arm64: dts: Revert "specify console via command line"
[linux/fpc-iii.git] / arch / arm / mm / mmu.c
blob5d0d0f86e790b5a39110a6aeb8ad66c5f9485933
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/mm/mmu.c
5 * Copyright (C) 1995-2005 Russell King
6 */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/fixmap.h>
23 #include <asm/sections.h>
24 #include <asm/setup.h>
25 #include <asm/smp_plat.h>
26 #include <asm/tlb.h>
27 #include <asm/highmem.h>
28 #include <asm/system_info.h>
29 #include <asm/traps.h>
30 #include <asm/procinfo.h>
31 #include <asm/memory.h>
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
38 #include "fault.h"
39 #include "mm.h"
40 #include "tcm.h"
43 * empty_zero_page is a special page that is used for
44 * zero-initialized data and COW.
46 struct page *empty_zero_page;
47 EXPORT_SYMBOL(empty_zero_page);
50 * The pmd table for the upper-most set of pages.
52 pmd_t *top_pmd;
54 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
56 #define CPOLICY_UNCACHED 0
57 #define CPOLICY_BUFFERED 1
58 #define CPOLICY_WRITETHROUGH 2
59 #define CPOLICY_WRITEBACK 3
60 #define CPOLICY_WRITEALLOC 4
62 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
63 static unsigned int ecc_mask __initdata = 0;
64 pgprot_t pgprot_user;
65 pgprot_t pgprot_kernel;
66 pgprot_t pgprot_hyp_device;
67 pgprot_t pgprot_s2;
68 pgprot_t pgprot_s2_device;
70 EXPORT_SYMBOL(pgprot_user);
71 EXPORT_SYMBOL(pgprot_kernel);
73 struct cachepolicy {
74 const char policy[16];
75 unsigned int cr_mask;
76 pmdval_t pmd;
77 pteval_t pte;
78 pteval_t pte_s2;
81 #ifdef CONFIG_ARM_LPAE
82 #define s2_policy(policy) policy
83 #else
84 #define s2_policy(policy) 0
85 #endif
87 unsigned long kimage_voffset __ro_after_init;
89 static struct cachepolicy cache_policies[] __initdata = {
91 .policy = "uncached",
92 .cr_mask = CR_W|CR_C,
93 .pmd = PMD_SECT_UNCACHED,
94 .pte = L_PTE_MT_UNCACHED,
95 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
96 }, {
97 .policy = "buffered",
98 .cr_mask = CR_C,
99 .pmd = PMD_SECT_BUFFERED,
100 .pte = L_PTE_MT_BUFFERABLE,
101 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
102 }, {
103 .policy = "writethrough",
104 .cr_mask = 0,
105 .pmd = PMD_SECT_WT,
106 .pte = L_PTE_MT_WRITETHROUGH,
107 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
108 }, {
109 .policy = "writeback",
110 .cr_mask = 0,
111 .pmd = PMD_SECT_WB,
112 .pte = L_PTE_MT_WRITEBACK,
113 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
114 }, {
115 .policy = "writealloc",
116 .cr_mask = 0,
117 .pmd = PMD_SECT_WBWA,
118 .pte = L_PTE_MT_WRITEALLOC,
119 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
123 #ifdef CONFIG_CPU_CP15
124 static unsigned long initial_pmd_value __initdata = 0;
127 * Initialise the cache_policy variable with the initial state specified
128 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
129 * the C code sets the page tables up with the same policy as the head
130 * assembly code, which avoids an illegal state where the TLBs can get
131 * confused. See comments in early_cachepolicy() for more information.
133 void __init init_default_cache_policy(unsigned long pmd)
135 int i;
137 initial_pmd_value = pmd;
139 pmd &= PMD_SECT_CACHE_MASK;
141 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
142 if (cache_policies[i].pmd == pmd) {
143 cachepolicy = i;
144 break;
147 if (i == ARRAY_SIZE(cache_policies))
148 pr_err("ERROR: could not find cache policy\n");
152 * These are useful for identifying cache coherency problems by allowing
153 * the cache or the cache and writebuffer to be turned off. (Note: the
154 * write buffer should not be on and the cache off).
156 static int __init early_cachepolicy(char *p)
158 int i, selected = -1;
160 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
161 int len = strlen(cache_policies[i].policy);
163 if (memcmp(p, cache_policies[i].policy, len) == 0) {
164 selected = i;
165 break;
169 if (selected == -1)
170 pr_err("ERROR: unknown or unsupported cache policy\n");
173 * This restriction is partly to do with the way we boot; it is
174 * unpredictable to have memory mapped using two different sets of
175 * memory attributes (shared, type, and cache attribs). We can not
176 * change these attributes once the initial assembly has setup the
177 * page tables.
