arm64: dts: Revert "specify console via command line"
[linux/fpc-iii.git] / arch / mips / mm / tlbex.c
blob344e6e9ea43b135a652e3bb4da2b4b856d1966d0
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
14 * ... and the days got worse and worse and now you see
15 * I've gone completely out of my mind.
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
21 * (Condolences to Napoleon XIV)
24 #include <linux/bug.h>
25 #include <linux/export.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/smp.h>
29 #include <linux/string.h>
30 #include <linux/cache.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpu-type.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgtable.h>
36 #include <asm/war.h>
37 #include <asm/uasm.h>
38 #include <asm/setup.h>
39 #include <asm/tlbex.h>
41 static int mips_xpa_disabled;
43 static int __init xpa_disable(char *s)
45 mips_xpa_disabled = 1;
47 return 1;
50 __setup("noxpa", xpa_disable);
53 * TLB load/store/modify handlers.
55 * Only the fastpath gets synthesized at runtime, the slowpath for
56 * do_page_fault remains normal asm.
58 extern void tlb_do_page_fault_0(void);
59 extern void tlb_do_page_fault_1(void);
61 struct work_registers {
62 int r1;
63 int r2;
64 int r3;
67 struct tlb_reg_save {
68 unsigned long a;
69 unsigned long b;
70 } ____cacheline_aligned_in_smp;
72 static struct tlb_reg_save handler_reg_save[NR_CPUS];
74 static inline int r45k_bvahwbug(void)
76 /* XXX: We should probe for the presence of this bug, but we don't. */
77 return 0;
80 static inline int r4k_250MHZhwbug(void)
82 /* XXX: We should probe for the presence of this bug, but we don't. */
83 return 0;
86 static inline int __maybe_unused bcm1250_m3_war(void)
88 return BCM1250_M3_WAR;
91 static inline int __maybe_unused r10000_llsc_war(void)
93 return R10000_LLSC_WAR;
96 static int use_bbit_insns(void)
98 switch (current_cpu_type()) {
99 case CPU_CAVIUM_OCTEON:
100 case CPU_CAVIUM_OCTEON_PLUS:
101 case CPU_CAVIUM_OCTEON2:
102 case CPU_CAVIUM_OCTEON3:
103 return 1;
104 default:
105 return 0;
109 static int use_lwx_insns(void)
111 switch (current_cpu_type()) {
112 case CPU_CAVIUM_OCTEON2:
113 case CPU_CAVIUM_OCTEON3:
114 return 1;
115 default:
116 return 0;
119 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
120 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
121 static bool scratchpad_available(void)
123 return true;
125 static int scratchpad_offset(int i)
128 * CVMSEG starts at address -32768 and extends for
129 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
131 i += 1; /* Kernel use starts at the top and works down. */
132 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
134 #else
135 static bool scratchpad_available(void)
137 return false;
139 static int scratchpad_offset(int i)
141 BUG();
142 /* Really unreachable, but evidently some GCC want this. */
143 return 0;
145 #endif
147 * Found by experiment: At least some revisions of the 4kc throw under
148 * some circumstances a machine check exception, triggered by invalid
149 * values in the index register. Delaying the tlbp instruction until
150 * after the next branch, plus adding an additional nop in front of
151 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
152 * why; it's not an issue caused by the core RTL.
155 static int m4kc_tlbp_war(void)
157 return current_cpu_type() == CPU_4KC;
160 /* Handle labels (which must be positive integers). */
161 enum label_id {
162 label_second_part = 1,
163 label_leave,
164 label_vmalloc,
165 label_vmalloc_done,
166 label_tlbw_hazard_0,
167 label_split = label_tlbw_hazard_0 + 8,
168 label_tlbl_goaround1,
169 label_tlbl_goaround2,
170 label_nopage_tlbl,
171 label_nopage_tlbs,
172 label_nopage_tlbm,
173 label_smp_pgtable_change,
174 label_r3000_write_probe_fail,
175 label_large_segbits_fault,
176 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
177 label_tlb_huge_update,
178 #endif
181 UASM_L_LA(_second_part)
182 UASM_L_LA(_leave)
183 UASM_L_LA(_vmalloc)
184 UASM_L_LA(_vmalloc_done)
185 /* _tlbw_hazard_x is handled differently. */
186 UASM_L_LA(_split)
187 UASM_L_LA(_tlbl_goaround1)
188 UASM_L_LA(_tlbl_goaround2)
189 UASM_L_LA(_nopage_tlbl)
190 UASM_L_LA(_nopage_tlbs)
191 UASM_L_LA(_nopage_tlbm)
192 UASM_L_LA(_smp_pgtable_change)
193 UASM_L_LA(_r3000_write_probe_fail)
194 UASM_L_LA(_large_segbits_fault)
195 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
196 UASM_L_LA(_tlb_huge_update)
197 #endif
199 static int hazard_instance;
201 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
203 switch (instance) {
204 case 0 ... 7:
205 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
206 return;
207 default:
208 BUG();
212 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
214 switch (instance) {
215 case 0 ... 7:
216 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
217 break;
218 default:
219 BUG();
224 * pgtable bits are assigned dynamically depending on processor feature
225 * and statically based on kernel configuration. This spits out the actual
226 * values the kernel is using. Required to make sense from disassembled
227 * TLB exception handlers.
229 static void output_pgtable_bits_defines(void)
231 #define pr_define(fmt, ...) \
232 pr_debug("#define " fmt, ##__VA_ARGS__)
234 pr_debug("#include <asm/asm.h>\n");
235 pr_debug("#include <asm/regdef.h>\n");
236 pr_debug("\n");
238 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
239 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
240 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
241 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
242 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
243 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
244 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
245 #endif
246 #ifdef _PAGE_NO_EXEC_SHIFT
247 if (cpu_has_rixi)
248 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
249 #endif
250 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
251 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
252 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
253 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
254 pr_debug("\n");
257 static inline void dump_handler(const char *symbol, const void *start, const void *end)
259 unsigned int count = (end - start) / sizeof(u32);
260 const u32 *handler = start;
261 int i;
263 pr_debug("LEAF(%s)\n", symbol);
265 pr_debug("\t.set push\n");
266 pr_debug("\t.set noreorder\n");
268 for (i = 0; i < count; i++)
269 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
271 pr_debug("\t.set\tpop\n");
273 pr_debug("\tEND(%s)\n", symbol);
276 /* The only general purpose registers allowed in TLB handlers. */
277 #define K0 26
278 #define K1 27
280 /* Some CP0 registers */
281 #define C0_INDEX 0, 0
282 #define C0_ENTRYLO0 2, 0
283 #define C0_TCBIND 2, 2
284 #define C0_ENTRYLO1 3, 0
285 #define C0_CONTEXT 4, 0
286 #define C0_PAGEMASK 5, 0
287 #define C0_PWBASE 5, 5
288 #define C0_PWFIELD 5, 6
289 #define C0_PWSIZE 5, 7
290 #define C0_PWCTL 6, 6
291 #define C0_BADVADDR 8, 0
292 #define C0_PGD 9, 7
293 #define C0_ENTRYHI 10, 0
294 #define C0_EPC 14, 0
295 #define C0_XCONTEXT 20, 0
297 #ifdef CONFIG_64BIT
298 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
299 #else
300 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
301 #endif
303 /* The worst case length of the handler is around 18 instructions for
304 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
305 * Maximum space available is 32 instructions for R3000 and 64
306 * instructions for R4000.
308 * We deliberately chose a buffer size of 128, so we won't scribble
309 * over anything important on overflow before we panic.
