1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/arm/mm/mmu.c
5 * Copyright (C) 1995-2005 Russell King
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/fixmap.h>
23 #include <asm/sections.h>
24 #include <asm/setup.h>
25 #include <asm/smp_plat.h>
27 #include <asm/highmem.h>
28 #include <asm/system_info.h>
29 #include <asm/traps.h>
30 #include <asm/procinfo.h>
31 #include <asm/memory.h>
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
43 * empty_zero_page is a special page that is used for
44 * zero-initialized data and COW.
46 struct page
*empty_zero_page
;
47 EXPORT_SYMBOL(empty_zero_page
);
50 * The pmd table for the upper-most set of pages.
54 pmdval_t user_pmd_table
= _PAGE_USER_TABLE
;
56 #define CPOLICY_UNCACHED 0
57 #define CPOLICY_BUFFERED 1
58 #define CPOLICY_WRITETHROUGH 2
59 #define CPOLICY_WRITEBACK 3
60 #define CPOLICY_WRITEALLOC 4
62 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
63 static unsigned int ecc_mask __initdata
= 0;
65 pgprot_t pgprot_kernel
;
66 pgprot_t pgprot_hyp_device
;
68 pgprot_t pgprot_s2_device
;
70 EXPORT_SYMBOL(pgprot_user
);
71 EXPORT_SYMBOL(pgprot_kernel
);
74 const char policy
[16];
81 #ifdef CONFIG_ARM_LPAE
82 #define s2_policy(policy) policy
84 #define s2_policy(policy) 0
87 unsigned long kimage_voffset __ro_after_init
;
89 static struct cachepolicy cache_policies
[] __initdata
= {
93 .pmd
= PMD_SECT_UNCACHED
,
94 .pte
= L_PTE_MT_UNCACHED
,
95 .pte_s2
= s2_policy(L_PTE_S2_MT_UNCACHED
),
99 .pmd
= PMD_SECT_BUFFERED
,
100 .pte
= L_PTE_MT_BUFFERABLE
,
101 .pte_s2
= s2_policy(L_PTE_S2_MT_UNCACHED
),
103 .policy
= "writethrough",
106 .pte
= L_PTE_MT_WRITETHROUGH
,
107 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITETHROUGH
),
109 .policy
= "writeback",
112 .pte
= L_PTE_MT_WRITEBACK
,
113 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITEBACK
),
115 .policy
= "writealloc",
117 .pmd
= PMD_SECT_WBWA
,
118 .pte
= L_PTE_MT_WRITEALLOC
,
119 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITEBACK
),
123 #ifdef CONFIG_CPU_CP15
124 static unsigned long initial_pmd_value __initdata
= 0;
127 * Initialise the cache_policy variable with the initial state specified
128 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
129 * the C code sets the page tables up with the same policy as the head
130 * assembly code, which avoids an illegal state where the TLBs can get
131 * confused. See comments in early_cachepolicy() for more information.
133 void __init
init_default_cache_policy(unsigned long pmd
)
137 initial_pmd_value
= pmd
;
139 pmd
&= PMD_SECT_CACHE_MASK
;
141 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++)
142 if (cache_policies
[i
].pmd
== pmd
) {
147 if (i
== ARRAY_SIZE(cache_policies
))
148 pr_err("ERROR: could not find cache policy\n");
152 * These are useful for identifying cache coherency problems by allowing
153 * the cache or the cache and writebuffer to be turned off. (Note: the
154 * write buffer should not be on and the cache off).
156 static int __init
early_cachepolicy(char *p
)
158 int i
, selected
= -1;
160 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
161 int len
= strlen(cache_policies
[i
].policy
);
163 if (memcmp(p
, cache_policies
[i
].policy
, len
) == 0) {
170 pr_err("ERROR: unknown or unsupported cache policy\n");
173 * This restriction is partly to do with the way we boot; it is
174 * unpredictable to have memory mapped using two different sets of
175 * memory attributes (shared, type, and cache attribs). We can not
176 * change these attributes once the initial assembly has setup the
179 if (cpu_architecture() >= CPU_ARCH_ARMv6
&& selected
!= cachepolicy
) {
180 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
181 cache_policies
[cachepolicy
].policy
);
185 if (selected
!= cachepolicy
) {
186 unsigned long cr
= __clear_cr(cache_policies
[selected
].cr_mask
);
187 cachepolicy
= selected
;
193 early_param("cachepolicy", early_cachepolicy
);
195 static int __init
early_nocache(char *__unused
)
197 char *p
= "buffered";
198 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p
);
199 early_cachepolicy(p
);
202 early_param("nocache", early_nocache
);
204 static int __init
early_nowrite(char *__unused
)
206 char *p
= "uncached";
207 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p
);
208 early_cachepolicy(p
);
211 early_param("nowb", early_nowrite
);
213 #ifndef CONFIG_ARM_LPAE
214 static int __init
early_ecc(char *p
)
216 if (memcmp(p
, "on", 2) == 0)
217 ecc_mask
= PMD_PROTECTION
;
218 else if (memcmp(p
, "off", 3) == 0)
222 early_param("ecc", early_ecc
);
225 #else /* ifdef CONFIG_CPU_CP15 */
227 static int __init
early_cachepolicy(char *p
)
229 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
231 early_param("cachepolicy", early_cachepolicy
);
233 static int __init
noalign_setup(char *__unused
)
235 pr_warn("noalign kernel parameter not supported without cp15\n");
237 __setup("noalign", noalign_setup
);
239 #endif /* ifdef CONFIG_CPU_CP15 / else */
241 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
242 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
243 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