179 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
180 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
181 cache_policies[cachepolicy].policy);
182 return 0;
185 if (selected != cachepolicy) {
186 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
187 cachepolicy = selected;
188 flush_cache_all();
189 set_cr(cr);
191 return 0;
193 early_param("cachepolicy", early_cachepolicy);
195 static int __init early_nocache(char *__unused)
197 char *p = "buffered";
198 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
199 early_cachepolicy(p);
200 return 0;
202 early_param("nocache", early_nocache);
204 static int __init early_nowrite(char *__unused)
206 char *p = "uncached";
207 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
208 early_cachepolicy(p);
209 return 0;
211 early_param("nowb", early_nowrite);
213 #ifndef CONFIG_ARM_LPAE
214 static int __init early_ecc(char *p)
216 if (memcmp(p, "on", 2) == 0)
217 ecc_mask = PMD_PROTECTION;
218 else if (memcmp(p, "off", 3) == 0)
219 ecc_mask = 0;
220 return 0;
222 early_param("ecc", early_ecc);
223 #endif
225 #else /* ifdef CONFIG_CPU_CP15 */
227 static int __init early_cachepolicy(char *p)
229 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
231 early_param("cachepolicy", early_cachepolicy);
233 static int __init noalign_setup(char *__unused)
235 pr_warn("noalign kernel parameter not supported without cp15\n");
237 __setup("noalign", noalign_setup);
239 #endif /* ifdef CONFIG_CPU_CP15 / else */
241 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
242 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
243 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
245 static struct mem_type mem_types[] __ro_after_init = {
246 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
247 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
248 L_PTE_SHARED,
249 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) |
250 s2_policy(L_PTE_S2_MT_DEV_SHARED) |
251 L_PTE_SHARED,
252 .prot_l1 = PMD_TYPE_TABLE,
253 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
254 .domain = DOMAIN_IO,
256 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
257 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
258 .prot_l1 = PMD_TYPE_TABLE,
259 .prot_sect = PROT_SECT_DEVICE,
260 .domain = DOMAIN_IO,
262 [MT_DEVICE_CACHED] = { /* ioremap_cache */
263 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
264 .prot_l1 = PMD_TYPE_TABLE,
265 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
266 .domain = DOMAIN_IO,
268 [MT_DEVICE_WC] = { /* ioremap_wc */
269 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
270 .prot_l1 = PMD_TYPE_TABLE,
271 .prot_sect = PROT_SECT_DEVICE,
272 .domain = DOMAIN_IO,
274 [MT_UNCACHED] = {
275 .prot_pte = PROT_PTE_DEVICE,
276 .prot_l1 = PMD_TYPE_TABLE,
277 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
278 .domain = DOMAIN_IO,
280 [MT_CACHECLEAN] = {
281 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
282 .domain = DOMAIN_KERNEL,
284 #ifndef CONFIG_ARM_LPAE
285 [MT_MINICLEAN] = {
286 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
287 .domain = DOMAIN_KERNEL,
289 #endif
290 [MT_LOW_VECTORS] = {
291 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
292 L_PTE_RDONLY,
293 .prot_l1 = PMD_TYPE_TABLE,
294 .domain = DOMAIN_VECTORS,
296 [MT_HIGH_VECTORS] = {
297 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
298 L_PTE_USER | L_PTE_RDONLY,
299 .prot_l1 = PMD_TYPE_TABLE,
300 .domain = DOMAIN_VECTORS,
302 [MT_MEMORY_RWX] = {
303 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
304 .prot_l1 = PMD_TYPE_TABLE,
305 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306 .domain = DOMAIN_KERNEL,
308 [MT_MEMORY_RW] = {
309 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310 L_PTE_XN,
311 .prot_l1 = PMD_TYPE_TABLE,
312 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
313 .domain = DOMAIN_KERNEL,
315 [MT_ROM] = {
316 .prot_sect = PMD_TYPE_SECT,
317 .domain = DOMAIN_KERNEL,
319 [MT_MEMORY_RWX_NONCACHED] = {
320 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
321 L_PTE_MT_BUFFERABLE,
322 .prot_l1 = PMD_TYPE_TABLE,
323 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
324 .domain = DOMAIN_KERNEL,
326 [MT_MEMORY_RW_DTCM] = {
327 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
328 L_PTE_XN,
329 .prot_l1 = PMD_TYPE_TABLE,
330 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
331 .domain = DOMAIN_KERNEL,
333 [MT_MEMORY_RWX_ITCM] = {
334 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
335 .prot_l1 = PMD_TYPE_TABLE,
336 .domain = DOMAIN_KERNEL,
338 [MT_MEMORY_RW_SO] = {
339 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
340 L_PTE_MT_UNCACHED | L_PTE_XN,
341 .prot_l1 = PMD_TYPE_TABLE,
342 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
343 PMD_SECT_UNCACHED | PMD_SECT_XN,
344 .domain = DOMAIN_KERNEL,
346 [MT_MEMORY_DMA_READY] = {
347 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
348 L_PTE_XN,
349 .prot_l1 = PMD_TYPE_TABLE,
350 .domain = DOMAIN_KERNEL,
354 const struct mem_type *get_mem_type(unsigned int type)
356 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
358 EXPORT_SYMBOL(get_mem_type);
360 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
362 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
363 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
365 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
367 return &bm_pte[pte_index(addr)];
370 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
372 return pte_offset_kernel(dir, addr);
375 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
377 pgd_t *pgd = pgd_offset_k(addr);
378 pud_t *pud = pud_offset(pgd, addr);
379 pmd_t *pmd = pmd_offset(pud, addr);
381 return pmd;
384 void __init early_fixmap_init(void)
386 pmd_t *pmd;
389 * The early fixmap range spans multiple pmds, for which
390 * we are not prepared:
392 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
393 != FIXADDR_TOP >> PMD_SHIFT);
395 pmd = fixmap_pmd(FIXADDR_TOP);
396 pmd_populate_kernel(&init_mm, pmd, bm_pte);
398 pte_offset_fixmap = pte_offset_early_fixmap;
402 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
403 * As a result, this can only be called with preemption disabled, as under
404 * stop_machine().
406 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
408 unsigned long vaddr = __fix_to_virt(idx);
409 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
411 /* Make sure fixmap region does not exceed available allocation. */
412 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
413 FIXADDR_END);
414 BUG_ON(idx >= __end_of_fixed_addresses);
416 /* we only support device mappings until pgprot_kernel has been set */
417 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
418 pgprot_val(pgprot_kernel) == 0))
419 return;
421 if (pgprot_val(prot))
422 set_pte_at(NULL, vaddr, pte,
423 pfn_pte(phys >> PAGE_SHIFT, prot));
424 else
425 pte_clear(NULL, vaddr, pte);
426 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
430 * Adjust the PMD section entries according to the CPU in use.