311 static u32 tlb_handler[128];
313 /* simply assume worst case size for labels and relocs */
314 static struct uasm_label labels[128];
315 static struct uasm_reloc relocs[128];
317 static int check_for_high_segbits;
318 static bool fill_includes_sw_bits;
320 static unsigned int kscratch_used_mask;
322 static inline int __maybe_unused c0_kscratch(void)
324 switch (current_cpu_type()) {
325 case CPU_XLP:
326 case CPU_XLR:
327 return 22;
328 default:
329 return 31;
333 static int allocate_kscratch(void)
335 int r;
336 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
338 r = ffs(a);
340 if (r == 0)
341 return -1;
343 r--; /* make it zero based */
345 kscratch_used_mask |= (1 << r);
347 return r;
350 static int scratch_reg;
351 int pgd_reg;
352 EXPORT_SYMBOL_GPL(pgd_reg);
353 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
355 static struct work_registers build_get_work_registers(u32 **p)
357 struct work_registers r;
359 if (scratch_reg >= 0) {
360 /* Save in CPU local C0_KScratch? */
361 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
362 r.r1 = K0;
363 r.r2 = K1;
364 r.r3 = 1;
365 return r;
368 if (num_possible_cpus() > 1) {
369 /* Get smp_processor_id */
370 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
371 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
373 /* handler_reg_save index in K0 */
374 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
376 UASM_i_LA(p, K1, (long)&handler_reg_save);
377 UASM_i_ADDU(p, K0, K0, K1);
378 } else {
379 UASM_i_LA(p, K0, (long)&handler_reg_save);
381 /* K0 now points to save area, save $1 and $2 */
382 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
383 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
385 r.r1 = K1;
386 r.r2 = 1;
387 r.r3 = 2;
388 return r;
391 static void build_restore_work_registers(u32 **p)
393 if (scratch_reg >= 0) {
394 uasm_i_ehb(p);
395 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
396 return;
398 /* K0 already points to save area, restore $1 and $2 */
399 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
400 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
403 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
406 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
407 * we cannot do r3000 under these circumstances.
409 * The R3000 TLB handler is simple.
411 static void build_r3000_tlb_refill_handler(void)
413 long pgdc = (long)pgd_current;
414 u32 *p;
416 memset(tlb_handler, 0, sizeof(tlb_handler));
417 p = tlb_handler;
419 uasm_i_mfc0(&p, K0, C0_BADVADDR);
420 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
421 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
422 uasm_i_srl(&p, K0, K0, 22); /* load delay */
423 uasm_i_sll(&p, K0, K0, 2);
424 uasm_i_addu(&p, K1, K1, K0);
425 uasm_i_mfc0(&p, K0, C0_CONTEXT);
426 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
427 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
428 uasm_i_addu(&p, K1, K1, K0);
429 uasm_i_lw(&p, K0, 0, K1);
430 uasm_i_nop(&p); /* load delay */
431 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
432 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
433 uasm_i_tlbwr(&p); /* cp0 delay */
434 uasm_i_jr(&p, K1);
435 uasm_i_rfe(&p); /* branch delay */
437 if (p > tlb_handler + 32)
438 panic("TLB refill handler space exceeded");
440 pr_debug("Wrote TLB refill handler (%u instructions).\n",
441 (unsigned int)(p - tlb_handler));
443 memcpy((void *)ebase, tlb_handler, 0x80);
444 local_flush_icache_range(ebase, ebase + 0x80);
445 dump_handler("r3000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x80));
447 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
450 * The R4000 TLB handler is much more complicated. We have two
451 * consecutive handler areas with 32 instructions space each.
452 * Since they aren't used at the same time, we can overflow in the
453 * other one.To keep things simple, we first assume linear space,
454 * then we relocate it to the final handler layout as needed.
456 static u32 final_handler[64];
459 * Hazards
461 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
462 * 2. A timing hazard exists for the TLBP instruction.
464 * stalling_instruction
465 * TLBP
467 * The JTLB is being read for the TLBP throughout the stall generated by the
468 * previous instruction. This is not really correct as the stalling instruction
469 * can modify the address used to access the JTLB. The failure symptom is that
470 * the TLBP instruction will use an address created for the stalling instruction
471 * and not the address held in C0_ENHI and thus report the wrong results.
473 * The software work-around is to not allow the instruction preceding the TLBP
474 * to stall - make it an NOP or some other instruction guaranteed not to stall.
476 * Errata 2 will not be fixed. This errata is also on the R5000.
478 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
480 static void __maybe_unused build_tlb_probe_entry(u32 **p)
482 switch (current_cpu_type()) {
483 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
484 case CPU_R4600:
485 case CPU_R4700:
486 case CPU_R5000:
487 case CPU_NEVADA:
488 uasm_i_nop(p);
489 uasm_i_tlbp(p);
490 break;
492 default:
493 uasm_i_tlbp(p);
494 break;
498 void build_tlb_write_entry(u32 **p, struct uasm_label **l,
499 struct uasm_reloc **r,
500 enum tlb_write_entry wmode)
502 void(*tlbw)(u32 **) = NULL;
504 switch (wmode) {
505 case tlb_random: tlbw = uasm_i_tlbwr; break;
506 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
509 if (cpu_has_mips_r2_r6) {
510 if (cpu_has_mips_r2_exec_hazard)
511 uasm_i_ehb(p);
512 tlbw(p);
513 return;
516 switch (current_cpu_type()) {
517 case CPU_R4000PC:
518 case CPU_R4000SC:
519 case CPU_R4000MC:
520 case CPU_R4400PC:
521 case CPU_R4400SC:
522 case CPU_R4400MC:
524 * This branch uses up a mtc0 hazard nop slot and saves
525 * two nops after the tlbw instruction.
527 uasm_bgezl_hazard(p, r, hazard_instance);
528 tlbw(p);
529 uasm_bgezl_label(l, p, hazard_instance);
530 hazard_instance++;
531 uasm_i_nop(p);
532 break;
534 case CPU_R4600:
535 case CPU_R4700:
536 uasm_i_nop(p);
537 tlbw(p);
538 uasm_i_nop(p);
539 break;
541 case CPU_R5000:
542 case CPU_NEVADA:
543 uasm_i_nop(p); /* QED specifies 2 nops hazard */
544 uasm_i_nop(p); /* QED specifies 2 nops hazard */
545 tlbw(p);
546 break;
548 case CPU_5KC:
549 case CPU_TX49XX:
550 case CPU_PR4450:
551 case CPU_XLR:
552 uasm_i_nop(p);
553 tlbw(p);
554 break;
556 case CPU_R10000:
557 case CPU_R12000:
558 case CPU_R14000:
559 case CPU_R16000:
560 case CPU_4KC:
561 case CPU_4KEC:
562 case CPU_M14KC:
563 case CPU_M14KEC:
564 case CPU_SB1:
565 case CPU_SB1A:
566 case CPU_4KSC:
567 case CPU_20KC:
568 case CPU_25KF:
569 case CPU_BMIPS32:
570 case CPU_BMIPS3300:
571 case CPU_BMIPS4350:
572 case CPU_BMIPS4380:
573 case CPU_BMIPS5000:
574 case CPU_LOONGSON2EF:
575 case CPU_LOONGSON64:
576 case CPU_R5500:
577 if (m4kc_tlbp_war())
578 uasm_i_nop(p);
579 /* fall through */
580 case CPU_ALCHEMY:
581 tlbw(p);
582 break;
584 case CPU_RM7000:
585 uasm_i_nop(p);
586 uasm_i_nop(p);
587 uasm_i_nop(p);
588 uasm_i_nop(p);
589 tlbw(p);
590 break;
592 case CPU_VR4111:
593 case CPU_VR4121:
594 case CPU_VR4122:
595 case CPU_VR4181:
596 case CPU_VR4181A:
597 uasm_i_nop(p);
598 uasm_i_nop(p);
599 tlbw(p);
600 uasm_i_nop(p);
601 uasm_i_nop(p);
602 break;
604 case CPU_VR4131:
605 case CPU_VR4133:
606 uasm_i_nop(p);
607 uasm_i_nop(p);
608 tlbw(p);
609 break;
611 case CPU_XBURST:
612 tlbw(p);
613 uasm_i_nop(p);
614 break;
616 default:
617 panic("No TLB refill handler yet (CPU type: %d)",
618 current_cpu_type());
619 break;
622 EXPORT_SYMBOL_GPL(build_tlb_write_entry);
624 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
625 unsigned int reg)
627 if (_PAGE_GLOBAL_SHIFT == 0) {
628 /* pte_t is already in EntryLo format */
629 return;
632 if (cpu_has_rixi && !!_PAGE_NO_EXEC) {
633 if (fill_includes_sw_bits) {
634 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
635 } else {
636 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
637 UASM_i_ROTR(p, reg, reg,
638 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
640 } else {
641 #ifdef CONFIG_PHYS_ADDR_T_64BIT
642 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
643 #else
644 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
645 #endif
649 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
651 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
652 unsigned int tmp, enum label_id lid,
653 int restore_scratch)
655 if (restore_scratch) {
657 * Ensure the MFC0 below observes the value written to the
658 * KScratch register by the prior MTC0.
