATA_PROT_DMA:
4646 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4648 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4649 ap->ops->bmdma_setup(qc); /* set up bmdma */
4650 ap->ops->bmdma_start(qc); /* initiate bmdma */
4651 ap->hsm_task_state = HSM_ST_LAST;
4652 break;
4654 case ATA_PROT_PIO:
4655 if (qc->tf.flags & ATA_TFLAG_POLLING)
4656 ata_qc_set_polling(qc);
4658 ata_tf_to_host(ap, &qc->tf);
4660 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4661 /* PIO data out protocol */
4662 ap->hsm_task_state = HSM_ST_FIRST;
4663 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4665 /* always send first data block using
4666 * the ata_pio_task() codepath.
4668 } else {
4669 /* PIO data in protocol */
4670 ap->hsm_task_state = HSM_ST;
4672 if (qc->tf.flags & ATA_TFLAG_POLLING)
4673 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4675 /* if polling, ata_pio_task() handles the rest.
4676 * otherwise, interrupt handler takes over from here.
4680 break;
4682 case ATA_PROT_ATAPI:
4683 case ATA_PROT_ATAPI_NODATA:
4684 if (qc->tf.flags & ATA_TFLAG_POLLING)
4685 ata_qc_set_polling(qc);
4687 ata_tf_to_host(ap, &qc->tf);
4689 ap->hsm_task_state = HSM_ST_FIRST;
4691 /* send cdb by polling if no cdb interrupt */
4692 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4693 (qc->tf.flags & ATA_TFLAG_POLLING))
4694 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4695 break;
4697 case ATA_PROT_ATAPI_DMA:
4698 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4700 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4701 ap->ops->bmdma_setup(qc); /* set up bmdma */
4702 ap->hsm_task_state = HSM_ST_FIRST;
4704 /* send cdb by polling if no cdb interrupt */
4705 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4706 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4707 break;
4709 default:
4710 WARN_ON(1);
4711 return AC_ERR_SYSTEM;
4714 return 0;
4718 * ata_host_intr - Handle host interrupt for given (port, task)
4719 * @ap: Port on which interrupt arrived (possibly...)
4720 * @qc: Taskfile currently active in engine
4722 * Handle host interrupt for given queued command. Currently,
4723 * only DMA interrupts are handled. All other commands are
4724 * handled via polling with interrupts disabled (nIEN bit).
4726 * LOCKING:
4727 * spin_lock_irqsave(host_set lock)
4729 * RETURNS:
4730 * One if interrupt was handled, zero if not (shared irq).
4733 inline unsigned int ata_host_intr (struct ata_port *ap,
4734 struct ata_queued_cmd *qc)
4736 u8 status, host_stat = 0;
4738 VPRINTK("ata%u: protocol %d task_state %d\n",
4739 ap->id, qc->tf.protocol, ap->hsm_task_state);
4741 /* Check whether we are expecting interrupt in this state */
4742 switch (ap->hsm_task_state) {
4743 case HSM_ST_FIRST:
4744 /* Some pre-ATAPI-4 devices assert INTRQ
4745 * at this state when ready to receive CDB.
4748 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4749 * The flag was turned on only for atapi devices.
4750 * No need to check is_atapi_taskfile(&qc->tf) again.
4752 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4753 goto idle_irq;
4754 break;
4755 case HSM_ST_LAST:
4756 if (qc->tf.protocol == ATA_PROT_DMA ||
4757 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4758 /* check status of DMA engine */
4759 host_stat = ap->ops->bmdma_status(ap);
4760 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4762 /* if it's not our irq... */
4763 if (!(host_stat & ATA_DMA_INTR))
4764 goto idle_irq;
4766 /* before we do anything else, clear DMA-Start bit */
4767 ap->ops->bmdma_stop(qc);
4769 if (unlikely(host_stat & ATA_DMA_ERR)) {
4770 /* error when transfering data to/from memory */
4771 qc->err_mask |= AC_ERR_HOST_BUS;
4772 ap->hsm_task_state = HSM_ST_ERR;
4775 break;
4776 case HSM_ST:
4777 break;
4778 default:
4779 goto idle_irq;
4782 /* check altstatus */
4783 status = ata_altstatus(ap);
4784 if (status & ATA_BUSY)
4785 goto idle_irq;
4787 /* check main status, clearing INTRQ */
4788 status = ata_chk_status(ap);
4789 if (unlikely(status & ATA_BUSY))
4790 goto idle_irq;
4792 /* ack bmdma irq events */
4793 ap->ops->irq_clear(ap);
4795 ata_hsm_move(ap, qc, status, 0);
4796 return 1; /* irq handled */
4798 idle_irq:
4799 ap->stats.idle_irq++;
4801 #ifdef ATA_IRQ_TRAP
4802 if ((ap->stats.idle_irq % 1000) == 0) {
4803 ata_irq_ack(ap, 0); /* debug trap */
4804 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4805 return 1;
4807 #endif
4808 return 0; /* irq not handled */
4812 * ata_interrupt - Default ATA host interrupt handler
4813 * @irq: irq line (unused)
4814 * @dev_instance: pointer to our ata_host_set information structure
4815 * @regs: unused
4817 * Default interrupt handler for PCI IDE devices. Calls
4818 * ata_host_intr() for each port that is not disabled.