245 static struct mem_type mem_types
[] __ro_after_init
= {
246 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
247 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
249 .prot_pte_s2
= s2_policy(PROT_PTE_S2_DEVICE
) |
250 s2_policy(L_PTE_S2_MT_DEV_SHARED
) |
252 .prot_l1
= PMD_TYPE_TABLE
,
253 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
256 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
257 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
258 .prot_l1
= PMD_TYPE_TABLE
,
259 .prot_sect
= PROT_SECT_DEVICE
,
262 [MT_DEVICE_CACHED
] = { /* ioremap_cache */
263 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
264 .prot_l1
= PMD_TYPE_TABLE
,
265 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
268 [MT_DEVICE_WC
] = { /* ioremap_wc */
269 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
270 .prot_l1
= PMD_TYPE_TABLE
,
271 .prot_sect
= PROT_SECT_DEVICE
,
275 .prot_pte
= PROT_PTE_DEVICE
,
276 .prot_l1
= PMD_TYPE_TABLE
,
277 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
281 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
282 .domain
= DOMAIN_KERNEL
,
284 #ifndef CONFIG_ARM_LPAE
286 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
287 .domain
= DOMAIN_KERNEL
,
291 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
293 .prot_l1
= PMD_TYPE_TABLE
,
294 .domain
= DOMAIN_VECTORS
,
296 [MT_HIGH_VECTORS
] = {
297 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
298 L_PTE_USER
| L_PTE_RDONLY
,
299 .prot_l1
= PMD_TYPE_TABLE
,
300 .domain
= DOMAIN_VECTORS
,
303 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
304 .prot_l1
= PMD_TYPE_TABLE
,
305 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
306 .domain
= DOMAIN_KERNEL
,
309 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
311 .prot_l1
= PMD_TYPE_TABLE
,
312 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
313 .domain
= DOMAIN_KERNEL
,
316 .prot_sect
= PMD_TYPE_SECT
,
317 .domain
= DOMAIN_KERNEL
,
319 [MT_MEMORY_RWX_NONCACHED
] = {
320 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
322 .prot_l1
= PMD_TYPE_TABLE
,
323 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
324 .domain
= DOMAIN_KERNEL
,
326 [MT_MEMORY_RW_DTCM
] = {
327 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
329 .prot_l1
= PMD_TYPE_TABLE
,
330 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
331 .domain
= DOMAIN_KERNEL
,
333 [MT_MEMORY_RWX_ITCM
] = {
334 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
335 .prot_l1
= PMD_TYPE_TABLE
,
336 .domain
= DOMAIN_KERNEL
,
338 [MT_MEMORY_RW_SO
] = {
339 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
340 L_PTE_MT_UNCACHED
| L_PTE_XN
,
341 .prot_l1
= PMD_TYPE_TABLE
,
342 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
| PMD_SECT_S
|
343 PMD_SECT_UNCACHED
| PMD_SECT_XN
,
344 .domain
= DOMAIN_KERNEL
,
346 [MT_MEMORY_DMA_READY
] = {
347 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
349 .prot_l1
= PMD_TYPE_TABLE
,
350 .domain
= DOMAIN_KERNEL
,
354 const struct mem_type
*get_mem_type(unsigned int type
)
356 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
358 EXPORT_SYMBOL(get_mem_type
);
360 static pte_t
*(*pte_offset_fixmap
)(pmd_t
*dir
, unsigned long addr
);
362 static pte_t bm_pte
[PTRS_PER_PTE
+ PTE_HWTABLE_PTRS
]
363 __aligned(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
) __initdata
;
365 static pte_t
* __init
pte_offset_early_fixmap(pmd_t
*dir
, unsigned long addr
)
367 return &bm_pte
[pte_index(addr
)];
370 static pte_t
*pte_offset_late_fixmap(pmd_t
*dir
, unsigned long addr
)
372 return pte_offset_kernel(dir
, addr
);
375 static inline pmd_t
* __init
fixmap_pmd(unsigned long addr
)
377 pgd_t
*pgd
= pgd_offset_k(addr
);
378 pud_t
*pud
= pud_offset(pgd
, addr
);
379 pmd_t
*pmd
= pmd_offset(pud
, addr
);
384 void __init
early_fixmap_init(void)
389 * The early fixmap range spans multiple pmds, for which
390 * we are not prepared:
392 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region
) >> PMD_SHIFT
)
393 != FIXADDR_TOP
>> PMD_SHIFT
);
395 pmd
= fixmap_pmd(FIXADDR_TOP
);
396 pmd_populate_kernel(&init_mm
, pmd
, bm_pte
);
398 pte_offset_fixmap
= pte_offset_early_fixmap
;
402 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
403 * As a result, this can only be called with preemption disabled, as under
406 void __set_fixmap(enum fixed_addresses idx
, phys_addr_t phys
, pgprot_t prot
)
408 unsigned long vaddr
= __fix_to_virt(idx
);
409 pte_t
*pte
= pte_offset_fixmap(pmd_off_k(vaddr
), vaddr
);
411 /* Make sure fixmap region does not exceed available allocation. */
412 BUILD_BUG_ON(FIXADDR_START
+ (__end_of_fixed_addresses
* PAGE_SIZE
) >
414 BUG_ON(idx
>= __end_of_fixed_addresses
);
416 /* we only support device mappings until pgprot_kernel has been set */
417 if (WARN_ON(pgprot_val(prot
) != pgprot_val(FIXMAP_PAGE_IO
) &&
418 pgprot_val(pgprot_kernel
) == 0))
421 if (pgprot_val(prot
))
422 set_pte_at(NULL
, vaddr
, pte
,
423 pfn_pte(phys
>> PAGE_SHIFT
, prot
));
425 pte_clear(NULL
, vaddr
, pte
);
426 local_flush_tlb_kernel_range(vaddr
, vaddr
+ PAGE_SIZE
);
430 * Adjust the PMD section entries according to the CPU in use.
