2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * KVM/MIPS: MIPS specific KVM APIs
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
21 #include <linux/memblock.h>
25 #include <asm/cacheflush.h>
26 #include <asm/mmu_context.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
30 #include <linux/kvm_host.h>
32 #include "interrupt.h"
35 #define CREATE_TRACE_POINTS
39 #define VECTORSPACING 0x100 /* for EI/VI mode */
42 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43 struct kvm_stats_debugfs_item debugfs_entries
[] = {
44 { "wait", VCPU_STAT(wait_exits
), KVM_STAT_VCPU
},
45 { "cache", VCPU_STAT(cache_exits
), KVM_STAT_VCPU
},
46 { "signal", VCPU_STAT(signal_exits
), KVM_STAT_VCPU
},
47 { "interrupt", VCPU_STAT(int_exits
), KVM_STAT_VCPU
},
48 { "cop_unusable", VCPU_STAT(cop_unusable_exits
), KVM_STAT_VCPU
},
49 { "tlbmod", VCPU_STAT(tlbmod_exits
), KVM_STAT_VCPU
},
50 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits
), KVM_STAT_VCPU
},
51 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits
), KVM_STAT_VCPU
},
52 { "addrerr_st", VCPU_STAT(addrerr_st_exits
), KVM_STAT_VCPU
},
53 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits
), KVM_STAT_VCPU
},
54 { "syscall", VCPU_STAT(syscall_exits
), KVM_STAT_VCPU
},
55 { "resvd_inst", VCPU_STAT(resvd_inst_exits
), KVM_STAT_VCPU
},
56 { "break_inst", VCPU_STAT(break_inst_exits
), KVM_STAT_VCPU
},
57 { "trap_inst", VCPU_STAT(trap_inst_exits
), KVM_STAT_VCPU
},
58 { "msa_fpe", VCPU_STAT(msa_fpe_exits
), KVM_STAT_VCPU
},
59 { "fpe", VCPU_STAT(fpe_exits
), KVM_STAT_VCPU
},
60 { "msa_disabled", VCPU_STAT(msa_disabled_exits
), KVM_STAT_VCPU
},
61 { "flush_dcache", VCPU_STAT(flush_dcache_exits
), KVM_STAT_VCPU
},
62 #ifdef CONFIG_KVM_MIPS_VZ
63 { "vz_gpsi", VCPU_STAT(vz_gpsi_exits
), KVM_STAT_VCPU
},
64 { "vz_gsfc", VCPU_STAT(vz_gsfc_exits
), KVM_STAT_VCPU
},
65 { "vz_hc", VCPU_STAT(vz_hc_exits
), KVM_STAT_VCPU
},
66 { "vz_grr", VCPU_STAT(vz_grr_exits
), KVM_STAT_VCPU
},
67 { "vz_gva", VCPU_STAT(vz_gva_exits
), KVM_STAT_VCPU
},
68 { "vz_ghfc", VCPU_STAT(vz_ghfc_exits
), KVM_STAT_VCPU
},
69 { "vz_gpa", VCPU_STAT(vz_gpa_exits
), KVM_STAT_VCPU
},
70 { "vz_resvd", VCPU_STAT(vz_resvd_exits
), KVM_STAT_VCPU
},
72 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
), KVM_STAT_VCPU
},
73 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll
), KVM_STAT_VCPU
},
74 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid
), KVM_STAT_VCPU
},
75 { "halt_wakeup", VCPU_STAT(halt_wakeup
), KVM_STAT_VCPU
},
79 bool kvm_trace_guest_mode_change
;
81 int kvm_guest_mode_change_trace_reg(void)
83 kvm_trace_guest_mode_change
= 1;
87 void kvm_guest_mode_change_trace_unreg(void)
89 kvm_trace_guest_mode_change
= 0;
93 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
94 * Config7, so we are "runnable" if interrupts are pending
96 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
98 return !!(vcpu
->arch
.pending_exceptions
);
101 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
)
106 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
111 int kvm_arch_hardware_enable(void)
113 return kvm_mips_callbacks
->hardware_enable();
116 void kvm_arch_hardware_disable(void)
118 kvm_mips_callbacks
->hardware_disable();
121 int kvm_arch_hardware_setup(void)
126 int kvm_arch_check_processor_compat(void)
131 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
134 #ifdef CONFIG_KVM_MIPS_VZ
141 /* Unsupported KVM type */
145 /* Allocate page table to map GPA -> RPA */
146 kvm
->arch
.gpa_mm
.pgd
= kvm_pgd_alloc();
147 if (!kvm
->arch
.gpa_mm
.pgd
)
153 void kvm_mips_free_vcpus(struct kvm
*kvm
)
156 struct kvm_vcpu
*vcpu
;
158 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
159 kvm_vcpu_destroy(vcpu
);
162 mutex_lock(&kvm
->lock
);
164 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
165 kvm
->vcpus
[i
] = NULL
;
167 atomic_set(&kvm
->online_vcpus
, 0);
169 mutex_unlock(&kvm
->lock
);
172 static void kvm_mips_free_gpa_pt(struct kvm
*kvm
)
174 /* It should always be safe to remove after flushing the whole range */
175 WARN_ON(!kvm_mips_flush_gpa_pt(kvm
, 0, ~0));
176 pgd_free(NULL
, kvm
->arch
.gpa_mm
.pgd
);
179 void kvm_arch_destroy_vm(struct kvm
*kvm
)
181 kvm_mips_free_vcpus(kvm
);
182 kvm_mips_free_gpa_pt(kvm
);
185 long kvm_arch_dev_ioctl(struct file
*filp
, unsigned int ioctl
,
191 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
192 unsigned long npages
)
197 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
199 /* Flush whole GPA */
200 kvm_mips_flush_gpa_pt(kvm
, 0, ~0);
202 /* Let implementation do the rest */
203 kvm_mips_callbacks
->flush_shadow_all(kvm
);
206 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
207 struct kvm_memory_slot
*slot
)
210 * The slot has been made invalid (ready for moving or deletion), so we
211 * need to ensure that it can no longer be accessed by any guest VCPUs.