4820 * LOCKING:
4821 * Obtains host_set lock during operation.
4823 * RETURNS:
4824 * IRQ_NONE or IRQ_HANDLED.
4827 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4829 struct ata_host_set *host_set = dev_instance;
4830 unsigned int i;
4831 unsigned int handled = 0;
4832 unsigned long flags;
4834 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4835 spin_lock_irqsave(&host_set->lock, flags);
4837 for (i = 0; i < host_set->n_ports; i++) {
4838 struct ata_port *ap;
4840 ap = host_set->ports[i];
4841 if (ap &&
4842 !(ap->flags & ATA_FLAG_DISABLED)) {
4843 struct ata_queued_cmd *qc;
4845 qc = ata_qc_from_tag(ap, ap->active_tag);
4846 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4847 (qc->flags & ATA_QCFLAG_ACTIVE))
4848 handled |= ata_host_intr(ap, qc);
4852 spin_unlock_irqrestore(&host_set->lock, flags);
4854 return IRQ_RETVAL(handled);
4858 * sata_scr_valid - test whether SCRs are accessible
4859 * @ap: ATA port to test SCR accessibility for
4861 * Test whether SCRs are accessible for @ap.
4863 * LOCKING:
4864 * None.
4866 * RETURNS:
4867 * 1 if SCRs are accessible, 0 otherwise.
4869 int sata_scr_valid(struct ata_port *ap)
4871 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4875 * sata_scr_read - read SCR register of the specified port
4876 * @ap: ATA port to read SCR for
4877 * @reg: SCR to read
4878 * @val: Place to store read value
4880 * Read SCR register @reg of @ap into *@val. This function is
4881 * guaranteed to succeed if the cable type of the port is SATA
4882 * and the port implements ->scr_read.
4884 * LOCKING:
4885 * None.
4887 * RETURNS:
4888 * 0 on success, negative errno on failure.
4890 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4892 if (sata_scr_valid(ap)) {
4893 *val = ap->ops->scr_read(ap, reg);
4894 return 0;
4896 return -EOPNOTSUPP;
4900 * sata_scr_write - write SCR register of the specified port
4901 * @ap: ATA port to write SCR for
4902 * @reg: SCR to write
4903 * @val: value to write
4905 * Write @val to SCR register @reg of @ap. This function is
4906 * guaranteed to succeed if the cable type of the port is SATA
4907 * and the port implements ->scr_read.
4909 * LOCKING:
4910 * None.
4912 * RETURNS:
4913 * 0 on success, negative errno on failure.
4915 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4917 if (sata_scr_valid(ap)) {
4918 ap->ops->scr_write(ap, reg, val);
4919 return 0;
4921 return -EOPNOTSUPP;
4925 * sata_scr_write_flush - write SCR register of the specified port and flush
4926 * @ap: ATA port to write SCR for
4927 * @reg: SCR to write
4928 * @val: value to write
4930 * This function is identical to sata_scr_write() except that this
4931 * function performs flush after writing to the register.
4933 * LOCKING:
4934 * None.
4936 * RETURNS:
4937 * 0 on success, negative errno on failure.
4939 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4941 if (sata_scr_valid(ap)) {
4942 ap->ops->scr_write(ap, reg, val);
4943 ap->ops->scr_read(ap, reg);
4944 return 0;
4946 return -EOPNOTSUPP;
4950 * ata_port_online - test whether the given port is online
4951 * @ap: ATA port to test
4953 * Test whether @ap is online. Note that this function returns 0
4954 * if online status of @ap cannot be obtained, so
4955 * ata_port_online(ap) != !ata_port_offline(ap).
4957 * LOCKING:
4958 * None.
4960 * RETURNS:
4961 * 1 if the port online status is available and online.
4963 int ata_port_online(struct ata_port *ap)
4965 u32 sstatus;
4967 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4968 return 1;
4969 return 0;
4973 * ata_port_offline - test whether the given port is offline
4974 * @ap: ATA port to test
4976 * Test whether @ap is offline. Note that this function returns
4977 * 0 if offline status of @ap cannot be obtained, so
4978 * ata_port_online(ap) != !ata_port_offline(ap).
4980 * LOCKING:
4981 * None.
4983 * RETURNS:
4984 * 1 if the port offline status is available and offline.