432 static void __init
build_mem_type_table(void)
434 struct cachepolicy
*cp
;
435 unsigned int cr
= get_cr();
436 pteval_t user_pgprot
, kern_pgprot
, vecs_pgprot
;
437 pteval_t hyp_device_pgprot
, s2_pgprot
, s2_device_pgprot
;
438 int cpu_arch
= cpu_architecture();
441 if (cpu_arch
< CPU_ARCH_ARMv6
) {
442 #if defined(CONFIG_CPU_DCACHE_DISABLE)
443 if (cachepolicy
> CPOLICY_BUFFERED
)
444 cachepolicy
= CPOLICY_BUFFERED
;
445 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
446 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
447 cachepolicy
= CPOLICY_WRITETHROUGH
;
450 if (cpu_arch
< CPU_ARCH_ARMv5
) {
451 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
452 cachepolicy
= CPOLICY_WRITEBACK
;
457 if (cachepolicy
!= CPOLICY_WRITEALLOC
) {
458 pr_warn("Forcing write-allocate cache policy for SMP\n");
459 cachepolicy
= CPOLICY_WRITEALLOC
;
461 if (!(initial_pmd_value
& PMD_SECT_S
)) {
462 pr_warn("Forcing shared mappings for SMP\n");
463 initial_pmd_value
|= PMD_SECT_S
;
468 * Strip out features not present on earlier architectures.
469 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
470 * without extended page tables don't have the 'Shared' bit.
472 if (cpu_arch
< CPU_ARCH_ARMv5
)
473 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
474 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
475 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
476 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
477 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
480 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
481 * "update-able on write" bit on ARM610). However, Xscale and
482 * Xscale3 require this bit to be cleared.
484 if (cpu_is_xscale_family()) {
485 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
486 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
487 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
489 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
490 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
491 if (mem_types
[i
].prot_l1
)
492 mem_types
[i
].prot_l1
|= PMD_BIT4
;
493 if (mem_types
[i
].prot_sect
)
494 mem_types
[i
].prot_sect
|= PMD_BIT4
;
499 * Mark the device areas according to the CPU/architecture.
501 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
502 if (!cpu_is_xsc3()) {
504 * Mark device regions on ARMv6+ as execute-never
505 * to prevent speculative instruction fetches.
507 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
508 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
509 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
510 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
512 /* Also setup NX memory mapping */
513 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_XN
;
515 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
517 * For ARMv7 with TEX remapping,
518 * - shared device is SXCB=1100
519 * - nonshared device is SXCB=0100
520 * - write combine device mem is SXCB=0001
521 * (Uncached Normal memory)
523 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
524 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
525 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
526 } else if (cpu_is_xsc3()) {
529 * - shared device is TEXCB=00101
530 * - nonshared device is TEXCB=01000
531 * - write combine device mem is TEXCB=00100
532 * (Inner/Outer Uncacheable in xsc3 parlance)
534 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
535 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
536 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
539 * For ARMv6 and ARMv7 without TEX remapping,
540 * - shared device is TEXCB=00001
541 * - nonshared device is TEXCB=01000
542 * - write combine device mem is TEXCB=00100
543 * (Uncached Normal in ARMv6 parlance).
545 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
546 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
547 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
551 * On others, write combining is "Uncached/Buffered"
553 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
557 * Now deal with the memory-type mappings
559 cp
= &cache_policies
[cachepolicy
];
560 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
561 s2_pgprot
= cp
->pte_s2
;
562 hyp_device_pgprot
= mem_types
[MT_DEVICE
].prot_pte
;
563 s2_device_pgprot
= mem_types
[MT_DEVICE
].prot_pte_s2
;
565 #ifndef CONFIG_ARM_LPAE
567 * We don't use domains on ARMv6 (since this causes problems with
568 * v6/v7 kernels), so we must use a separate memory type for user
569 * r/o, kernel r/w to map the vectors page.
571 if (cpu_arch
== CPU_ARCH_ARMv6
)
572 vecs_pgprot
|= L_PTE_MT_VECTORS
;
575 * Check is it with support for the PXN bit
576 * in the Short-descriptor translation table format descriptors.
578 if (cpu_arch
== CPU_ARCH_ARMv7
&&
579 (read_cpuid_ext(CPUID_EXT_MMFR0
) & 0xF) >= 4) {
580 user_pmd_table
|= PMD_PXNTABLE
;
585 * ARMv6 and above have extended page tables.
587 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
588 #ifndef CONFIG_ARM_LPAE
590 * Mark cache clean areas and XIP ROM read only
591 * from SVC mode and no access from userspace.
593 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
594 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
595 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
599 * If the initial page tables were created with the S bit
600 * set, then we need to do the same here for the same
601 * reasons given in early_cachepolicy().
603 if (initial_pmd_value
& PMD_SECT_S
) {
604 user_pgprot
|= L_PTE_SHARED
;
605 kern_pgprot
|= L_PTE_SHARED
;
606 vecs_pgprot
|= L_PTE_SHARED
;
607 s2_pgprot
|= L_PTE_SHARED
;
608 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_S
;
609 mem_types
[MT_DEVICE_WC
].prot_pte
|= L_PTE_SHARED
;
610 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_S
;
611 mem_types
[MT_DEVICE_CACHED
].prot_pte
|= L_PTE_SHARED
;
612 mem_types
[MT_MEMORY_RWX
].prot_sect
|= PMD_SECT_S
;
613 mem_types
[MT_MEMORY_RWX
].prot_pte
|= L_PTE_SHARED
;
614 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_S
;
615 mem_types
[MT_MEMORY_RW
].prot_pte
|= L_PTE_SHARED
;
616 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= L_PTE_SHARED
;
617 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_S
;
618 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
623 * Non-cacheable Normal - intended for memory areas that must
624 * not cause dirty cache line writebacks when used
626 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
627 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
628 /* Non-cacheable Normal is XCB = 001 */
629 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
632 /* For both ARMv6 and non-TEX-remapping ARMv7 */
633 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
637 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_BUFFERABLE
;
640 #ifdef CONFIG_ARM_LPAE
642 * Do not generate access flag faults for the kernel mappings.
