1 // SPDX-License-Identifier: GPL-2.0-only
3 * Based on arch/arm/mm/context.c
5 * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
6 * Copyright (C) 2012 ARM Ltd.
9 #include <linux/bitops.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
14 #include <asm/cpufeature.h>
15 #include <asm/mmu_context.h>
17 #include <asm/tlbflush.h>
20 static DEFINE_RAW_SPINLOCK(cpu_asid_lock
);
22 static atomic64_t asid_generation
;
23 static unsigned long *asid_map
;
25 static DEFINE_PER_CPU(atomic64_t
, active_asids
);
26 static DEFINE_PER_CPU(u64
, reserved_asids
);
27 static cpumask_t tlb_flush_pending
;
29 #define ASID_MASK (~GENMASK(asid_bits - 1, 0))
30 #define ASID_FIRST_VERSION (1UL << asid_bits)
32 #define NUM_USER_ASIDS ASID_FIRST_VERSION
33 #define asid2idx(asid) ((asid) & ~ASID_MASK)
34 #define idx2asid(idx) asid2idx(idx)
36 /* Get the ASIDBits supported by the current CPU */
37 static u32
get_cpu_asid_bits(void)
40 int fld
= cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1
),
41 ID_AA64MMFR0_ASID_SHIFT
);
45 pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n",
46 smp_processor_id(), fld
);
58 /* Check if the current cpu's ASIDBits is compatible with asid_bits */
59 void verify_cpu_asid_bits(void)
61 u32 asid
= get_cpu_asid_bits();
63 if (asid
< asid_bits
) {
65 * We cannot decrease the ASID size at runtime, so panic if we support
66 * fewer ASID bits than the boot CPU.
68 pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n",
69 smp_processor_id(), asid
, asid_bits
);
74 static void set_kpti_asid_bits(void)
76 unsigned int len
= BITS_TO_LONGS(NUM_USER_ASIDS
) * sizeof(unsigned long);
78 * In case of KPTI kernel/user ASIDs are allocated in
79 * pairs, the bottom bit distinguishes the two: if it
80 * is set, then the ASID will map only userspace. Thus
81 * mark even as reserved for kernel.
83 memset(asid_map
, 0xaa, len
);
86 static void set_reserved_asid_bits(void)
88 if (arm64_kernel_unmapped_at_el0())
91 bitmap_clear(asid_map
, 0, NUM_USER_ASIDS
);
94 static void flush_context(void)
99 /* Update the list of reserved ASIDs and the ASID bitmap. */
100 set_reserved_asid_bits();
102 for_each_possible_cpu(i
) {
103 asid
= atomic64_xchg_relaxed(&per_cpu(active_asids
, i
), 0);
105 * If this CPU has already been through a
106 * rollover, but hasn't run another task in
107 * the meantime, we must preserve its reserved
108 * ASID, as this is the only trace we have of
109 * the process it is still running.
112 asid
= per_cpu(reserved_asids
, i
);
113 __set_bit(asid2idx(asid
), asid_map
);
114 per_cpu(reserved_asids
, i
) = asid
;
118 * Queue a TLB invalidation for each CPU to perform on next
121 cpumask_setall(&tlb_flush_pending
);
124 static bool check_update_reserved_asid(u64 asid
, u64 newasid
)
130 * Iterate over the set of reserved ASIDs looking for a match.
131 * If we find one, then we can update our mm to use newasid
132 * (i.e. the same ASID in the current generation) but we can't
133 * exit the loop early, since we need to ensure that all copies
134 * of the old ASID are updated to reflect the mm. Failure to do
135 * so could result in us missing the reserved ASID in a future
138 for_each_possible_cpu(cpu
) {
139 if (per_cpu(reserved_asids
, cpu
) == asid
) {
141 per_cpu(reserved_asids
, cpu
) = newasid
;
148 static u64
new_context(struct mm_struct
*mm
)
150 static u32 cur_idx
= 1;
151 u64 asid
= atomic64_read(&mm
->context
.id
);
152 u64 generation
= atomic64_read(&asid_generation
);
155 u64 newasid
= generation
| (asid
& ~ASID_MASK
);
158 * If our current ASID was active during a rollover, we
159 * can continue to use it and this was just a false alarm.