660 if (scratch_reg >= 0)
661 uasm_i_ehb(p);
663 /* Reset default page size */
664 if (PM_DEFAULT_MASK >> 16) {
665 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
666 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
667 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
668 uasm_il_b(p, r, lid);
669 } else if (PM_DEFAULT_MASK) {
670 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
671 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
672 uasm_il_b(p, r, lid);
673 } else {
674 uasm_i_mtc0(p, 0, C0_PAGEMASK);
675 uasm_il_b(p, r, lid);
677 if (scratch_reg >= 0)
678 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
679 else
680 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
681 } else {
682 /* Reset default page size */
683 if (PM_DEFAULT_MASK >> 16) {
684 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
685 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
686 uasm_il_b(p, r, lid);
687 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
688 } else if (PM_DEFAULT_MASK) {
689 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
690 uasm_il_b(p, r, lid);
691 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
692 } else {
693 uasm_il_b(p, r, lid);
694 uasm_i_mtc0(p, 0, C0_PAGEMASK);
699 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
700 struct uasm_reloc **r,
701 unsigned int tmp,
702 enum tlb_write_entry wmode,
703 int restore_scratch)
705 /* Set huge page tlb entry size */
706 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
707 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
708 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
710 build_tlb_write_entry(p, l, r, wmode);
712 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
716 * Check if Huge PTE is present, if so then jump to LABEL.
718 static void
719 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
720 unsigned int pmd, int lid)
722 UASM_i_LW(p, tmp, 0, pmd);
723 if (use_bbit_insns()) {
724 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
725 } else {
726 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
727 uasm_il_bnez(p, r, tmp, lid);
731 static void build_huge_update_entries(u32 **p, unsigned int pte,
732 unsigned int tmp)
734 int small_sequence;
737 * A huge PTE describes an area the size of the
738 * configured huge page size. This is twice the
739 * of the large TLB entry size we intend to use.
740 * A TLB entry half the size of the configured
741 * huge page size is configured into entrylo0
742 * and entrylo1 to cover the contiguous huge PTE
743 * address space.
745 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
747 /* We can clobber tmp. It isn't used after this.*/
748 if (!small_sequence)
749 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
751 build_convert_pte_to_entrylo(p, pte);
752 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
753 /* convert to entrylo1 */
754 if (small_sequence)
755 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
756 else
757 UASM_i_ADDU(p, pte, pte, tmp);
759 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
762 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
763 struct uasm_label **l,
764 unsigned int pte,
765 unsigned int ptr,
766 unsigned int flush)
768 #ifdef CONFIG_SMP
769 UASM_i_SC(p, pte, 0, ptr);
770 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
771 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
772 #else
773 UASM_i_SW(p, pte, 0, ptr);
774 #endif
775 if (cpu_has_ftlb && flush) {
776 BUG_ON(!cpu_has_tlbinv);
778 UASM_i_MFC0(p, ptr, C0_ENTRYHI);
779 uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
780 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
781 build_tlb_write_entry(p, l, r, tlb_indexed);
783 uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
784 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
785 build_huge_update_entries(p, pte, ptr);
786 build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
788 return;
791 build_huge_update_entries(p, pte, ptr);
792 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
794 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
796 #ifdef CONFIG_64BIT
798 * TMP and PTR are scratch.
799 * TMP will be clobbered, PTR will hold the pmd entry.
801 void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
802 unsigned int tmp, unsigned int ptr)
804 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
805 long pgdc = (long)pgd_current;
806 #endif
808 * The vmalloc handling is not in the hotpath.
810 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
812 if (check_for_high_segbits) {
814 * The kernel currently implicitely assumes that the
815 * MIPS SEGBITS parameter for the processor is
816 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
817 * allocate virtual addresses outside the maximum
818 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
819 * that doesn't prevent user code from accessing the
820 * higher xuseg addresses. Here, we make sure that
821 * everything but the lower xuseg addresses goes down
822 * the module_alloc/vmalloc path.
824 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
825 uasm_il_bnez(p, r, ptr, label_vmalloc);
826 } else {
827 uasm_il_bltz(p, r, tmp, label_vmalloc);
829 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
831 if (pgd_reg != -1) {
832 /* pgd is in pgd_reg */
833 if (cpu_has_ldpte)
834 UASM_i_MFC0(p, ptr, C0_PWBASE);
835 else
836 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
837 } else {
838 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
840 * &pgd << 11 stored in CONTEXT [23..63].
842 UASM_i_MFC0(p, ptr, C0_CONTEXT);
844 /* Clear lower 23 bits of context. */
845 uasm_i_dins(p, ptr, 0, 0, 23);
847 /* 1 0 1 0 1 << 6 xkphys cached */
848 uasm_i_ori(p, ptr, ptr, 0x540);
849 uasm_i_drotr(p, ptr, ptr, 11);
850 #elif defined(CONFIG_SMP)
851 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
852 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
853 UASM_i_LA_mostly(p, tmp, pgdc);
854 uasm_i_daddu(p, ptr, ptr, tmp);
855 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
856 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
857 #else
858 UASM_i_LA_mostly(p, ptr, pgdc);
859 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
860 #endif
863 uasm_l_vmalloc_done(l, *p);
865 /* get pgd offset in bytes */
866 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
868 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
869 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
870 #ifndef __PAGETABLE_PUD_FOLDED
871 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
872 uasm_i_ld(p, ptr, 0, ptr); /* get pud pointer */
873 uasm_i_dsrl_safe(p, tmp, tmp, PUD_SHIFT - 3); /* get pud offset in bytes */
874 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PUD - 1) << 3);
875 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pud offset */
876 #endif
877 #ifndef __PAGETABLE_PMD_FOLDED
878 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
879 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
880 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
881 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
882 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
883 #endif
885 EXPORT_SYMBOL_GPL(build_get_pmde64);
888 * BVADDR is the faulting address, PTR is scratch.
889 * PTR will hold the pgd for vmalloc.
