arm64: dts: Revert "specify console via command line"
[linux/fpc-iii.git] / arch / mips / kvm / mips.c
blob71244bf87c3a2bc872254b11d316360e00c80412
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * KVM/MIPS: MIPS specific KVM APIs
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/memblock.h>
23 #include <asm/fpu.h>
24 #include <asm/page.h>
25 #include <asm/cacheflush.h>
26 #include <asm/mmu_context.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
30 #include <linux/kvm_host.h>
32 #include "interrupt.h"
33 #include "commpage.h"
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100 /* for EI/VI mode */
40 #endif
42 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43 struct kvm_stats_debugfs_item debugfs_entries[] = {
44 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
45 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
46 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
47 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
48 { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
49 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
50 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
51 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
52 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
53 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
54 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
55 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
56 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
57 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
58 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
59 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
60 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62 #ifdef CONFIG_KVM_MIPS_VZ
63 { "vz_gpsi", VCPU_STAT(vz_gpsi_exits), KVM_STAT_VCPU },
64 { "vz_gsfc", VCPU_STAT(vz_gsfc_exits), KVM_STAT_VCPU },
65 { "vz_hc", VCPU_STAT(vz_hc_exits), KVM_STAT_VCPU },
66 { "vz_grr", VCPU_STAT(vz_grr_exits), KVM_STAT_VCPU },
67 { "vz_gva", VCPU_STAT(vz_gva_exits), KVM_STAT_VCPU },
68 { "vz_ghfc", VCPU_STAT(vz_ghfc_exits), KVM_STAT_VCPU },
69 { "vz_gpa", VCPU_STAT(vz_gpa_exits), KVM_STAT_VCPU },
70 { "vz_resvd", VCPU_STAT(vz_resvd_exits), KVM_STAT_VCPU },
71 #endif
72 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
76 {NULL}
79 bool kvm_trace_guest_mode_change;
81 int kvm_guest_mode_change_trace_reg(void)
83 kvm_trace_guest_mode_change = 1;
84 return 0;
87 void kvm_guest_mode_change_trace_unreg(void)
89 kvm_trace_guest_mode_change = 0;
93 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
94 * Config7, so we are "runnable" if interrupts are pending
96 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
98 return !!(vcpu->arch.pending_exceptions);
101 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
103 return false;
106 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
108 return 1;
111 int kvm_arch_hardware_enable(void)
113 return kvm_mips_callbacks->hardware_enable();
116 void kvm_arch_hardware_disable(void)
118 kvm_mips_callbacks->hardware_disable();
121 int kvm_arch_hardware_setup(void)
123 return 0;
126 int kvm_arch_check_processor_compat(void)
128 return 0;
131 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
133 switch (type) {
134 #ifdef CONFIG_KVM_MIPS_VZ
135 case KVM_VM_MIPS_VZ:
136 #else
137 case KVM_VM_MIPS_TE:
138 #endif
139 break;
140 default:
141 /* Unsupported KVM type */
142 return -EINVAL;
145 /* Allocate page table to map GPA -> RPA */
146 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
147 if (!kvm->arch.gpa_mm.pgd)
148 return -ENOMEM;
150 return 0;
153 void kvm_mips_free_vcpus(struct kvm *kvm)
155 unsigned int i;
156 struct kvm_vcpu *vcpu;
158 kvm_for_each_vcpu(i, vcpu, kvm) {
159 kvm_vcpu_destroy(vcpu);
162 mutex_lock(&kvm->lock);
164 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
165 kvm->vcpus[i] = NULL;
167 atomic_set(&kvm->online_vcpus, 0);
169 mutex_unlock(&kvm->lock);
172 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
174 /* It should always be safe to remove after flushing the whole range */
175 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
176 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
179 void kvm_arch_destroy_vm(struct kvm *kvm)
181 kvm_mips_free_vcpus(kvm);
182 kvm_mips_free_gpa_pt(kvm);
185 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
186 unsigned long arg)
188 return -ENOIOCTLCMD;
191 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
192 unsigned long npages)
194 return 0;
197 void kvm_arch_flush_shadow_all(struct kvm *kvm)
199 /* Flush whole GPA */
200 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
202 /* Let implementation do the rest */
203 kvm_mips_callbacks->flush_shadow_all(kvm);
206 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
207 struct kvm_memory_slot *slot)
210 * The slot has been made invalid (ready for moving or deletion), so we
211 * need to ensure that it can no longer be accessed by any guest VCPUs.
214 spin_lock(&kvm->mmu_lock);
215 /* Flush slot from GPA */
216 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
217 slot->base_gfn + slot->npages - 1);
218 /* Let implementation do the rest */
219 kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
220 spin_unlock(&kvm->mmu_lock);
223 int kvm_arch_prepare_memory_region(struct kvm *kvm,
224 struct kvm_memory_slot *memslot,
225 const struct kvm_userspace_memory_region *mem,
226 enum kvm_mr_change change)
228 return 0;
231 void kvm_arch_commit_memory_region(struct kvm *kvm,
232 const struct kvm_userspace_memory_region *mem,
233 const struct kvm_memory_slot *old,
234 const struct kvm_memory_slot *new,
235 enum kvm_mr_change change)
237 int needs_flush;
239 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
240 __func__, kvm, mem->slot, mem->guest_phys_addr,
241 mem->memory_size, mem->userspace_addr);
244 * If dirty page logging is enabled, write protect all pages in the slot
245 * ready for dirty logging.
