1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2018 Chen-Yu Tsai
5 * Chen-Yu Tsai <wens@csie.org>
7 * arch/arm/mach-sunxi/mc_smp.c
9 * Based on Allwinner code, arch/arm/mach-exynos/mcpm-exynos.c, and
10 * arch/arm/mach-hisi/platmcpm.c
11 * Cluster cache enable trampoline code adapted from MCPM framework
14 #include <linux/arm-cci.h>
15 #include <linux/cpu_pm.h>
16 #include <linux/delay.h>
18 #include <linux/iopoll.h>
19 #include <linux/irqchip/arm-gic.h>
21 #include <linux/of_address.h>
22 #include <linux/of_device.h>
23 #include <linux/smp.h>
25 #include <asm/cacheflush.h>
27 #include <asm/cputype.h>
28 #include <asm/idmap.h>
29 #include <asm/smp_plat.h>
30 #include <asm/suspend.h>
32 #define SUNXI_CPUS_PER_CLUSTER 4
33 #define SUNXI_NR_CLUSTERS 2
36 #define TIMEOUT_USEC 100000
38 #define CPUCFG_CX_CTRL_REG0(c) (0x10 * (c))
39 #define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(n) BIT(n)
40 #define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL 0xf
41 #define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7 BIT(4)
42 #define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15 BIT(0)
43 #define CPUCFG_CX_CTRL_REG1(c) (0x10 * (c) + 0x4)
44 #define CPUCFG_CX_CTRL_REG1_ACINACTM BIT(0)
45 #define CPUCFG_CX_STATUS(c) (0x30 + 0x4 * (c))
46 #define CPUCFG_CX_STATUS_STANDBYWFI(n) BIT(16 + (n))
47 #define CPUCFG_CX_STATUS_STANDBYWFIL2 BIT(0)
48 #define CPUCFG_CX_RST_CTRL(c) (0x80 + 0x4 * (c))
49 #define CPUCFG_CX_RST_CTRL_DBG_SOC_RST BIT(24)
50 #define CPUCFG_CX_RST_CTRL_ETM_RST(n) BIT(20 + (n))
51 #define CPUCFG_CX_RST_CTRL_ETM_RST_ALL (0xf << 20)
52 #define CPUCFG_CX_RST_CTRL_DBG_RST(n) BIT(16 + (n))
53 #define CPUCFG_CX_RST_CTRL_DBG_RST_ALL (0xf << 16)
54 #define CPUCFG_CX_RST_CTRL_H_RST BIT(12)
55 #define CPUCFG_CX_RST_CTRL_L2_RST BIT(8)
56 #define CPUCFG_CX_RST_CTRL_CX_RST(n) BIT(4 + (n))
57 #define CPUCFG_CX_RST_CTRL_CORE_RST(n) BIT(n)
58 #define CPUCFG_CX_RST_CTRL_CORE_RST_ALL (0xf << 0)
60 #define PRCM_CPU_PO_RST_CTRL(c) (0x4 + 0x4 * (c))
61 #define PRCM_CPU_PO_RST_CTRL_CORE(n) BIT(n)
62 #define PRCM_CPU_PO_RST_CTRL_CORE_ALL 0xf
63 #define PRCM_PWROFF_GATING_REG(c) (0x100 + 0x4 * (c))
64 /* The power off register for clusters are different from a80 and a83t */
65 #define PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I BIT(0)
66 #define PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I BIT(4)
67 #define PRCM_PWROFF_GATING_REG_CORE(n) BIT(n)
68 #define PRCM_PWR_SWITCH_REG(c, cpu) (0x140 + 0x10 * (c) + 0x4 * (cpu))
69 #define PRCM_CPU_SOFT_ENTRY_REG 0x164
71 /* R_CPUCFG registers, specific to sun8i-a83t */
72 #define R_CPUCFG_CLUSTER_PO_RST_CTRL(c) (0x30 + (c) * 0x4)
73 #define R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(n) BIT(n)
74 #define R_CPUCFG_CPU_SOFT_ENTRY_REG 0x01a4
76 #define CPU0_SUPPORT_HOTPLUG_MAGIC0 0xFA50392F
77 #define CPU0_SUPPORT_HOTPLUG_MAGIC1 0x790DCA3A
79 static void __iomem
*cpucfg_base
;
80 static void __iomem
*prcm_base
;
81 static void __iomem
*sram_b_smp_base
;
82 static void __iomem
*r_cpucfg_base
;
84 extern void sunxi_mc_smp_secondary_startup(void);
85 extern void sunxi_mc_smp_resume(void);
88 static bool sunxi_core_is_cortex_a15(unsigned int core
, unsigned int cluster
)
90 struct device_node
*node
;
91 int cpu
= cluster
* SUNXI_CPUS_PER_CLUSTER
+ core
;
94 node
= of_cpu_device_node_get(cpu
);
96 /* In case of_cpu_device_node_get fails */
98 node
= of_get_cpu_node(cpu
, NULL
);
102 * There's no point in returning an error, since we
103 * would be mid way in a core or cluster power sequence.