432 static void __init build_mem_type_table(void)
434 struct cachepolicy *cp;
435 unsigned int cr = get_cr();
436 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
437 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
438 int cpu_arch = cpu_architecture();
439 int i;
441 if (cpu_arch < CPU_ARCH_ARMv6) {
442 #if defined(CONFIG_CPU_DCACHE_DISABLE)
443 if (cachepolicy > CPOLICY_BUFFERED)
444 cachepolicy = CPOLICY_BUFFERED;
445 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
446 if (cachepolicy > CPOLICY_WRITETHROUGH)
447 cachepolicy = CPOLICY_WRITETHROUGH;
448 #endif
450 if (cpu_arch < CPU_ARCH_ARMv5) {
451 if (cachepolicy >= CPOLICY_WRITEALLOC)
452 cachepolicy = CPOLICY_WRITEBACK;
453 ecc_mask = 0;
456 if (is_smp()) {
457 if (cachepolicy != CPOLICY_WRITEALLOC) {
458 pr_warn("Forcing write-allocate cache policy for SMP\n");
459 cachepolicy = CPOLICY_WRITEALLOC;
461 if (!(initial_pmd_value & PMD_SECT_S)) {
462 pr_warn("Forcing shared mappings for SMP\n");
463 initial_pmd_value |= PMD_SECT_S;
468 * Strip out features not present on earlier architectures.
469 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
470 * without extended page tables don't have the 'Shared' bit.
472 if (cpu_arch < CPU_ARCH_ARMv5)
473 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
474 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
475 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
476 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
477 mem_types[i].prot_sect &= ~PMD_SECT_S;
480 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
481 * "update-able on write" bit on ARM610). However, Xscale and
482 * Xscale3 require this bit to be cleared.
484 if (cpu_is_xscale_family()) {
485 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
486 mem_types[i].prot_sect &= ~PMD_BIT4;
487 mem_types[i].prot_l1 &= ~PMD_BIT4;
489 } else if (cpu_arch < CPU_ARCH_ARMv6) {
490 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
491 if (mem_types[i].prot_l1)
492 mem_types[i].prot_l1 |= PMD_BIT4;
493 if (mem_types[i].prot_sect)
494 mem_types[i].prot_sect |= PMD_BIT4;
499 * Mark the device areas according to the CPU/architecture.
501 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
502 if (!cpu_is_xsc3()) {
504 * Mark device regions on ARMv6+ as execute-never
505 * to prevent speculative instruction fetches.
507 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
508 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
509 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
510 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
512 /* Also setup NX memory mapping */
513 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
515 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
517 * For ARMv7 with TEX remapping,
518 * - shared device is SXCB=1100
519 * - nonshared device is SXCB=0100
520 * - write combine device mem is SXCB=0001
521 * (Uncached Normal memory)
523 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
524 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
525 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
526 } else if (cpu_is_xsc3()) {
528 * For Xscale3,
529 * - shared device is TEXCB=00101
530 * - nonshared device is TEXCB=01000
531 * - write combine device mem is TEXCB=00100
532 * (Inner/Outer Uncacheable in xsc3 parlance)
534 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
535 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
536 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
537 } else {
539 * For ARMv6 and ARMv7 without TEX remapping,
540 * - shared device is TEXCB=00001
541 * - nonshared device is TEXCB=01000
542 * - write combine device mem is TEXCB=00100
543 * (Uncached Normal in ARMv6 parlance).
545 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
546 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
547 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
549 } else {
551 * On others, write combining is "Uncached/Buffered"
553 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
557 * Now deal with the memory-type mappings
559 cp = &cache_policies[cachepolicy];
560 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
561 s2_pgprot = cp->pte_s2;
562 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
563 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
565 #ifndef CONFIG_ARM_LPAE
567 * We don't use domains on ARMv6 (since this causes problems with
568 * v6/v7 kernels), so we must use a separate memory type for user
569 * r/o, kernel r/w to map the vectors page.
571 if (cpu_arch == CPU_ARCH_ARMv6)
572 vecs_pgprot |= L_PTE_MT_VECTORS;
575 * Check is it with support for the PXN bit
576 * in the Short-descriptor translation table format descriptors.
578 if (cpu_arch == CPU_ARCH_ARMv7 &&
579 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
580 user_pmd_table |= PMD_PXNTABLE;
582 #endif
585 * ARMv6 and above have extended page tables.
587 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
588 #ifndef CONFIG_ARM_LPAE
590 * Mark cache clean areas and XIP ROM read only
591 * from SVC mode and no access from userspace.
593 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
594 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
595 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
596 #endif
599 * If the initial page tables were created with the S bit
600 * set, then we need to do the same here for the same
601 * reasons given in early_cachepolicy().
603 if (initial_pmd_value & PMD_SECT_S) {
604 user_pgprot |= L_PTE_SHARED;
605 kern_pgprot |= L_PTE_SHARED;
606 vecs_pgprot |= L_PTE_SHARED;
607 s2_pgprot |= L_PTE_SHARED;
608 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
609 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
610 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
611 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
612 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
613 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
614 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
615 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
616 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
617 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
618 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
623 * Non-cacheable Normal - intended for memory areas that must
624 * not cause dirty cache line writebacks when used
626 if (cpu_arch >= CPU_ARCH_ARMv6) {
627 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
628 /* Non-cacheable Normal is XCB = 001 */
629 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
630 PMD_SECT_BUFFERED;
631 } else {
632 /* For both ARMv6 and non-TEX-remapping ARMv7 */
633 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
634 PMD_SECT_TEX(1);
636 } else {
637 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
640 #ifdef CONFIG_ARM_LPAE
642 * Do not generate access flag faults for the kernel mappings.