214 spin_lock(&kvm
->mmu_lock
);
215 /* Flush slot from GPA */
216 kvm_mips_flush_gpa_pt(kvm
, slot
->base_gfn
,
217 slot
->base_gfn
+ slot
->npages
- 1);
218 /* Let implementation do the rest */
219 kvm_mips_callbacks
->flush_shadow_memslot(kvm
, slot
);
220 spin_unlock(&kvm
->mmu_lock
);
223 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
224 struct kvm_memory_slot
*memslot
,
225 const struct kvm_userspace_memory_region
*mem
,
226 enum kvm_mr_change change
)
231 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
232 const struct kvm_userspace_memory_region
*mem
,
233 const struct kvm_memory_slot
*old
,
234 const struct kvm_memory_slot
*new,
235 enum kvm_mr_change change
)
239 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
240 __func__
, kvm
, mem
->slot
, mem
->guest_phys_addr
,
241 mem
->memory_size
, mem
->userspace_addr
);
244 * If dirty page logging is enabled, write protect all pages in the slot
245 * ready for dirty logging.
247 * There is no need to do this in any of the following cases:
248 * CREATE: No dirty mappings will already exist.
249 * MOVE/DELETE: The old mappings will already have been cleaned up by
250 * kvm_arch_flush_shadow_memslot()
252 if (change
== KVM_MR_FLAGS_ONLY
&&
253 (!(old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
254 new->flags
& KVM_MEM_LOG_DIRTY_PAGES
)) {
255 spin_lock(&kvm
->mmu_lock
);
256 /* Write protect GPA page table entries */
257 needs_flush
= kvm_mips_mkclean_gpa_pt(kvm
, new->base_gfn
,
258 new->base_gfn
+ new->npages
- 1);
259 /* Let implementation do the rest */
261 kvm_mips_callbacks
->flush_shadow_memslot(kvm
, new);
262 spin_unlock(&kvm
->mmu_lock
);
266 static inline void dump_handler(const char *symbol
, void *start
, void *end
)
270 pr_debug("LEAF(%s)\n", symbol
);
272 pr_debug("\t.set push\n");
273 pr_debug("\t.set noreorder\n");
275 for (p
= start
; p
< (u32
*)end
; ++p
)
276 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p
, p
);
278 pr_debug("\t.set\tpop\n");
280 pr_debug("\tEND(%s)\n", symbol
);
283 /* low level hrtimer wake routine */
284 static enum hrtimer_restart
kvm_mips_comparecount_wakeup(struct hrtimer
*timer
)
286 struct kvm_vcpu
*vcpu
;
288 vcpu
= container_of(timer
, struct kvm_vcpu
, arch
.comparecount_timer
);
290 kvm_mips_callbacks
->queue_timer_int(vcpu
);
293 if (swq_has_sleeper(&vcpu
->wq
))
294 swake_up_one(&vcpu
->wq
);
296 return kvm_mips_count_timeout(vcpu
);
299 int kvm_arch_vcpu_precreate(struct kvm
*kvm
, unsigned int id
)
304 int kvm_arch_vcpu_create(struct kvm_vcpu
*vcpu
)
307 void *gebase
, *p
, *handler
, *refill_start
, *refill_end
;
310 kvm_debug("kvm @ %p: create cpu %d at %p\n",
311 vcpu
->kvm
, vcpu
->vcpu_id
, vcpu
);
313 err
= kvm_mips_callbacks
->vcpu_init(vcpu
);
317 hrtimer_init(&vcpu
->arch
.comparecount_timer
, CLOCK_MONOTONIC
,
319 vcpu
->arch
.comparecount_timer
.function
= kvm_mips_comparecount_wakeup
;
322 * Allocate space for host mode exception handlers that handle
325 if (cpu_has_veic
|| cpu_has_vint
)
326 size
= 0x200 + VECTORSPACING
* 64;
330 gebase
= kzalloc(ALIGN(size
, PAGE_SIZE
), GFP_KERNEL
);
334 goto out_uninit_vcpu
;
336 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
337 ALIGN(size
, PAGE_SIZE
), gebase
);
340 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
341 * limits us to the low 512MB of physical address space. If the memory
342 * we allocate is out of range, just give up now.
344 if (!cpu_has_ebase_wg
&& virt_to_phys(gebase
) >= 0x20000000) {
345 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
348 goto out_free_gebase
;
352 vcpu
->arch
.guest_ebase
= gebase
;
354 /* Build guest exception vectors dynamically in unmapped memory */
355 handler
= gebase
+ 0x2000;
357 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
358 refill_start
= gebase
;
359 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ
) && IS_ENABLED(CONFIG_64BIT
))
360 refill_start
+= 0x080;
361 refill_end
= kvm_mips_build_tlb_refill_exception(refill_start
, handler
);
363 /* General Exception Entry point */
364 kvm_mips_build_exception(gebase
+ 0x180, handler
);
366 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
367 for (i
= 0; i
< 8; i
++) {
368 kvm_debug("L1 Vectored handler @ %p\n",
369 gebase
+ 0x200 + (i
* VECTORSPACING
));
370 kvm_mips_build_exception(gebase
+ 0x200 + i
* VECTORSPACING
,
374 /* General exit handler */
376 p
= kvm_mips_build_exit(p
);
378 /* Guest entry routine */
379 vcpu
->arch
.vcpu_run
= p
;
380 p
= kvm_mips_build_vcpu_run(p
);
382 /* Dump the generated code */
383 pr_debug("#include <asm/asm.h>\n");
384 pr_debug("#include <asm/regdef.h>\n");
386 dump_handler("kvm_vcpu_run", vcpu
->arch
.vcpu_run
, p
);
387 dump_handler("kvm_tlb_refill", refill_start
, refill_end
);
388 dump_handler("kvm_gen_exc", gebase
+ 0x180, gebase
+ 0x200);
389 dump_handler("kvm_exit", gebase
+ 0x2000, vcpu
->arch
.vcpu_run
);
391 /* Invalidate the icache for these ranges */
392 flush_icache_range((unsigned long)gebase
,
393 (unsigned long)gebase
+ ALIGN(size
, PAGE_SIZE