4986 int ata_port_offline(struct ata_port *ap)
4988 u32 sstatus;
4990 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4991 return 1;
4992 return 0;
4995 int ata_flush_cache(struct ata_device *dev)
4997 unsigned int err_mask;
4998 u8 cmd;
5000 if (!ata_try_flush_cache(dev))
5001 return 0;
5003 if (ata_id_has_flush_ext(dev->id))
5004 cmd = ATA_CMD_FLUSH_EXT;
5005 else
5006 cmd = ATA_CMD_FLUSH;
5008 err_mask = ata_do_simple_cmd(dev, cmd);
5009 if (err_mask) {
5010 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5011 return -EIO;
5014 return 0;
5017 static int ata_host_set_request_pm(struct ata_host_set *host_set,
5018 pm_message_t mesg, unsigned int action,
5019 unsigned int ehi_flags, int wait)
5021 unsigned long flags;
5022 int i, rc;
5024 for (i = 0; i < host_set->n_ports; i++) {
5025 struct ata_port *ap = host_set->ports[i];
5027 /* Previous resume operation might still be in
5028 * progress. Wait for PM_PENDING to clear.
5030 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5031 ata_port_wait_eh(ap);
5032 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5035 /* request PM ops to EH */
5036 spin_lock_irqsave(ap->lock, flags);
5038 ap->pm_mesg = mesg;
5039 if (wait) {
5040 rc = 0;
5041 ap->pm_result = &rc;
5044 ap->pflags |= ATA_PFLAG_PM_PENDING;
5045 ap->eh_info.action |= action;
5046 ap->eh_info.flags |= ehi_flags;
5048 ata_port_schedule_eh(ap);
5050 spin_unlock_irqrestore(ap->lock, flags);
5052 /* wait and check result */
5053 if (wait) {
5054 ata_port_wait_eh(ap);
5055 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5056 if (rc)
5057 return rc;
5061 return 0;
5065 * ata_host_set_suspend - suspend host_set
5066 * @host_set: host_set to suspend
5067 * @mesg: PM message
5069 * Suspend @host_set. Actual operation is performed by EH. This
5070 * function requests EH to perform PM operations and waits for EH
5071 * to finish.
5073 * LOCKING:
5074 * Kernel thread context (may sleep).
5076 * RETURNS:
5077 * 0 on success, -errno on failure.
5079 int ata_host_set_suspend(struct ata_host_set *host_set, pm_message_t mesg)
5081 int i, j, rc;
5083 rc = ata_host_set_request_pm(host_set, mesg, 0, ATA_EHI_QUIET, 1);
5084 if (rc)
5085 goto fail;
5087 /* EH is quiescent now. Fail if we have any ready device.
5088 * This happens if hotplug occurs between completion of device
5089 * suspension and here.
5091 for (i = 0; i < host_set->n_ports; i++) {
5092 struct ata_port *ap = host_set->ports[i];
5094 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5095 struct ata_device *dev = &ap->device[j];
5097 if (ata_dev_ready(dev)) {
5098 ata_port_printk(ap, KERN_WARNING,
5099 "suspend failed, device %d "
5100 "still active\n", dev->devno);
5101 rc = -EBUSY;
5102 goto fail;
5107 host_set->dev->power.power_state = mesg;
5108 return 0;
5110 fail:
5111 ata_host_set_resume(host_set);
5112 return rc;
5116 * ata_host_set_resume - resume host_set
5117 * @host_set: host_set to resume
5119 * Resume @host_set. Actual operation is performed by EH. This
5120 * function requests EH to perform PM operations and returns.
5121 * Note that all resume operations are performed parallely.
5123 * LOCKING:
5124 * Kernel thread context (may sleep).
5126 void ata_host_set_resume(struct ata_host_set *host_set)
5128 ata_host_set_request_pm(host_set, PMSG_ON, ATA_EH_SOFTRESET,
5129 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5130 host_set->dev->power.power_state = PMSG_ON;
5134 * ata_port_start - Set port up for dma.
5135 * @ap: Port to initialize
5137 * Called just after data structures for each port are
5138 * initialized. Allocates space for PRD table.
5140 * May be used as the port_start() entry in ata_port_operations.
5142 * LOCKING:
5143 * Inherited from caller.
5146 int ata_port_start (struct ata_port *ap)
5148 struct device *dev = ap->dev;
5149 int rc;
5151 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5152 if (!ap->prd)
5153 return -ENOMEM;
5155 rc = ata_pad_alloc(ap, dev);
5156 if (rc) {
5157 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5158 return rc;
5161 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5163 return 0;
5168 * ata_port_stop - Undo ata_port_start()
5169 * @ap: Port to shut down
5171 * Frees the PRD table.
5173 * May be used as the port_stop() entry in ata_port_operations.
5175 * LOCKING:
5176 * Inherited from caller.