644 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
645 mem_types[i].prot_pte |= PTE_EXT_AF;
646 if (mem_types[i].prot_sect)
647 mem_types[i].prot_sect |= PMD_SECT_AF;
649 kern_pgprot |= PTE_EXT_AF;
650 vecs_pgprot |= PTE_EXT_AF;
653 * Set PXN for user mappings
655 user_pgprot |= PTE_EXT_PXN;
656 #endif
658 for (i = 0; i < 16; i++) {
659 pteval_t v = pgprot_val(protection_map[i]);
660 protection_map[i] = __pgprot(v | user_pgprot);
663 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
664 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
666 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
667 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
668 L_PTE_DIRTY | kern_pgprot);
669 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
670 pgprot_s2_device = __pgprot(s2_device_pgprot);
671 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
673 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
674 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
675 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
676 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
677 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
678 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
679 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
680 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
681 mem_types[MT_ROM].prot_sect |= cp->pmd;
683 switch (cp->pmd) {
684 case PMD_SECT_WT:
685 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
686 break;
687 case PMD_SECT_WB:
688 case PMD_SECT_WBWA:
689 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
690 break;
692 pr_info("Memory policy: %sData cache %s\n",
693 ecc_mask ? "ECC enabled, " : "", cp->policy);
695 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
696 struct mem_type *t = &mem_types[i];
697 if (t->prot_l1)
698 t->prot_l1 |= PMD_DOMAIN(t->domain);
699 if (t->prot_sect)
700 t->prot_sect |= PMD_DOMAIN(t->domain);
704 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
705 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
706 unsigned long size, pgprot_t vma_prot)
708 if (!pfn_valid(pfn))
709 return pgprot_noncached(vma_prot);
710 else if (file->f_flags & O_SYNC)
711 return pgprot_writecombine(vma_prot);
712 return vma_prot;
714 EXPORT_SYMBOL(phys_mem_access_prot);
715 #endif
717 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
719 static void __init *early_alloc(unsigned long sz)
721 void *ptr = memblock_alloc(sz, sz);
723 if (!ptr)
724 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
725 __func__, sz, sz);
727 return ptr;
730 static void *__init late_alloc(unsigned long sz)
732 void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
734 if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
735 BUG();
736 return ptr;
739 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
740 unsigned long prot,
741 void *(*alloc)(unsigned long sz))
743 if (pmd_none(*pmd)) {
744 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
745 __pmd_populate(pmd, __pa(pte), prot);
747 BUG_ON(pmd_bad(*pmd));
748 return pte_offset_kernel(pmd, addr);
751 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
752 unsigned long prot)
754 return arm_pte_alloc(pmd, addr, prot, early_alloc);
757 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
758 unsigned long end, unsigned long pfn,
759 const struct mem_type *type,
760 void *(*alloc)(unsigned long sz),
761 bool ng)
763 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
764 do {
765 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
766 ng ? PTE_EXT_NG : 0);
767 pfn++;
768 } while (pte++, addr += PAGE_SIZE, addr != end);
771 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
772 unsigned long end, phys_addr_t phys,
773 const struct mem_type *type, bool ng)
775 pmd_t *p = pmd;
777 #ifndef CONFIG_ARM_LPAE
779 * In classic MMU format, puds and pmds are folded in to
780 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
781 * group of L1 entries making up one logical pointer to
782 * an L2 table (2MB), where as PMDs refer to the individual
783 * L1 entries (1MB). Hence increment to get the correct
784 * offset for odd 1MB sections.
785 * (See arch/arm/include/asm/pgtable-2level.h)
787 if (addr & SECTION_SIZE)
788 pmd++;
789 #endif
790 do {
791 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
792 phys += SECTION_SIZE;
793 } while (pmd++, addr += SECTION_SIZE, addr != end);
795 flush_pmd_entry(p);
798 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
799 unsigned long end, phys_addr_t phys,
800 const struct mem_type *type,
801 void *(*alloc)(unsigned long sz), bool ng)
803 pmd_t *pmd = pmd_offset(pud, addr);
804 unsigned long next;
806 do {
808 * With LPAE, we must loop over to map
809 * all the pmds for the given range.
811 next = pmd_addr_end(addr, end);
814 * Try a section mapping - addr, next and phys must all be
815 * aligned to a section boundary.
817 if (type->prot_sect &&
818 ((addr | next | phys) & ~SECTION_MASK) == 0) {
819 __map_init_section(pmd, addr, next, phys, type, ng);
820 } else {
821 alloc_init_pte(pmd, addr, next,
822 __phys_to_pfn(phys), type, alloc, ng);
825 phys += next - addr;
827 } while (pmd++, addr = next, addr != end);
830 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
831 unsigned long end, phys_addr_t phys,
832 const struct mem_type *type,
833 void *(*alloc)(unsigned long sz), bool ng)
835 pud_t *pud = pud_offset(pgd, addr);
836 unsigned long next;
838 do {
839 next = pud_addr_end(addr, end);
840 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
841 phys += next - addr;
842 } while (pud++, addr = next, addr != end);
845 #ifndef CONFIG_ARM_LPAE
846 static void __init create_36bit_mapping(struct mm_struct *mm,
847 struct map_desc *md,
848 const struct mem_type *type,
849 bool ng)
851 unsigned long addr, length, end;
852 phys_addr_t phys;
853 pgd_t *pgd;
855 addr = md->virtual;
856 phys = __pfn_to_phys(md->pfn);
857 length = PAGE_ALIGN(md->length);
859 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
860 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
861 (long long)__pfn_to_phys((u64)md->pfn), addr);
862 return;
865 /* N.B. ARMv6 supersections are only defined to work with domain 0.
