arm64: dts: Revert "specify console via command line"
[linux/fpc-iii.git] / arch / mips / loongson64 / smp.c
blobde8e0741ce2daf5dd388735295c5e5e25782fee0
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2010, 2011, 2012, Lemote, Inc.
4 * Author: Chen Huacai, chenhc@lemote.com
5 */
7 #include <linux/init.h>
8 #include <linux/cpu.h>
9 #include <linux/sched.h>
10 #include <linux/sched/hotplug.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/smp.h>
13 #include <linux/cpufreq.h>
14 #include <linux/kexec.h>
15 #include <asm/processor.h>
16 #include <asm/time.h>
17 #include <asm/clock.h>
18 #include <asm/tlbflush.h>
19 #include <asm/cacheflush.h>
20 #include <loongson.h>
21 #include <loongson_regs.h>
22 #include <workarounds.h>
24 #include "smp.h"
26 DEFINE_PER_CPU(int, cpu_state);
28 static void *ipi_set0_regs[16];
29 static void *ipi_clear0_regs[16];
30 static void *ipi_status0_regs[16];
31 static void *ipi_en0_regs[16];
32 static void *ipi_mailbox_buf[16];
33 static uint32_t core0_c0count[NR_CPUS];
35 /* read a 32bit value from ipi register */
36 #define loongson3_ipi_read32(addr) readl(addr)
37 /* read a 64bit value from ipi register */
38 #define loongson3_ipi_read64(addr) readq(addr)
39 /* write a 32bit value to ipi register */
40 #define loongson3_ipi_write32(action, addr) \
41 do { \
42 writel(action, addr); \
43 __wbflush(); \
44 } while (0)
45 /* write a 64bit value to ipi register */
46 #define loongson3_ipi_write64(action, addr) \
47 do { \
48 writeq(action, addr); \
49 __wbflush(); \
50 } while (0)
52 u32 (*ipi_read_clear)(int cpu);
53 void (*ipi_write_action)(int cpu, u32 action);
55 static u32 csr_ipi_read_clear(int cpu)
57 u32 action;
59 /* Load the ipi register to figure out what we're supposed to do */
60 action = csr_readl(LOONGSON_CSR_IPI_STATUS);
61 /* Clear the ipi register to clear the interrupt */
62 csr_writel(action, LOONGSON_CSR_IPI_CLEAR);
64 return action;
67 static void csr_ipi_write_action(int cpu, u32 action)
69 unsigned int irq = 0;
71 while ((irq = ffs(action))) {
72 uint32_t val = CSR_IPI_SEND_BLOCK;
73 val |= (irq - 1);
74 val |= (cpu << CSR_IPI_SEND_CPU_SHIFT);
75 csr_writel(val, LOONGSON_CSR_IPI_SEND);
76 action &= ~BIT(irq - 1);
80 static u32 legacy_ipi_read_clear(int cpu)
82 u32 action;
84 /* Load the ipi register to figure out what we're supposed to do */
85 action = loongson3_ipi_read32(ipi_status0_regs[cpu_logical_map(cpu)]);
86 /* Clear the ipi register to clear the interrupt */
87 loongson3_ipi_write32(action, ipi_clear0_regs[cpu_logical_map(cpu)]);
89 return action;
92 static void legacy_ipi_write_action(int cpu, u32 action)
94 loongson3_ipi_write32((u32)action, ipi_set0_regs[cpu]);
97 static void csr_ipi_probe(void)
99 if (cpu_has_csr() && csr_readl(LOONGSON_CSR_FEATURES) & LOONGSON_CSRF_IPI) {
100 ipi_read_clear = csr_ipi_read_clear;
101 ipi_write_action = csr_ipi_write_action;
102 } else {
103 ipi_read_clear = legacy_ipi_read_clear;
104 ipi_write_action = legacy_ipi_write_action;
108 static void ipi_set0_regs_init(void)
110 ipi_set0_regs[0] = (void *)
111 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + SET0);
112 ipi_set0_regs[1] = (void *)
113 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + SET0);
114 ipi_set0_regs[2] = (void *)
115 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + SET0);
116 ipi_set0_regs[3] = (void *)
117 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + SET0);
118 ipi_set0_regs[4] = (void *)
119 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + SET0);
120 ipi_set0_regs[5] = (void *)
121 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + SET0);
122 ipi_set0_regs[6] = (void *)
123 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + SET0);
124 ipi_set0_regs[7] = (void *)
125 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + SET0);