891 static void
892 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
893 unsigned int bvaddr, unsigned int ptr,
894 enum vmalloc64_mode mode)
896 long swpd = (long)swapper_pg_dir;
897 int single_insn_swpd;
898 int did_vmalloc_branch = 0;
900 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
902 uasm_l_vmalloc(l, *p);
904 if (mode != not_refill && check_for_high_segbits) {
905 if (single_insn_swpd) {
906 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
907 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
908 did_vmalloc_branch = 1;
909 /* fall through */
910 } else {
911 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
914 if (!did_vmalloc_branch) {
915 if (single_insn_swpd) {
916 uasm_il_b(p, r, label_vmalloc_done);
917 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
918 } else {
919 UASM_i_LA_mostly(p, ptr, swpd);
920 uasm_il_b(p, r, label_vmalloc_done);
921 if (uasm_in_compat_space_p(swpd))
922 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
923 else
924 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
927 if (mode != not_refill && check_for_high_segbits) {
928 uasm_l_large_segbits_fault(l, *p);
930 if (mode == refill_scratch && scratch_reg >= 0)
931 uasm_i_ehb(p);
934 * We get here if we are an xsseg address, or if we are
935 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
937 * Ignoring xsseg (assume disabled so would generate
938 * (address errors?), the only remaining possibility
939 * is the upper xuseg addresses. On processors with
940 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
941 * addresses would have taken an address error. We try
942 * to mimic that here by taking a load/istream page
943 * fault.
945 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
946 uasm_i_sync(p, 0);
947 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
948 uasm_i_jr(p, ptr);
950 if (mode == refill_scratch) {
951 if (scratch_reg >= 0)
952 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
953 else
954 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
955 } else {
956 uasm_i_nop(p);
961 #else /* !CONFIG_64BIT */
964 * TMP and PTR are scratch.
965 * TMP will be clobbered, PTR will hold the pgd entry.
967 void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
969 if (pgd_reg != -1) {
970 /* pgd is in pgd_reg */
971 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
972 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
973 } else {
974 long pgdc = (long)pgd_current;
976 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
977 #ifdef CONFIG_SMP
978 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
979 UASM_i_LA_mostly(p, tmp, pgdc);
980 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
981 uasm_i_addu(p, ptr, tmp, ptr);
982 #else
983 UASM_i_LA_mostly(p, ptr, pgdc);
984 #endif
985 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
986 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
988 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
989 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
990 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
992 EXPORT_SYMBOL_GPL(build_get_pgde32);
994 #endif /* !CONFIG_64BIT */
996 static void build_adjust_context(u32 **p, unsigned int ctx)
998 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
999 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1001 switch (current_cpu_type()) {
1002 case CPU_VR41XX:
1003 case CPU_VR4111:
1004 case CPU_VR4121:
1005 case CPU_VR4122:
1006 case CPU_VR4131:
1007 case CPU_VR4181:
1008 case CPU_VR4181A:
1009 case CPU_VR4133:
1010 shift += 2;
1011 break;
1013 default:
1014 break;
1017 if (shift)
1018 UASM_i_SRL(p, ctx, ctx, shift);
1019 uasm_i_andi(p, ctx, ctx, mask);
1022 void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1025 * Bug workaround for the Nevada. It seems as if under certain
1026 * circumstances the move from cp0_context might produce a
1027 * bogus result when the mfc0 instruction and its consumer are
1028 * in a different cacheline or a load instruction, probably any
1029 * memory reference, is between them.
1031 switch (current_cpu_type()) {
1032 case CPU_NEVADA:
1033 UASM_i_LW(p, ptr, 0, ptr);
1034 GET_CONTEXT(p, tmp); /* get context reg */
1035 break;
1037 default:
1038 GET_CONTEXT(p, tmp); /* get context reg */
1039 UASM_i_LW(p, ptr, 0, ptr);
1040 break;
1043 build_adjust_context(p, tmp);
1044 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1046 EXPORT_SYMBOL_GPL(build_get_ptep);
1048 void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1050 int pte_off_even = 0;
1051 int pte_off_odd = sizeof(pte_t);
1053 #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT)
1054 /* The low 32 bits of EntryLo is stored in pte_high */
1055 pte_off_even += offsetof(pte_t, pte_high);
1056 pte_off_odd += offsetof(pte_t, pte_high);
1057 #endif
1059 if (IS_ENABLED(CONFIG_XPA)) {
1060 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1061 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1062 UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1064 if (cpu_has_xpa && !mips_xpa_disabled) {
1065 uasm_i_lw(p, tmp, 0, ptep);
1066 uasm_i_ext(p, tmp, tmp, 0, 24);
1067 uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1070 uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */
1071 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1072 UASM_i_MTC0(p, tmp, C0_ENTRYLO1);
1074 if (cpu_has_xpa && !mips_xpa_disabled) {
1075 uasm_i_lw(p, tmp, sizeof(pte_t), ptep);
1076 uasm_i_ext(p, tmp, tmp, 0, 24);
1077 uasm_i_mthc0(p, tmp, C0_ENTRYLO1);
1079 return;
1082 UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */
1083 UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */
1084 if (r45k_bvahwbug())
1085 build_tlb_probe_entry(p);
1086 build_convert_pte_to_entrylo(p, tmp);
1087 if (r4k_250MHZhwbug())
1088 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1089 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1090 build_convert_pte_to_entrylo(p, ptep);
1091 if (r45k_bvahwbug())
1092 uasm_i_mfc0(p, tmp, C0_INDEX);
1093 if (r4k_250MHZhwbug())
1094 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1095 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1097 EXPORT_SYMBOL_GPL(build_update_entries);
1099 struct mips_huge_tlb_info {
1100 int huge_pte;
1101 int restore_scratch;
1102 bool need_reload_pte;
1105 static struct mips_huge_tlb_info
1106 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1107 struct uasm_reloc **r, unsigned int tmp,
1108 unsigned int ptr, int c0_scratch_reg)
1110 struct mips_huge_tlb_info rv;
1111 unsigned int even, odd;
1112 int vmalloc_branch_delay_filled = 0;
1113 const int scratch = 1; /* Our extra working register */
1115 rv.huge_pte = scratch;
1116 rv.restore_scratch = 0;
1117 rv.need_reload_pte = false;
1119 if (check_for_high_segbits) {
1120 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1122 if (pgd_reg != -1)
1123 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1124 else
1125 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1127 if (c0_scratch_reg >= 0)
1128 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1129 else
1130 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1132 uasm_i_dsrl_safe(p, scratch, tmp,
1133 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1134 uasm_il_bnez(p, r, scratch, label_vmalloc);
1136 if (pgd_reg == -1) {
1137 vmalloc_branch_delay_filled = 1;
1138 /* Clear lower 23 bits of context. */
1139 uasm_i_dins(p, ptr, 0, 0, 23);
1141 } else {
1142 if (pgd_reg != -1)
1143 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1144 else
1145 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1147 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1149 if (c0_scratch_reg >= 0)
1150 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1151 else
1152 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1154 if (pgd_reg == -1)
1155 /* Clear lower 23 bits of context. */
1156 uasm_i_dins(p, ptr, 0, 0, 23);
1158 uasm_il_bltz(p, r, tmp, label_vmalloc);
1161 if (pgd_reg == -1) {
1162 vmalloc_branch_delay_filled = 1;
1163 /* 1 0 1 0 1 << 6 xkphys cached */
1164 uasm_i_ori(p, ptr, ptr, 0x540);
1165 uasm_i_drotr(p, ptr, ptr, 11);
1168 #ifdef __PAGETABLE_PMD_FOLDED
1169 #define LOC_PTEP scratch
1170 #else
1171 #define LOC_PTEP ptr
1172 #endif
1174 if (!vmalloc_branch_delay_filled)
1175 /* get pgd offset in bytes */
1176 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1178 uasm_l_vmalloc_done(l, *p);
1181 * tmp ptr
1182 * fall-through case = badvaddr *pgd_current
1183 * vmalloc case = badvaddr swapper_pg_dir
1186 if (vmalloc_branch_delay_filled)
1187 /* get pgd offset in bytes */
1188 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1190 #ifdef __PAGETABLE_PMD_FOLDED
1191 GET_CONTEXT(p, tmp); /* get context reg */
1192 #endif
1193 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1195 if (use_lwx_insns()) {
1196 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1197 } else {
1198 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1199 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1202 #ifndef __PAGETABLE_PUD_FOLDED
1203 /* get pud offset in bytes */
1204 uasm_i_dsrl_safe(p, scratch, tmp, PUD_SHIFT - 3);
1205 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PUD - 1) << 3);
1207 if (use_lwx_insns()) {
1208 UASM_i_LWX(p, ptr, scratch, ptr);
1209 } else {
1210 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1211 UASM_i_LW(p, ptr, 0, ptr);
1213 /* ptr contains a pointer to PMD entry */
1214 /* tmp contains the address */
1215 #endif
1217 #ifndef __PAGETABLE_PMD_FOLDED
1218 /* get pmd offset in bytes */
1219 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1220 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1221 GET_CONTEXT(p, tmp); /* get context reg */
1223 if (use_lwx_insns()) {
1224 UASM_i_LWX(p, scratch, scratch, ptr);
1225 } else {
1226 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1227 UASM_i_LW(p, scratch, 0, ptr);
1229 #endif
1230 /* Adjust the context during the load latency. */
1231 build_adjust_context(p, tmp);
1233 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1234 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1236 * The in the LWX case we don't want to do the load in the
1237 * delay slot. It cannot issue in the same cycle and may be
1238 * speculative and unneeded.