105 pr_err("%s: Couldn't get CPU cluster %u core %u device node\n",
106 __func__
, cluster
, core
);
111 is_compatible
= of_device_is_compatible(node
, "arm,cortex-a15");
113 return is_compatible
;
116 static int sunxi_cpu_power_switch_set(unsigned int cpu
, unsigned int cluster
,
121 /* control sequence from Allwinner A80 user manual v1.2 PRCM section */
122 reg
= readl(prcm_base
+ PRCM_PWR_SWITCH_REG(cluster
, cpu
));
125 pr_debug("power clamp for cluster %u cpu %u already open\n",
130 writel(0xff, prcm_base
+ PRCM_PWR_SWITCH_REG(cluster
, cpu
));
132 writel(0xfe, prcm_base
+ PRCM_PWR_SWITCH_REG(cluster
, cpu
));
134 writel(0xf8, prcm_base
+ PRCM_PWR_SWITCH_REG(cluster
, cpu
));
136 writel(0xf0, prcm_base
+ PRCM_PWR_SWITCH_REG(cluster
, cpu
));
138 writel(0x00, prcm_base
+ PRCM_PWR_SWITCH_REG(cluster
, cpu
));
141 writel(0xff, prcm_base
+ PRCM_PWR_SWITCH_REG(cluster
, cpu
));
148 static void sunxi_cpu0_hotplug_support_set(bool enable
)
151 writel(CPU0_SUPPORT_HOTPLUG_MAGIC0
, sram_b_smp_base
);
152 writel(CPU0_SUPPORT_HOTPLUG_MAGIC1
, sram_b_smp_base
+ 0x4);
154 writel(0x0, sram_b_smp_base
);
155 writel(0x0, sram_b_smp_base
+ 0x4);
159 static int sunxi_cpu_powerup(unsigned int cpu
, unsigned int cluster
)
163 pr_debug("%s: cluster %u cpu %u\n", __func__
, cluster
, cpu
);
164 if (cpu
>= SUNXI_CPUS_PER_CLUSTER
|| cluster
>= SUNXI_NR_CLUSTERS
)
167 /* Set hotplug support magic flags for cpu0 */
168 if (cluster
== 0 && cpu
== 0)
169 sunxi_cpu0_hotplug_support_set(true);
171 /* assert processor power-on reset */
172 reg
= readl(prcm_base
+ PRCM_CPU_PO_RST_CTRL(cluster
));
173 reg
&= ~PRCM_CPU_PO_RST_CTRL_CORE(cpu
);
174 writel(reg
, prcm_base
+ PRCM_CPU_PO_RST_CTRL(cluster
));
177 /* assert cpu power-on reset */
178 reg
= readl(r_cpucfg_base
+
179 R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster
));
180 reg
&= ~(R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu
));
181 writel(reg
, r_cpucfg_base
+
182 R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster
));
186 /* Cortex-A7: hold L1 reset disable signal low */
187 if (!sunxi_core_is_cortex_a15(cpu
, cluster
)) {
188 reg
= readl(cpucfg_base
+ CPUCFG_CX_CTRL_REG0(cluster
));
189 reg
&= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(cpu
);
190 writel(reg
, cpucfg_base
+ CPUCFG_CX_CTRL_REG0(cluster
));
193 /* assert processor related resets */
194 reg
= readl(cpucfg_base
+ CPUCFG_CX_RST_CTRL(cluster
));
195 reg
&= ~CPUCFG_CX_RST_CTRL_DBG_RST(cpu
);
198 * Allwinner code also asserts resets for NEON on A15. According
199 * to ARM manuals, asserting power-on reset is sufficient.