247 * There is no need to do this in any of the following cases:
248 * CREATE: No dirty mappings will already exist.
249 * MOVE/DELETE: The old mappings will already have been cleaned up by
250 * kvm_arch_flush_shadow_memslot()
252 if (change == KVM_MR_FLAGS_ONLY &&
253 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
254 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
255 spin_lock(&kvm->mmu_lock);
256 /* Write protect GPA page table entries */
257 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
258 new->base_gfn + new->npages - 1);
259 /* Let implementation do the rest */
260 if (needs_flush)
261 kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
262 spin_unlock(&kvm->mmu_lock);
266 static inline void dump_handler(const char *symbol, void *start, void *end)
268 u32 *p;
270 pr_debug("LEAF(%s)\n", symbol);
272 pr_debug("\t.set push\n");
273 pr_debug("\t.set noreorder\n");
275 for (p = start; p < (u32 *)end; ++p)
276 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
278 pr_debug("\t.set\tpop\n");
280 pr_debug("\tEND(%s)\n", symbol);
283 /* low level hrtimer wake routine */
284 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
286 struct kvm_vcpu *vcpu;
288 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
290 kvm_mips_callbacks->queue_timer_int(vcpu);
292 vcpu->arch.wait = 0;
293 if (swq_has_sleeper(&vcpu->wq))
294 swake_up_one(&vcpu->wq);
296 return kvm_mips_count_timeout(vcpu);
299 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
301 return 0;
304 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
306 int err, size;
307 void *gebase, *p, *handler, *refill_start, *refill_end;
308 int i;
310 kvm_debug("kvm @ %p: create cpu %d at %p\n",
311 vcpu->kvm, vcpu->vcpu_id, vcpu);
313 err = kvm_mips_callbacks->vcpu_init(vcpu);
314 if (err)
315 return err;
317 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
318 HRTIMER_MODE_REL);
319 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
322 * Allocate space for host mode exception handlers that handle
323 * guest mode exits
325 if (cpu_has_veic || cpu_has_vint)
326 size = 0x200 + VECTORSPACING * 64;
327 else
328 size = 0x4000;
330 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
332 if (!gebase) {
333 err = -ENOMEM;
334 goto out_uninit_vcpu;
336 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
337 ALIGN(size, PAGE_SIZE), gebase);
340 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
341 * limits us to the low 512MB of physical address space. If the memory
342 * we allocate is out of range, just give up now.
344 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
345 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
346 gebase);
347 err = -ENOMEM;
348 goto out_free_gebase;
351 /* Save new ebase */
352 vcpu->arch.guest_ebase = gebase;
354 /* Build guest exception vectors dynamically in unmapped memory */
355 handler = gebase + 0x2000;
357 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
358 refill_start = gebase;
359 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
360 refill_start += 0x080;
361 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
363 /* General Exception Entry point */
364 kvm_mips_build_exception(gebase + 0x180, handler);
366 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
367 for (i = 0; i < 8; i++) {
368 kvm_debug("L1 Vectored handler @ %p\n",
369 gebase + 0x200 + (i * VECTORSPACING));
370 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
371 handler);
374 /* General exit handler */
375 p = handler;
376 p = kvm_mips_build_exit(p);
378 /* Guest entry routine */
379 vcpu->arch.vcpu_run = p;
380 p = kvm_mips_build_vcpu_run(p);
382 /* Dump the generated code */
383 pr_debug("#include <asm/asm.h>\n");
384 pr_debug("#include <asm/regdef.h>\n");
385 pr_debug("\n");
386 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
387 dump_handler("kvm_tlb_refill", refill_start, refill_end);
388 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
389 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
391 /* Invalidate the icache for these ranges */
392 flush_icache_range((unsigned long)gebase,
393 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
396 * Allocate comm page for guest kernel, a TLB will be reserved for
397 * mapping GVA @ 0xFFFF8000 to this page
399 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
401 if (!vcpu->arch.kseg0_commpage) {
402 err = -ENOMEM;
403 goto out_free_gebase;
406 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
407 kvm_mips_commpage_init(vcpu);
409 /* Init */
410 vcpu->arch.last_sched_cpu = -1;
411 vcpu->arch.last_exec_cpu = -1;
413 /* Initial guest state */
414 err = kvm_mips_callbacks->vcpu_setup(vcpu);
415 if (err)
416 goto out_free_commpage;
418 return 0;
420 out_free_commpage:
421 kfree(vcpu->arch.kseg0_commpage);
422 out_free_gebase:
423 kfree(gebase);
424 out_uninit_vcpu:
425 kvm_mips_callbacks->vcpu_uninit(vcpu);
426 return err;
429 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
431 hrtimer_cancel(&vcpu->arch.comparecount_timer);
433 kvm_mips_dump_stats(vcpu);
435 kvm_mmu_free_memory_caches(vcpu);
436 kfree(vcpu->arch.guest_ebase);
437 kfree(vcpu->arch.kseg0_commpage);
439 kvm_mips_callbacks->vcpu_uninit(vcpu);
442 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
443 struct kvm_guest_debug *dbg)
445 return -ENOIOCTLCMD;
448 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
450 int r = -EINTR;
452 vcpu_load(vcpu);
454 kvm_sigset_activate(vcpu);
456 if (vcpu->mmio_needed) {
457 if (!vcpu->mmio_is_write)
458 kvm_mips_complete_mmio_load(vcpu, run);
459 vcpu->mmio_needed = 0;
462 if (run->immediate_exit)
463 goto out;
465 lose_fpu(1);
467 local_irq_disable();
468 guest_enter_irqoff();
469 trace_kvm_enter(vcpu);
472 * Make sure the read of VCPU requests in vcpu_run() callback is not
473 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
474 * flush request while the requester sees the VCPU as outside of guest
475 * mode and not needing an IPI.