5179 void ata_port_stop (struct ata_port *ap)
5181 struct device *dev = ap->dev;
5183 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5184 ata_pad_free(ap, dev);
5187 void ata_host_stop (struct ata_host_set *host_set)
5189 if (host_set->mmio_base)
5190 iounmap(host_set->mmio_base);
5194 * ata_dev_init - Initialize an ata_device structure
5195 * @dev: Device structure to initialize
5197 * Initialize @dev in preparation for probing.
5199 * LOCKING:
5200 * Inherited from caller.
5202 void ata_dev_init(struct ata_device *dev)
5204 struct ata_port *ap = dev->ap;
5205 unsigned long flags;
5207 /* SATA spd limit is bound to the first device */
5208 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5210 /* High bits of dev->flags are used to record warm plug
5211 * requests which occur asynchronously. Synchronize using
5212 * host_set lock.
5214 spin_lock_irqsave(ap->lock, flags);
5215 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5216 spin_unlock_irqrestore(ap->lock, flags);
5218 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5219 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5220 dev->pio_mask = UINT_MAX;
5221 dev->mwdma_mask = UINT_MAX;
5222 dev->udma_mask = UINT_MAX;
5226 * ata_host_init - Initialize an ata_port structure
5227 * @ap: Structure to initialize
5228 * @host: associated SCSI mid-layer structure
5229 * @host_set: Collection of hosts to which @ap belongs
5230 * @ent: Probe information provided by low-level driver
5231 * @port_no: Port number associated with this ata_port
5233 * Initialize a new ata_port structure, and its associated
5234 * scsi_host.
5236 * LOCKING:
5237 * Inherited from caller.
5239 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5240 struct ata_host_set *host_set,
5241 const struct ata_probe_ent *ent, unsigned int port_no)
5243 unsigned int i;
5245 host->max_id = 16;
5246 host->max_lun = 1;
5247 host->max_channel = 1;
5248 host->unique_id = ata_unique_id++;
5249 host->max_cmd_len = 12;
5251 ap->lock = &host_set->lock;
5252 ap->flags = ATA_FLAG_DISABLED;
5253 ap->id = host->unique_id;
5254 ap->host = host;
5255 ap->ctl = ATA_DEVCTL_OBS;
5256 ap->host_set = host_set;
5257 ap->dev = ent->dev;
5258 ap->port_no = port_no;
5259 ap->hard_port_no =
5260 ent->legacy_mode ? ent->hard_port_no : port_no;
5261 ap->pio_mask = ent->pio_mask;
5262 ap->mwdma_mask = ent->mwdma_mask;
5263 ap->udma_mask = ent->udma_mask;
5264 ap->flags |= ent->host_flags;
5265 ap->ops = ent->port_ops;
5266 ap->hw_sata_spd_limit = UINT_MAX;
5267 ap->active_tag = ATA_TAG_POISON;
5268 ap->last_ctl = 0xFF;
5270 #if defined(ATA_VERBOSE_DEBUG)
5271 /* turn on all debugging levels */
5272 ap->msg_enable = 0x00FF;
5273 #elif defined(ATA_DEBUG)
5274 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5275 #else
5276 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5277 #endif
5279 INIT_WORK(&ap->port_task, NULL, NULL);
5280 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5281 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5282 INIT_LIST_HEAD(&ap->eh_done_q);
5283 init_waitqueue_head(&ap->eh_wait_q);
5285 /* set cable type */
5286 ap->cbl = ATA_CBL_NONE;
5287 if (ap->flags & ATA_FLAG_SATA)
5288 ap->cbl = ATA_CBL_SATA;
5290 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5291 struct ata_device *dev = &ap->device[i];
5292 dev->ap = ap;
5293 dev->devno = i;
5294 ata_dev_init(dev);
5297 #ifdef ATA_IRQ_TRAP
5298 ap->stats.unhandled_irq = 1;
5299 ap->stats.idle_irq = 1;
5300 #endif
5302 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5306 * ata_host_add - Attach low-level ATA driver to system
5307 * @ent: Information provided by low-level driver
5308 * @host_set: Collections of ports to which we add
5309 * @port_no: Port number associated with this host
5311 * Attach low-level ATA driver to system.
5313 * LOCKING:
5314 * PCI/etc. bus probe sem.
5316 * RETURNS:
5317 * New ata_port on success, for NULL on error.
5320 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5321 struct ata_host_set *host_set,
5322 unsigned int port_no)
5324 struct Scsi_Host *host;
5325 struct ata_port *ap;
5326 int rc;
5328 DPRINTK("ENTER\n");
5330 if (!ent->port_ops->error_handler &&
5331 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5332 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5333 port_no);
5334 return NULL;
5337 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5338 if (!host)
5339 return NULL;
5341 host->transportt = &ata_scsi_transport_template;
5343 ap = ata_shost_to_port(host);
5345 ata_host_init(ap, host, host_set, ent, port_no);
5347 rc = ap->ops->port_start(ap);
5348 if (rc)
5349 goto err_out;
5351 return ap;
5353 err_out:
5354 scsi_host_put(host);
5355 return NULL;
5359 * ata_device_add - Register hardware device with ATA and SCSI layers
5360 * @ent: Probe information describing hardware device to be registered
5362 * This function processes the information provided in the probe
5363 * information struct @ent, allocates the necessary ATA and SCSI
5364 * host information structures, initializes them, and registers
5365 * everything with requisite kernel subsystems.