1240 if (use_lwx_insns())
1241 uasm_i_nop(p);
1242 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1245 /* build_update_entries */
1246 if (use_lwx_insns()) {
1247 even = ptr;
1248 odd = tmp;
1249 UASM_i_LWX(p, even, scratch, tmp);
1250 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1251 UASM_i_LWX(p, odd, scratch, tmp);
1252 } else {
1253 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1254 even = tmp;
1255 odd = ptr;
1256 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1257 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1259 if (cpu_has_rixi) {
1260 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1261 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1262 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1263 } else {
1264 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1265 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1266 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1268 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1270 if (c0_scratch_reg >= 0) {
1271 uasm_i_ehb(p);
1272 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1273 build_tlb_write_entry(p, l, r, tlb_random);
1274 uasm_l_leave(l, *p);
1275 rv.restore_scratch = 1;
1276 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1277 build_tlb_write_entry(p, l, r, tlb_random);
1278 uasm_l_leave(l, *p);
1279 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1280 } else {
1281 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1282 build_tlb_write_entry(p, l, r, tlb_random);
1283 uasm_l_leave(l, *p);
1284 rv.restore_scratch = 1;
1287 uasm_i_eret(p); /* return from trap */
1289 return rv;
1293 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1294 * because EXL == 0. If we wrap, we can also use the 32 instruction
1295 * slots before the XTLB refill exception handler which belong to the
1296 * unused TLB refill exception.
1298 #define MIPS64_REFILL_INSNS 32
1300 static void build_r4000_tlb_refill_handler(void)
1302 u32 *p = tlb_handler;
1303 struct uasm_label *l = labels;
1304 struct uasm_reloc *r = relocs;
1305 u32 *f;
1306 unsigned int final_len;
1307 struct mips_huge_tlb_info htlb_info __maybe_unused;
1308 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1310 memset(tlb_handler, 0, sizeof(tlb_handler));
1311 memset(labels, 0, sizeof(labels));
1312 memset(relocs, 0, sizeof(relocs));
1313 memset(final_handler, 0, sizeof(final_handler));
1315 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1316 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1317 scratch_reg);
1318 vmalloc_mode = refill_scratch;
1319 } else {
1320 htlb_info.huge_pte = K0;
1321 htlb_info.restore_scratch = 0;
1322 htlb_info.need_reload_pte = true;
1323 vmalloc_mode = refill_noscratch;
1325 * create the plain linear handler
1327 if (bcm1250_m3_war()) {
1328 unsigned int segbits = 44;
1330 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1331 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1332 uasm_i_xor(&p, K0, K0, K1);
1333 uasm_i_dsrl_safe(&p, K1, K0, 62);
1334 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1335 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1336 uasm_i_or(&p, K0, K0, K1);
1337 uasm_il_bnez(&p, &r, K0, label_leave);
1338 /* No need for uasm_i_nop */
1341 #ifdef CONFIG_64BIT
1342 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1343 #else
1344 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1345 #endif
1347 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1348 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1349 #endif
1351 build_get_ptep(&p, K0, K1);
1352 build_update_entries(&p, K0, K1);
1353 build_tlb_write_entry(&p, &l, &r, tlb_random);
1354 uasm_l_leave(&l, p);
1355 uasm_i_eret(&p); /* return from trap */
1357 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1358 uasm_l_tlb_huge_update(&l, p);
1359 if (htlb_info.need_reload_pte)
1360 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1361 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1362 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1363 htlb_info.restore_scratch);
1364 #endif
1366 #ifdef CONFIG_64BIT
1367 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1368 #endif
1371 * Overflow check: For the 64bit handler, we need at least one
1372 * free instruction slot for the wrap-around branch. In worst
1373 * case, if the intended insertion point is a delay slot, we
1374 * need three, with the second nop'ed and the third being
1375 * unused.
1377 switch (boot_cpu_type()) {
1378 default:
1379 if (sizeof(long) == 4) {
1380 case CPU_LOONGSON2EF:
1381 /* Loongson2 ebase is different than r4k, we have more space */
1382 if ((p - tlb_handler) > 64)
1383 panic("TLB refill handler space exceeded");
1385 * Now fold the handler in the TLB refill handler space.
1387 f = final_handler;
1388 /* Simplest case, just copy the handler. */
1389 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1390 final_len = p - tlb_handler;
1391 break;
1392 } else {
1393 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1394 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1395 && uasm_insn_has_bdelay(relocs,
1396 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1397 panic("TLB refill handler space exceeded");
1399 * Now fold the handler in the TLB refill handler space.
1401 f = final_handler + MIPS64_REFILL_INSNS;
1402 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1403 /* Just copy the handler. */
1404 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1405 final_len = p - tlb_handler;
1406 } else {
1407 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1408 const enum label_id ls = label_tlb_huge_update;
1409 #else
1410 const enum label_id ls = label_vmalloc;
1411 #endif
1412 u32 *split;
1413 int ov = 0;
1414 int i;
1416 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1418 BUG_ON(i == ARRAY_SIZE(labels));
1419 split = labels[i].addr;
1422 * See if we have overflown one way or the other.
1424 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1425 split < p - MIPS64_REFILL_INSNS)
1426 ov = 1;
1428 if (ov) {
1430 * Split two instructions before the end. One
1431 * for the branch and one for the instruction
1432 * in the delay slot.
1434 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1437 * If the branch would fall in a delay slot,
1438 * we must back up an additional instruction
1439 * so that it is no longer in a delay slot.