161 if (check_update_reserved_asid(asid
, newasid
))
165 * We had a valid ASID in a previous life, so try to re-use
168 if (!__test_and_set_bit(asid2idx(asid
), asid_map
))
173 * Allocate a free ASID. If we can't find one, take a note of the
174 * currently active ASIDs and mark the TLBs as requiring flushes. We
175 * always count from ASID #2 (index 1), as we use ASID #0 when setting
176 * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd
179 asid
= find_next_zero_bit(asid_map
, NUM_USER_ASIDS
, cur_idx
);
180 if (asid
!= NUM_USER_ASIDS
)
183 /* We're out of ASIDs, so increment the global generation count */
184 generation
= atomic64_add_return_relaxed(ASID_FIRST_VERSION
,
188 /* We have more ASIDs than CPUs, so this will always succeed */
189 asid
= find_next_zero_bit(asid_map
, NUM_USER_ASIDS
, 1);
192 __set_bit(asid
, asid_map
);
194 return idx2asid(asid
) | generation
;
197 void check_and_switch_context(struct mm_struct
*mm
, unsigned int cpu
)
200 u64 asid
, old_active_asid
;
202 if (system_supports_cnp())
203 cpu_set_reserved_ttbr0();
205 asid
= atomic64_read(&mm
->context
.id
);
208 * The memory ordering here is subtle.
209 * If our active_asids is non-zero and the ASID matches the current
210 * generation, then we update the active_asids entry with a relaxed
211 * cmpxchg. Racing with a concurrent rollover means that either:
213 * - We get a zero back from the cmpxchg and end up waiting on the
214 * lock. Taking the lock synchronises with the rollover and so
215 * we are forced to see the updated generation.
217 * - We get a valid ASID back from the cmpxchg, which means the
218 * relaxed xchg in flush_context will treat us as reserved
219 * because atomic RmWs are totally ordered for a given location.
221 old_active_asid
= atomic64_read(&per_cpu(active_asids
, cpu
));
222 if (old_active_asid
&&
223 !((asid
^ atomic64_read(&asid_generation
)) >> asid_bits
) &&
224 atomic64_cmpxchg_relaxed(&per_cpu(active_asids
, cpu
),
225 old_active_asid
, asid
))
226 goto switch_mm_fastpath
;
228 raw_spin_lock_irqsave(&cpu_asid_lock
, flags
);
229 /* Check that our ASID belongs to the current generation. */
230 asid
= atomic64_read(&mm
->context
.id
);
231 if ((asid
^ atomic64_read(&asid_generation
)) >> asid_bits
) {
232 asid
= new_context(mm
);
233 atomic64_set(&mm
->context
.id
, asid
);
236 if (cpumask_test_and_clear_cpu(cpu
, &tlb_flush_pending
))
237 local_flush_tlb_all();
239 atomic64_set(&per_cpu(active_asids
, cpu
), asid
);
240 raw_spin_unlock_irqrestore(&cpu_asid_lock
, flags
);
244 arm64_apply_bp_hardening();
247 * Defer TTBR0_EL1 setting for user threads to uaccess_enable() when
250 if (!system_uses_ttbr0_pan())
251 cpu_switch_mm(mm
->pgd
, mm
);
254 /* Errata workaround post TTBRx_EL1 update. */
255 asmlinkage
void post_ttbr_update_workaround(void)
257 asm(ALTERNATIVE("nop; nop; nop",
258 "ic iallu; dsb nsh; isb",
259 ARM64_WORKAROUND_CAVIUM_27456
,
260 CONFIG_CAVIUM_ERRATUM_27456
));
263 static int asids_init(void)
265 asid_bits
= get_cpu_asid_bits();
267 * Expect allocation after rollover to fail if we don't have at least
268 * one more ASID than CPUs. ASID #0 is reserved for init_mm.
270 WARN_ON(NUM_USER_ASIDS
- 1 <= num_possible_cpus());
271 atomic64_set(&asid_generation
, ASID_FIRST_VERSION
);
272 asid_map
= kcalloc(BITS_TO_LONGS(NUM_USER_ASIDS
), sizeof(*asid_map
),
275 panic("Failed to allocate bitmap for %lu ASIDs\n",
279 * We cannot call set_reserved_asid_bits() here because CPU
280 * caps are not finalized yet, so it is safer to assume KPTI
281 * and reserve kernel ASID's from beginning.
283 if (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0
))
284 set_kpti_asid_bits();
286 pr_info("ASID allocator initialised with %lu entries\n", NUM_USER_ASIDS
);
289 early_initcall(asids_init
);