126 ipi_set0_regs[8] = (void *)
127 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + SET0);
128 ipi_set0_regs[9] = (void *)
129 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + SET0);
130 ipi_set0_regs[10] = (void *)
131 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + SET0);
132 ipi_set0_regs[11] = (void *)
133 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + SET0);
134 ipi_set0_regs[12] = (void *)
135 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + SET0);
136 ipi_set0_regs[13] = (void *)
137 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + SET0);
138 ipi_set0_regs[14] = (void *)
139 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + SET0);
140 ipi_set0_regs[15] = (void *)
141 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + SET0);
144 static void ipi_clear0_regs_init(void)
146 ipi_clear0_regs[0] = (void *)
147 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + CLEAR0);
148 ipi_clear0_regs[1] = (void *)
149 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + CLEAR0);
150 ipi_clear0_regs[2] = (void *)
151 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + CLEAR0);
152 ipi_clear0_regs[3] = (void *)
153 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + CLEAR0);
154 ipi_clear0_regs[4] = (void *)
155 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + CLEAR0);
156 ipi_clear0_regs[5] = (void *)
157 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + CLEAR0);
158 ipi_clear0_regs[6] = (void *)
159 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + CLEAR0);
160 ipi_clear0_regs[7] = (void *)
161 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + CLEAR0);
162 ipi_clear0_regs[8] = (void *)
163 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + CLEAR0);
164 ipi_clear0_regs[9] = (void *)
165 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + CLEAR0);
166 ipi_clear0_regs[10] = (void *)
167 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + CLEAR0);
168 ipi_clear0_regs[11] = (void *)
169 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + CLEAR0);
170 ipi_clear0_regs[12] = (void *)
171 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + CLEAR0);
172 ipi_clear0_regs[13] = (void *)
173 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + CLEAR0);
174 ipi_clear0_regs[14] = (void *)
175 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + CLEAR0);
176 ipi_clear0_regs[15] = (void *)
177 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + CLEAR0);
180 static void ipi_status0_regs_init(void)
182 ipi_status0_regs[0] = (void *)
183 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + STATUS0);
184 ipi_status0_regs[1] = (void *)
185 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + STATUS0);
186 ipi_status0_regs[2] = (void *)
187 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + STATUS0);
188 ipi_status0_regs[3] = (void *)
189 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + STATUS0);
190 ipi_status0_regs[4] = (void *)
191 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + STATUS0);
192 ipi_status0_regs[5] = (void *)
193 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + STATUS0);
194 ipi_status0_regs[6] = (void *)
195 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + STATUS0);
196 ipi_status0_regs[7] = (void *)
197 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + STATUS0);
198 ipi_status0_regs[8] = (void *)
199 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + STATUS0);
200 ipi_status0_regs[9] = (void *)
201 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + STATUS0);
202 ipi_status0_regs[10] = (void *)
203 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + STATUS0);
204 ipi_status0_regs[11] = (void *)
205 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + STATUS0);