866 * Since domain assignments can in fact be arbitrary, the
867 * 'domain == 0' check below is required to insure that ARMv6
868 * supersections are only allocated for domain 0 regardless
869 * of the actual domain assignments in use.
871 if (type->domain) {
872 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
873 (long long)__pfn_to_phys((u64)md->pfn), addr);
874 return;
877 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
878 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
879 (long long)__pfn_to_phys((u64)md->pfn), addr);
880 return;
884 * Shift bits [35:32] of address into bits [23:20] of PMD
885 * (See ARMv6 spec).
887 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
889 pgd = pgd_offset(mm, addr);
890 end = addr + length;
891 do {
892 pud_t *pud = pud_offset(pgd, addr);
893 pmd_t *pmd = pmd_offset(pud, addr);
894 int i;
896 for (i = 0; i < 16; i++)
897 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
898 (ng ? PMD_SECT_nG : 0));
900 addr += SUPERSECTION_SIZE;
901 phys += SUPERSECTION_SIZE;
902 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
903 } while (addr != end);
905 #endif /* !CONFIG_ARM_LPAE */
907 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
908 void *(*alloc)(unsigned long sz),
909 bool ng)
911 unsigned long addr, length, end;
912 phys_addr_t phys;
913 const struct mem_type *type;
914 pgd_t *pgd;
916 type = &mem_types[md->type];
918 #ifndef CONFIG_ARM_LPAE
920 * Catch 36-bit addresses
922 if (md->pfn >= 0x100000) {
923 create_36bit_mapping(mm, md, type, ng);
924 return;
926 #endif
928 addr = md->virtual & PAGE_MASK;
929 phys = __pfn_to_phys(md->pfn);
930 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
932 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
933 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
934 (long long)__pfn_to_phys(md->pfn), addr);
935 return;
938 pgd = pgd_offset(mm, addr);
939 end = addr + length;
940 do {
941 unsigned long next = pgd_addr_end(addr, end);
943 alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
945 phys += next - addr;
946 addr = next;
947 } while (pgd++, addr != end);
951 * Create the page directory entries and any necessary
952 * page tables for the mapping specified by `md'. We
953 * are able to cope here with varying sizes and address
954 * offsets, and we take full advantage of sections and
955 * supersections.
957 static void __init create_mapping(struct map_desc *md)
959 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
960 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
961 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
962 return;
965 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
966 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
967 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
968 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
969 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
972 __create_mapping(&init_mm, md, early_alloc, false);
975 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
976 bool ng)
978 #ifdef CONFIG_ARM_LPAE
979 pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
980 if (WARN_ON(!pud))
981 return;
982 pmd_alloc(mm, pud, 0);
983 #endif
984 __create_mapping(mm, md, late_alloc, ng);
988 * Create the architecture specific mappings
990 void __init iotable_init(struct map_desc *io_desc, int nr)
992 struct map_desc *md;
993 struct vm_struct *vm;
994 struct static_vm *svm;
996 if (!nr)
997 return;
999 svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1000 if (!svm)
1001 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1002 __func__, sizeof(*svm) * nr, __alignof__(*svm));
1004 for (md = io_desc; nr; md++, nr--) {
1005 create_mapping(md);
1007 vm = &svm->vm;
1008 vm->addr = (void *)(md->virtual & PAGE_MASK);
1009 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1010 vm->phys_addr = __pfn_to_phys(md->pfn);
1011 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1012 vm->flags |= VM_ARM_MTYPE(md->type);
1013 vm->caller = iotable_init;
1014 add_static_vm_early(svm++);
1018 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1019 void *caller)
1021 struct vm_struct *vm;
1022 struct static_vm *svm;
1024 svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1025 if (!svm)
1026 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1027 __func__, sizeof(*svm), __alignof__(*svm));
1029 vm = &svm->vm;
1030 vm->addr = (void *)addr;
1031 vm->size = size;
1032 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1033 vm->caller = caller;
1034 add_static_vm_early(svm);
1037 #ifndef CONFIG_ARM_LPAE
1040 * The Linux PMD is made of two consecutive section entries covering 2MB
1041 * (see definition in include/asm/pgtable-2level.h). However a call to
1042 * create_mapping() may optimize static mappings by using individual
1043 * 1MB section mappings. This leaves the actual PMD potentially half
1044 * initialized if the top or bottom section entry isn't used, leaving it
1045 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1046 * the virtual space left free by that unused section entry.
1048 * Let's avoid the issue by inserting dummy vm entries covering the unused
1049 * PMD halves once the static mappings are in place.
1052 static void __init pmd_empty_section_gap(unsigned long addr)
1054 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1057 static void __init fill_pmd_gaps(void)
1059 struct static_vm *svm;
1060 struct vm_struct *vm;
1061 unsigned long addr, next = 0;
1062 pmd_t *pmd;
1064 list_for_each_entry(svm, &static_vmlist, list) {
1065 vm = &svm->vm;
1066 addr = (unsigned long)vm->addr;
1067 if (addr < next)
1068 continue;
1071 * Check if this vm starts on an odd section boundary.
1072 * If so and the first section entry for this PMD is free
1073 * then we block the corresponding virtual address.