1441 if (uasm_insn_has_bdelay(relocs, split - 1))
1442 split--;
1444 /* Copy first part of the handler. */
1445 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1446 f += split - tlb_handler;
1448 if (ov) {
1449 /* Insert branch. */
1450 uasm_l_split(&l, final_handler);
1451 uasm_il_b(&f, &r, label_split);
1452 if (uasm_insn_has_bdelay(relocs, split))
1453 uasm_i_nop(&f);
1454 else {
1455 uasm_copy_handler(relocs, labels,
1456 split, split + 1, f);
1457 uasm_move_labels(labels, f, f + 1, -1);
1458 f++;
1459 split++;
1463 /* Copy the rest of the handler. */
1464 uasm_copy_handler(relocs, labels, split, p, final_handler);
1465 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1466 (p - split);
1469 break;
1472 uasm_resolve_relocs(relocs, labels);
1473 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1474 final_len);
1476 memcpy((void *)ebase, final_handler, 0x100);
1477 local_flush_icache_range(ebase, ebase + 0x100);
1478 dump_handler("r4000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x100));
1481 static void setup_pw(void)
1483 unsigned long pgd_i, pgd_w;
1484 #ifndef __PAGETABLE_PMD_FOLDED
1485 unsigned long pmd_i, pmd_w;
1486 #endif
1487 unsigned long pt_i, pt_w;
1488 unsigned long pte_i, pte_w;
1489 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1490 unsigned long psn;
1492 psn = ilog2(_PAGE_HUGE); /* bit used to indicate huge page */
1493 #endif
1494 pgd_i = PGDIR_SHIFT; /* 1st level PGD */
1495 #ifndef __PAGETABLE_PMD_FOLDED
1496 pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_ORDER;
1498 pmd_i = PMD_SHIFT; /* 2nd level PMD */
1499 pmd_w = PMD_SHIFT - PAGE_SHIFT;
1500 #else
1501 pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_ORDER;
1502 #endif
1504 pt_i = PAGE_SHIFT; /* 3rd level PTE */
1505 pt_w = PAGE_SHIFT - 3;
1507 pte_i = ilog2(_PAGE_GLOBAL);
1508 pte_w = 0;
1510 #ifndef __PAGETABLE_PMD_FOLDED
1511 write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i);
1512 write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w);
1513 #else
1514 write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i);
1515 write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w);
1516 #endif
1518 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1519 write_c0_pwctl(1 << 6 | psn);
1520 #endif
1521 write_c0_kpgd((long)swapper_pg_dir);
1522 kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */
1525 static void build_loongson3_tlb_refill_handler(void)
1527 u32 *p = tlb_handler;
1528 struct uasm_label *l = labels;
1529 struct uasm_reloc *r = relocs;
1531 memset(labels, 0, sizeof(labels));
1532 memset(relocs, 0, sizeof(relocs));
1533 memset(tlb_handler, 0, sizeof(tlb_handler));
1535 if (check_for_high_segbits) {
1536 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1537 uasm_i_dsrl_safe(&p, K1, K0, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1538 uasm_il_beqz(&p, &r, K1, label_vmalloc);
1539 uasm_i_nop(&p);
1541 uasm_il_bgez(&p, &r, K0, label_large_segbits_fault);
1542 uasm_i_nop(&p);
1543 uasm_l_vmalloc(&l, p);
1546 uasm_i_dmfc0(&p, K1, C0_PGD);
1548 uasm_i_lddir(&p, K0, K1, 3); /* global page dir */
1549 #ifndef __PAGETABLE_PMD_FOLDED
1550 uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */
1551 #endif
1552 uasm_i_ldpte(&p, K1, 0); /* even */
1553 uasm_i_ldpte(&p, K1, 1); /* odd */
1554 uasm_i_tlbwr(&p);
1556 /* restore page mask */
1557 if (PM_DEFAULT_MASK >> 16) {
1558 uasm_i_lui(&p, K0, PM_DEFAULT_MASK >> 16);
1559 uasm_i_ori(&p, K0, K0, PM_DEFAULT_MASK & 0xffff);
1560 uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1561 } else if (PM_DEFAULT_MASK) {
1562 uasm_i_ori(&p, K0, 0, PM_DEFAULT_MASK);
1563 uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1564 } else {
1565 uasm_i_mtc0(&p, 0, C0_PAGEMASK);
1568 uasm_i_eret(&p);
1570 if (check_for_high_segbits) {
1571 uasm_l_large_segbits_fault(&l, p);
1572 UASM_i_LA(&p, K1, (unsigned long)tlb_do_page_fault_0);
1573 uasm_i_jr(&p, K1);
1574 uasm_i_nop(&p);
1577 uasm_resolve_relocs(relocs, labels);
1578 memcpy((void *)(ebase + 0x80), tlb_handler, 0x80);
1579 local_flush_icache_range(ebase + 0x80, ebase + 0x100);
1580 dump_handler("loongson3_tlb_refill",
1581 (u32 *)(ebase + 0x80), (u32 *)(ebase + 0x100));
1584 static void build_setup_pgd(void)
1586 const int a0 = 4;
1587 const int __maybe_unused a1 = 5;
1588 const int __maybe_unused a2 = 6;
1589 u32 *p = (u32 *)msk_isa16_mode((ulong)tlbmiss_handler_setup_pgd);
1590 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1591 long pgdc = (long)pgd_current;
1592 #endif
1594 memset(p, 0, tlbmiss_handler_setup_pgd_end - (char *)p);
1595 memset(labels, 0, sizeof(labels));
1596 memset(relocs, 0, sizeof(relocs));
1597 pgd_reg = allocate_kscratch();
1598 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1599 if (pgd_reg == -1) {
1600 struct uasm_label *l = labels;
1601 struct uasm_reloc *r = relocs;
1603 /* PGD << 11 in c0_Context */
1605 * If it is a ckseg0 address, convert to a physical
1606 * address. Shifting right by 29 and adding 4 will
1607 * result in zero for these addresses.
1610 UASM_i_SRA(&p, a1, a0, 29);
1611 UASM_i_ADDIU(&p, a1, a1, 4);
1612 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1613 uasm_i_nop(&p);
1614 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1615 uasm_l_tlbl_goaround1(&l, p);
1616 UASM_i_SLL(&p, a0, a0, 11);
1617 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1618 uasm_i_jr(&p, 31);
1619 uasm_i_ehb(&p);
1620 } else {
1621 /* PGD in c0_KScratch */
1622 if (cpu_has_ldpte)
1623 UASM_i_MTC0(&p, a0, C0_PWBASE);
1624 else
1625 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1626 uasm_i_jr(&p, 31);
1627 uasm_i_ehb(&p);
1629 #else
1630 #ifdef CONFIG_SMP
1631 /* Save PGD to pgd_current[smp_processor_id()] */
1632 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1633 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1634 UASM_i_LA_mostly(&p, a2, pgdc);
1635 UASM_i_ADDU(&p, a2, a2, a1);
1636 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1637 #else
1638 UASM_i_LA_mostly(&p, a2, pgdc);
1639 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1640 #endif /* SMP */
1642 /* if pgd_reg is allocated, save PGD also to scratch register */
1643 if (pgd_reg != -1) {
1644 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1645 uasm_i_jr(&p, 31);
1646 uasm_i_ehb(&p);
1647 } else {
1648 uasm_i_jr(&p, 31);
1649 uasm_i_nop(&p);
1651 #endif
1652 if (p >= (u32 *)tlbmiss_handler_setup_pgd_end)
1653 panic("tlbmiss_handler_setup_pgd space exceeded");
1655 uasm_resolve_relocs(relocs, labels);
1656 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1657 (unsigned int)(p - (u32 *)tlbmiss_handler_setup_pgd));
1659 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1660 tlbmiss_handler_setup_pgd_end);
1663 static void
1664 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1666 #ifdef CONFIG_SMP
1667 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
1668 uasm_i_sync(p, 0);
1669 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1670 if (cpu_has_64bits)
1671 uasm_i_lld(p, pte, 0, ptr);
1672 else
1673 # endif
1674 UASM_i_LL(p, pte, 0, ptr);
1675 #else
1676 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1677 if (cpu_has_64bits)
1678 uasm_i_ld(p, pte, 0, ptr);
1679 else
1680 # endif
1681 UASM_i_LW(p, pte, 0, ptr);
1682 #endif
1685 static void
1686 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1687 unsigned int mode, unsigned int scratch)
1689 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1690 unsigned int swmode = mode & ~hwmode;
1692 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) {
1693 uasm_i_lui(p, scratch, swmode >> 16);
1694 uasm_i_or(p, pte, pte, scratch);
1695 BUG_ON(swmode & 0xffff);
1696 } else {
1697 uasm_i_ori(p, pte, pte, mode);
1700 #ifdef CONFIG_SMP
1701 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1702 if (cpu_has_64bits)
1703 uasm_i_scd(p, pte, 0, ptr);
1704 else
1705 # endif
1706 UASM_i_SC(p, pte, 0, ptr);
1708 if (r10000_llsc_war())
1709 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1710 else
1711 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1713 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1714 if (!cpu_has_64bits) {
1715 /* no uasm_i_nop needed */
1716 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1717 uasm_i_ori(p, pte, pte, hwmode);
1718 BUG_ON(hwmode & ~0xffff);
1719 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1720 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1721 /* no uasm_i_nop needed */
1722 uasm_i_lw(p, pte, 0, ptr);
1723 } else
1724 uasm_i_nop(p);
1725 # else
1726 uasm_i_nop(p);
1727 # endif
1728 #else
1729 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1730 if (cpu_has_64bits)
1731 uasm_i_sd(p, pte, 0, ptr);
1732 else
1733 # endif
1734 UASM_i_SW(p, pte, 0, ptr);
1736 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1737 if (!cpu_has_64bits) {
1738 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1739 uasm_i_ori(p, pte, pte, hwmode);
1740 BUG_ON(hwmode & ~0xffff);
1741 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1742 uasm_i_lw(p, pte, 0, ptr);
1744 # endif
1745 #endif
1749 * Check if PTE is present, if not then jump to LABEL. PTR points to
1750 * the page table where this PTE is located, PTE will be re-loaded
1751 * with it's original value.