206 ipi_status0_regs[12] = (void *)
207 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + STATUS0);
208 ipi_status0_regs[13] = (void *)
209 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + STATUS0);
210 ipi_status0_regs[14] = (void *)
211 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + STATUS0);
212 ipi_status0_regs[15] = (void *)
213 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + STATUS0);
216 static void ipi_en0_regs_init(void)
218 ipi_en0_regs[0] = (void *)
219 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + EN0);
220 ipi_en0_regs[1] = (void *)
221 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + EN0);
222 ipi_en0_regs[2] = (void *)
223 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + EN0);
224 ipi_en0_regs[3] = (void *)
225 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + EN0);
226 ipi_en0_regs[4] = (void *)
227 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + EN0);
228 ipi_en0_regs[5] = (void *)
229 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + EN0);
230 ipi_en0_regs[6] = (void *)
231 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + EN0);
232 ipi_en0_regs[7] = (void *)
233 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + EN0);
234 ipi_en0_regs[8] = (void *)
235 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + EN0);
236 ipi_en0_regs[9] = (void *)
237 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + EN0);
238 ipi_en0_regs[10] = (void *)
239 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + EN0);
240 ipi_en0_regs[11] = (void *)
241 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + EN0);
242 ipi_en0_regs[12] = (void *)
243 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + EN0);
244 ipi_en0_regs[13] = (void *)
245 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + EN0);
246 ipi_en0_regs[14] = (void *)
247 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + EN0);
248 ipi_en0_regs[15] = (void *)
249 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + EN0);
252 static void ipi_mailbox_buf_init(void)
254 ipi_mailbox_buf[0] = (void *)
255 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + BUF);
256 ipi_mailbox_buf[1] = (void *)
257 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + BUF);
258 ipi_mailbox_buf[2] = (void *)
259 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + BUF);
260 ipi_mailbox_buf[3] = (void *)
261 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + BUF);
262 ipi_mailbox_buf[4] = (void *)
263 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + BUF);
264 ipi_mailbox_buf[5] = (void *)
265 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + BUF);
266 ipi_mailbox_buf[6] = (void *)
267 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + BUF);
268 ipi_mailbox_buf[7] = (void *)
269 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + BUF);
270 ipi_mailbox_buf[8] = (void *)
271 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + BUF);
272 ipi_mailbox_buf[9] = (void *)
273 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + BUF);
274 ipi_mailbox_buf[10] = (void *)
275 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + BUF);
276 ipi_mailbox_buf[11] = (void *)
277 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + BUF);
278 ipi_mailbox_buf[12] = (void *)
279 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + BUF);
280 ipi_mailbox_buf[13] = (void *)
281 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + BUF);
282 ipi_mailbox_buf[14] = (void *)
283 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + BUF);
284 ipi_mailbox_buf[15] = (void *)
285 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + BUF);
289 * Simple enough, just poke the appropriate ipi register
291 static void loongson3_send_ipi_single(int cpu, unsigned int action)
293 ipi_write_action(cpu_logical_map(cpu), (u32)action);