477 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
479 r = kvm_mips_callbacks->vcpu_run(run, vcpu);
481 trace_kvm_out(vcpu);
482 guest_exit_irqoff();
483 local_irq_enable();
485 out:
486 kvm_sigset_deactivate(vcpu);
488 vcpu_put(vcpu);
489 return r;
492 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
493 struct kvm_mips_interrupt *irq)
495 int intr = (int)irq->irq;
496 struct kvm_vcpu *dvcpu = NULL;
498 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
499 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
500 (int)intr);
502 if (irq->cpu == -1)
503 dvcpu = vcpu;
504 else
505 dvcpu = vcpu->kvm->vcpus[irq->cpu];
507 if (intr == 2 || intr == 3 || intr == 4) {
508 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
510 } else if (intr == -2 || intr == -3 || intr == -4) {
511 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
512 } else {
513 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
514 irq->cpu, irq->irq);
515 return -EINVAL;
518 dvcpu->arch.wait = 0;
520 if (swq_has_sleeper(&dvcpu->wq))
521 swake_up_one(&dvcpu->wq);
523 return 0;
526 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
527 struct kvm_mp_state *mp_state)
529 return -ENOIOCTLCMD;
532 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
533 struct kvm_mp_state *mp_state)
535 return -ENOIOCTLCMD;
538 static u64 kvm_mips_get_one_regs[] = {
539 KVM_REG_MIPS_R0,
540 KVM_REG_MIPS_R1,
541 KVM_REG_MIPS_R2,
542 KVM_REG_MIPS_R3,
543 KVM_REG_MIPS_R4,
544 KVM_REG_MIPS_R5,
545 KVM_REG_MIPS_R6,
546 KVM_REG_MIPS_R7,
547 KVM_REG_MIPS_R8,
548 KVM_REG_MIPS_R9,
549 KVM_REG_MIPS_R10,
550 KVM_REG_MIPS_R11,
551 KVM_REG_MIPS_R12,
552 KVM_REG_MIPS_R13,
553 KVM_REG_MIPS_R14,
554 KVM_REG_MIPS_R15,
555 KVM_REG_MIPS_R16,
556 KVM_REG_MIPS_R17,
557 KVM_REG_MIPS_R18,
558 KVM_REG_MIPS_R19,
559 KVM_REG_MIPS_R20,
560 KVM_REG_MIPS_R21,
561 KVM_REG_MIPS_R22,
562 KVM_REG_MIPS_R23,
563 KVM_REG_MIPS_R24,
564 KVM_REG_MIPS_R25,
565 KVM_REG_MIPS_R26,
566 KVM_REG_MIPS_R27,
567 KVM_REG_MIPS_R28,
568 KVM_REG_MIPS_R29,
569 KVM_REG_MIPS_R30,
570 KVM_REG_MIPS_R31,
572 #ifndef CONFIG_CPU_MIPSR6
573 KVM_REG_MIPS_HI,
574 KVM_REG_MIPS_LO,
575 #endif
576 KVM_REG_MIPS_PC,
579 static u64 kvm_mips_get_one_regs_fpu[] = {
580 KVM_REG_MIPS_FCR_IR,
581 KVM_REG_MIPS_FCR_CSR,
584 static u64 kvm_mips_get_one_regs_msa[] = {
585 KVM_REG_MIPS_MSA_IR,
586 KVM_REG_MIPS_MSA_CSR,
589 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
591 unsigned long ret;
593 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
594 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
595 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
596 /* odd doubles */
597 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
598 ret += 16;
600 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
601 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
602 ret += kvm_mips_callbacks->num_regs(vcpu);
604 return ret;
607 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
609 u64 index;
610 unsigned int i;
612 if (copy_to_user(indices, kvm_mips_get_one_regs,
613 sizeof(kvm_mips_get_one_regs)))
614 return -EFAULT;
615 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
617 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
618 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
619 sizeof(kvm_mips_get_one_regs_fpu)))
620 return -EFAULT;
621 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
623 for (i = 0; i < 32; ++i) {
624 index = KVM_REG_MIPS_FPR_32(i);
625 if (copy_to_user(indices, &index, sizeof(index)))
626 return -EFAULT;
627 ++indices;
629 /* skip odd doubles if no F64 */
630 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
631 continue;
633 index = KVM_REG_MIPS_FPR_64(i);
634 if (copy_to_user(indices, &index, sizeof(index)))
635 return -EFAULT;
636 ++indices;
640 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
641 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
642 sizeof(kvm_mips_get_one_regs_msa)))
643 return -EFAULT;
644 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
646 for (i = 0; i < 32; ++i) {
647 index = KVM_REG_MIPS_VEC_128(i);
648 if (copy_to_user(indices, &index, sizeof(index)))
649 return -EFAULT;
650 ++indices;
654 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
657 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
658 const struct kvm_one_reg *reg)
660 struct mips_coproc *cop0 = vcpu->arch.cop0;
661 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
662 int ret;
663 s64 v;
664 s64 vs[2];
665 unsigned int idx;
667 switch (reg->id) {
668 /* General purpose registers */
669 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
670 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
671 break;
672 #ifndef CONFIG_CPU_MIPSR6