201 if (!sunxi_core_is_cortex_a15(cpu
, cluster
))
202 reg
&= ~CPUCFG_CX_RST_CTRL_ETM_RST(cpu
);
204 writel(reg
, cpucfg_base
+ CPUCFG_CX_RST_CTRL(cluster
));
206 /* open power switch */
207 sunxi_cpu_power_switch_set(cpu
, cluster
, true);
209 /* Handle A83T bit swap */
215 /* clear processor power gate */
216 reg
= readl(prcm_base
+ PRCM_PWROFF_GATING_REG(cluster
));
217 reg
&= ~PRCM_PWROFF_GATING_REG_CORE(cpu
);
218 writel(reg
, prcm_base
+ PRCM_PWROFF_GATING_REG(cluster
));
221 /* Handle A83T bit swap */
227 /* de-assert processor power-on reset */
228 reg
= readl(prcm_base
+ PRCM_CPU_PO_RST_CTRL(cluster
));
229 reg
|= PRCM_CPU_PO_RST_CTRL_CORE(cpu
);
230 writel(reg
, prcm_base
+ PRCM_CPU_PO_RST_CTRL(cluster
));
233 reg
= readl(r_cpucfg_base
+
234 R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster
));
235 reg
|= R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu
);
236 writel(reg
, r_cpucfg_base
+
237 R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster
));
241 /* de-assert all processor resets */
242 reg
= readl(cpucfg_base
+ CPUCFG_CX_RST_CTRL(cluster
));
243 reg
|= CPUCFG_CX_RST_CTRL_DBG_RST(cpu
);
244 reg
|= CPUCFG_CX_RST_CTRL_CORE_RST(cpu
);
245 if (!sunxi_core_is_cortex_a15(cpu
, cluster
))
246 reg
|= CPUCFG_CX_RST_CTRL_ETM_RST(cpu
);
248 reg
|= CPUCFG_CX_RST_CTRL_CX_RST(cpu
); /* NEON */
249 writel(reg
, cpucfg_base
+ CPUCFG_CX_RST_CTRL(cluster
));
254 static int sunxi_cluster_powerup(unsigned int cluster
)
258 pr_debug("%s: cluster %u\n", __func__
, cluster
);
259 if (cluster
>= SUNXI_NR_CLUSTERS
)
262 /* For A83T, assert cluster cores resets */
264 reg
= readl(cpucfg_base
+ CPUCFG_CX_RST_CTRL(cluster
));
265 reg
&= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL
; /* Core Reset */
266 writel(reg
, cpucfg_base
+ CPUCFG_CX_RST_CTRL(cluster
));
270 /* assert ACINACTM */
271 reg
= readl(cpucfg_base
+ CPUCFG_CX_CTRL_REG1(cluster
));
272 reg
|= CPUCFG_CX_CTRL_REG1_ACINACTM
;
273 writel(reg
, cpucfg_base
+ CPUCFG_CX_CTRL_REG1(cluster
));
275 /* assert cluster processor power-on resets */
276 reg
= readl(prcm_base
+ PRCM_CPU_PO_RST_CTRL(cluster
));
277 reg
&= ~PRCM_CPU_PO_RST_CTRL_CORE_ALL
;
278 writel(reg
, prcm_base
+ PRCM_CPU_PO_RST_CTRL(cluster
));
280 /* assert cluster cores resets */
282 reg
= readl(r_cpucfg_base
+
283 R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster
));
284 reg
&= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL
;
285 writel(reg
, r_cpucfg_base
+
286 R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster
));
290 /* assert cluster resets */
291 reg
= readl(cpucfg_base
+ CPUCFG_CX_RST_CTRL(cluster
));
292 reg
&= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST
;
293 reg
&= ~CPUCFG_CX_RST_CTRL_DBG_RST_ALL
;
294 reg
&= ~CPUCFG_CX_RST_CTRL_H_RST
;
295 reg
&= ~CPUCFG_CX_RST_CTRL_L2_RST
;
298 * Allwinner code also asserts resets for NEON on A15. According
299 * to ARM manuals, asserting power-on reset is sufficient.