296 static void
297 loongson3_send_ipi_mask(const struct cpumask *mask, unsigned int action)
299 unsigned int i;
301 for_each_cpu(i, mask)
302 ipi_write_action(cpu_logical_map(i), (u32)action);
305 #define IPI_IRQ_OFFSET 6
307 void loongson3_send_irq_by_ipi(int cpu, int irqs)
309 ipi_write_action(cpu_logical_map(cpu), irqs << IPI_IRQ_OFFSET);
312 void loongson3_ipi_interrupt(struct pt_regs *regs)
314 int i, cpu = smp_processor_id();
315 unsigned int action, c0count, irqs;
317 action = ipi_read_clear(cpu);
318 irqs = action >> IPI_IRQ_OFFSET;
320 if (action & SMP_RESCHEDULE_YOURSELF)
321 scheduler_ipi();
323 if (action & SMP_CALL_FUNCTION) {
324 irq_enter();
325 generic_smp_call_function_interrupt();
326 irq_exit();
329 if (action & SMP_ASK_C0COUNT) {
330 BUG_ON(cpu != 0);
331 c0count = read_c0_count();
332 c0count = c0count ? c0count : 1;
333 for (i = 1; i < nr_cpu_ids; i++)
334 core0_c0count[i] = c0count;
335 __wbflush(); /* Let others see the result ASAP */
338 if (irqs) {
339 int irq;
340 while ((irq = ffs(irqs))) {
341 do_IRQ(irq-1);
342 irqs &= ~(1<<(irq-1));
347 #define MAX_LOOPS 800
349 * SMP init and finish on secondary CPUs
351 static void loongson3_init_secondary(void)
353 int i;
354 uint32_t initcount;
355 unsigned int cpu = smp_processor_id();
356 unsigned int imask = STATUSF_IP7 | STATUSF_IP6 |
357 STATUSF_IP3 | STATUSF_IP2;
359 /* Set interrupt mask, but don't enable */
360 change_c0_status(ST0_IM, imask);
362 for (i = 0; i < num_possible_cpus(); i++)
363 loongson3_ipi_write32(0xffffffff, ipi_en0_regs[cpu_logical_map(i)]);
365 per_cpu(cpu_state, cpu) = CPU_ONLINE;
366 cpu_set_core(&cpu_data[cpu],
367 cpu_logical_map(cpu) % loongson_sysconf.cores_per_package);
368 cpu_data[cpu].package =
369 cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
371 i = 0;
372 core0_c0count[cpu] = 0;
373 loongson3_send_ipi_single(0, SMP_ASK_C0COUNT);
374 while (!core0_c0count[cpu]) {
375 i++;
376 cpu_relax();
379 if (i > MAX_LOOPS)
380 i = MAX_LOOPS;
381 if (cpu_data[cpu].package)
382 initcount = core0_c0count[cpu] + i;
383 else /* Local access is faster for loops */
384 initcount = core0_c0count[cpu] + i/2;
386 write_c0_count(initcount);
389 static void loongson3_smp_finish(void)
391 int cpu = smp_processor_id();
393 write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
394 local_irq_enable();
395 loongson3_ipi_write64(0,
396 ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x0);
397 pr_info("CPU#%d finished, CP0_ST=%x\n",
398 smp_processor_id(), read_c0_status());
401 static void __init loongson3_smp_setup(void)
403 int i = 0, num = 0; /* i: physical id, num: logical id */
405 init_cpu_possible(cpu_none_mask);
407 /* For unified kernel, NR_CPUS is the maximum possible value,
408 * loongson_sysconf.nr_cpus is the really present value */
409 while (i < loongson_sysconf.nr_cpus) {
410 if (loongson_sysconf.reserved_cpus_mask & (1<<i)) {
411 /* Reserved physical CPU cores */
412 __cpu_number_map[i] = -1;
413 } else {
414 __cpu_number_map[i] = num;
415 __cpu_logical_map[num] = i;
416 set_cpu_possible(num, true);
417 num++;
419 i++;
421 pr_info("Detected %i available CPU(s)\n", num);
423 while (num < loongson_sysconf.nr_cpus) {
424 __cpu_logical_map[num] = -1;
425 num++;
428 csr_ipi_probe();
429 ipi_set0_regs_init();
430 ipi_clear0_regs_init();
431 ipi_status0_regs_init();
432 ipi_en0_regs_init();
433 ipi_mailbox_buf_init();
434 cpu_set_core(&cpu_data[0],
435 cpu_logical_map(0) % loongson_sysconf.cores_per_package);
436 cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
439 static void __init loongson3_prepare_cpus(unsigned int max_cpus)
441 init_cpu_present(cpu_possible_mask);
442 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
446 * Setup the PC, SP, and GP of a secondary processor and start it runing!