));
396 * Allocate comm page for guest kernel, a TLB will be reserved for
397 * mapping GVA @ 0xFFFF8000 to this page
399 vcpu
->arch
.kseg0_commpage
= kzalloc(PAGE_SIZE
<< 1, GFP_KERNEL
);
401 if (!vcpu
->arch
.kseg0_commpage
) {
403 goto out_free_gebase
;
406 kvm_debug("Allocated COMM page @ %p\n", vcpu
->arch
.kseg0_commpage
);
407 kvm_mips_commpage_init(vcpu
);
410 vcpu
->arch
.last_sched_cpu
= -1;
411 vcpu
->arch
.last_exec_cpu
= -1;
413 /* Initial guest state */
414 err
= kvm_mips_callbacks
->vcpu_setup(vcpu
);
416 goto out_free_commpage
;
421 kfree(vcpu
->arch
.kseg0_commpage
);
425 kvm_mips_callbacks
->vcpu_uninit(vcpu
);
429 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
431 hrtimer_cancel(&vcpu
->arch
.comparecount_timer
);
433 kvm_mips_dump_stats(vcpu
);
435 kvm_mmu_free_memory_caches(vcpu
);
436 kfree(vcpu
->arch
.guest_ebase
);
437 kfree(vcpu
->arch
.kseg0_commpage
);
439 kvm_mips_callbacks
->vcpu_uninit(vcpu
);
442 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
443 struct kvm_guest_debug
*dbg
)
448 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
454 kvm_sigset_activate(vcpu
);
456 if (vcpu
->mmio_needed
) {
457 if (!vcpu
->mmio_is_write
)
458 kvm_mips_complete_mmio_load(vcpu
, run
);
459 vcpu
->mmio_needed
= 0;
462 if (run
->immediate_exit
)
468 guest_enter_irqoff();
469 trace_kvm_enter(vcpu
);
472 * Make sure the read of VCPU requests in vcpu_run() callback is not
473 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
474 * flush request while the requester sees the VCPU as outside of guest
475 * mode and not needing an IPI.
477 smp_store_mb(vcpu
->mode
, IN_GUEST_MODE
);
479 r
= kvm_mips_callbacks
->vcpu_run(run
, vcpu
);
486 kvm_sigset_deactivate(vcpu
);
492 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
493 struct kvm_mips_interrupt
*irq
)
495 int intr
= (int)irq
->irq
;
496 struct kvm_vcpu
*dvcpu
= NULL
;
498 if (intr
== 3 || intr
== -3 || intr
== 4 || intr
== -4)
499 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__
, irq
->cpu
,
505 dvcpu
= vcpu
->kvm
->vcpus
[irq
->cpu
];
507 if (intr
== 2 || intr
== 3 || intr
== 4) {
508 kvm_mips_callbacks
->queue_io_int(dvcpu
, irq
);
510 } else if (intr
== -2 || intr
== -3 || intr
== -4) {
511 kvm_mips_callbacks
->dequeue_io_int(dvcpu
, irq
);
513 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__
,
518 dvcpu
->arch
.wait
= 0;
520 if (swq_has_sleeper(&dvcpu
->wq
))
521 swake_up_one(&dvcpu
->wq
);
526 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
527 struct kvm_mp_state
*mp_state
)
532 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
533 struct kvm_mp_state
*mp_state
)
538 static u64 kvm_mips_get_one_regs
[] = {
572 #ifndef CONFIG_CPU_MIPSR6
579 static u64 kvm_mips_get_one_regs_fpu
[] = {
581 KVM_REG_MIPS_FCR_CSR
,
584 static u64 kvm_mips_get_one_regs_msa
[] = {
586 KVM_REG_MIPS_MSA_CSR
,
589 static unsigned long kvm_mips_num_regs(struct kvm_vcpu
*vcpu
)
593 ret
= ARRAY_SIZE(kvm_mips_get_one_regs
);
594 if (kvm_mips_guest_can_have_fpu(&vcpu
->arch
)) {
595 ret
+= ARRAY_SIZE(kvm_mips_get_one_regs_fpu
) + 48;
597 if (boot_cpu_data
.fpu_id
& MIPS_FPIR_F64
)
600 if (kvm_mips_guest_can_have_msa(&vcpu
->arch
))
601 ret
+= ARRAY_SIZE(kvm_mips_get_one_regs_msa
) + 32;
602 ret
+= kvm_mips_callbacks
->num_regs(vcpu
);
607 static int kvm_mips_copy_reg_indices(struct kvm_vcpu
*vcpu
, u64 __user
*indices
)
612 if (copy_to_user(indices
, kvm_mips_get_one_regs
,
613 sizeof(kvm_mips_get_one_regs
)))
615 indices
+= ARRAY_SIZE(kvm_mips_get_one_regs
);
617 if (kvm_mips_guest_can_have_fpu(&vcpu
->arch
)) {
618 if (copy_to_user(indices
, kvm_mips_get_one_regs_fpu
,
619 sizeof(kvm_mips_get_one_regs_fpu
)))
621 indices
+= ARRAY_SIZE(kvm_mips_get_one_regs_fpu
);
623 for (i
= 0; i
< 32; ++i
) {
624 index
= KVM_REG_MIPS_FPR_32(i
);
625 if (copy_to_user(indices
, &index
, sizeof(index
)))
629 /* skip odd doubles if no F64 */
630 if (i
& 1 && !(boot_cpu_data
.fpu_id
& MIPS_FPIR_F64
))
633 index
= KVM_REG_MIPS_FPR_64(i
);
634 if (copy_to_user(indices
, &index
, sizeof(index
)))
640 if (kvm_mips_guest_can_have_msa(&vcpu
->arch
)) {
641 if (copy_to_user(indices
, kvm_mips_get_one_regs_msa
,
642 sizeof(kvm_mips_get_one_regs_msa
)))
644 indices
+= ARRAY_SIZE(kvm_mips_get_one_regs_msa
);
646 for (i
= 0; i
< 32; ++i
) {
647 index
= KVM_REG_MIPS_VEC_128(i
);
648 if (copy_to_user(indices
, &index
, sizeof(index
)))
654 return kvm_mips_callbacks
->copy_reg_indices(vcpu
, indices
);
657 static int kvm_mips_get_reg(struct kvm_vcpu
*vcpu
,
658 const struct kvm_one_reg
*reg
)
660 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
661 struct mips_fpu_struct
*fpu
= &vcpu
->arch
.fpu
;
668 /* General purpose registers */
669 case KVM_REG_MIPS_R0
... KVM_REG_MIPS_R31
:
670 v
= (long)vcpu
->arch
.gprs
[reg
->id
- KVM_REG_MIPS_R0
];
672 #ifndef CONFIG_CPU_MIPSR6
673 case KVM_REG_MIPS_HI
:
674 v
= (long)vcpu
->arch
.hi
;
676 case KVM_REG_MIPS_LO
:
677 v
= (long)vcpu
->arch
.lo
;
680 case KVM_REG_MIPS_PC
:
681 v
= (long)vcpu
->arch
.pc
;