644 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
645 mem_types
[i
].prot_pte
|= PTE_EXT_AF
;
646 if (mem_types
[i
].prot_sect
)
647 mem_types
[i
].prot_sect
|= PMD_SECT_AF
;
649 kern_pgprot
|= PTE_EXT_AF
;
650 vecs_pgprot
|= PTE_EXT_AF
;
653 * Set PXN for user mappings
655 user_pgprot
|= PTE_EXT_PXN
;
658 for (i
= 0; i
< 16; i
++) {
659 pteval_t v
= pgprot_val(protection_map
[i
]);
660 protection_map
[i
] = __pgprot(v
| user_pgprot
);
663 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
664 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
666 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
667 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
668 L_PTE_DIRTY
| kern_pgprot
);
669 pgprot_s2
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| s2_pgprot
);
670 pgprot_s2_device
= __pgprot(s2_device_pgprot
);
671 pgprot_hyp_device
= __pgprot(hyp_device_pgprot
);
673 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
674 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
675 mem_types
[MT_MEMORY_RWX
].prot_sect
|= ecc_mask
| cp
->pmd
;
676 mem_types
[MT_MEMORY_RWX
].prot_pte
|= kern_pgprot
;
677 mem_types
[MT_MEMORY_RW
].prot_sect
|= ecc_mask
| cp
->pmd
;
678 mem_types
[MT_MEMORY_RW
].prot_pte
|= kern_pgprot
;
679 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= kern_pgprot
;
680 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= ecc_mask
;
681 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
685 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
689 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
692 pr_info("Memory policy: %sData cache %s\n",
693 ecc_mask
? "ECC enabled, " : "", cp
->policy
);
695 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
696 struct mem_type
*t
= &mem_types
[i
];
698 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
700 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
704 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
705 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
706 unsigned long size
, pgprot_t vma_prot
)
709 return pgprot_noncached(vma_prot
);
710 else if (file
->f_flags
& O_SYNC
)
711 return pgprot_writecombine(vma_prot
);
714 EXPORT_SYMBOL(phys_mem_access_prot
);
717 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
719 static void __init
*early_alloc(unsigned long sz
)
721 void *ptr
= memblock_alloc(sz
, sz
);
724 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
730 static void *__init
late_alloc(unsigned long sz
)
732 void *ptr
= (void *)__get_free_pages(GFP_PGTABLE_KERNEL
, get_order(sz
));
734 if (!ptr
|| !pgtable_pte_page_ctor(virt_to_page(ptr
)))
739 static pte_t
* __init
arm_pte_alloc(pmd_t
*pmd
, unsigned long addr
,
741 void *(*alloc
)(unsigned long sz
))
743 if (pmd_none(*pmd
)) {
744 pte_t
*pte
= alloc(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
);
745 __pmd_populate(pmd
, __pa(pte
), prot
);
747 BUG_ON(pmd_bad(*pmd
));
748 return pte_offset_kernel(pmd
, addr
);
751 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
,
754 return arm_pte_alloc(pmd
, addr
, prot
, early_alloc
);
757 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
758 unsigned long end
, unsigned long pfn
,
759 const struct mem_type
*type
,
760 void *(*alloc
)(unsigned long sz
),
763 pte_t
*pte
= arm_pte_alloc(pmd
, addr
, type
->prot_l1
, alloc
);
765 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)),
766 ng
? PTE_EXT_NG
: 0);
768 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
771 static void __init
__map_init_section(pmd_t
*pmd
, unsigned long addr
,
772 unsigned long end
, phys_addr_t phys
,
773 const struct mem_type
*type
, bool ng
)
777 #ifndef CONFIG_ARM_LPAE
779 * In classic MMU format, puds and pmds are folded in to
780 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
781 * group of L1 entries making up one logical pointer to
782 * an L2 table (2MB), where as PMDs refer to the individual
783 * L1 entries (1MB). Hence increment to get the correct
784 * offset for odd 1MB sections.
785 * (See arch/arm/include/asm/pgtable-2level.h)
787 if (addr
& SECTION_SIZE
)
791 *pmd
= __pmd(phys
| type
->prot_sect
| (ng
? PMD_SECT_nG
: 0));
792 phys
+= SECTION_SIZE
;
793 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
798 static void __init
alloc_init_pmd(pud_t
*pud
, unsigned long addr
,
799 unsigned long end
, phys_addr_t phys
,
800 const struct mem_type
*type
,
801 void *(*alloc
)(unsigned long sz
), bool ng
)
803 pmd_t
*pmd
= pmd_offset(pud
, addr
);
808 * With LPAE, we must loop over to map
809 * all the pmds for the given range.
811 next
= pmd_addr_end(addr
, end
);
814 * Try a section mapping - addr, next and phys must all be
815 * aligned to a section boundary.
817 if (type
->prot_sect
&&
818 ((addr
| next
| phys
) & ~SECTION_MASK
) == 0) {
819 __map_init_section(pmd
, addr
, next
, phys
, type
, ng
);
821 alloc_init_pte(pmd
, addr
, next
,
822 __phys_to_pfn(phys
), type
, alloc
, ng
);
827 } while (pmd
++, addr
= next
, addr
!= end
);
830 static void __init
alloc_init_pud(pgd_t
*pgd
, unsigned long addr
,
831 unsigned long end
, phys_addr_t phys
,
832 const struct mem_type
*type
,
833 void *(*alloc
)(unsigned long sz
), bool ng
)
835 pud_t
*pud
= pud_offset(pgd
, addr
);
839 next
= pud_addr_end(addr
, end
);
840 alloc_init_pmd(pud
, addr
, next
, phys
, type
, alloc
, ng
);
842 } while (pud
++, addr
= next
, addr
!= end
);
845 #ifndef CONFIG_ARM_LPAE
846 static void __init
create_36bit_mapping(struct mm_struct
*mm
,
848 const struct mem_type
*type
,
851 unsigned long addr
, length
, end
;
856 phys
= __pfn_to_phys(md
->pfn
);
857 length
= PAGE_ALIGN(md
->length
);
859 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
860 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
861 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
865 /* N.B. ARMv6 supersections are only defined to work with domain 0.
866 * Since domain assignments can in fact be arbitrary, the
867 * 'domain == 0' check below is required to insure that ARMv6
868 * supersections are only allocated for domain 0 regardless
869 * of the actual domain assignments in use.