5367 * This function requests irqs, probes the ATA bus, and probes
5368 * the SCSI bus.
5370 * LOCKING:
5371 * PCI/etc. bus probe sem.
5373 * RETURNS:
5374 * Number of ports registered. Zero on error (no ports registered).
5376 int ata_device_add(const struct ata_probe_ent *ent)
5378 unsigned int count = 0, i;
5379 struct device *dev = ent->dev;
5380 struct ata_host_set *host_set;
5381 int rc;
5383 DPRINTK("ENTER\n");
5384 /* alloc a container for our list of ATA ports (buses) */
5385 host_set = kzalloc(sizeof(struct ata_host_set) +
5386 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5387 if (!host_set)
5388 return 0;
5389 spin_lock_init(&host_set->lock);
5391 host_set->dev = dev;
5392 host_set->n_ports = ent->n_ports;
5393 host_set->irq = ent->irq;
5394 host_set->mmio_base = ent->mmio_base;
5395 host_set->private_data = ent->private_data;
5396 host_set->ops = ent->port_ops;
5397 host_set->flags = ent->host_set_flags;
5399 /* register each port bound to this device */
5400 for (i = 0; i < ent->n_ports; i++) {
5401 struct ata_port *ap;
5402 unsigned long xfer_mode_mask;
5404 ap = ata_host_add(ent, host_set, i);
5405 if (!ap)
5406 goto err_out;
5408 host_set->ports[i] = ap;
5409 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5410 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5411 (ap->pio_mask << ATA_SHIFT_PIO);
5413 /* print per-port info to dmesg */
5414 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5415 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5416 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5417 ata_mode_string(xfer_mode_mask),
5418 ap->ioaddr.cmd_addr,
5419 ap->ioaddr.ctl_addr,
5420 ap->ioaddr.bmdma_addr,
5421 ent->irq);
5423 ata_chk_status(ap);
5424 host_set->ops->irq_clear(ap);
5425 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5426 count++;
5429 if (!count)
5430 goto err_free_ret;
5432 /* obtain irq, that is shared between channels */
5433 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5434 DRV_NAME, host_set);
5435 if (rc) {
5436 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5437 ent->irq, rc);
5438 goto err_out;
5441 /* perform each probe synchronously */
5442 DPRINTK("probe begin\n");
5443 for (i = 0; i < count; i++) {
5444 struct ata_port *ap;
5445 u32 scontrol;
5446 int rc;
5448 ap = host_set->ports[i];
5450 /* init sata_spd_limit to the current value */
5451 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5452 int spd = (scontrol >> 4) & 0xf;
5453 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5455 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5457 rc = scsi_add_host(ap->host, dev);
5458 if (rc) {
5459 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5460 /* FIXME: do something useful here */
5461 /* FIXME: handle unconditional calls to
5462 * scsi_scan_host and ata_host_remove, below,
5463 * at the very least
5467 if (ap->ops->error_handler) {
5468 struct ata_eh_info *ehi = &ap->eh_info;
5469 unsigned long flags;
5471 ata_port_probe(ap);
5473 /* kick EH for boot probing */
5474 spin_lock_irqsave(ap->lock, flags);
5476 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5477 ehi->action |= ATA_EH_SOFTRESET;
5478 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5480 ap->pflags |= ATA_PFLAG_LOADING;
5481 ata_port_schedule_eh(ap);
5483 spin_unlock_irqrestore(ap->lock, flags);
5485 /* wait for EH to finish */
5486 ata_port_wait_eh(ap);
5487 } else {
5488 DPRINTK("ata%u: bus probe begin\n", ap->id);
5489 rc = ata_bus_probe(ap);
5490 DPRINTK("ata%u: bus probe end\n", ap->id);
5492 if (rc) {
5493 /* FIXME: do something useful here?
5494 * Current libata behavior will
5495 * tear down everything when
5496 * the module is removed
5497 * or the h/w is unplugged.