1075 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1076 pmd = pmd_off_k(addr);
1077 if (pmd_none(*pmd))
1078 pmd_empty_section_gap(addr & PMD_MASK);
1082 * Then check if this vm ends on an odd section boundary.
1083 * If so and the second section entry for this PMD is empty
1084 * then we block the corresponding virtual address.
1086 addr += vm->size;
1087 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1088 pmd = pmd_off_k(addr) + 1;
1089 if (pmd_none(*pmd))
1090 pmd_empty_section_gap(addr);
1093 /* no need to look at any vm entry until we hit the next PMD */
1094 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1098 #else
1099 #define fill_pmd_gaps() do { } while (0)
1100 #endif
1102 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1103 static void __init pci_reserve_io(void)
1105 struct static_vm *svm;
1107 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1108 if (svm)
1109 return;
1111 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1113 #else
1114 #define pci_reserve_io() do { } while (0)
1115 #endif
1117 #ifdef CONFIG_DEBUG_LL
1118 void __init debug_ll_io_init(void)
1120 struct map_desc map;
1122 debug_ll_addr(&map.pfn, &map.virtual);
1123 if (!map.pfn || !map.virtual)
1124 return;
1125 map.pfn = __phys_to_pfn(map.pfn);
1126 map.virtual &= PAGE_MASK;
1127 map.length = PAGE_SIZE;
1128 map.type = MT_DEVICE;
1129 iotable_init(&map, 1);
1131 #endif
1133 static void * __initdata vmalloc_min =
1134 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1137 * vmalloc=size forces the vmalloc area to be exactly 'size'
1138 * bytes. This can be used to increase (or decrease) the vmalloc
1139 * area - the default is 240m.
1141 static int __init early_vmalloc(char *arg)
1143 unsigned long vmalloc_reserve = memparse(arg, NULL);
1145 if (vmalloc_reserve < SZ_16M) {
1146 vmalloc_reserve = SZ_16M;
1147 pr_warn("vmalloc area too small, limiting to %luMB\n",
1148 vmalloc_reserve >> 20);
1151 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1152 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1153 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1154 vmalloc_reserve >> 20);
1157 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1158 return 0;
1160 early_param("vmalloc", early_vmalloc);
1162 phys_addr_t arm_lowmem_limit __initdata = 0;
1164 void __init adjust_lowmem_bounds(void)
1166 phys_addr_t memblock_limit = 0;
1167 u64 vmalloc_limit;
1168 struct memblock_region *reg;
1169 phys_addr_t lowmem_limit = 0;
1172 * Let's use our own (unoptimized) equivalent of __pa() that is
1173 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1174 * The result is used as the upper bound on physical memory address
1175 * and may itself be outside the valid range for which phys_addr_t
1176 * and therefore __pa() is defined.
1178 vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1181 * The first usable region must be PMD aligned. Mark its start
1182 * as MEMBLOCK_NOMAP if it isn't
1184 for_each_memblock(memory, reg) {
1185 if (!memblock_is_nomap(reg)) {
1186 if (!IS_ALIGNED(reg->base, PMD_SIZE)) {
1187 phys_addr_t len;
1189 len = round_up(reg->base, PMD_SIZE) - reg->base;
1190 memblock_mark_nomap(reg->base, len);
1192 break;
1196 for_each_memblock(memory, reg) {
1197 phys_addr_t block_start = reg->base;
1198 phys_addr_t block_end = reg->base + reg->size;
1200 if (memblock_is_nomap(reg))
1201 continue;
1203 if (reg->base < vmalloc_limit) {
1204 if (block_end > lowmem_limit)
1206 * Compare as u64 to ensure vmalloc_limit does
1207 * not get truncated. block_end should always
1208 * fit in phys_addr_t so there should be no
1209 * issue with assignment.
1211 lowmem_limit = min_t(u64,
1212 vmalloc_limit,
1213 block_end);
1216 * Find the first non-pmd-aligned page, and point
1217 * memblock_limit at it. This relies on rounding the
1218 * limit down to be pmd-aligned, which happens at the
1219 * end of this function.
1221 * With this algorithm, the start or end of almost any
1222 * bank can be non-pmd-aligned. The only exception is
1223 * that the start of the bank 0 must be section-
1224 * aligned, since otherwise memory would need to be
1225 * allocated when mapping the start of bank 0, which
1226 * occurs before any free memory is mapped.
1228 if (!memblock_limit) {
1229 if (!IS_ALIGNED(block_start, PMD_SIZE))
1230 memblock_limit = block_start;
1231 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1232 memblock_limit = lowmem_limit;
1238 arm_lowmem_limit = lowmem_limit;
1240 high_memory = __va(arm_lowmem_limit - 1) + 1;
1242 if (!memblock_limit)
1243 memblock_limit = arm_lowmem_limit;
1246 * Round the memblock limit down to a pmd size. This
1247 * helps to ensure that we will allocate memory from the
1248 * last full pmd, which should be mapped.
1250 memblock_limit = round_down(memblock_limit, PMD_SIZE);
1252 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1253 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1254 phys_addr_t end = memblock_end_of_DRAM();
1256 pr_notice("Ignoring RAM at %pa-%pa\n",
1257 &memblock_limit, &end);
1258 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1260 memblock_remove(memblock_limit, end - memblock_limit);
1264 memblock_set_current_limit(memblock_limit);
1267 static inline void prepare_page_table(void)
1269 unsigned long addr;
1270 phys_addr_t end;
1273 * Clear out all the mappings below the kernel image.