673 case KVM_REG_MIPS_HI:
674 v = (long)vcpu->arch.hi;
675 break;
676 case KVM_REG_MIPS_LO:
677 v = (long)vcpu->arch.lo;
678 break;
679 #endif
680 case KVM_REG_MIPS_PC:
681 v = (long)vcpu->arch.pc;
682 break;
684 /* Floating point registers */
685 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
686 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
687 return -EINVAL;
688 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
689 /* Odd singles in top of even double when FR=0 */
690 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
691 v = get_fpr32(&fpu->fpr[idx], 0);
692 else
693 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
694 break;
695 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
696 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
697 return -EINVAL;
698 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
699 /* Can't access odd doubles in FR=0 mode */
700 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
701 return -EINVAL;
702 v = get_fpr64(&fpu->fpr[idx], 0);
703 break;
704 case KVM_REG_MIPS_FCR_IR:
705 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
706 return -EINVAL;
707 v = boot_cpu_data.fpu_id;
708 break;
709 case KVM_REG_MIPS_FCR_CSR:
710 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
711 return -EINVAL;
712 v = fpu->fcr31;
713 break;
715 /* MIPS SIMD Architecture (MSA) registers */
716 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
717 if (!kvm_mips_guest_has_msa(&vcpu->arch))
718 return -EINVAL;
719 /* Can't access MSA registers in FR=0 mode */
720 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
721 return -EINVAL;
722 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
723 #ifdef CONFIG_CPU_LITTLE_ENDIAN
724 /* least significant byte first */
725 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
726 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
727 #else
728 /* most significant byte first */
729 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
730 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
731 #endif
732 break;
733 case KVM_REG_MIPS_MSA_IR:
734 if (!kvm_mips_guest_has_msa(&vcpu->arch))
735 return -EINVAL;
736 v = boot_cpu_data.msa_id;
737 break;
738 case KVM_REG_MIPS_MSA_CSR:
739 if (!kvm_mips_guest_has_msa(&vcpu->arch))
740 return -EINVAL;
741 v = fpu->msacsr;
742 break;
744 /* registers to be handled specially */
745 default:
746 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
747 if (ret)
748 return ret;
749 break;
751 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
752 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
754 return put_user(v, uaddr64);
755 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
756 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
757 u32 v32 = (u32)v;
759 return put_user(v32, uaddr32);
760 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
761 void __user *uaddr = (void __user *)(long)reg->addr;
763 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
764 } else {
765 return -EINVAL;
769 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
770 const struct kvm_one_reg *reg)
772 struct mips_coproc *cop0 = vcpu->arch.cop0;
773 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
774 s64 v;
775 s64 vs[2];
776 unsigned int idx;
778 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
779 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
781 if (get_user(v, uaddr64) != 0)
782 return -EFAULT;
783 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
784 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
785 s32 v32;
787 if (get_user(v32, uaddr32) != 0)
788 return -EFAULT;
789 v = (s64)v32;
790 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
791 void __user *uaddr = (void __user *)(long)reg->addr;
793 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
794 } else {
795 return -EINVAL;
798 switch (reg->id) {
799 /* General purpose registers */
800 case KVM_REG_MIPS_R0:
801 /* Silently ignore requests to set $0 */
802 break;
803 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
804 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
805 break;
806 #ifndef CONFIG_CPU_MIPSR6
807 case KVM_REG_MIPS_HI:
808 vcpu->arch.hi = v;
809 break;
810 case KVM_REG_MIPS_LO:
811 vcpu->arch.lo = v;
812 break;
813 #endif
814 case KVM_REG_MIPS_PC:
815 vcpu->arch.pc = v;
816 break;
818 /* Floating point registers */
819 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
820 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
821 return -EINVAL;
822 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
823 /* Odd singles in top of even double when FR=0 */
824 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
825 set_fpr32(&fpu->fpr[idx], 0, v);
826 else