684 /* Floating point registers */
685 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
686 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
688 idx
= reg
->id
- KVM_REG_MIPS_FPR_32(0);
689 /* Odd singles in top of even double when FR=0 */
690 if (kvm_read_c0_guest_status(cop0
) & ST0_FR
)
691 v
= get_fpr32(&fpu
->fpr
[idx
], 0);
693 v
= get_fpr32(&fpu
->fpr
[idx
& ~1], idx
& 1);
695 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
696 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
698 idx
= reg
->id
- KVM_REG_MIPS_FPR_64(0);
699 /* Can't access odd doubles in FR=0 mode */
700 if (idx
& 1 && !(kvm_read_c0_guest_status(cop0
) & ST0_FR
))
702 v
= get_fpr64(&fpu
->fpr
[idx
], 0);
704 case KVM_REG_MIPS_FCR_IR
:
705 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
707 v
= boot_cpu_data
.fpu_id
;
709 case KVM_REG_MIPS_FCR_CSR
:
710 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
715 /* MIPS SIMD Architecture (MSA) registers */
716 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
717 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
719 /* Can't access MSA registers in FR=0 mode */
720 if (!(kvm_read_c0_guest_status(cop0
) & ST0_FR
))
722 idx
= reg
->id
- KVM_REG_MIPS_VEC_128(0);
723 #ifdef CONFIG_CPU_LITTLE_ENDIAN
724 /* least significant byte first */
725 vs
[0] = get_fpr64(&fpu
->fpr
[idx
], 0);
726 vs
[1] = get_fpr64(&fpu
->fpr
[idx
], 1);
728 /* most significant byte first */
729 vs
[0] = get_fpr64(&fpu
->fpr
[idx
], 1);
730 vs
[1] = get_fpr64(&fpu
->fpr
[idx
], 0);
733 case KVM_REG_MIPS_MSA_IR
:
734 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
736 v
= boot_cpu_data
.msa_id
;
738 case KVM_REG_MIPS_MSA_CSR
:
739 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
744 /* registers to be handled specially */
746 ret
= kvm_mips_callbacks
->get_one_reg(vcpu
, reg
, &v
);
751 if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
) {
752 u64 __user
*uaddr64
= (u64 __user
*)(long)reg
->addr
;
754 return put_user(v
, uaddr64
);
755 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U32
) {
756 u32 __user
*uaddr32
= (u32 __user
*)(long)reg
->addr
;
759 return put_user(v32
, uaddr32
);
760 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U128
) {
761 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
763 return copy_to_user(uaddr
, vs
, 16) ? -EFAULT
: 0;
769 static int kvm_mips_set_reg(struct kvm_vcpu
*vcpu
,
770 const struct kvm_one_reg
*reg
)
772 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
773 struct mips_fpu_struct
*fpu
= &vcpu
->arch
.fpu
;
778 if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
) {
779 u64 __user
*uaddr64
= (u64 __user
*)(long)reg
->addr
;
781 if (get_user(v
, uaddr64
) != 0)
783 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U32
) {
784 u32 __user
*uaddr32
= (u32 __user
*)(long)reg
->addr
;
787 if (get_user(v32
, uaddr32
) != 0)
790 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U128
) {
791 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
793 return copy_from_user(vs
, uaddr
, 16) ? -EFAULT
: 0;
799 /* General purpose registers */
800 case KVM_REG_MIPS_R0
:
801 /* Silently ignore requests to set $0 */
803 case KVM_REG_MIPS_R1
... KVM_REG_MIPS_R31
:
804 vcpu
->arch
.gprs
[reg
->id
- KVM_REG_MIPS_R0
] = v
;
806 #ifndef CONFIG_CPU_MIPSR6
807 case KVM_REG_MIPS_HI
:
810 case KVM_REG_MIPS_LO
:
814 case KVM_REG_MIPS_PC
:
818 /* Floating point registers */
819 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
820 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
822 idx
= reg
->id
- KVM_REG_MIPS_FPR_32(0);
823 /* Odd singles in top of even double when FR=0 */
824 if (kvm_read_c0_guest_status(cop0
) & ST0_FR
)
825 set_fpr32(&fpu
->fpr
[idx
], 0, v
);
827 set_fpr32(&fpu
->fpr
[idx
& ~1], idx
& 1, v
);
829 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
830 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
832 idx
= reg
->id
- KVM_REG_MIPS_FPR_64(0);
833 /* Can't access odd doubles in FR=0 mode */
834 if (idx
& 1 && !(kvm_read_c0_guest_status(cop0
) & ST0_FR
))
836 set_fpr64(&fpu
->fpr
[idx
], 0, v
);
838 case KVM_REG_MIPS_FCR_IR
:
839 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
843 case KVM_REG_MIPS_FCR_CSR
:
844 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
849 /* MIPS SIMD Architecture (MSA) registers */
850 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
851 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
853 idx
= reg
->id
- KVM_REG_MIPS_VEC_128(0);
854 #ifdef CONFIG_CPU_LITTLE_ENDIAN
855 /* least significant byte first */
856 set_fpr64(&fpu
->fpr
[idx
], 0, vs
[0]);
857 set_fpr64(&fpu
->fpr
[idx
], 1, vs
[1]);
859 /* most significant byte first */
860 set_fpr64(&fpu
->fpr
[idx
], 1, vs
[0]);
861 set_fpr64(&fpu
->fpr
[idx
], 0, vs
[1]);
864 case KVM_REG_MIPS_MSA_IR
:
865 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
869 case KVM_REG_MIPS_MSA_CSR
:
870 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
875 /* registers to be handled specially */