448 static int loongson3_boot_secondary(int cpu, struct task_struct *idle)
450 unsigned long startargs[4];
452 pr_info("Booting CPU#%d...\n", cpu);
454 /* startargs[] are initial PC, SP and GP for secondary CPU */
455 startargs[0] = (unsigned long)&smp_bootstrap;
456 startargs[1] = (unsigned long)__KSTK_TOS(idle);
457 startargs[2] = (unsigned long)task_thread_info(idle);
458 startargs[3] = 0;
460 pr_debug("CPU#%d, func_pc=%lx, sp=%lx, gp=%lx\n",
461 cpu, startargs[0], startargs[1], startargs[2]);
463 loongson3_ipi_write64(startargs[3],
464 ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x18);
465 loongson3_ipi_write64(startargs[2],
466 ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x10);
467 loongson3_ipi_write64(startargs[1],
468 ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x8);
469 loongson3_ipi_write64(startargs[0],
470 ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x0);
471 return 0;
474 #ifdef CONFIG_HOTPLUG_CPU
476 static int loongson3_cpu_disable(void)
478 unsigned long flags;
479 unsigned int cpu = smp_processor_id();
481 if (cpu == 0)
482 return -EBUSY;
484 set_cpu_online(cpu, false);
485 calculate_cpu_foreign_map();
486 local_irq_save(flags);
487 fixup_irqs();
488 local_irq_restore(flags);
489 local_flush_tlb_all();
491 return 0;
495 static void loongson3_cpu_die(unsigned int cpu)
497 while (per_cpu(cpu_state, cpu) != CPU_DEAD)
498 cpu_relax();
500 mb();
503 /* To shutdown a core in Loongson 3, the target core should go to CKSEG1 and
504 * flush all L1 entries at first. Then, another core (usually Core 0) can
505 * safely disable the clock of the target core. loongson3_play_dead() is
506 * called via CKSEG1 (uncached and unmmaped) */
507 static void loongson3_type1_play_dead(int *state_addr)
509 register int val;
510 register long cpuid, core, node, count;
511 register void *addr, *base, *initfunc;
513 __asm__ __volatile__(
514 " .set push \n"
515 " .set noreorder \n"
516 " li %[addr], 0x80000000 \n" /* KSEG0 */
517 "1: cache 0, 0(%[addr]) \n" /* flush L1 ICache */
518 " cache 0, 1(%[addr]) \n"
519 " cache 0, 2(%[addr]) \n"
520 " cache 0, 3(%[addr]) \n"
521 " cache 1, 0(%[addr]) \n" /* flush L1 DCache */
522 " cache 1, 1(%[addr]) \n"
523 " cache 1, 2(%[addr]) \n"
524 " cache 1, 3(%[addr]) \n"
525 " addiu %[sets], %[sets], -1 \n"
526 " bnez %[sets], 1b \n"
527 " addiu %[addr], %[addr], 0x20 \n"
528 " li %[val], 0x7 \n" /* *state_addr = CPU_DEAD; */
529 " sw %[val], (%[state_addr]) \n"
530 " sync \n"
531 " cache 21, (%[state_addr]) \n" /* flush entry of *state_addr */
532 " .set pop \n"
533 : [addr] "=&r" (addr), [val] "=&r" (val)
534 : [state_addr] "r" (state_addr),
535 [sets] "r" (cpu_data[smp_processor_id()].dcache.sets));
537 __asm__ __volatile__(
538 " .set push \n"
539 " .set noreorder \n"
540 " .set mips64 \n"
541 " mfc0 %[cpuid], $15, 1 \n"
542 " andi %[cpuid], 0x3ff \n"
543 " dli %[base], 0x900000003ff01000 \n"