827 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
828 break;
829 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
830 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
831 return -EINVAL;
832 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
833 /* Can't access odd doubles in FR=0 mode */
834 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
835 return -EINVAL;
836 set_fpr64(&fpu->fpr[idx], 0, v);
837 break;
838 case KVM_REG_MIPS_FCR_IR:
839 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
840 return -EINVAL;
841 /* Read-only */
842 break;
843 case KVM_REG_MIPS_FCR_CSR:
844 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
845 return -EINVAL;
846 fpu->fcr31 = v;
847 break;
849 /* MIPS SIMD Architecture (MSA) registers */
850 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
851 if (!kvm_mips_guest_has_msa(&vcpu->arch))
852 return -EINVAL;
853 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
854 #ifdef CONFIG_CPU_LITTLE_ENDIAN
855 /* least significant byte first */
856 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
857 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
858 #else
859 /* most significant byte first */
860 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
861 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
862 #endif
863 break;
864 case KVM_REG_MIPS_MSA_IR:
865 if (!kvm_mips_guest_has_msa(&vcpu->arch))
866 return -EINVAL;
867 /* Read-only */
868 break;
869 case KVM_REG_MIPS_MSA_CSR:
870 if (!kvm_mips_guest_has_msa(&vcpu->arch))
871 return -EINVAL;
872 fpu->msacsr = v;
873 break;
875 /* registers to be handled specially */
876 default:
877 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
879 return 0;
882 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
883 struct kvm_enable_cap *cap)
885 int r = 0;
887 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
888 return -EINVAL;
889 if (cap->flags)
890 return -EINVAL;
891 if (cap->args[0])
892 return -EINVAL;
894 switch (cap->cap) {
895 case KVM_CAP_MIPS_FPU:
896 vcpu->arch.fpu_enabled = true;
897 break;
898 case KVM_CAP_MIPS_MSA:
899 vcpu->arch.msa_enabled = true;
900 break;
901 default:
902 r = -EINVAL;
903 break;
906 return r;
909 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
910 unsigned long arg)
912 struct kvm_vcpu *vcpu = filp->private_data;
913 void __user *argp = (void __user *)arg;
915 if (ioctl == KVM_INTERRUPT) {
916 struct kvm_mips_interrupt irq;
918 if (copy_from_user(&irq, argp, sizeof(irq)))
919 return -EFAULT;
920 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
921 irq.irq);
923 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
926 return -ENOIOCTLCMD;
929 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
930 unsigned long arg)
932 struct kvm_vcpu *vcpu = filp->private_data;
933 void __user *argp = (void __user *)arg;
934 long r;
936 vcpu_load(vcpu);
938 switch (ioctl) {
939 case KVM_SET_ONE_REG:
940 case KVM_GET_ONE_REG: {
941 struct kvm_one_reg reg;
943 r = -EFAULT;
944 if (copy_from_user(&reg, argp, sizeof(reg)))
945 break;
946 if (ioctl == KVM_SET_ONE_REG)
947 r = kvm_mips_set_reg(vcpu, &reg);
948 else
949 r = kvm_mips_get_reg(vcpu, &reg);
950 break;
952 case KVM_GET_REG_LIST: {
953 struct kvm_reg_list __user *user_list = argp;
954 struct kvm_reg_list reg_list;
955 unsigned n;
957 r = -EFAULT;
958 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
959 break;
960 n = reg_list.n;
961 reg_list.n = kvm_mips_num_regs(vcpu);
962 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
963 break;
964 r = -E2BIG;
965 if (n < reg_list.n)
966 break;
967 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
968 break;
970 case KVM_ENABLE_CAP: {
971 struct kvm_enable_cap cap;
973 r = -EFAULT;
974 if (copy_from_user(&cap, argp, sizeof(cap)))
975 break;
976 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
977 break;
979 default:
980 r = -ENOIOCTLCMD;
983 vcpu_put(vcpu);
984 return r;
988 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
989 * @kvm: kvm instance
990 * @log: slot id and address to which we copy the log
992 * Steps 1-4 below provide general overview of dirty page logging. See
993 * kvm_get_dirty_log_protect() function description for additional details.
995 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
996 * always flush the TLB (step 4) even if previous step failed and the dirty
997 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
998 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
999 * writes will be marked dirty for next log read.
1001 * 1. Take a snapshot of the bit and clear it if needed.
1002 * 2. Write protect the corresponding page.
1003 * 3. Copy the snapshot to the userspace.
1004 * 4. Flush TLB's if needed.