877 return kvm_mips_callbacks
->set_one_reg(vcpu
, reg
, v
);
882 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
883 struct kvm_enable_cap
*cap
)
887 if (!kvm_vm_ioctl_check_extension(vcpu
->kvm
, cap
->cap
))
895 case KVM_CAP_MIPS_FPU
:
896 vcpu
->arch
.fpu_enabled
= true;
898 case KVM_CAP_MIPS_MSA
:
899 vcpu
->arch
.msa_enabled
= true;
909 long kvm_arch_vcpu_async_ioctl(struct file
*filp
, unsigned int ioctl
,
912 struct kvm_vcpu
*vcpu
= filp
->private_data
;
913 void __user
*argp
= (void __user
*)arg
;
915 if (ioctl
== KVM_INTERRUPT
) {
916 struct kvm_mips_interrupt irq
;
918 if (copy_from_user(&irq
, argp
, sizeof(irq
)))
920 kvm_debug("[%d] %s: irq: %d\n", vcpu
->vcpu_id
, __func__
,
923 return kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
929 long kvm_arch_vcpu_ioctl(struct file
*filp
, unsigned int ioctl
,
932 struct kvm_vcpu
*vcpu
= filp
->private_data
;
933 void __user
*argp
= (void __user
*)arg
;
939 case KVM_SET_ONE_REG
:
940 case KVM_GET_ONE_REG
: {
941 struct kvm_one_reg reg
;
944 if (copy_from_user(®
, argp
, sizeof(reg
)))
946 if (ioctl
== KVM_SET_ONE_REG
)
947 r
= kvm_mips_set_reg(vcpu
, ®
);
949 r
= kvm_mips_get_reg(vcpu
, ®
);
952 case KVM_GET_REG_LIST
: {
953 struct kvm_reg_list __user
*user_list
= argp
;
954 struct kvm_reg_list reg_list
;
958 if (copy_from_user(®_list
, user_list
, sizeof(reg_list
)))
961 reg_list
.n
= kvm_mips_num_regs(vcpu
);
962 if (copy_to_user(user_list
, ®_list
, sizeof(reg_list
)))
967 r
= kvm_mips_copy_reg_indices(vcpu
, user_list
->reg
);
970 case KVM_ENABLE_CAP
: {
971 struct kvm_enable_cap cap
;
974 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
976 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
988 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
990 * @log: slot id and address to which we copy the log
992 * Steps 1-4 below provide general overview of dirty page logging. See
993 * kvm_get_dirty_log_protect() function description for additional details.
995 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
996 * always flush the TLB (step 4) even if previous step failed and the dirty
997 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
998 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
999 * writes will be marked dirty for next log read.
1001 * 1. Take a snapshot of the bit and clear it if needed.
1002 * 2. Write protect the corresponding page.
1003 * 3. Copy the snapshot to the userspace.
1004 * 4. Flush TLB's if needed.
1006 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
1008 struct kvm_memslots
*slots
;
1009 struct kvm_memory_slot
*memslot
;
1013 mutex_lock(&kvm
->slots_lock
);
1015 r
= kvm_get_dirty_log_protect(kvm
, log
, &flush
);
1018 slots
= kvm_memslots(kvm
);
1019 memslot
= id_to_memslot(slots
, log
->slot
);
1021 /* Let implementation handle TLB/GVA invalidation */
1022 kvm_mips_callbacks
->flush_shadow_memslot(kvm
, memslot
);
1025 mutex_unlock(&kvm
->slots_lock
);
1029 int kvm_vm_ioctl_clear_dirty_log(struct kvm
*kvm
, struct kvm_clear_dirty_log
*log
)
1031 struct kvm_memslots
*slots
;
1032 struct kvm_memory_slot
*memslot
;
1036 mutex_lock(&kvm
->slots_lock
);
1038 r
= kvm_clear_dirty_log_protect(kvm
, log
, &flush
);
1041 slots
= kvm_memslots(kvm
);
1042 memslot
= id_to_memslot(slots
, log
->slot
);
1044 /* Let implementation handle TLB/GVA invalidation */
1045 kvm_mips_callbacks
->flush_shadow_memslot(kvm
, memslot
);
1048 mutex_unlock(&kvm
->slots_lock
);
1052 long kvm_arch_vm_ioctl(struct file
*filp
, unsigned int ioctl
, unsigned long arg
)
1064 int kvm_arch_init(void *opaque
)
1066 if (kvm_mips_callbacks
) {
1067 kvm_err("kvm: module already exists\n");
1071 return kvm_mips_emulation_init(&kvm_mips_callbacks
);
1074 void kvm_arch_exit(void)
1076 kvm_mips_callbacks
= NULL
;
1079 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
1080 struct kvm_sregs
*sregs
)
1082 return -ENOIOCTLCMD
;
1085 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
1086 struct kvm_sregs
*sregs
)
1088 return -ENOIOCTLCMD
;
1091 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
1095 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
1097 return -ENOIOCTLCMD
;
1100 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
1102 return -ENOIOCTLCMD
;
1105 vm_fault_t
kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
1107 return VM_FAULT_SIGBUS
;
1110 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
1115 case KVM_CAP_ONE_REG
:
1116 case KVM_CAP_ENABLE_CAP
:
1117 case KVM_CAP_READONLY_MEM
:
1118 case KVM_CAP_SYNC_MMU
:
1119 case KVM_CAP_IMMEDIATE_EXIT
:
1122 case KVM_CAP_NR_VCPUS
:
1123 r
= num_online_cpus();
1125 case KVM_CAP_MAX_VCPUS
:
1128 case KVM_CAP_MAX_VCPU_ID
:
1129 r
= KVM_MAX_VCPU_ID
;
1131 case KVM_CAP_MIPS_FPU
:
1132 /* We don't handle systems with inconsistent cpu_has_fpu */
1133 r
= !!raw_cpu_has_fpu
;
1135 case KVM_CAP_MIPS_MSA
:
1137 * We don't support MSA vector partitioning yet:
1138 * 1) It would require explicit support which can't be tested
1139 * yet due to lack of support in current hardware.