544 " andi %[core], %[cpuid], 0x3 \n"
545 " sll %[core], 8 \n" /* get core id */
546 " or %[base], %[base], %[core] \n"
547 " andi %[node], %[cpuid], 0xc \n"
548 " dsll %[node], 42 \n" /* get node id */
549 " or %[base], %[base], %[node] \n"
550 "1: li %[count], 0x100 \n" /* wait for init loop */
551 "2: bnez %[count], 2b \n" /* limit mailbox access */
552 " addiu %[count], -1 \n"
553 " ld %[initfunc], 0x20(%[base]) \n" /* get PC via mailbox */
554 " beqz %[initfunc], 1b \n"
555 " nop \n"
556 " ld $sp, 0x28(%[base]) \n" /* get SP via mailbox */
557 " ld $gp, 0x30(%[base]) \n" /* get GP via mailbox */
558 " ld $a1, 0x38(%[base]) \n"
559 " jr %[initfunc] \n" /* jump to initial PC */
560 " nop \n"
561 " .set pop \n"
562 : [core] "=&r" (core), [node] "=&r" (node),
563 [base] "=&r" (base), [cpuid] "=&r" (cpuid),
564 [count] "=&r" (count), [initfunc] "=&r" (initfunc)
565 : /* No Input */
566 : "a1");
569 static void loongson3_type2_play_dead(int *state_addr)
571 register int val;
572 register long cpuid, core, node, count;
573 register void *addr, *base, *initfunc;
575 __asm__ __volatile__(
576 " .set push \n"
577 " .set noreorder \n"
578 " li %[addr], 0x80000000 \n" /* KSEG0 */
579 "1: cache 0, 0(%[addr]) \n" /* flush L1 ICache */
580 " cache 0, 1(%[addr]) \n"
581 " cache 0, 2(%[addr]) \n"
582 " cache 0, 3(%[addr]) \n"
583 " cache 1, 0(%[addr]) \n" /* flush L1 DCache */
584 " cache 1, 1(%[addr]) \n"
585 " cache 1, 2(%[addr]) \n"
586 " cache 1, 3(%[addr]) \n"
587 " addiu %[sets], %[sets], -1 \n"
588 " bnez %[sets], 1b \n"
589 " addiu %[addr], %[addr], 0x20 \n"
590 " li %[val], 0x7 \n" /* *state_addr = CPU_DEAD; */
591 " sw %[val], (%[state_addr]) \n"
592 " sync \n"
593 " cache 21, (%[state_addr]) \n" /* flush entry of *state_addr */
594 " .set pop \n"
595 : [addr] "=&r" (addr), [val] "=&r" (val)
596 : [state_addr] "r" (state_addr),
597 [sets] "r" (cpu_data[smp_processor_id()].dcache.sets));
599 __asm__ __volatile__(
600 " .set push \n"
601 " .set noreorder \n"
602 " .set mips64 \n"
603 " mfc0 %[cpuid], $15, 1 \n"
604 " andi %[cpuid], 0x3ff \n"
605 " dli %[base], 0x900000003ff01000 \n"
606 " andi %[core], %[cpuid], 0x3 \n"
607 " sll %[core], 8 \n" /* get core id */
608 " or %[base], %[base], %[core] \n"
609 " andi %[node], %[cpuid], 0xc \n"
610 " dsll %[node], 42 \n" /* get node id */
611 " or %[base], %[base], %[node] \n"
612 " dsrl %[node], 30 \n" /* 15:14 */
613 " or %[base], %[base], %[node] \n"
614 "1: li %[count], 0x100 \n" /* wait for init loop */
615 "2: bnez %[count], 2b \n" /* limit mailbox access */
616 " addiu %[count], -1 \n"
617 " ld %[initfunc], 0x20(%[base]) \n" /* get PC via mailbox */
618 " beqz %[initfunc], 1b \n"
619 " nop \n"
620 " ld $sp, 0x28(%[base]) \n" /* get SP via mailbox */
621 " ld $gp, 0x30(%[base]) \n" /* get GP via mailbox */
622 " ld $a1, 0x38(%[base]) \n"
623 " jr %[initfunc] \n" /* jump to initial PC */
624 " nop \n"
625 " .set pop \n"