301 if (!sunxi_core_is_cortex_a15(0, cluster
))
302 reg
&= ~CPUCFG_CX_RST_CTRL_ETM_RST_ALL
;
304 writel(reg
, cpucfg_base
+ CPUCFG_CX_RST_CTRL(cluster
));
306 /* hold L1/L2 reset disable signals low */
307 reg
= readl(cpucfg_base
+ CPUCFG_CX_CTRL_REG0(cluster
));
308 if (sunxi_core_is_cortex_a15(0, cluster
)) {
309 /* Cortex-A15: hold L2RSTDISABLE low */
310 reg
&= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15
;
312 /* Cortex-A7: hold L1RSTDISABLE and L2RSTDISABLE low */
313 reg
&= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL
;
314 reg
&= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7
;
316 writel(reg
, cpucfg_base
+ CPUCFG_CX_CTRL_REG0(cluster
));
318 /* clear cluster power gate */
319 reg
= readl(prcm_base
+ PRCM_PWROFF_GATING_REG(cluster
));
321 reg
&= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I
;
323 reg
&= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I
;
324 writel(reg
, prcm_base
+ PRCM_PWROFF_GATING_REG(cluster
));
327 /* de-assert cluster resets */
328 reg
= readl(cpucfg_base
+ CPUCFG_CX_RST_CTRL(cluster
));
329 reg
|= CPUCFG_CX_RST_CTRL_DBG_SOC_RST
;
330 reg
|= CPUCFG_CX_RST_CTRL_H_RST
;
331 reg
|= CPUCFG_CX_RST_CTRL_L2_RST
;
332 writel(reg
, cpucfg_base
+ CPUCFG_CX_RST_CTRL(cluster
));
334 /* de-assert ACINACTM */
335 reg
= readl(cpucfg_base
+ CPUCFG_CX_CTRL_REG1(cluster
));
336 reg
&= ~CPUCFG_CX_CTRL_REG1_ACINACTM
;
337 writel(reg
, cpucfg_base
+ CPUCFG_CX_CTRL_REG1(cluster
));
343 * This bit is shared between the initial nocache_trampoline call to
344 * enable CCI-400 and proper cluster cache disable before power down.
346 static void sunxi_cluster_cache_disable_without_axi(void)
348 if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15
) {
350 * On the Cortex-A15 we need to disable
351 * L2 prefetching before flushing the cache.
354 "mcr p15, 1, %0, c15, c0, 3\n"
360 /* Flush all cache levels for this cluster. */
361 v7_exit_coherency_flush(all
);
364 * Disable cluster-level coherency by masking
365 * incoming snoops and DVM messages:
367 cci_disable_port_by_cpu(read_cpuid_mpidr());
370 static int sunxi_mc_smp_cpu_table
[SUNXI_NR_CLUSTERS
][SUNXI_CPUS_PER_CLUSTER
];
371 int sunxi_mc_smp_first_comer
;
373 static DEFINE_SPINLOCK(boot_lock
);
375 static bool sunxi_mc_smp_cluster_is_down(unsigned int cluster
)
379 for (i
= 0; i
< SUNXI_CPUS_PER_CLUSTER
; i
++)
380 if (sunxi_mc_smp_cpu_table
[cluster
][i
])
385 static void sunxi_mc_smp_secondary_init(unsigned int cpu
)
387 /* Clear hotplug support magic flags for cpu0 */
389 sunxi_cpu0_hotplug_support_set(false);
392 static int sunxi_mc_smp_boot_secondary(unsigned int l_cpu
, struct task_struct
*idle
)
394 unsigned int mpidr
, cpu
, cluster
;
396 mpidr
= cpu_logical_map(l_cpu
);
397 cpu
= MPIDR_AFFINITY_LEVEL(mpidr
, 0);
398 cluster
= MPIDR_AFFINITY_LEVEL(mpidr
, 1);
402 if (cluster
>= SUNXI_NR_CLUSTERS
|| cpu
>= SUNXI_CPUS_PER_CLUSTER
)
405 spin_lock_irq(&boot_lock
);
407 if (sunxi_mc_smp_cpu_table
[cluster
][cpu
])
410 if (sunxi_mc_smp_cluster_is_down(cluster
)) {
411 sunxi_mc_smp_first_comer
= true;
412 sunxi_cluster_powerup(cluster
);
414 sunxi_mc_smp_first_comer
= false;
417 /* This is read by incoming CPUs with their cache and MMU disabled */