5503 /* probes are done, now scan each port's disk(s) */
5504 DPRINTK("host probe begin\n");
5505 for (i = 0; i < count; i++) {
5506 struct ata_port *ap = host_set->ports[i];
5508 ata_scsi_scan_host(ap);
5511 dev_set_drvdata(dev, host_set);
5513 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5514 return ent->n_ports; /* success */
5516 err_out:
5517 for (i = 0; i < count; i++) {
5518 struct ata_port *ap = host_set->ports[i];
5519 if (ap) {
5520 ap->ops->port_stop(ap);
5521 scsi_host_put(ap->host);
5524 err_free_ret:
5525 kfree(host_set);
5526 VPRINTK("EXIT, returning 0\n");
5527 return 0;
5531 * ata_port_detach - Detach ATA port in prepration of device removal
5532 * @ap: ATA port to be detached
5534 * Detach all ATA devices and the associated SCSI devices of @ap;
5535 * then, remove the associated SCSI host. @ap is guaranteed to
5536 * be quiescent on return from this function.
5538 * LOCKING:
5539 * Kernel thread context (may sleep).
5541 void ata_port_detach(struct ata_port *ap)
5543 unsigned long flags;
5544 int i;
5546 if (!ap->ops->error_handler)
5547 goto skip_eh;
5549 /* tell EH we're leaving & flush EH */
5550 spin_lock_irqsave(ap->lock, flags);
5551 ap->pflags |= ATA_PFLAG_UNLOADING;
5552 spin_unlock_irqrestore(ap->lock, flags);
5554 ata_port_wait_eh(ap);
5556 /* EH is now guaranteed to see UNLOADING, so no new device
5557 * will be attached. Disable all existing devices.
5559 spin_lock_irqsave(ap->lock, flags);
5561 for (i = 0; i < ATA_MAX_DEVICES; i++)
5562 ata_dev_disable(&ap->device[i]);
5564 spin_unlock_irqrestore(ap->lock, flags);
5566 /* Final freeze & EH. All in-flight commands are aborted. EH
5567 * will be skipped and retrials will be terminated with bad
5568 * target.
5570 spin_lock_irqsave(ap->lock, flags);
5571 ata_port_freeze(ap); /* won't be thawed */
5572 spin_unlock_irqrestore(ap->lock, flags);
5574 ata_port_wait_eh(ap);
5576 /* Flush hotplug task. The sequence is similar to
5577 * ata_port_flush_task().
5579 flush_workqueue(ata_aux_wq);
5580 cancel_delayed_work(&ap->hotplug_task);
5581 flush_workqueue(ata_aux_wq);
5583 skip_eh:
5584 /* remove the associated SCSI host */
5585 scsi_remove_host(ap->host);
5589 * ata_host_set_remove - PCI layer callback for device removal
5590 * @host_set: ATA host set that was removed
5592 * Unregister all objects associated with this host set. Free those
5593 * objects.
5595 * LOCKING:
5596 * Inherited from calling layer (may sleep).
5599 void ata_host_set_remove(struct ata_host_set *host_set)
5601 unsigned int i;
5603 for (i = 0; i < host_set->n_ports; i++)
5604 ata_port_detach(host_set->ports[i]);
5606 free_irq(host_set->irq, host_set);
5608 for (i = 0; i < host_set->n_ports; i++) {
5609 struct ata_port *ap = host_set->ports[i];
5611 ata_scsi_release(ap->host);
5613 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5614 struct ata_ioports *ioaddr = &ap->ioaddr;
5616 if (ioaddr->cmd_addr == 0x1f0)
5617 release_region(0x1f0, 8);
5618 else if (ioaddr->cmd_addr == 0x170)
5619 release_region(0x170, 8);
5622 scsi_host_put(ap->host);
5625 if (host_set->ops->host_stop)
5626 host_set->ops->host_stop(host_set);
5628 kfree(host_set);
5632 * ata_scsi_release - SCSI layer callback hook for host unload
5633 * @host: libata host to be unloaded
5635 * Performs all duties necessary to shut down a libata port...
5636 * Kill port kthread, disable port, and release resources.
5638 * LOCKING:
5639 * Inherited from SCSI layer.
5641 * RETURNS:
5642 * One.
5645 int ata_scsi_release(struct Scsi_Host *host)
5647 struct ata_port *ap = ata_shost_to_port(host);
5649 DPRINTK("ENTER\n");
5651 ap->ops->port_disable(ap);
5652 ap->ops->port_stop(ap);
5654 DPRINTK("EXIT\n");
5655 return 1;
5659 * ata_std_ports - initialize ioaddr with standard port offsets.
5660 * @ioaddr: IO address structure to be initialized
5662 * Utility function which initializes data_addr, error_addr,
5663 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5664 * device_addr, status_addr, and command_addr to standard offsets
5665 * relative to cmd_addr.
5667 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5670 void ata_std_ports(struct ata_ioports *ioaddr)
5672 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5673 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5674 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5675 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5676 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5677 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5678 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5679 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5680 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5681 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5685 #ifdef CONFIG_PCI
5687 void ata_pci_host_stop (struct ata_host_set *host_set)
5689 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5691 pci_iounmap(pdev, host_set->mmio_base);
5695 * ata_pci_remove_one - PCI layer callback for device removal
5696 * @pdev: PCI device that was removed
5698 * PCI layer indicates to libata via this hook that
5699 * hot-unplug or module unload event has occurred.