1275 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1276 pmd_clear(pmd_off_k(addr));
1278 #ifdef CONFIG_XIP_KERNEL
1279 /* The XIP kernel is mapped in the module area -- skip over it */
1280 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1281 #endif
1282 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1283 pmd_clear(pmd_off_k(addr));
1286 * Find the end of the first block of lowmem.
1288 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1289 if (end >= arm_lowmem_limit)
1290 end = arm_lowmem_limit;
1293 * Clear out all the kernel space mappings, except for the first
1294 * memory bank, up to the vmalloc region.
1296 for (addr = __phys_to_virt(end);
1297 addr < VMALLOC_START; addr += PMD_SIZE)
1298 pmd_clear(pmd_off_k(addr));
1301 #ifdef CONFIG_ARM_LPAE
1302 /* the first page is reserved for pgd */
1303 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1304 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1305 #else
1306 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1307 #endif
1310 * Reserve the special regions of memory
1312 void __init arm_mm_memblock_reserve(void)
1315 * Reserve the page tables. These are already in use,
1316 * and can only be in node 0.
1318 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1320 #ifdef CONFIG_SA1111
1322 * Because of the SA1111 DMA bug, we want to preserve our
1323 * precious DMA-able memory...
1325 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1326 #endif
1330 * Set up the device mappings. Since we clear out the page tables for all
1331 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1332 * device mappings. This means earlycon can be used to debug this function
1333 * Any other function or debugging method which may touch any device _will_
1334 * crash the kernel.
1336 static void __init devicemaps_init(const struct machine_desc *mdesc)
1338 struct map_desc map;
1339 unsigned long addr;
1340 void *vectors;
1343 * Allocate the vector page early.
1345 vectors = early_alloc(PAGE_SIZE * 2);
1347 early_trap_init(vectors);
1350 * Clear page table except top pmd used by early fixmaps
1352 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1353 pmd_clear(pmd_off_k(addr));
1356 * Map the kernel if it is XIP.
1357 * It is always first in the modulearea.
1359 #ifdef CONFIG_XIP_KERNEL
1360 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1361 map.virtual = MODULES_VADDR;
1362 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1363 map.type = MT_ROM;
1364 create_mapping(&map);
1365 #endif
1368 * Map the cache flushing regions.
1370 #ifdef FLUSH_BASE
1371 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1372 map.virtual = FLUSH_BASE;
1373 map.length = SZ_1M;
1374 map.type = MT_CACHECLEAN;
1375 create_mapping(&map);
1376 #endif
1377 #ifdef FLUSH_BASE_MINICACHE
1378 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1379 map.virtual = FLUSH_BASE_MINICACHE;
1380 map.length = SZ_1M;
1381 map.type = MT_MINICLEAN;
1382 create_mapping(&map);
1383 #endif
1386 * Create a mapping for the machine vectors at the high-vectors
1387 * location (0xffff0000). If we aren't using high-vectors, also
1388 * create a mapping at the low-vectors virtual address.
1390 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1391 map.virtual = 0xffff0000;
1392 map.length = PAGE_SIZE;
1393 #ifdef CONFIG_KUSER_HELPERS
1394 map.type = MT_HIGH_VECTORS;
1395 #else
1396 map.type = MT_LOW_VECTORS;
1397 #endif
1398 create_mapping(&map);
1400 if (!vectors_high()) {
1401 map.virtual = 0;
1402 map.length = PAGE_SIZE * 2;
1403 map.type = MT_LOW_VECTORS;
1404 create_mapping(&map);
1407 /* Now create a kernel read-only mapping */
1408 map.pfn += 1;
1409 map.virtual = 0xffff0000 + PAGE_SIZE;
1410 map.length = PAGE_SIZE;
1411 map.type = MT_LOW_VECTORS;
1412 create_mapping(&map);
1415 * Ask the machine support to map in the statically mapped devices.
1417 if (mdesc->map_io)
1418 mdesc->map_io();
1419 else
1420 debug_ll_io_init();
1421 fill_pmd_gaps();
1423 /* Reserve fixed i/o space in VMALLOC region */
1424 pci_reserve_io();
1427 * Finally flush the caches and tlb to ensure that we're in a
1428 * consistent state wrt the writebuffer. This also ensures that
1429 * any write-allocated cache lines in the vector page are written
1430 * back. After this point, we can start to touch devices again.