1006 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1008 struct kvm_memslots *slots;
1009 struct kvm_memory_slot *memslot;
1010 bool flush = false;
1011 int r;
1013 mutex_lock(&kvm->slots_lock);
1015 r = kvm_get_dirty_log_protect(kvm, log, &flush);
1017 if (flush) {
1018 slots = kvm_memslots(kvm);
1019 memslot = id_to_memslot(slots, log->slot);
1021 /* Let implementation handle TLB/GVA invalidation */
1022 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1025 mutex_unlock(&kvm->slots_lock);
1026 return r;
1029 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1031 struct kvm_memslots *slots;
1032 struct kvm_memory_slot *memslot;
1033 bool flush = false;
1034 int r;
1036 mutex_lock(&kvm->slots_lock);
1038 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1040 if (flush) {
1041 slots = kvm_memslots(kvm);
1042 memslot = id_to_memslot(slots, log->slot);
1044 /* Let implementation handle TLB/GVA invalidation */
1045 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1048 mutex_unlock(&kvm->slots_lock);
1049 return r;
1052 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1054 long r;
1056 switch (ioctl) {
1057 default:
1058 r = -ENOIOCTLCMD;
1061 return r;
1064 int kvm_arch_init(void *opaque)
1066 if (kvm_mips_callbacks) {
1067 kvm_err("kvm: module already exists\n");
1068 return -EEXIST;
1071 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1074 void kvm_arch_exit(void)
1076 kvm_mips_callbacks = NULL;
1079 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1080 struct kvm_sregs *sregs)
1082 return -ENOIOCTLCMD;
1085 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1086 struct kvm_sregs *sregs)
1088 return -ENOIOCTLCMD;
1091 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1095 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1097 return -ENOIOCTLCMD;
1100 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1102 return -ENOIOCTLCMD;
1105 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1107 return VM_FAULT_SIGBUS;
1110 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1112 int r;
1114 switch (ext) {
1115 case KVM_CAP_ONE_REG:
1116 case KVM_CAP_ENABLE_CAP:
1117 case KVM_CAP_READONLY_MEM:
1118 case KVM_CAP_SYNC_MMU:
1119 case KVM_CAP_IMMEDIATE_EXIT:
1120 r = 1;
1121 break;
1122 case KVM_CAP_NR_VCPUS:
1123 r = num_online_cpus();
1124 break;
1125 case KVM_CAP_MAX_VCPUS:
1126 r = KVM_MAX_VCPUS;
1127 break;
1128 case KVM_CAP_MAX_VCPU_ID:
1129 r = KVM_MAX_VCPU_ID;
1130 break;
1131 case KVM_CAP_MIPS_FPU:
1132 /* We don't handle systems with inconsistent cpu_has_fpu */
1133 r = !!raw_cpu_has_fpu;
1134 break;
1135 case KVM_CAP_MIPS_MSA:
1137 * We don't support MSA vector partitioning yet:
1138 * 1) It would require explicit support which can't be tested
1139 * yet due to lack of support in current hardware.
1140 * 2) It extends the state that would need to be saved/restored
1141 * by e.g. QEMU for migration.
1143 * When vector partitioning hardware becomes available, support
1144 * could be added by requiring a flag when enabling
1145 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1146 * to save/restore the appropriate extra state.
1148 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1149 break;
1150 default:
1151 r = kvm_mips_callbacks->check_extension(kvm, ext);
1152 break;
1154 return r;
1157 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1159 return kvm_mips_pending_timer(vcpu) ||
1160 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1163 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1165 int i;
1166 struct mips_coproc *cop0;
1168 if (!vcpu)
1169 return -1;
1171 kvm_debug("VCPU Register Dump:\n");
1172 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1173 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1175 for (i = 0; i < 32; i += 4) {
1176 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1177 vcpu->arch.gprs[i],
1178 vcpu->arch.gprs[i + 1],
1179 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1181 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1182 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1184 cop0 = vcpu->arch.cop0;
1185 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1186 kvm_read_c0_guest_status(cop0),
1187 kvm_read_c0_guest_cause(cop0));
1189 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1191 return 0;
1194 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1196 int i;
1198 vcpu_load(vcpu);
1200 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1201 vcpu->arch.gprs[i] = regs->gpr[i];
1202 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1203 vcpu->arch.hi = regs->hi;
1204 vcpu->arch.lo = regs->lo;
1205 vcpu->arch.pc = regs->pc;
1207 vcpu_put(vcpu);
1208 return 0;
1211 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1213 int i;
1215 vcpu_load(vcpu);
1217 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1218 regs->gpr[i] = vcpu->arch.gprs[i];
1220 regs->hi = vcpu->arch.hi;
1221 regs->lo = vcpu->arch.lo;
1222 regs->pc = vcpu->arch.pc;
1224 vcpu_put(vcpu);
1225 return 0;
1228 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1229 struct kvm_translation *tr)
1231 return 0;
1234 static void kvm_mips_set_c0_status(void)
1236 u32 status = read_c0_status();
1238 if (cpu_has_dsp)
1239 status |= (ST0_MX);
1241 write_c0_status(status);
1242 ehb();
1246 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1248 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1250 u32 cause = vcpu->arch.host_cp0_cause;
1251 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1252 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1253 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1254 enum emulation_result er = EMULATE_DONE;
1255 u32 inst;
1256 int ret = RESUME_GUEST;
1258 vcpu->mode = OUTSIDE_GUEST_MODE;
1260 /* re-enable HTW before enabling interrupts */
1261 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1262 htw_start();
1264 /* Set a default exit reason */
1265 run->exit_reason = KVM_EXIT_UNKNOWN;
1266 run->ready_for_interrupt_injection = 1;