1140 * 2) It extends the state that would need to be saved/restored
1141 * by e.g. QEMU for migration.
1143 * When vector partitioning hardware becomes available, support
1144 * could be added by requiring a flag when enabling
1145 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1146 * to save/restore the appropriate extra state.
1148 r
= cpu_has_msa
&& !(boot_cpu_data
.msa_id
& MSA_IR_WRPF
);
1151 r
= kvm_mips_callbacks
->check_extension(kvm
, ext
);
1157 int kvm_cpu_has_pending_timer(struct kvm_vcpu
*vcpu
)
1159 return kvm_mips_pending_timer(vcpu
) ||
1160 kvm_read_c0_guest_cause(vcpu
->arch
.cop0
) & C_TI
;
1163 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu
*vcpu
)
1166 struct mips_coproc
*cop0
;
1171 kvm_debug("VCPU Register Dump:\n");
1172 kvm_debug("\tpc = 0x%08lx\n", vcpu
->arch
.pc
);
1173 kvm_debug("\texceptions: %08lx\n", vcpu
->arch
.pending_exceptions
);
1175 for (i
= 0; i
< 32; i
+= 4) {
1176 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i
,
1178 vcpu
->arch
.gprs
[i
+ 1],
1179 vcpu
->arch
.gprs
[i
+ 2], vcpu
->arch
.gprs
[i
+ 3]);
1181 kvm_debug("\thi: 0x%08lx\n", vcpu
->arch
.hi
);
1182 kvm_debug("\tlo: 0x%08lx\n", vcpu
->arch
.lo
);
1184 cop0
= vcpu
->arch
.cop0
;
1185 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1186 kvm_read_c0_guest_status(cop0
),
1187 kvm_read_c0_guest_cause(cop0
));
1189 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0
));
1194 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
1200 for (i
= 1; i
< ARRAY_SIZE(vcpu
->arch
.gprs
); i
++)
1201 vcpu
->arch
.gprs
[i
] = regs
->gpr
[i
];
1202 vcpu
->arch
.gprs
[0] = 0; /* zero is special, and cannot be set. */
1203 vcpu
->arch
.hi
= regs
->hi
;
1204 vcpu
->arch
.lo
= regs
->lo
;
1205 vcpu
->arch
.pc
= regs
->pc
;
1211 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
1217 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.gprs
); i
++)
1218 regs
->gpr
[i
] = vcpu
->arch
.gprs
[i
];
1220 regs
->hi
= vcpu
->arch
.hi
;
1221 regs
->lo
= vcpu
->arch
.lo
;
1222 regs
->pc
= vcpu
->arch
.pc
;
1228 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
1229 struct kvm_translation
*tr
)
1234 static void kvm_mips_set_c0_status(void)
1236 u32 status
= read_c0_status();
1241 write_c0_status(status
);
1246 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1248 int kvm_mips_handle_exit(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
)
1250 u32 cause
= vcpu
->arch
.host_cp0_cause
;
1251 u32 exccode
= (cause
>> CAUSEB_EXCCODE
) & 0x1f;
1252 u32 __user
*opc
= (u32 __user
*) vcpu
->arch
.pc
;
1253 unsigned long badvaddr
= vcpu
->arch
.host_cp0_badvaddr
;
1254 enum emulation_result er
= EMULATE_DONE
;
1256 int ret
= RESUME_GUEST
;
1258 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
1260 /* re-enable HTW before enabling interrupts */
1261 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ
))
1264 /* Set a default exit reason */
1265 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
1266 run
->ready_for_interrupt_injection
= 1;
1269 * Set the appropriate status bits based on host CPU features,
1270 * before we hit the scheduler
1272 kvm_mips_set_c0_status();
1276 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1277 cause
, opc
, run
, vcpu
);
1278 trace_kvm_exit(vcpu
, exccode
);
1280 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ
)) {
1282 * Do a privilege check, if in UM most of these exit conditions
1283 * end up causing an exception to be delivered to the Guest
1286 er
= kvm_mips_check_privilege(cause
, opc
, run
, vcpu
);
1287 if (er
== EMULATE_PRIV_FAIL
) {
1289 } else if (er
== EMULATE_FAIL
) {
1290 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1298 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu
->vcpu_id
, opc
);
1300 ++vcpu
->stat
.int_exits
;
1309 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc
);
1311 ++vcpu
->stat
.cop_unusable_exits
;
1312 ret
= kvm_mips_callbacks
->handle_cop_unusable(vcpu
);
1313 /* XXXKYMA: Might need to return to user space */
1314 if (run
->exit_reason
== KVM_EXIT_IRQ_WINDOW_OPEN
)
1319 ++vcpu
->stat
.tlbmod_exits
;
1320 ret
= kvm_mips_callbacks
->handle_tlb_mod(vcpu
);
1324 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1325 cause
, kvm_read_c0_guest_status(vcpu
->arch
.cop0
), opc
,
1328 ++vcpu
->stat
.tlbmiss_st_exits
;
1329 ret
= kvm_mips_callbacks
->handle_tlb_st_miss(vcpu
);
1333 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1334 cause
, opc
, badvaddr
);
1336 ++vcpu
->stat
.tlbmiss_ld_exits
;
1337 ret
= kvm_mips_callbacks
->handle_tlb_ld_miss(vcpu
);
1341 ++vcpu
->stat
.addrerr_st_exits
;
1342 ret
= kvm_mips_callbacks
->handle_addr_err_st(vcpu
);
1346 ++vcpu
->stat
.addrerr_ld_exits
;
1347 ret
= kvm_mips_callbacks
->handle_addr_err_ld(vcpu
);
1351 ++vcpu
->stat