1753 static void
1754 build_pte_present(u32 **p, struct uasm_reloc **r,
1755 int pte, int ptr, int scratch, enum label_id lid)
1757 int t = scratch >= 0 ? scratch : pte;
1758 int cur = pte;
1760 if (cpu_has_rixi) {
1761 if (use_bbit_insns()) {
1762 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1763 uasm_i_nop(p);
1764 } else {
1765 if (_PAGE_PRESENT_SHIFT) {
1766 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1767 cur = t;
1769 uasm_i_andi(p, t, cur, 1);
1770 uasm_il_beqz(p, r, t, lid);
1771 if (pte == t)
1772 /* You lose the SMP race :-(*/
1773 iPTE_LW(p, pte, ptr);
1775 } else {
1776 if (_PAGE_PRESENT_SHIFT) {
1777 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1778 cur = t;
1780 uasm_i_andi(p, t, cur,
1781 (_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT);
1782 uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT);
1783 uasm_il_bnez(p, r, t, lid);
1784 if (pte == t)
1785 /* You lose the SMP race :-(*/
1786 iPTE_LW(p, pte, ptr);
1790 /* Make PTE valid, store result in PTR. */
1791 static void
1792 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1793 unsigned int ptr, unsigned int scratch)
1795 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1797 iPTE_SW(p, r, pte, ptr, mode, scratch);
1801 * Check if PTE can be written to, if not branch to LABEL. Regardless
1802 * restore PTE with value from PTR when done.
1804 static void
1805 build_pte_writable(u32 **p, struct uasm_reloc **r,
1806 unsigned int pte, unsigned int ptr, int scratch,
1807 enum label_id lid)
1809 int t = scratch >= 0 ? scratch : pte;
1810 int cur = pte;
1812 if (_PAGE_PRESENT_SHIFT) {
1813 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1814 cur = t;
1816 uasm_i_andi(p, t, cur,
1817 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1818 uasm_i_xori(p, t, t,
1819 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1820 uasm_il_bnez(p, r, t, lid);
1821 if (pte == t)
1822 /* You lose the SMP race :-(*/
1823 iPTE_LW(p, pte, ptr);
1824 else
1825 uasm_i_nop(p);
1828 /* Make PTE writable, update software status bits as well, then store
1829 * at PTR.
1831 static void
1832 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1833 unsigned int ptr, unsigned int scratch)
1835 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1836 | _PAGE_DIRTY);
1838 iPTE_SW(p, r, pte, ptr, mode, scratch);
1842 * Check if PTE can be modified, if not branch to LABEL. Regardless
1843 * restore PTE with value from PTR when done.
1845 static void
1846 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1847 unsigned int pte, unsigned int ptr, int scratch,
1848 enum label_id lid)
1850 if (use_bbit_insns()) {
1851 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1852 uasm_i_nop(p);
1853 } else {
1854 int t = scratch >= 0 ? scratch : pte;
1855 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1856 uasm_i_andi(p, t, t, 1);
1857 uasm_il_beqz(p, r, t, lid);
1858 if (pte == t)
1859 /* You lose the SMP race :-(*/
1860 iPTE_LW(p, pte, ptr);
1864 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1868 * R3000 style TLB load/store/modify handlers.
1872 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1873 * Then it returns.
1875 static void
1876 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1878 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1879 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1880 uasm_i_tlbwi(p);
1881 uasm_i_jr(p, tmp);
1882 uasm_i_rfe(p); /* branch delay */
1886 * This places the pte into ENTRYLO0 and writes it with tlbwi
1887 * or tlbwr as appropriate. This is because the index register
1888 * may have the probe fail bit set as a result of a trap on a
1889 * kseg2 access, i.e. without refill. Then it returns.