1269 * Set the appropriate status bits based on host CPU features,
1270 * before we hit the scheduler
1272 kvm_mips_set_c0_status();
1274 local_irq_enable();
1276 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1277 cause, opc, run, vcpu);
1278 trace_kvm_exit(vcpu, exccode);
1280 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1282 * Do a privilege check, if in UM most of these exit conditions
1283 * end up causing an exception to be delivered to the Guest
1284 * Kernel
1286 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1287 if (er == EMULATE_PRIV_FAIL) {
1288 goto skip_emul;
1289 } else if (er == EMULATE_FAIL) {
1290 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1291 ret = RESUME_HOST;
1292 goto skip_emul;
1296 switch (exccode) {
1297 case EXCCODE_INT:
1298 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1300 ++vcpu->stat.int_exits;
1302 if (need_resched())
1303 cond_resched();
1305 ret = RESUME_GUEST;
1306 break;
1308 case EXCCODE_CPU:
1309 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1311 ++vcpu->stat.cop_unusable_exits;
1312 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1313 /* XXXKYMA: Might need to return to user space */
1314 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1315 ret = RESUME_HOST;
1316 break;
1318 case EXCCODE_MOD:
1319 ++vcpu->stat.tlbmod_exits;
1320 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1321 break;
1323 case EXCCODE_TLBS:
1324 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1325 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1326 badvaddr);
1328 ++vcpu->stat.tlbmiss_st_exits;
1329 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1330 break;
1332 case EXCCODE_TLBL:
1333 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1334 cause, opc, badvaddr);
1336 ++vcpu->stat.tlbmiss_ld_exits;
1337 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1338 break;
1340 case EXCCODE_ADES:
1341 ++vcpu->stat.addrerr_st_exits;
1342 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1343 break;
1345 case EXCCODE_ADEL:
1346 ++vcpu->stat.addrerr_ld_exits;
1347 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1348 break;
1350 case EXCCODE_SYS:
1351 ++vcpu->stat.syscall_exits;
1352 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1353 break;
1355 case EXCCODE_RI:
1356 ++vcpu->stat.resvd_inst_exits;
1357 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1358 break;
1360 case EXCCODE_BP:
1361 ++vcpu->stat.break_inst_exits;
1362 ret = kvm_mips_callbacks->handle_break(vcpu);
1363 break;
1365 case EXCCODE_TR:
1366 ++vcpu->stat.trap_inst_exits;
1367 ret = kvm_mips_callbacks->handle_trap(vcpu);
1368 break;
1370 case EXCCODE_MSAFPE:
1371 ++vcpu->stat.msa_fpe_exits;
1372 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1373 break;
1375 case EXCCODE_FPE:
1376 ++vcpu->stat.fpe_exits;
1377 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1378 break;
1380 case EXCCODE_MSADIS:
1381 ++vcpu->stat.msa_disabled_exits;
1382 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1383 break;
1385 case EXCCODE_GE:
1386 /* defer exit accounting to handler */
1387 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1388 break;
1390 default:
1391 if (cause & CAUSEF_BD)
1392 opc += 1;
1393 inst = 0;
1394 kvm_get_badinstr(opc, vcpu, &inst);
1395 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1396 exccode, opc, inst, badvaddr,
1397 kvm_read_c0_guest_status(vcpu->arch.cop0));
1398 kvm_arch_vcpu_dump_regs(vcpu);
1399 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1400 ret = RESUME_HOST;
1401 break;
1405 skip_emul:
1406 local_irq_disable();
1408 if (ret == RESUME_GUEST)
1409 kvm_vz_acquire_htimer(vcpu);
1411 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1412 kvm_mips_deliver_interrupts(vcpu, cause);
1414 if (!(ret & RESUME_HOST)) {
1415 /* Only check for signals if not already exiting to userspace */
1416 if (signal_pending(current)) {
1417 run->exit_reason = KVM_EXIT_INTR;
1418 ret = (-EINTR << 2) | RESUME_HOST;
1419 ++vcpu->stat.signal_exits;
1420 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1424 if (ret == RESUME_GUEST) {
1425 trace_kvm_reenter(vcpu);
1428 * Make sure the read of VCPU requests in vcpu_reenter()
1429 * callback is not reordered ahead of the write to vcpu->mode,
1430 * or we could miss a TLB flush request while the requester sees
1431 * the VCPU as outside of guest mode and not needing an IPI.
1433 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1435 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1438 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1439 * is live), restore FCR31 / MSACSR.
1441 * This should be before returning to the guest exception
1442 * vector, as it may well cause an [MSA] FP exception if there
1443 * are pending exception bits unmasked. (see
1444 * kvm_mips_csr_die_notifier() for how that is handled).
1446 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1447 read_c0_status() & ST0_CU1)
1448 __kvm_restore_fcsr(&vcpu->arch);
1450 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1451 read_c0_config5() & MIPS_CONF5_MSAEN)
1452 __kvm_restore_msacsr(&vcpu->arch);
1455 /* Disable HTW before returning to guest or host */
1456 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1457 htw_stop();
1459 return ret;
1462 /* Enable FPU for guest and restore context */
1463 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1465 struct mips_coproc *cop0 = vcpu->arch.cop0;
1466 unsigned int sr, cfg5;
1468 preempt_disable();
1470 sr = kvm_read_c0_guest_status(cop0);
1473 * If MSA state is already live, it is undefined how it interacts with
1474 * FR=0 FPU state, and we don't want to hit reserved instruction
1475 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1476 * play it safe and save it first.
1478 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1479 * get called when guest CU1 is set, however we can't trust the guest
1480 * not to clobber the status register directly via the commpage.