1432 local_flush_tlb_all();
1433 flush_cache_all();
1435 /* Enable asynchronous aborts */
1436 early_abt_enable();
1439 static void __init kmap_init(void)
1441 #ifdef CONFIG_HIGHMEM
1442 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1443 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1444 #endif
1446 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1447 _PAGE_KERNEL_TABLE);
1450 static void __init map_lowmem(void)
1452 struct memblock_region *reg;
1453 phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1454 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1456 /* Map all the lowmem memory banks. */
1457 for_each_memblock(memory, reg) {
1458 phys_addr_t start = reg->base;
1459 phys_addr_t end = start + reg->size;
1460 struct map_desc map;
1462 if (memblock_is_nomap(reg))
1463 continue;
1465 if (end > arm_lowmem_limit)
1466 end = arm_lowmem_limit;
1467 if (start >= end)
1468 break;
1470 if (end < kernel_x_start) {
1471 map.pfn = __phys_to_pfn(start);
1472 map.virtual = __phys_to_virt(start);
1473 map.length = end - start;
1474 map.type = MT_MEMORY_RWX;
1476 create_mapping(&map);
1477 } else if (start >= kernel_x_end) {
1478 map.pfn = __phys_to_pfn(start);
1479 map.virtual = __phys_to_virt(start);
1480 map.length = end - start;
1481 map.type = MT_MEMORY_RW;
1483 create_mapping(&map);
1484 } else {
1485 /* This better cover the entire kernel */
1486 if (start < kernel_x_start) {
1487 map.pfn = __phys_to_pfn(start);
1488 map.virtual = __phys_to_virt(start);
1489 map.length = kernel_x_start - start;
1490 map.type = MT_MEMORY_RW;
1492 create_mapping(&map);
1495 map.pfn = __phys_to_pfn(kernel_x_start);
1496 map.virtual = __phys_to_virt(kernel_x_start);
1497 map.length = kernel_x_end - kernel_x_start;
1498 map.type = MT_MEMORY_RWX;
1500 create_mapping(&map);
1502 if (kernel_x_end < end) {
1503 map.pfn = __phys_to_pfn(kernel_x_end);
1504 map.virtual = __phys_to_virt(kernel_x_end);
1505 map.length = end - kernel_x_end;
1506 map.type = MT_MEMORY_RW;
1508 create_mapping(&map);
1514 #ifdef CONFIG_ARM_PV_FIXUP
1515 extern unsigned long __atags_pointer;
1516 typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1517 pgtables_remap lpae_pgtables_remap_asm;
1520 * early_paging_init() recreates boot time page table setup, allowing machines
1521 * to switch over to a high (>4G) address space on LPAE systems
1523 static void __init early_paging_init(const struct machine_desc *mdesc)
1525 pgtables_remap *lpae_pgtables_remap;
1526 unsigned long pa_pgd;
1527 unsigned int cr, ttbcr;
1528 long long offset;
1529 void *boot_data;
1531 if (!mdesc->pv_fixup)
1532 return;
1534 offset = mdesc->pv_fixup();
1535 if (offset == 0)
1536 return;
1539 * Get the address of the remap function in the 1:1 identity
1540 * mapping setup by the early page table assembly code. We
1541 * must get this prior to the pv update. The following barrier
1542 * ensures that this is complete before we fixup any P:V offsets.
1544 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1545 pa_pgd = __pa(swapper_pg_dir);
1546 boot_data = __va(__atags_pointer);
1547 barrier();
1549 pr_info("Switching physical address space to 0x%08llx\n",
1550 (u64)PHYS_OFFSET + offset);
1552 /* Re-set the phys pfn offset, and the pv offset */
1553 __pv_offset += offset;
1554 __pv_phys_pfn_offset += PFN_DOWN(offset);
1556 /* Run the patch stub to update the constants */
1557 fixup_pv_table(&__pv_table_begin,
1558 (&__pv_table_end - &__pv_table_begin) << 2);
1561 * We changing not only the virtual to physical mapping, but also
1562 * the physical addresses used to access memory. We need to flush
1563 * all levels of cache in the system with caching disabled to
1564 * ensure that all data is written back, and nothing is prefetched
1565 * into the caches. We also need to prevent the TLB walkers
1566 * allocating into the caches too. Note that this is ARMv7 LPAE
1567 * specific.
1569 cr = get_cr();
1570 set_cr(cr & ~(CR_I | CR_C));
1571 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1572 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1573 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1574 flush_cache_all();
1577 * Fixup the page tables - this must be in the idmap region as
1578 * we need to disable the MMU to do this safely, and hence it
1579 * needs to be assembly. It's fairly simple, as we're using the
1580 * temporary tables setup by the initial assembly code.
1582 lpae_pgtables_remap(offset, pa_pgd, boot_data);
1584 /* Re-enable the caches and cacheable TLB walks */
1585 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1586 set_cr(cr);
1589 #else
1591 static void __init early_paging_init(const struct machine_desc *mdesc)
1593 long long offset;
1595 if (!mdesc->pv_fixup)
1596 return;
1598 offset = mdesc->pv_fixup();
1599 if (offset == 0)
1600 return;
1602 pr_crit("Physical address space modification is only to support Keystone2.\n");
1603 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1604 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1605 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1608 #endif
1610 static void __init early_fixmap_shutdown(void)
1612 int i;
1613 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1615 pte_offset_fixmap = pte_offset_late_fixmap;
1616 pmd_clear(fixmap_pmd(va));
1617 local_flush_tlb_kernel_page(va);
1619 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1620 pte_t *pte;
1621 struct map_desc map;
1623 map.virtual = fix_to_virt(i);
1624 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1626 /* Only i/o device mappings are supported ATM */
1627 if (pte_none(*pte) ||
1628 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1629 continue;
1631 map.pfn = pte_pfn(*pte);
1632 map.type = MT_DEVICE;
1633 map.length = PAGE_SIZE;
1635 create_mapping(&map);
1640 * paging_init() sets up the page tables, initialises the zone memory
1641 * maps, and sets up the zero page, bad page and bad page tables.
1643 void __init paging_init(const struct machine_desc *mdesc)
1645 void *zero_page;
1647 prepare_page_table();
1648 map_lowmem();
1649 memblock_set_current_limit(arm_lowmem_limit);
1650 dma_contiguous_remap();
1651 early_fixmap_shutdown();
1652 devicemaps_init(mdesc);
1653 kmap_init();
1654 tcm_init();
1656 top_pmd = pmd_off_k(0xffff0000);
1658 /* allocate the zero page. */
1659 zero_page = early_alloc(PAGE_SIZE);
1661 bootmem_init();
1663 empty_zero_page = virt_to_page(zero_page);
1664 __flush_dcache_page(NULL, empty_zero_page);
1666 /* Compute the virt/idmap offset, mostly for the sake of KVM */
1667 kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
1670 void __init early_mm_init(const struct machine_desc *mdesc)
1672 build_mem_type_table();
1673 early_paging_init(mdesc);