418 sync_cache_w(&sunxi_mc_smp_first_comer
);
419 sunxi_cpu_powerup(cpu
, cluster
);
422 sunxi_mc_smp_cpu_table
[cluster
][cpu
]++;
423 spin_unlock_irq(&boot_lock
);
428 #ifdef CONFIG_HOTPLUG_CPU
429 static void sunxi_cluster_cache_disable(void)
431 unsigned int cluster
= MPIDR_AFFINITY_LEVEL(read_cpuid_mpidr(), 1);
434 pr_debug("%s: cluster %u\n", __func__
, cluster
);
436 sunxi_cluster_cache_disable_without_axi();
438 /* last man standing, assert ACINACTM */
439 reg
= readl(cpucfg_base
+ CPUCFG_CX_CTRL_REG1(cluster
));
440 reg
|= CPUCFG_CX_CTRL_REG1_ACINACTM
;
441 writel(reg
, cpucfg_base
+ CPUCFG_CX_CTRL_REG1(cluster
));
444 static void sunxi_mc_smp_cpu_die(unsigned int l_cpu
)
446 unsigned int mpidr
, cpu
, cluster
;
449 mpidr
= cpu_logical_map(l_cpu
);
450 cpu
= MPIDR_AFFINITY_LEVEL(mpidr
, 0);
451 cluster
= MPIDR_AFFINITY_LEVEL(mpidr
, 1);
452 pr_debug("%s: cluster %u cpu %u\n", __func__
, cluster
, cpu
);
454 spin_lock(&boot_lock
);
455 sunxi_mc_smp_cpu_table
[cluster
][cpu
]--;
456 if (sunxi_mc_smp_cpu_table
[cluster
][cpu
] == 1) {
457 /* A power_up request went ahead of us. */
458 pr_debug("%s: aborting due to a power up request\n",
460 spin_unlock(&boot_lock
);
462 } else if (sunxi_mc_smp_cpu_table
[cluster
][cpu
] > 1) {
463 pr_err("Cluster %d CPU%d boots multiple times\n",
468 last_man
= sunxi_mc_smp_cluster_is_down(cluster
);
469 spin_unlock(&boot_lock
);
473 sunxi_cluster_cache_disable();
475 v7_exit_coherency_flush(louis
);
481 static int sunxi_cpu_powerdown(unsigned int cpu
, unsigned int cluster
)
484 int gating_bit
= cpu
;
486 pr_debug("%s: cluster %u cpu %u\n", __func__
, cluster
, cpu
);
487 if (cpu
>= SUNXI_CPUS_PER_CLUSTER
|| cluster
>= SUNXI_NR_CLUSTERS
)
490 if (is_a83t
&& cpu
== 0)
493 /* gate processor power */
494 reg
= readl(prcm_base
+ PRCM_PWROFF_GATING_REG(cluster
));
495 reg
|= PRCM_PWROFF_GATING_REG_CORE(gating_bit
);
496 writel(reg
, prcm_base
+ PRCM_PWROFF_GATING_REG(cluster
));
499 /* close power switch */
500 sunxi_cpu_power_switch_set(cpu
, cluster
, false);
505 static int sunxi_cluster_powerdown(unsigned int cluster
)
509 pr_debug("%s: cluster %u\n", __func__
, cluster
);
510 if (cluster
>= SUNXI_NR_CLUSTERS
)
513 /* assert cluster resets or system will hang */
514 pr_debug("%s: assert cluster reset\n", __func__
);
515 reg
= readl(cpucfg_base
+ CPUCFG_CX_RST_CTRL(cluster
));
516 reg
&= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST
;
517 reg
&= ~CPUCFG_CX_RST_CTRL_H_RST
;
518 reg
&= ~CPUCFG_CX_RST_CTRL_L2_RST
;
519 writel(reg
, cpucfg_base
+ CPUCFG_CX_RST_CTRL(cluster
));
521 /* gate cluster power */
522 pr_debug("%s: gate cluster power\n", __func__
);
523 reg
= readl(prcm_base
+ PRCM_PWROFF_GATING_REG(cluster
));
525 reg
|= PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I
;
527 reg
|= PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I
;
528 writel(reg
, prcm_base
+ PRCM_PWROFF_GATING_REG(cluster
));
534 static int sunxi_mc_smp_cpu_kill(unsigned int l_cpu
)
536 unsigned int mpidr
, cpu
, cluster
;
537 unsigned int tries
, count
;
541 mpidr
= cpu_logical_map(l_cpu
);
542 cpu
= MPIDR_AFFINITY_LEVEL(mpidr
, 0);
543 cluster
= MPIDR_AFFINITY_LEVEL(mpidr
, 1);
545 /* This should never happen */