872 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
873 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
877 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
878 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
879 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
884 * Shift bits [35:32] of address into bits [23:20] of PMD
887 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
889 pgd
= pgd_offset(mm
, addr
);
892 pud_t
*pud
= pud_offset(pgd
, addr
);
893 pmd_t
*pmd
= pmd_offset(pud
, addr
);
896 for (i
= 0; i
< 16; i
++)
897 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
|
898 (ng
? PMD_SECT_nG
: 0));
900 addr
+= SUPERSECTION_SIZE
;
901 phys
+= SUPERSECTION_SIZE
;
902 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
903 } while (addr
!= end
);
905 #endif /* !CONFIG_ARM_LPAE */
907 static void __init
__create_mapping(struct mm_struct
*mm
, struct map_desc
*md
,
908 void *(*alloc
)(unsigned long sz
),
911 unsigned long addr
, length
, end
;
913 const struct mem_type
*type
;
916 type
= &mem_types
[md
->type
];
918 #ifndef CONFIG_ARM_LPAE
920 * Catch 36-bit addresses
922 if (md
->pfn
>= 0x100000) {
923 create_36bit_mapping(mm
, md
, type
, ng
);
928 addr
= md
->virtual & PAGE_MASK
;
929 phys
= __pfn_to_phys(md
->pfn
);
930 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
932 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
933 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
934 (long long)__pfn_to_phys(md
->pfn
), addr
);
938 pgd
= pgd_offset(mm
, addr
);
941 unsigned long next
= pgd_addr_end(addr
, end
);
943 alloc_init_pud(pgd
, addr
, next
, phys
, type
, alloc
, ng
);
947 } while (pgd
++, addr
!= end
);
951 * Create the page directory entries and any necessary
952 * page tables for the mapping specified by `md'. We
953 * are able to cope here with varying sizes and address
954 * offsets, and we take full advantage of sections and
957 static void __init
create_mapping(struct map_desc
*md
)
959 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
960 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
961 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
965 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
966 md
->virtual >= PAGE_OFFSET
&& md
->virtual < FIXADDR_START
&&
967 (md
->virtual < VMALLOC_START
|| md
->virtual >= VMALLOC_END
)) {
968 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
969 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
972 __create_mapping(&init_mm
, md
, early_alloc
, false);
975 void __init
create_mapping_late(struct mm_struct
*mm
, struct map_desc
*md
,
978 #ifdef CONFIG_ARM_LPAE
979 pud_t
*pud
= pud_alloc(mm
, pgd_offset(mm
, md
->virtual), md
->virtual);
982 pmd_alloc(mm
, pud
, 0);
984 __create_mapping(mm
, md
, late_alloc
, ng
);
988 * Create the architecture specific mappings
990 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
993 struct vm_struct
*vm
;
994 struct static_vm
*svm
;
999 svm
= memblock_alloc(sizeof(*svm
) * nr
, __alignof__(*svm
));
1001 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1002 __func__
, sizeof(*svm
) * nr
, __alignof__(*svm
));
1004 for (md
= io_desc
; nr
; md
++, nr
--) {
1008 vm
->addr
= (void *)(md
->virtual & PAGE_MASK
);
1009 vm
->size
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
1010 vm
->phys_addr
= __pfn_to_phys(md
->pfn
);
1011 vm
->flags
= VM_IOREMAP
| VM_ARM_STATIC_MAPPING
;
1012 vm
->flags
|= VM_ARM_MTYPE(md
->type
);
1013 vm
->caller
= iotable_init
;
1014 add_static_vm_early(svm
++);
1018 void __init
vm_reserve_area_early(unsigned long addr
, unsigned long size
,
1021 struct vm_struct
*vm
;
1022 struct static_vm
*svm
;
1024 svm
= memblock_alloc(sizeof(*svm
), __alignof__(*svm
));
1026 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1027 __func__
, sizeof(*svm
), __alignof__(*svm
));
1030 vm
->addr
= (void *)addr
;
1032 vm
->flags
= VM_IOREMAP
| VM_ARM_EMPTY_MAPPING
;
1033 vm
->caller
= caller
;
1034 add_static_vm_early(svm
);
1037 #ifndef CONFIG_ARM_LPAE
1040 * The Linux PMD is made of two consecutive section entries covering 2MB
1041 * (see definition in include/asm/pgtable-2level.h). However a call to
1042 * create_mapping() may optimize static mappings by using individual
1043 * 1MB section mappings. This leaves the actual PMD potentially half
1044 * initialized if the top or bottom section entry isn't used, leaving it
1045 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1046 * the virtual space left free by that unused section entry.
1048 * Let's avoid the issue by inserting dummy vm entries covering the unused
1049 * PMD halves once the static mappings are in place.
1052 static void __init
pmd_empty_section_gap(unsigned long addr
)
1054 vm_reserve_area_early(addr
, SECTION_SIZE
, pmd_empty_section_gap
);
1057 static void __init
fill_pmd_gaps(void)
1059 struct static_vm
*svm
;
1060 struct vm_struct
*vm
;
1061 unsigned long addr
, next
= 0;
1064 list_for_each_entry(svm
, &static_vmlist
, list
) {
1066 addr
= (unsigned long)vm
->addr
;
1071 * Check if this vm starts on an odd section boundary.
1072 * If so and the first section entry for this PMD is free
1073 * then we block the corresponding virtual address.
1075 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
1076 pmd
= pmd_off_k(addr
);
1078 pmd_empty_section_gap(addr
& PMD_MASK
);
1082 * Then check if this vm ends on an odd section boundary.
1083 * If so and the second section entry for this PMD is empty
1084 * then we block the corresponding virtual address.