.syscall_exits
;
1352 ret
= kvm_mips_callbacks
->handle_syscall(vcpu
);
1356 ++vcpu
->stat
.resvd_inst_exits
;
1357 ret
= kvm_mips_callbacks
->handle_res_inst(vcpu
);
1361 ++vcpu
->stat
.break_inst_exits
;
1362 ret
= kvm_mips_callbacks
->handle_break(vcpu
);
1366 ++vcpu
->stat
.trap_inst_exits
;
1367 ret
= kvm_mips_callbacks
->handle_trap(vcpu
);
1370 case EXCCODE_MSAFPE
:
1371 ++vcpu
->stat
.msa_fpe_exits
;
1372 ret
= kvm_mips_callbacks
->handle_msa_fpe(vcpu
);
1376 ++vcpu
->stat
.fpe_exits
;
1377 ret
= kvm_mips_callbacks
->handle_fpe(vcpu
);
1380 case EXCCODE_MSADIS
:
1381 ++vcpu
->stat
.msa_disabled_exits
;
1382 ret
= kvm_mips_callbacks
->handle_msa_disabled(vcpu
);
1386 /* defer exit accounting to handler */
1387 ret
= kvm_mips_callbacks
->handle_guest_exit(vcpu
);
1391 if (cause
& CAUSEF_BD
)
1394 kvm_get_badinstr(opc
, vcpu
, &inst
);
1395 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1396 exccode
, opc
, inst
, badvaddr
,
1397 kvm_read_c0_guest_status(vcpu
->arch
.cop0
));
1398 kvm_arch_vcpu_dump_regs(vcpu
);
1399 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1406 local_irq_disable();
1408 if (ret
== RESUME_GUEST
)
1409 kvm_vz_acquire_htimer(vcpu
);
1411 if (er
== EMULATE_DONE
&& !(ret
& RESUME_HOST
))
1412 kvm_mips_deliver_interrupts(vcpu
, cause
);
1414 if (!(ret
& RESUME_HOST
)) {
1415 /* Only check for signals if not already exiting to userspace */
1416 if (signal_pending(current
)) {
1417 run
->exit_reason
= KVM_EXIT_INTR
;
1418 ret
= (-EINTR
<< 2) | RESUME_HOST
;
1419 ++vcpu
->stat
.signal_exits
;
1420 trace_kvm_exit(vcpu
, KVM_TRACE_EXIT_SIGNAL
);
1424 if (ret
== RESUME_GUEST
) {
1425 trace_kvm_reenter(vcpu
);
1428 * Make sure the read of VCPU requests in vcpu_reenter()
1429 * callback is not reordered ahead of the write to vcpu->mode,
1430 * or we could miss a TLB flush request while the requester sees
1431 * the VCPU as outside of guest mode and not needing an IPI.
1433 smp_store_mb(vcpu
->mode
, IN_GUEST_MODE
);
1435 kvm_mips_callbacks
->vcpu_reenter(run
, vcpu
);
1438 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1439 * is live), restore FCR31 / MSACSR.
1441 * This should be before returning to the guest exception
1442 * vector, as it may well cause an [MSA] FP exception if there
1443 * are pending exception bits unmasked. (see
1444 * kvm_mips_csr_die_notifier() for how that is handled).
1446 if (kvm_mips_guest_has_fpu(&vcpu
->arch
) &&
1447 read_c0_status() & ST0_CU1
)
1448 __kvm_restore_fcsr(&vcpu
->arch
);
1450 if (kvm_mips_guest_has_msa(&vcpu
->arch
) &&
1451 read_c0_config5() & MIPS_CONF5_MSAEN
)
1452 __kvm_restore_msacsr(&vcpu
->arch
);
1455 /* Disable HTW before returning to guest or host */
1456 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ
))
1462 /* Enable FPU for guest and restore context */
1463 void kvm_own_fpu(struct kvm_vcpu
*vcpu
)
1465 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1466 unsigned int sr
, cfg5
;
1470 sr
= kvm_read_c0_guest_status(cop0
);
1473 * If MSA state is already live, it is undefined how it interacts with
1474 * FR=0 FPU state, and we don't want to hit reserved instruction
1475 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1476 * play it safe and save it first.
1478 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1479 * get called when guest CU1 is set, however we can't trust the guest
1480 * not to clobber the status register directly via the commpage.
1482 if (cpu_has_msa
&& sr
& ST0_CU1
&& !(sr
& ST0_FR
) &&
1483 vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_MSA
)
1487 * Enable FPU for guest
1488 * We set FR and FRE according to guest context
1490 change_c0_status(ST0_CU1
| ST0_FR
, sr
);
1492 cfg5
= kvm_read_c0_guest_config5(cop0
);
1493 change_c0_config5(MIPS_CONF5_FRE
, cfg5
);
1495 enable_fpu_hazard();
1497 /* If guest FPU state not active, restore it now */
1498 if (!(vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
)) {
1499 __kvm_restore_fpu(&vcpu
->arch
);
1500 vcpu
->arch
.aux_inuse
|= KVM_MIPS_AUX_FPU
;
1501 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_RESTORE
, KVM_TRACE_AUX_FPU
);
1503 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_ENABLE
, KVM_TRACE_AUX_FPU
);
1509 #ifdef CONFIG_CPU_HAS_MSA
1510 /* Enable MSA for guest and restore context */
1511 void kvm_own_msa(struct kvm_vcpu
*vcpu
)
1513 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1514 unsigned int sr
, cfg5
;
1519 * Enable FPU if enabled in guest, since we're restoring FPU context
1520 * anyway. We set FR and FRE according to guest context.
1522 if (kvm_mips_guest_has_fpu(&vcpu
->arch
)) {
1523 sr
= kvm_read_c0_guest_status(cop0
);
1526 * If FR=0 FPU state is already live, it is undefined how it
1527 * interacts with MSA state, so play it safe and save it first.