626 : [core] "=&r" (core), [node] "=&r" (node),
627 [base] "=&r" (base), [cpuid] "=&r" (cpuid),
628 [count] "=&r" (count), [initfunc] "=&r" (initfunc)
629 : /* No Input */
630 : "a1");
633 static void loongson3_type3_play_dead(int *state_addr)
635 register int val;
636 register long cpuid, core, node, count;
637 register void *addr, *base, *initfunc;
639 __asm__ __volatile__(
640 " .set push \n"
641 " .set noreorder \n"
642 " li %[addr], 0x80000000 \n" /* KSEG0 */
643 "1: cache 0, 0(%[addr]) \n" /* flush L1 ICache */
644 " cache 0, 1(%[addr]) \n"
645 " cache 0, 2(%[addr]) \n"
646 " cache 0, 3(%[addr]) \n"
647 " cache 1, 0(%[addr]) \n" /* flush L1 DCache */
648 " cache 1, 1(%[addr]) \n"
649 " cache 1, 2(%[addr]) \n"
650 " cache 1, 3(%[addr]) \n"
651 " addiu %[sets], %[sets], -1 \n"
652 " bnez %[sets], 1b \n"
653 " addiu %[addr], %[addr], 0x40 \n"
654 " li %[addr], 0x80000000 \n" /* KSEG0 */
655 "2: cache 2, 0(%[addr]) \n" /* flush L1 VCache */
656 " cache 2, 1(%[addr]) \n"
657 " cache 2, 2(%[addr]) \n"
658 " cache 2, 3(%[addr]) \n"
659 " cache 2, 4(%[addr]) \n"
660 " cache 2, 5(%[addr]) \n"
661 " cache 2, 6(%[addr]) \n"
662 " cache 2, 7(%[addr]) \n"
663 " cache 2, 8(%[addr]) \n"
664 " cache 2, 9(%[addr]) \n"
665 " cache 2, 10(%[addr]) \n"
666 " cache 2, 11(%[addr]) \n"
667 " cache 2, 12(%[addr]) \n"
668 " cache 2, 13(%[addr]) \n"
669 " cache 2, 14(%[addr]) \n"
670 " cache 2, 15(%[addr]) \n"
671 " addiu %[vsets], %[vsets], -1 \n"
672 " bnez %[vsets], 2b \n"
673 " addiu %[addr], %[addr], 0x40 \n"
674 " li %[val], 0x7 \n" /* *state_addr = CPU_DEAD; */
675 " sw %[val], (%[state_addr]) \n"
676 " sync \n"
677 " cache 21, (%[state_addr]) \n" /* flush entry of *state_addr */
678 " .set pop \n"
679 : [addr] "=&r" (addr), [val] "=&r" (val)
680 : [state_addr] "r" (state_addr),
681 [sets] "r" (cpu_data[smp_processor_id()].dcache.sets),
682 [vsets] "r" (cpu_data[smp_processor_id()].vcache.sets));
684 __asm__ __volatile__(
685 " .set push \n"
686 " .set noreorder \n"
687 " .set mips64 \n"
688 " mfc0 %[cpuid], $15, 1 \n"
689 " andi %[cpuid], 0x3ff \n"
690 " dli %[base], 0x900000003ff01000 \n"
691 " andi %[core], %[cpuid], 0x3 \n"
692 " sll %[core], 8 \n" /* get core id */
693 " or %[base], %[base], %[core] \n"
694 " andi %[node], %[cpuid], 0xc \n"
695 " dsll %[node], 42 \n" /* get node id */
696 " or %[base], %[base], %[node] \n"
697 "1: li %[count], 0x100 \n" /* wait for init loop */
698 "2: bnez %[count], 2b \n" /* limit mailbox access */
699 " addiu %[count], -1 \n"
700 " ld %[initfunc], 0x20(%[base]) \n" /* get PC via mailbox */
701 " beqz %[initfunc], 1b \n"
702 " nop \n"
703 " ld $sp, 0x28(%[base]) \n" /* get SP via mailbox */
704 " ld $gp, 0x30(%[base]) \n" /* get GP via mailbox */
705 " ld $a1, 0x38(%[base]) \n"
706 " jr %[initfunc] \n" /* jump to initial PC */
707 " nop \n"
708 " .set pop \n"
709 : [core] "=&r" (core), [node] "=&r" (node),
710 [base] "=&r" (base), [cpuid] "=&r" (cpuid),