1087 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
1088 pmd
= pmd_off_k(addr
) + 1;
1090 pmd_empty_section_gap(addr
);
1093 /* no need to look at any vm entry until we hit the next PMD */
1094 next
= (addr
+ PMD_SIZE
- 1) & PMD_MASK
;
1099 #define fill_pmd_gaps() do { } while (0)
1102 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1103 static void __init
pci_reserve_io(void)
1105 struct static_vm
*svm
;
1107 svm
= find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE
);
1111 vm_reserve_area_early(PCI_IO_VIRT_BASE
, SZ_2M
, pci_reserve_io
);
1114 #define pci_reserve_io() do { } while (0)
1117 #ifdef CONFIG_DEBUG_LL
1118 void __init
debug_ll_io_init(void)
1120 struct map_desc map
;
1122 debug_ll_addr(&map
.pfn
, &map
.virtual);
1123 if (!map
.pfn
|| !map
.virtual)
1125 map
.pfn
= __phys_to_pfn(map
.pfn
);
1126 map
.virtual &= PAGE_MASK
;
1127 map
.length
= PAGE_SIZE
;
1128 map
.type
= MT_DEVICE
;
1129 iotable_init(&map
, 1);
1133 static void * __initdata vmalloc_min
=
1134 (void *)(VMALLOC_END
- (240 << 20) - VMALLOC_OFFSET
);
1137 * vmalloc=size forces the vmalloc area to be exactly 'size'
1138 * bytes. This can be used to increase (or decrease) the vmalloc
1139 * area - the default is 240m.
1141 static int __init
early_vmalloc(char *arg
)
1143 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
1145 if (vmalloc_reserve
< SZ_16M
) {
1146 vmalloc_reserve
= SZ_16M
;
1147 pr_warn("vmalloc area too small, limiting to %luMB\n",
1148 vmalloc_reserve
>> 20);
1151 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
1152 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
1153 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1154 vmalloc_reserve
>> 20);
1157 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
1160 early_param("vmalloc", early_vmalloc
);
1162 phys_addr_t arm_lowmem_limit __initdata
= 0;
1164 void __init
adjust_lowmem_bounds(void)
1166 phys_addr_t memblock_limit
= 0;
1168 struct memblock_region
*reg
;
1169 phys_addr_t lowmem_limit
= 0;
1172 * Let's use our own (unoptimized) equivalent of __pa() that is
1173 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1174 * The result is used as the upper bound on physical memory address
1175 * and may itself be outside the valid range for which phys_addr_t
1176 * and therefore __pa() is defined.
1178 vmalloc_limit
= (u64
)(uintptr_t)vmalloc_min
- PAGE_OFFSET
+ PHYS_OFFSET
;
1181 * The first usable region must be PMD aligned. Mark its start
1182 * as MEMBLOCK_NOMAP if it isn't
1184 for_each_memblock(memory
, reg
) {
1185 if (!memblock_is_nomap(reg
)) {
1186 if (!IS_ALIGNED(reg
->base
, PMD_SIZE
)) {
1189 len
= round_up(reg
->base
, PMD_SIZE
) - reg
->base
;
1190 memblock_mark_nomap(reg
->base
, len
);
1196 for_each_memblock(memory
, reg
) {
1197 phys_addr_t block_start
= reg
->base
;
1198 phys_addr_t block_end
= reg
->base
+ reg
->size
;
1200 if (memblock_is_nomap(reg
))
1203 if (reg
->base
< vmalloc_limit
) {
1204 if (block_end
> lowmem_limit
)
1206 * Compare as u64 to ensure vmalloc_limit does
1207 * not get truncated. block_end should always
1208 * fit in phys_addr_t so there should be no
1209 * issue with assignment.
1211 lowmem_limit
= min_t(u64
,
1216 * Find the first non-pmd-aligned page, and point
1217 * memblock_limit at it. This relies on rounding the
1218 * limit down to be pmd-aligned, which happens at the
1219 * end of this function.
1221 * With this algorithm, the start or end of almost any
1222 * bank can be non-pmd-aligned. The only exception is
1223 * that the start of the bank 0 must be section-
1224 * aligned, since otherwise memory would need to be
1225 * allocated when mapping the start of bank 0, which
1226 * occurs before any free memory is mapped.
1228 if (!memblock_limit
) {
1229 if (!IS_ALIGNED(block_start
, PMD_SIZE
))
1230 memblock_limit
= block_start
;
1231 else if (!IS_ALIGNED(block_end
, PMD_SIZE
))
1232 memblock_limit
= lowmem_limit
;
1238 arm_lowmem_limit
= lowmem_limit
;
1240 high_memory
= __va(arm_lowmem_limit
- 1) + 1;
1242 if (!memblock_limit
)
1243 memblock_limit
= arm_lowmem_limit
;
1246 * Round the memblock limit down to a pmd size. This
1247 * helps to ensure that we will allocate memory from the
1248 * last full pmd, which should be mapped.
1250 memblock_limit
= round_down(memblock_limit
, PMD_SIZE
);
1252 if (!IS_ENABLED(CONFIG_HIGHMEM
) || cache_is_vipt_aliasing()) {
1253 if (memblock_end_of_DRAM() > arm_lowmem_limit
) {
1254 phys_addr_t end
= memblock_end_of_DRAM();
1256 pr_notice("Ignoring RAM at %pa-%pa\n",
1257 &memblock_limit
, &end
);
1258 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1260 memblock_remove(memblock_limit
, end
- memblock_limit
);
1264 memblock_set_current_limit(memblock_limit
);
1267 static inline void prepare_page_table(void)
1273 * Clear out all the mappings below the kernel image.
1275 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PMD_SIZE
)
1276 pmd_clear(pmd_off_k(addr
));
1278 #ifdef CONFIG_XIP_KERNEL
1279 /* The XIP kernel is mapped in the module area -- skip over it */
1280 addr
= ((unsigned long)_exiprom
+ PMD_SIZE
- 1) & PMD_MASK
;
1282 for ( ; addr
< PAGE_OFFSET
; addr
+= PMD_SIZE
)
1283 pmd_clear(pmd_off_k(addr
));
1286 * Find the end of the first block of lowmem.