546 if (WARN_ON(cluster
>= SUNXI_NR_CLUSTERS
||
547 cpu
>= SUNXI_CPUS_PER_CLUSTER
))
550 /* wait for CPU core to die and enter WFI */
551 count
= TIMEOUT_USEC
/ POLL_USEC
;
552 spin_lock_irq(&boot_lock
);
553 for (tries
= 0; tries
< count
; tries
++) {
554 spin_unlock_irq(&boot_lock
);
555 usleep_range(POLL_USEC
/ 2, POLL_USEC
);
556 spin_lock_irq(&boot_lock
);
559 * If the user turns off a bunch of cores at the same
560 * time, the kernel might call cpu_kill before some of
561 * them are ready. This is because boot_lock serializes
562 * both cpu_die and cpu_kill callbacks. Either one could
563 * run first. We should wait for cpu_die to complete.
565 if (sunxi_mc_smp_cpu_table
[cluster
][cpu
])
568 reg
= readl(cpucfg_base
+ CPUCFG_CX_STATUS(cluster
));
569 if (reg
& CPUCFG_CX_STATUS_STANDBYWFI(cpu
))
573 if (tries
>= count
) {
578 /* power down CPU core */
579 sunxi_cpu_powerdown(cpu
, cluster
);
581 if (!sunxi_mc_smp_cluster_is_down(cluster
))
584 /* wait for cluster L2 WFI */
585 ret
= readl_poll_timeout(cpucfg_base
+ CPUCFG_CX_STATUS(cluster
), reg
,
586 reg
& CPUCFG_CX_STATUS_STANDBYWFIL2
,
587 POLL_USEC
, TIMEOUT_USEC
);
590 * Ignore timeout on the cluster. Leaving the cluster on
591 * will not affect system execution, just use a bit more
592 * power. But returning an error here will only confuse
593 * the user as the CPU has already been shutdown.
599 /* Power down cluster */
600 sunxi_cluster_powerdown(cluster
);
603 spin_unlock_irq(&boot_lock
);
604 pr_debug("%s: cluster %u cpu %u powerdown: %d\n",
605 __func__
, cluster
, cpu
, ret
);
609 static bool sunxi_mc_smp_cpu_can_disable(unsigned int cpu
)
611 /* CPU0 hotplug not handled for sun8i-a83t */
619 static const struct smp_operations sunxi_mc_smp_smp_ops __initconst
= {
620 .smp_secondary_init
= sunxi_mc_smp_secondary_init
,
621 .smp_boot_secondary
= sunxi_mc_smp_boot_secondary
,
622 #ifdef CONFIG_HOTPLUG_CPU
623 .cpu_die
= sunxi_mc_smp_cpu_die
,
624 .cpu_kill
= sunxi_mc_smp_cpu_kill
,
625 .cpu_can_disable
= sunxi_mc_smp_cpu_can_disable
,
629 static bool __init
sunxi_mc_smp_cpu_table_init(void)
631 unsigned int mpidr
, cpu
, cluster
;
633 mpidr
= read_cpuid_mpidr();
634 cpu
= MPIDR_AFFINITY_LEVEL(mpidr
, 0);
635 cluster
= MPIDR_AFFINITY_LEVEL(mpidr
, 1);
637 if (cluster
>= SUNXI_NR_CLUSTERS
|| cpu
>= SUNXI_CPUS_PER_CLUSTER
) {
638 pr_err("%s: boot CPU is out of bounds!\n", __func__
);
641 sunxi_mc_smp_cpu_table
[cluster
][cpu
] = 1;
646 * Adapted from arch/arm/common/mc_smp_entry.c
648 * We need the trampoline code to enable CCI-400 on the first cluster
650 typedef typeof(cpu_reset
) phys_reset_t
;
652 static int __init
nocache_trampoline(unsigned long __unused
)
654 phys_reset_t phys_reset
;
656 setup_mm_for_reboot();
657 sunxi_cluster_cache_disable_without_axi();
659 phys_reset
= (phys_reset_t
)(unsigned long)__pa_symbol(cpu_reset
);
660 phys_reset(__pa_symbol(sunxi_mc_smp_resume
), false);
664 static int __init
sunxi_mc_smp_loopback(void)
669 * We're going to soft-restart the current CPU through the
670 * low-level MCPM code by leveraging the suspend/resume
671 * infrastructure. Let's play it safe by using cpu_pm_enter()
672 * in case the CPU init code path resets the VFP or similar.