5700 * Handle this by unregistering all objects associated
5701 * with this PCI device. Free those objects. Then finally
5702 * release PCI resources and disable device.
5704 * LOCKING:
5705 * Inherited from PCI layer (may sleep).
5708 void ata_pci_remove_one (struct pci_dev *pdev)
5710 struct device *dev = pci_dev_to_dev(pdev);
5711 struct ata_host_set *host_set = dev_get_drvdata(dev);
5712 struct ata_host_set *host_set2 = host_set->next;
5714 ata_host_set_remove(host_set);
5715 if (host_set2)
5716 ata_host_set_remove(host_set2);
5718 pci_release_regions(pdev);
5719 pci_disable_device(pdev);
5720 dev_set_drvdata(dev, NULL);
5723 /* move to PCI subsystem */
5724 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5726 unsigned long tmp = 0;
5728 switch (bits->width) {
5729 case 1: {
5730 u8 tmp8 = 0;
5731 pci_read_config_byte(pdev, bits->reg, &tmp8);
5732 tmp = tmp8;
5733 break;
5735 case 2: {
5736 u16 tmp16 = 0;
5737 pci_read_config_word(pdev, bits->reg, &tmp16);
5738 tmp = tmp16;
5739 break;
5741 case 4: {
5742 u32 tmp32 = 0;
5743 pci_read_config_dword(pdev, bits->reg, &tmp32);
5744 tmp = tmp32;
5745 break;
5748 default:
5749 return -EINVAL;
5752 tmp &= bits->mask;
5754 return (tmp == bits->val) ? 1 : 0;
5757 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t state)
5759 pci_save_state(pdev);
5761 if (state.event == PM_EVENT_SUSPEND) {
5762 pci_disable_device(pdev);
5763 pci_set_power_state(pdev, PCI_D3hot);
5767 void ata_pci_device_do_resume(struct pci_dev *pdev)
5769 pci_set_power_state(pdev, PCI_D0);
5770 pci_restore_state(pdev);
5771 pci_enable_device(pdev);
5772 pci_set_master(pdev);
5775 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5777 struct ata_host_set *host_set = dev_get_drvdata(&pdev->dev);
5778 int rc = 0;
5780 rc = ata_host_set_suspend(host_set, state);
5781 if (rc)
5782 return rc;
5784 if (host_set->next) {
5785 rc = ata_host_set_suspend(host_set->next, state);
5786 if (rc) {
5787 ata_host_set_resume(host_set);
5788 return rc;
5792 ata_pci_device_do_suspend(pdev, state);
5794 return 0;
5797 int ata_pci_device_resume(struct pci_dev *pdev)
5799 struct ata_host_set *host_set = dev_get_drvdata(&pdev->dev);
5801 ata_pci_device_do_resume(pdev);
5802 ata_host_set_resume(host_set);
5803 if (host_set->next)
5804 ata_host_set_resume(host_set->next);
5806 return 0;
5808 #endif /* CONFIG_PCI */
5811 static int __init ata_init(void)
5813 ata_probe_timeout *= HZ;
5814 ata_wq = create_workqueue("ata");
5815 if (!ata_wq)
5816 return -ENOMEM;
5818 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5819 if (!ata_aux_wq) {
5820 destroy_workqueue(ata_wq);
5821 return -ENOMEM;
5824 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5825 return 0;
5828 static void __exit ata_exit(void)
5830 destroy_workqueue(ata_wq);
5831 destroy_workqueue(ata_aux_wq);
5834 module_init(ata_init);
5835 module_exit(ata_exit);
5837 static unsigned long ratelimit_time;
5838 static DEFINE_SPINLOCK(ata_ratelimit_lock);
5840 int ata_ratelimit(void)
5842 int rc;
5843 unsigned long flags;
5845 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5847 if (time_after(jiffies, ratelimit_time)) {
5848 rc = 1;
5849 ratelimit_time = jiffies + (HZ/5);
5850 } else
5851 rc = 0;
5853 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5855 return rc;
5859 * ata_wait_register - wait until register value changes
5860 * @reg: IO-mapped register
5861 * @mask: Mask to apply to read register value
5862 * @val: Wait condition
5863 * @interval_msec: polling interval in milliseconds
5864 * @timeout_msec: timeout in milliseconds
5866 * Waiting for some bits of register to change is a common
5867 * operation for ATA controllers. This function reads 32bit LE
5868 * IO-mapped register @reg and tests for the following condition.
5870 * (*@reg & mask) != val
5872 * If the condition is met, it returns; otherwise, the process is
5873 * repeated after @interval_msec until timeout.
5875 * LOCKING:
5876 * Kernel thread context (may sleep)
5878 * RETURNS:
5879 * The final register value.