1288 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
1289 if (end
>= arm_lowmem_limit
)
1290 end
= arm_lowmem_limit
;
1293 * Clear out all the kernel space mappings, except for the first
1294 * memory bank, up to the vmalloc region.
1296 for (addr
= __phys_to_virt(end
);
1297 addr
< VMALLOC_START
; addr
+= PMD_SIZE
)
1298 pmd_clear(pmd_off_k(addr
));
1301 #ifdef CONFIG_ARM_LPAE
1302 /* the first page is reserved for pgd */
1303 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1304 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1306 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1310 * Reserve the special regions of memory
1312 void __init
arm_mm_memblock_reserve(void)
1315 * Reserve the page tables. These are already in use,
1316 * and can only be in node 0.
1318 memblock_reserve(__pa(swapper_pg_dir
), SWAPPER_PG_DIR_SIZE
);
1320 #ifdef CONFIG_SA1111
1322 * Because of the SA1111 DMA bug, we want to preserve our
1323 * precious DMA-able memory...
1325 memblock_reserve(PHYS_OFFSET
, __pa(swapper_pg_dir
) - PHYS_OFFSET
);
1330 * Set up the device mappings. Since we clear out the page tables for all
1331 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1332 * device mappings. This means earlycon can be used to debug this function
1333 * Any other function or debugging method which may touch any device _will_
1336 static void __init
devicemaps_init(const struct machine_desc
*mdesc
)
1338 struct map_desc map
;
1343 * Allocate the vector page early.
1345 vectors
= early_alloc(PAGE_SIZE
* 2);
1347 early_trap_init(vectors
);
1350 * Clear page table except top pmd used by early fixmaps
1352 for (addr
= VMALLOC_START
; addr
< (FIXADDR_TOP
& PMD_MASK
); addr
+= PMD_SIZE
)
1353 pmd_clear(pmd_off_k(addr
));
1356 * Map the kernel if it is XIP.
1357 * It is always first in the modulearea.
1359 #ifdef CONFIG_XIP_KERNEL
1360 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
1361 map
.virtual = MODULES_VADDR
;
1362 map
.length
= ((unsigned long)_exiprom
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
1364 create_mapping(&map
);
1368 * Map the cache flushing regions.
1371 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
1372 map
.virtual = FLUSH_BASE
;
1374 map
.type
= MT_CACHECLEAN
;
1375 create_mapping(&map
);
1377 #ifdef FLUSH_BASE_MINICACHE
1378 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
1379 map
.virtual = FLUSH_BASE_MINICACHE
;
1381 map
.type
= MT_MINICLEAN
;
1382 create_mapping(&map
);
1386 * Create a mapping for the machine vectors at the high-vectors
1387 * location (0xffff0000). If we aren't using high-vectors, also
1388 * create a mapping at the low-vectors virtual address.
1390 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
1391 map
.virtual = 0xffff0000;
1392 map
.length
= PAGE_SIZE
;
1393 #ifdef CONFIG_KUSER_HELPERS
1394 map
.type
= MT_HIGH_VECTORS
;
1396 map
.type
= MT_LOW_VECTORS
;
1398 create_mapping(&map
);
1400 if (!vectors_high()) {
1402 map
.length
= PAGE_SIZE
* 2;
1403 map
.type
= MT_LOW_VECTORS
;
1404 create_mapping(&map
);
1407 /* Now create a kernel read-only mapping */
1409 map
.virtual = 0xffff0000 + PAGE_SIZE
;
1410 map
.length
= PAGE_SIZE
;
1411 map
.type
= MT_LOW_VECTORS
;
1412 create_mapping(&map
);
1415 * Ask the machine support to map in the statically mapped devices.
1423 /* Reserve fixed i/o space in VMALLOC region */
1427 * Finally flush the caches and tlb to ensure that we're in a
1428 * consistent state wrt the writebuffer. This also ensures that
1429 * any write-allocated cache lines in the vector page are written
1430 * back. After this point, we can start to touch devices again.
1432 local_flush_tlb_all();
1435 /* Enable asynchronous aborts */
1439 static void __init
kmap_init(void)
1441 #ifdef CONFIG_HIGHMEM
1442 pkmap_page_table
= early_pte_alloc(pmd_off_k(PKMAP_BASE
),
1443 PKMAP_BASE
, _PAGE_KERNEL_TABLE
);
1446 early_pte_alloc(pmd_off_k(FIXADDR_START
), FIXADDR_START
,
1447 _PAGE_KERNEL_TABLE
);
1450 static void __init
map_lowmem(void)
1452 struct memblock_region
*reg
;
1453 phys_addr_t kernel_x_start
= round_down(__pa(KERNEL_START
), SECTION_SIZE
);
1454 phys_addr_t kernel_x_end
= round_up(__pa(__init_end
), SECTION_SIZE
);
1456 /* Map all the lowmem memory banks. */
1457 for_each_memblock(memory
, reg
) {
1458 phys_addr_t start
= reg
->base
;
1459 phys_addr_t end
= start
+ reg
->size
;
1460 struct map_desc map
;
1462 if (memblock_is_nomap(reg
))
1465 if (end
> arm_lowmem_limit
)
1466 end
= arm_lowmem_limit
;
1470 if (end
< kernel_x_start
) {
1471 map
.pfn
= __phys_to_pfn(start
);
1472 map
.virtual = __phys_to_virt(start
);
1473 map
.length
= end
- start
;
1474 map
.type
= MT_MEMORY_RWX
;
1476 create_mapping(&map
);
1477 } else if (start
>= kernel_x_end
) {
1478 map
.pfn
= __phys_to_pfn(start
);
1479 map
.virtual = __phys_to_virt(start
);
1480 map
.length
= end
- start
;
1481 map
.type
= MT_MEMORY_RW
;
1483 create_mapping(&map
);
1485 /* This better cover the entire kernel */
1486 if (start
< kernel_x_start
) {
1487 map
.pfn
= __phys_to_pfn(start
);
1488 map
.virtual = __phys_to_virt(start
);
1489 map
.length
= kernel_x_start
- start
;
1490 map
.type
= MT_MEMORY_RW
;
1492 create_mapping(&map
);
1495 map
.pfn
= __phys_to_pfn(kernel_x_start
);
1496 map
.virtual = __phys_to_virt(kernel_x_start
);
1497 map
.length
= kernel_x_end
- kernel_x_start
;
1498 map
.type
= MT_MEMORY_RWX
;
1500 create_mapping(&map
);
1502 if (kernel_x_end
< end
) {
1503 map
.pfn
= __phys_to_pfn(kernel_x_end
);
1504 map
.virtual = __phys_to_virt(kernel_x_end
);
1505 map
.length
= end
- kernel_x_end
;
1506 map
.type
= MT_MEMORY_RW
;
1508 create_mapping(&map
);
1514 #ifdef CONFIG_ARM_PV_FIXUP
1515 extern unsigned long __atags_pointer
;
1516 typedef void pgtables_remap(long long offset
, unsigned long pgd
, void *bdata
);
1517 pgtables_remap lpae_pgtables_remap_asm
;
1520 * early_paging_init() recreates boot time page table setup, allowing machines
1521 * to switch over to a high (>4G) address space on LPAE systems
1523 static void __init
early_paging_init(const struct machine_desc
*mdesc
)
1525 pgtables_remap
*lpae_pgtables_remap
;
1526 unsigned long pa_pgd
;
1527 unsigned int cr
, ttbcr
;
1531 if (!mdesc
->pv_fixup
)
1534 offset
= mdesc
->pv_fixup();
1539 * Get the address of the remap function in the 1:1 identity
1540 * mapping setup by the early page table assembly code. We
1541 * must get this prior to the pv update. The following barrier
1542 * ensures that this is complete before we fixup any P:V offsets.