1529 if (!(sr
& ST0_FR
) &&
1530 (vcpu
->arch
.aux_inuse
& (KVM_MIPS_AUX_FPU
|
1531 KVM_MIPS_AUX_MSA
)) == KVM_MIPS_AUX_FPU
)
1534 change_c0_status(ST0_CU1
| ST0_FR
, sr
);
1535 if (sr
& ST0_CU1
&& cpu_has_fre
) {
1536 cfg5
= kvm_read_c0_guest_config5(cop0
);
1537 change_c0_config5(MIPS_CONF5_FRE
, cfg5
);
1541 /* Enable MSA for guest */
1542 set_c0_config5(MIPS_CONF5_MSAEN
);
1543 enable_fpu_hazard();
1545 switch (vcpu
->arch
.aux_inuse
& (KVM_MIPS_AUX_FPU
| KVM_MIPS_AUX_MSA
)) {
1546 case KVM_MIPS_AUX_FPU
:
1548 * Guest FPU state already loaded, only restore upper MSA state
1550 __kvm_restore_msa_upper(&vcpu
->arch
);
1551 vcpu
->arch
.aux_inuse
|= KVM_MIPS_AUX_MSA
;
1552 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_RESTORE
, KVM_TRACE_AUX_MSA
);
1555 /* Neither FPU or MSA already active, restore full MSA state */
1556 __kvm_restore_msa(&vcpu
->arch
);
1557 vcpu
->arch
.aux_inuse
|= KVM_MIPS_AUX_MSA
;
1558 if (kvm_mips_guest_has_fpu(&vcpu
->arch
))
1559 vcpu
->arch
.aux_inuse
|= KVM_MIPS_AUX_FPU
;
1560 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_RESTORE
,
1561 KVM_TRACE_AUX_FPU_MSA
);
1564 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_ENABLE
, KVM_TRACE_AUX_MSA
);
1572 /* Drop FPU & MSA without saving it */
1573 void kvm_drop_fpu(struct kvm_vcpu
*vcpu
)
1576 if (cpu_has_msa
&& vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_MSA
) {
1578 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_DISCARD
, KVM_TRACE_AUX_MSA
);
1579 vcpu
->arch
.aux_inuse
&= ~KVM_MIPS_AUX_MSA
;
1581 if (vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
) {
1582 clear_c0_status(ST0_CU1
| ST0_FR
);
1583 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_DISCARD
, KVM_TRACE_AUX_FPU
);
1584 vcpu
->arch
.aux_inuse
&= ~KVM_MIPS_AUX_FPU
;
1589 /* Save and disable FPU & MSA */
1590 void kvm_lose_fpu(struct kvm_vcpu
*vcpu
)
1593 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1594 * is disabled in guest context (software), but the register state in
1595 * the hardware may still be in use.
1596 * This is why we explicitly re-enable the hardware before saving.
1600 if (cpu_has_msa
&& vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_MSA
) {
1601 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ
)) {
1602 set_c0_config5(MIPS_CONF5_MSAEN
);
1603 enable_fpu_hazard();
1606 __kvm_save_msa(&vcpu
->arch
);
1607 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_SAVE
, KVM_TRACE_AUX_FPU_MSA
);
1609 /* Disable MSA & FPU */
1611 if (vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
) {
1612 clear_c0_status(ST0_CU1
| ST0_FR
);
1613 disable_fpu_hazard();
1615 vcpu
->arch
.aux_inuse
&= ~(KVM_MIPS_AUX_FPU
| KVM_MIPS_AUX_MSA
);
1616 } else if (vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
) {
1617 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ
)) {
1618 set_c0_status(ST0_CU1
);
1619 enable_fpu_hazard();
1622 __kvm_save_fpu(&vcpu
->arch
);
1623 vcpu
->arch
.aux_inuse
&= ~KVM_MIPS_AUX_FPU
;
1624 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_SAVE
, KVM_TRACE_AUX_FPU
);
1627 clear_c0_status(ST0_CU1
| ST0_FR
);
1628 disable_fpu_hazard();
1634 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1635 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1636 * exception if cause bits are set in the value being written.
1638 static int kvm_mips_csr_die_notify(struct notifier_block
*self
,
1639 unsigned long cmd
, void *ptr
)
1641 struct die_args
*args
= (struct die_args
*)ptr
;
1642 struct pt_regs
*regs
= args
->regs
;
1645 /* Only interested in FPE and MSAFPE */
1646 if (cmd
!= DIE_FP
&& cmd
!= DIE_MSAFP
)
1649 /* Return immediately if guest context isn't active */
1650 if (!(current
->flags
& PF_VCPU
))
1653 /* Should never get here from user mode */
1654 BUG_ON(user_mode(regs
));
1656 pc
= instruction_pointer(regs
);
1659 /* match 2nd instruction in __kvm_restore_fcsr */
1660 if (pc
!= (unsigned long)&__kvm_restore_fcsr
+ 4)
1664 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1666 pc
< (unsigned long)&__kvm_restore_msacsr
+ 4 ||
1667 pc
> (unsigned long)&__kvm_restore_msacsr
+ 8)
1672 /* Move PC forward a little and continue executing */
1673 instruction_pointer(regs
) += 4;
1678 static struct notifier_block kvm_mips_csr_die_notifier
= {
1679 .notifier_call
= kvm_mips_csr_die_notify
,
1682 static int __init
kvm_mips_init(void)
1687 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1691 ret
= kvm_mips_entry_setup();
1695 ret
= kvm_init(NULL
, sizeof(struct kvm_vcpu
), 0, THIS_MODULE
);
1700 register_die_notifier(&kvm_mips_csr_die_notifier
);
1705 static void __exit
kvm_mips_exit(void)
1709 unregister_die_notifier(&kvm_mips_csr_die_notifier
);
1712 module_init(kvm_mips_init
);
1713 module_exit(kvm_mips_exit
);
1715 EXPORT_TRACEPOINT_SYMBOL(kvm_exit
);