674 sunxi_mc_smp_first_comer
= true;
677 ret
= cpu_pm_enter();
679 ret
= cpu_suspend(0, nocache_trampoline
);
684 sunxi_mc_smp_first_comer
= false;
690 * This holds any device nodes that we requested resources for,
691 * so that we may easily release resources in the error path.
693 struct sunxi_mc_smp_nodes
{
694 struct device_node
*prcm_node
;
695 struct device_node
*cpucfg_node
;
696 struct device_node
*sram_node
;
697 struct device_node
*r_cpucfg_node
;
700 /* This structure holds SoC-specific bits tied to an enable-method string. */
701 struct sunxi_mc_smp_data
{
702 const char *enable_method
;
703 int (*get_smp_nodes
)(struct sunxi_mc_smp_nodes
*nodes
);
707 static void __init
sunxi_mc_smp_put_nodes(struct sunxi_mc_smp_nodes
*nodes
)
709 of_node_put(nodes
->prcm_node
);
710 of_node_put(nodes
->cpucfg_node
);
711 of_node_put(nodes
->sram_node
);
712 of_node_put(nodes
->r_cpucfg_node
);
713 memset(nodes
, 0, sizeof(*nodes
));
716 static int __init
sun9i_a80_get_smp_nodes(struct sunxi_mc_smp_nodes
*nodes
)
718 nodes
->prcm_node
= of_find_compatible_node(NULL
, NULL
,
719 "allwinner,sun9i-a80-prcm");
720 if (!nodes
->prcm_node
) {
721 pr_err("%s: PRCM not available\n", __func__
);
725 nodes
->cpucfg_node
= of_find_compatible_node(NULL
, NULL
,
726 "allwinner,sun9i-a80-cpucfg");
727 if (!nodes
->cpucfg_node
) {
728 pr_err("%s: CPUCFG not available\n", __func__
);
732 nodes
->sram_node
= of_find_compatible_node(NULL
, NULL
,
733 "allwinner,sun9i-a80-smp-sram");
734 if (!nodes
->sram_node
) {
735 pr_err("%s: Secure SRAM not available\n", __func__
);
742 static int __init
sun8i_a83t_get_smp_nodes(struct sunxi_mc_smp_nodes
*nodes
)
744 nodes
->prcm_node
= of_find_compatible_node(NULL
, NULL
,
745 "allwinner,sun8i-a83t-r-ccu");
746 if (!nodes
->prcm_node
) {
747 pr_err("%s: PRCM not available\n", __func__
);
751 nodes
->cpucfg_node
= of_find_compatible_node(NULL
, NULL
,
752 "allwinner,sun8i-a83t-cpucfg");
753 if (!nodes
->cpucfg_node
) {
754 pr_err("%s: CPUCFG not available\n", __func__
);
758 nodes
->r_cpucfg_node
= of_find_compatible_node(NULL
, NULL
,
759 "allwinner,sun8i-a83t-r-cpucfg");
760 if (!nodes
->r_cpucfg_node
) {
761 pr_err("%s: RCPUCFG not available\n", __func__
);
768 static const struct sunxi_mc_smp_data sunxi_mc_smp_data
[] __initconst
= {
770 .enable_method
= "allwinner,sun9i-a80-smp",
771 .get_smp_nodes
= sun9i_a80_get_smp_nodes
,
774 .enable_method
= "allwinner,sun8i-a83t-smp",
775 .get_smp_nodes
= sun8i_a83t_get_smp_nodes
,
780 static int __init
sunxi_mc_smp_init(void)
782 struct sunxi_mc_smp_nodes nodes
= { 0 };
783 struct device_node
*node
;
789 * Don't bother checking the "cpus" node, as an enable-method
790 * property in that node is undocumented.