1544 lpae_pgtables_remap
= (pgtables_remap
*)(unsigned long)__pa(lpae_pgtables_remap_asm
);
1545 pa_pgd
= __pa(swapper_pg_dir
);
1546 boot_data
= __va(__atags_pointer
);
1549 pr_info("Switching physical address space to 0x%08llx\n",
1550 (u64
)PHYS_OFFSET
+ offset
);
1552 /* Re-set the phys pfn offset, and the pv offset */
1553 __pv_offset
+= offset
;
1554 __pv_phys_pfn_offset
+= PFN_DOWN(offset
);
1556 /* Run the patch stub to update the constants */
1557 fixup_pv_table(&__pv_table_begin
,
1558 (&__pv_table_end
- &__pv_table_begin
) << 2);
1561 * We changing not only the virtual to physical mapping, but also
1562 * the physical addresses used to access memory. We need to flush
1563 * all levels of cache in the system with caching disabled to
1564 * ensure that all data is written back, and nothing is prefetched
1565 * into the caches. We also need to prevent the TLB walkers
1566 * allocating into the caches too. Note that this is ARMv7 LPAE
1570 set_cr(cr
& ~(CR_I
| CR_C
));
1571 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr
));
1572 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1573 : : "r" (ttbcr
& ~(3 << 8 | 3 << 10)));
1577 * Fixup the page tables - this must be in the idmap region as
1578 * we need to disable the MMU to do this safely, and hence it
1579 * needs to be assembly. It's fairly simple, as we're using the
1580 * temporary tables setup by the initial assembly code.
1582 lpae_pgtables_remap(offset
, pa_pgd
, boot_data
);
1584 /* Re-enable the caches and cacheable TLB walks */
1585 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr
));
1591 static void __init
early_paging_init(const struct machine_desc
*mdesc
)
1595 if (!mdesc
->pv_fixup
)
1598 offset
= mdesc
->pv_fixup();
1602 pr_crit("Physical address space modification is only to support Keystone2.\n");
1603 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1604 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1605 add_taint(TAINT_CPU_OUT_OF_SPEC
, LOCKDEP_STILL_OK
);
1610 static void __init
early_fixmap_shutdown(void)
1613 unsigned long va
= fix_to_virt(__end_of_permanent_fixed_addresses
- 1);
1615 pte_offset_fixmap
= pte_offset_late_fixmap
;
1616 pmd_clear(fixmap_pmd(va
));
1617 local_flush_tlb_kernel_page(va
);
1619 for (i
= 0; i
< __end_of_permanent_fixed_addresses
; i
++) {
1621 struct map_desc map
;
1623 map
.virtual = fix_to_virt(i
);
1624 pte
= pte_offset_early_fixmap(pmd_off_k(map
.virtual), map
.virtual);
1626 /* Only i/o device mappings are supported ATM */
1627 if (pte_none(*pte
) ||
1628 (pte_val(*pte
) & L_PTE_MT_MASK
) != L_PTE_MT_DEV_SHARED
)
1631 map
.pfn
= pte_pfn(*pte
);
1632 map
.type
= MT_DEVICE
;
1633 map
.length
= PAGE_SIZE
;
1635 create_mapping(&map
);
1640 * paging_init() sets up the page tables, initialises the zone memory
1641 * maps, and sets up the zero page, bad page and bad page tables.
1643 void __init
paging_init(const struct machine_desc
*mdesc
)
1647 prepare_page_table();
1649 memblock_set_current_limit(arm_lowmem_limit
);
1650 dma_contiguous_remap();
1651 early_fixmap_shutdown();
1652 devicemaps_init(mdesc
);
1656 top_pmd
= pmd_off_k(0xffff0000);
1658 /* allocate the zero page. */
1659 zero_page
= early_alloc(PAGE_SIZE
);
1663 empty_zero_page
= virt_to_page(zero_page
);
1664 __flush_dcache_page(NULL
, empty_zero_page
);
1666 /* Compute the virt/idmap offset, mostly for the sake of KVM */
1667 kimage_voffset
= (unsigned long)&kimage_voffset
- virt_to_idmap(&kimage_voffset
);
1670 void __init
early_mm_init(const struct machine_desc
*mdesc
)
1672 build_mem_type_table();
1673 early_paging_init(mdesc
);