1482 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1483 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1484 kvm_lose_fpu(vcpu);
1487 * Enable FPU for guest
1488 * We set FR and FRE according to guest context
1490 change_c0_status(ST0_CU1 | ST0_FR, sr);
1491 if (cpu_has_fre) {
1492 cfg5 = kvm_read_c0_guest_config5(cop0);
1493 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1495 enable_fpu_hazard();
1497 /* If guest FPU state not active, restore it now */
1498 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1499 __kvm_restore_fpu(&vcpu->arch);
1500 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1501 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1502 } else {
1503 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1506 preempt_enable();
1509 #ifdef CONFIG_CPU_HAS_MSA
1510 /* Enable MSA for guest and restore context */
1511 void kvm_own_msa(struct kvm_vcpu *vcpu)
1513 struct mips_coproc *cop0 = vcpu->arch.cop0;
1514 unsigned int sr, cfg5;
1516 preempt_disable();
1519 * Enable FPU if enabled in guest, since we're restoring FPU context
1520 * anyway. We set FR and FRE according to guest context.
1522 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1523 sr = kvm_read_c0_guest_status(cop0);
1526 * If FR=0 FPU state is already live, it is undefined how it
1527 * interacts with MSA state, so play it safe and save it first.
1529 if (!(sr & ST0_FR) &&
1530 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1531 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1532 kvm_lose_fpu(vcpu);
1534 change_c0_status(ST0_CU1 | ST0_FR, sr);
1535 if (sr & ST0_CU1 && cpu_has_fre) {
1536 cfg5 = kvm_read_c0_guest_config5(cop0);
1537 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1541 /* Enable MSA for guest */
1542 set_c0_config5(MIPS_CONF5_MSAEN);
1543 enable_fpu_hazard();
1545 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1546 case KVM_MIPS_AUX_FPU:
1548 * Guest FPU state already loaded, only restore upper MSA state
1550 __kvm_restore_msa_upper(&vcpu->arch);
1551 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1552 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1553 break;
1554 case 0:
1555 /* Neither FPU or MSA already active, restore full MSA state */
1556 __kvm_restore_msa(&vcpu->arch);
1557 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1558 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1559 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1560 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1561 KVM_TRACE_AUX_FPU_MSA);
1562 break;
1563 default:
1564 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1565 break;
1568 preempt_enable();
1570 #endif
1572 /* Drop FPU & MSA without saving it */
1573 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1575 preempt_disable();
1576 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1577 disable_msa();
1578 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1579 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1581 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1582 clear_c0_status(ST0_CU1 | ST0_FR);
1583 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1584 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1586 preempt_enable();
1589 /* Save and disable FPU & MSA */
1590 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1593 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1594 * is disabled in guest context (software), but the register state in
1595 * the hardware may still be in use.
1596 * This is why we explicitly re-enable the hardware before saving.
1599 preempt_disable();
1600 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1601 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1602 set_c0_config5(MIPS_CONF5_MSAEN);
1603 enable_fpu_hazard();
1606 __kvm_save_msa(&vcpu->arch);
1607 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1609 /* Disable MSA & FPU */
1610 disable_msa();
1611 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1612 clear_c0_status(ST0_CU1 | ST0_FR);
1613 disable_fpu_hazard();
1615 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1616 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1617 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1618 set_c0_status(ST0_CU1);
1619 enable_fpu_hazard();
1622 __kvm_save_fpu(&vcpu->arch);
1623 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1624 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1626 /* Disable FPU */
1627 clear_c0_status(ST0_CU1 | ST0_FR);
1628 disable_fpu_hazard();
1630 preempt_enable();
1634 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1635 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1636 * exception if cause bits are set in the value being written.
1638 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1639 unsigned long cmd, void *ptr)
1641 struct die_args *args = (struct die_args *)ptr;
1642 struct pt_regs *regs = args->regs;
1643 unsigned long pc;
1645 /* Only interested in FPE and MSAFPE */
1646 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1647 return NOTIFY_DONE;
1649 /* Return immediately if guest context isn't active */
1650 if (!(current->flags & PF_VCPU))
1651 return NOTIFY_DONE;
1653 /* Should never get here from user mode */
1654 BUG_ON(user_mode(regs));
1656 pc = instruction_pointer(regs);
1657 switch (cmd) {
1658 case DIE_FP:
1659 /* match 2nd instruction in __kvm_restore_fcsr */
1660 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1661 return NOTIFY_DONE;
1662 break;
1663 case DIE_MSAFP:
1664 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1665 if (!cpu_has_msa ||
1666 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1667 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1668 return NOTIFY_DONE;
1669 break;
1672 /* Move PC forward a little and continue executing */
1673 instruction_pointer(regs) += 4;
1675 return NOTIFY_STOP;
1678 static struct notifier_block kvm_mips_csr_die_notifier = {
1679 .notifier_call = kvm_mips_csr_die_notify,
1682 static int __init kvm_mips_init(void)
1684 int ret;
1686 if (cpu_has_mmid) {
1687 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1688 return -EOPNOTSUPP;
1691 ret = kvm_mips_entry_setup();
1692 if (ret)
1693 return ret;
1695 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1697 if (ret)
1698 return ret;
1700 register_die_notifier(&kvm_mips_csr_die_notifier);
1702 return 0;
1705 static void __exit kvm_mips_exit(void)
1707 kvm_exit();
1709 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1712 module_init(kvm_mips_init);
1713 module_exit(kvm_mips_exit);
1715 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);