711 [count] "=&r" (count), [initfunc] "=&r" (initfunc)
712 : /* No Input */
713 : "a1");
716 void play_dead(void)
718 int prid_imp, prid_rev, *state_addr;
719 unsigned int cpu = smp_processor_id();
720 void (*play_dead_at_ckseg1)(int *);
722 idle_task_exit();
724 prid_imp = read_c0_prid() & PRID_IMP_MASK;
725 prid_rev = read_c0_prid() & PRID_REV_MASK;
727 if (prid_imp == PRID_IMP_LOONGSON_64G) {
728 play_dead_at_ckseg1 =
729 (void *)CKSEG1ADDR((unsigned long)loongson3_type3_play_dead);
730 goto out;
733 switch (prid_rev) {
734 case PRID_REV_LOONGSON3A_R1:
735 default:
736 play_dead_at_ckseg1 =
737 (void *)CKSEG1ADDR((unsigned long)loongson3_type1_play_dead);
738 break;
739 case PRID_REV_LOONGSON3B_R1:
740 case PRID_REV_LOONGSON3B_R2:
741 play_dead_at_ckseg1 =
742 (void *)CKSEG1ADDR((unsigned long)loongson3_type2_play_dead);
743 break;
744 case PRID_REV_LOONGSON3A_R2_0:
745 case PRID_REV_LOONGSON3A_R2_1:
746 case PRID_REV_LOONGSON3A_R3_0:
747 case PRID_REV_LOONGSON3A_R3_1:
748 play_dead_at_ckseg1 =
749 (void *)CKSEG1ADDR((unsigned long)loongson3_type3_play_dead);
750 break;
753 out:
754 state_addr = &per_cpu(cpu_state, cpu);
755 mb();
756 play_dead_at_ckseg1(state_addr);
759 static int loongson3_disable_clock(unsigned int cpu)
761 uint64_t core_id = cpu_core(&cpu_data[cpu]);
762 uint64_t package_id = cpu_data[cpu].package;
764 if ((read_c0_prid() & PRID_REV_MASK) == PRID_REV_LOONGSON3A_R1) {
765 LOONGSON_CHIPCFG(package_id) &= ~(1 << (12 + core_id));
766 } else {
767 if (!(loongson_sysconf.workarounds & WORKAROUND_CPUHOTPLUG))
768 LOONGSON_FREQCTRL(package_id) &= ~(1 << (core_id * 4 + 3));
770 return 0;
773 static int loongson3_enable_clock(unsigned int cpu)
775 uint64_t core_id = cpu_core(&cpu_data[cpu]);
776 uint64_t package_id = cpu_data[cpu].package;
778 if ((read_c0_prid() & PRID_REV_MASK) == PRID_REV_LOONGSON3A_R1) {
779 LOONGSON_CHIPCFG(package_id) |= 1 << (12 + core_id);
780 } else {
781 if (!(loongson_sysconf.workarounds & WORKAROUND_CPUHOTPLUG))
782 LOONGSON_FREQCTRL(package_id) |= 1 << (core_id * 4 + 3);
784 return 0;
787 static int register_loongson3_notifier(void)
789 return cpuhp_setup_state_nocalls(CPUHP_MIPS_SOC_PREPARE,
790 "mips/loongson:prepare",
791 loongson3_enable_clock,
792 loongson3_disable_clock);
794 early_initcall(register_loongson3_notifier);
796 #endif
798 const struct plat_smp_ops loongson3_smp_ops = {
799 .send_ipi_single = loongson3_send_ipi_single,
800 .send_ipi_mask = loongson3_send_ipi_mask,
801 .init_secondary = loongson3_init_secondary,
802 .smp_finish = loongson3_smp_finish,
803 .boot_secondary = loongson3_boot_secondary,
804 .smp_setup = loongson3_smp_setup,
805 .prepare_cpus = loongson3_prepare_cpus,
806 #ifdef CONFIG_HOTPLUG_CPU
807 .cpu_disable = loongson3_cpu_disable,
808 .cpu_die = loongson3_cpu_die,
809 #endif
810 #ifdef CONFIG_KEXEC
811 .kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
812 #endif