5881 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5882 unsigned long interval_msec,
5883 unsigned long timeout_msec)
5885 unsigned long timeout;
5886 u32 tmp;
5888 tmp = ioread32(reg);
5890 /* Calculate timeout _after_ the first read to make sure
5891 * preceding writes reach the controller before starting to
5892 * eat away the timeout.
5894 timeout = jiffies + (timeout_msec * HZ) / 1000;
5896 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5897 msleep(interval_msec);
5898 tmp = ioread32(reg);
5901 return tmp;
5905 * libata is essentially a library of internal helper functions for
5906 * low-level ATA host controller drivers. As such, the API/ABI is
5907 * likely to change as new drivers are added and updated.
5908 * Do not depend on ABI/API stability.
5911 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
5912 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
5913 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
5914 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5915 EXPORT_SYMBOL_GPL(ata_std_ports);
5916 EXPORT_SYMBOL_GPL(ata_device_add);
5917 EXPORT_SYMBOL_GPL(ata_port_detach);
5918 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5919 EXPORT_SYMBOL_GPL(ata_sg_init);
5920 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5921 EXPORT_SYMBOL_GPL(ata_hsm_move);
5922 EXPORT_SYMBOL_GPL(ata_qc_complete);
5923 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5924 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5925 EXPORT_SYMBOL_GPL(ata_tf_load);
5926 EXPORT_SYMBOL_GPL(ata_tf_read);
5927 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5928 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5929 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5930 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5931 EXPORT_SYMBOL_GPL(ata_check_status);
5932 EXPORT_SYMBOL_GPL(ata_altstatus);
5933 EXPORT_SYMBOL_GPL(ata_exec_command);
5934 EXPORT_SYMBOL_GPL(ata_port_start);
5935 EXPORT_SYMBOL_GPL(ata_port_stop);
5936 EXPORT_SYMBOL_GPL(ata_host_stop);
5937 EXPORT_SYMBOL_GPL(ata_interrupt);
5938 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5939 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5940 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5941 EXPORT_SYMBOL_GPL(ata_qc_prep);
5942 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5943 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5944 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5945 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5946 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5947 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5948 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5949 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5950 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5951 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5952 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5953 EXPORT_SYMBOL_GPL(ata_port_probe);
5954 EXPORT_SYMBOL_GPL(sata_set_spd);
5955 EXPORT_SYMBOL_GPL(sata_phy_debounce);
5956 EXPORT_SYMBOL_GPL(sata_phy_resume);
5957 EXPORT_SYMBOL_GPL(sata_phy_reset);
5958 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5959 EXPORT_SYMBOL_GPL(ata_bus_reset);
5960 EXPORT_SYMBOL_GPL(ata_std_prereset);
5961 EXPORT_SYMBOL_GPL(ata_std_softreset);
5962 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5963 EXPORT_SYMBOL_GPL(ata_std_postreset);
5964 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5965 EXPORT_SYMBOL_GPL(ata_dev_classify);
5966 EXPORT_SYMBOL_GPL(ata_dev_pair);
5967 EXPORT_SYMBOL_GPL(ata_port_disable);
5968 EXPORT_SYMBOL_GPL(ata_ratelimit);
5969 EXPORT_SYMBOL_GPL(ata_wait_register);
5970 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5971 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5972 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5973 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5974 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5975 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
5976 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5977 EXPORT_SYMBOL_GPL(ata_scsi_release);
5978 EXPORT_SYMBOL_GPL(ata_host_intr);
5979 EXPORT_SYMBOL_GPL(sata_scr_valid);
5980 EXPORT_SYMBOL_GPL(sata_scr_read);
5981 EXPORT_SYMBOL_GPL(sata_scr_write);
5982 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5983 EXPORT_SYMBOL_GPL(ata_port_online);
5984 EXPORT_SYMBOL_GPL(ata_port_offline);
5985 EXPORT_SYMBOL_GPL(ata_host_set_suspend);
5986 EXPORT_SYMBOL_GPL(ata_host_set_resume);
5987 EXPORT_SYMBOL_GPL(ata_id_string);
5988 EXPORT_SYMBOL_GPL(ata_id_c_string);
5989 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5991 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5992 EXPORT_SYMBOL_GPL(ata_timing_compute);
5993 EXPORT_SYMBOL_GPL(ata_timing_merge);
5995 #ifdef CONFIG_PCI
5996 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5997 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5998 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5999 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6000 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6001 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6002 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6003 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6004 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6005 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6006 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6007 #endif /* CONFIG_PCI */
6009 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6010 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6012 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6013 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6014 EXPORT_SYMBOL_GPL(ata_port_abort);
6015 EXPORT_SYMBOL_GPL(ata_port_freeze);
6016 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6017 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6018 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6019 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6020 EXPORT_SYMBOL_GPL(ata_do_eh);