792 node
= of_cpu_device_node_get(0);
797 * We can't actually use the enable-method magic in the kernel.
798 * Our loopback / trampoline code uses the CPU suspend framework,
799 * which requires the identity mapping be available. It would not
800 * yet be available if we used the .init_cpus or .prepare_cpus
801 * callbacks in smp_operations, which we would use if we were to
802 * use CPU_METHOD_OF_DECLARE
804 for (i
= 0; i
< ARRAY_SIZE(sunxi_mc_smp_data
); i
++) {
805 ret
= of_property_match_string(node
, "enable-method",
806 sunxi_mc_smp_data
[i
].enable_method
);
811 is_a83t
= sunxi_mc_smp_data
[i
].is_a83t
;
817 if (!sunxi_mc_smp_cpu_table_init())
821 pr_err("%s: CCI-400 not available\n", __func__
);
825 /* Get needed device tree nodes */
826 ret
= sunxi_mc_smp_data
[i
].get_smp_nodes(&nodes
);
831 * Unfortunately we can not request the I/O region for the PRCM.
832 * It is shared with the PRCM clock.
834 prcm_base
= of_iomap(nodes
.prcm_node
, 0);
836 pr_err("%s: failed to map PRCM registers\n", __func__
);
841 cpucfg_base
= of_io_request_and_map(nodes
.cpucfg_node
, 0,
843 if (IS_ERR(cpucfg_base
)) {
844 ret
= PTR_ERR(cpucfg_base
);
845 pr_err("%s: failed to map CPUCFG registers: %d\n",
851 r_cpucfg_base
= of_io_request_and_map(nodes
.r_cpucfg_node
,
853 if (IS_ERR(r_cpucfg_base
)) {
854 ret
= PTR_ERR(r_cpucfg_base
);
855 pr_err("%s: failed to map R-CPUCFG registers\n",
857 goto err_unmap_release_cpucfg
;
860 sram_b_smp_base
= of_io_request_and_map(nodes
.sram_node
, 0,
862 if (IS_ERR(sram_b_smp_base
)) {
863 ret
= PTR_ERR(sram_b_smp_base
);
864 pr_err("%s: failed to map secure SRAM\n", __func__
);
865 goto err_unmap_release_cpucfg
;
869 /* Configure CCI-400 for boot cluster */
870 ret
= sunxi_mc_smp_loopback();
872 pr_err("%s: failed to configure boot cluster: %d\n",
874 goto err_unmap_release_sram_rcpucfg
;
877 /* We don't need the device nodes anymore */
878 sunxi_mc_smp_put_nodes(&nodes
);
880 /* Set the hardware entry point address */
882 addr
= r_cpucfg_base
+ R_CPUCFG_CPU_SOFT_ENTRY_REG
;
884 addr
= prcm_base
+ PRCM_CPU_SOFT_ENTRY_REG
;
885 writel(__pa_symbol(sunxi_mc_smp_secondary_startup
), addr
);
887 /* Actually enable multi cluster SMP */
888 smp_set_ops(&sunxi_mc_smp_smp_ops
);
890 pr_info("sunxi multi cluster SMP support installed\n");
894 err_unmap_release_sram_rcpucfg
:
896 iounmap(r_cpucfg_base
);
897 of_address_to_resource(nodes
.r_cpucfg_node
, 0, &res
);
899 iounmap(sram_b_smp_base
);
900 of_address_to_resource(nodes
.sram_node
, 0, &res
);
902 release_mem_region(res
.start
, resource_size(&res
));
903 err_unmap_release_cpucfg
:
904 iounmap(cpucfg_base
);
905 of_address_to_resource(nodes
.cpucfg_node
, 0, &res
);
906 release_mem_region(res
.start
, resource_size(&res
));
910 sunxi_mc_smp_put_nodes(&nodes
);
914 early_initcall(sunxi_mc_smp_init
);