1891 static void
1892 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1893 struct uasm_reloc **r, unsigned int pte,
1894 unsigned int tmp)
1896 uasm_i_mfc0(p, tmp, C0_INDEX);
1897 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1898 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1899 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1900 uasm_i_tlbwi(p); /* cp0 delay */
1901 uasm_i_jr(p, tmp);
1902 uasm_i_rfe(p); /* branch delay */
1903 uasm_l_r3000_write_probe_fail(l, *p);
1904 uasm_i_tlbwr(p); /* cp0 delay */
1905 uasm_i_jr(p, tmp);
1906 uasm_i_rfe(p); /* branch delay */
1909 static void
1910 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1911 unsigned int ptr)
1913 long pgdc = (long)pgd_current;
1915 uasm_i_mfc0(p, pte, C0_BADVADDR);
1916 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1917 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1918 uasm_i_srl(p, pte, pte, 22); /* load delay */
1919 uasm_i_sll(p, pte, pte, 2);
1920 uasm_i_addu(p, ptr, ptr, pte);
1921 uasm_i_mfc0(p, pte, C0_CONTEXT);
1922 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1923 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1924 uasm_i_addu(p, ptr, ptr, pte);
1925 uasm_i_lw(p, pte, 0, ptr);
1926 uasm_i_tlbp(p); /* load delay */
1929 static void build_r3000_tlb_load_handler(void)
1931 u32 *p = (u32 *)handle_tlbl;
1932 struct uasm_label *l = labels;
1933 struct uasm_reloc *r = relocs;
1935 memset(p, 0, handle_tlbl_end - (char *)p);
1936 memset(labels, 0, sizeof(labels));
1937 memset(relocs, 0, sizeof(relocs));
1939 build_r3000_tlbchange_handler_head(&p, K0, K1);
1940 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1941 uasm_i_nop(&p); /* load delay */
1942 build_make_valid(&p, &r, K0, K1, -1);
1943 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1945 uasm_l_nopage_tlbl(&l, p);
1946 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1947 uasm_i_nop(&p);
1949 if (p >= (u32 *)handle_tlbl_end)
1950 panic("TLB load handler fastpath space exceeded");
1952 uasm_resolve_relocs(relocs, labels);
1953 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1954 (unsigned int)(p - (u32 *)handle_tlbl));
1956 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_end);
1959 static void build_r3000_tlb_store_handler(void)
1961 u32 *p = (u32 *)handle_tlbs;
1962 struct uasm_label *l = labels;
1963 struct uasm_reloc *r = relocs;
1965 memset(p, 0, handle_tlbs_end - (char *)p);
1966 memset(labels, 0, sizeof(labels));
1967 memset(relocs, 0, sizeof(relocs));
1969 build_r3000_tlbchange_handler_head(&p, K0, K1);
1970 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1971 uasm_i_nop(&p); /* load delay */
1972 build_make_write(&p, &r, K0, K1, -1);
1973 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1975 uasm_l_nopage_tlbs(&l, p);
1976 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1977 uasm_i_nop(&p);
1979 if (p >= (u32 *)handle_tlbs_end)
1980 panic("TLB store handler fastpath space exceeded");
1982 uasm_resolve_relocs(relocs, labels);
1983 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1984 (unsigned int)(p - (u32 *)handle_tlbs));
1986 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_end);
1989 static void build_r3000_tlb_modify_handler(void)
1991 u32 *p = (u32 *)handle_tlbm;
1992 struct uasm_label *l = labels;
1993 struct uasm_reloc *r = relocs;
1995 memset(p, 0, handle_tlbm_end - (char *)p);
1996 memset(labels, 0, sizeof(labels));
1997 memset(relocs, 0, sizeof(relocs));
1999 build_r3000_tlbchange_handler_head(&p, K0, K1);
2000 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
2001 uasm_i_nop(&p); /* load delay */
2002 build_make_write(&p, &r, K0, K1, -1);
2003 build_r3000_pte_reload_tlbwi(&p, K0, K1);
2005 uasm_l_nopage_tlbm(&l, p);
2006 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2007 uasm_i_nop(&p);
2009 if (p >= (u32 *)handle_tlbm_end)
2010 panic("TLB modify handler fastpath space exceeded");
2012 uasm_resolve_relocs(relocs, labels);
2013 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2014 (unsigned int)(p - (u32 *)handle_tlbm));
2016 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_end);
2018 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
2020 static bool cpu_has_tlbex_tlbp_race(void)
2023 * When a Hardware Table Walker is running it can replace TLB entries
2024 * at any time, leading to a race between it & the CPU.
2026 if (cpu_has_htw)
2027 return true;
2030 * If the CPU shares FTLB RAM with its siblings then our entry may be
2031 * replaced at any time by a sibling performing a write to the FTLB.
2033 if (cpu_has_shared_ftlb_ram)
2034 return true;
2036 /* In all other cases there ought to be no race condition to handle */
2037 return false;
2041 * R4000 style TLB load/store/modify handlers.
2043 static struct work_registers
2044 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
2045 struct uasm_reloc **r)
2047 struct work_registers wr = build_get_work_registers(p);
2049 #ifdef CONFIG_64BIT
2050 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
2051 #else
2052 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
2053 #endif
2055 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2057 * For huge tlb entries, pmd doesn't contain an address but
2058 * instead contains the tlb pte. Check the PAGE_HUGE bit and
2059 * see if we need to jump to huge tlb processing.
2061 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
2062 #endif
2064 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
2065 UASM_i_LW(p, wr.r2, 0, wr.r2);
2066 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
2067 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
2068 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
2070 #ifdef CONFIG_SMP
2071 uasm_l_smp_pgtable_change(l, *p);
2072 #endif
2073 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
2074 if (!m4kc_tlbp_war()) {
2075 build_tlb_probe_entry(p);
2076 if (cpu_has_tlbex_tlbp_race()) {
2077 /* race condition happens, leaving */
2078 uasm_i_ehb(p);
2079 uasm_i_mfc0(p, wr.r3, C0_INDEX);
2080 uasm_il_bltz(p, r, wr.r3, label_leave);
2081 uasm_i_nop(p);
2084 return wr;
2087 static void
2088 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
2089 struct uasm_reloc **r, unsigned int tmp,
2090 unsigned int ptr)
2092 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
2093 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
2094 build_update_entries(p, tmp, ptr);
2095 build_tlb_write_entry(p, l, r, tlb_indexed);
2096 uasm_l_leave(l, *p);
2097 build_restore_work_registers(p);
2098 uasm_i_eret(p); /* return from trap */
2100 #ifdef CONFIG_64BIT
2101 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
2102 #endif
2105 static void build_r4000_tlb_load_handler(void)
2107 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl);
2108 struct uasm_label *l = labels;
2109 struct uasm_reloc *r = relocs;
2110 struct work_registers wr;
2112 memset(p, 0, handle_tlbl_end - (char *)p);
2113 memset(labels, 0, sizeof(labels));
2114 memset(relocs, 0, sizeof(relocs));
2116 if (bcm1250_m3_war()) {
2117 unsigned int segbits = 44;
2119 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
2120 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
2121 uasm_i_xor(&p, K0, K0, K1);
2122 uasm_i_dsrl_safe(&p, K1, K0, 62);
2123 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
2124 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
2125 uasm_i_or(&p, K0, K0, K1);
2126 uasm_il_bnez(&p, &r, K0, label_leave);
2127 /* No need for uasm_i_nop */
2130 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2131 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2132 if (m4kc_tlbp_war())
2133 build_tlb_probe_entry(&p);
2135 if (cpu_has_rixi && !cpu_has_rixiex) {
2137 * If the page is not _PAGE_VALID, RI or XI could not
2138 * have triggered it. Skip the expensive test..
2140 if (use_bbit_insns()) {
2141 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2142 label_tlbl_goaround1);
2143 } else {
2144 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2145 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2147 uasm_i_nop(&p);
2150 * Warn if something may race with us & replace the TLB entry
2151 * before we read it here. Everything with such races should
2152 * also have dedicated RiXi exception handlers, so this
2153 * shouldn't be hit.
2155 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2157 uasm_i_tlbr(&p);
2159 switch (current_cpu_type()) {
2160 default:
2161 if (cpu_has_mips_r2_exec_hazard) {
2162 uasm_i_ehb(&p);
2164 case CPU_CAVIUM_OCTEON:
2165 case CPU_CAVIUM_OCTEON_PLUS:
2166 case CPU_CAVIUM_OCTEON2:
2167 break;
2171 /* Examine entrylo 0 or 1 based on ptr. */
2172 if (use_bbit_insns()) {
2173 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2174 } else {
2175 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2176 uasm_i_beqz(&p, wr.r3, 8);
2178 /* load it in the delay slot*/
2179 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2180 /* load it if ptr is odd */
2181 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2183 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2184 * XI must have triggered it.
2186 if (use_bbit_insns()) {
2187 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2188 uasm_i_nop(&p);
2189 uasm_l_tlbl_goaround1(&l, p);
2190 } else {
2191 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2192 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2193 uasm_i_nop(&p);
2195 uasm_l_tlbl_goaround1(&l, p);
2197 build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3);
2198 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2200 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2202 * This is the entry point when build_r4000_tlbchange_handler_head
2203 * spots a huge page.
2205 uasm_l_tlb_huge_update(&l, p);
2206 iPTE_LW(&p, wr.r1, wr.r2);
2207 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2208 build_tlb_probe_entry(&p);
2210 if (cpu_has_rixi && !cpu_has_rixiex) {
2212 * If the page is not _PAGE_VALID, RI or XI could not
2213 * have triggered it. Skip the expensive test..
2215 if (use_bbit_insns()) {
2216 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2217 label_tlbl_goaround2);
2218 } else {
2219 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2220 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2222 uasm_i_nop(&p);
2225 * Warn if something may race with us & replace the TLB entry
2226 * before we read it here. Everything with such races should
2227 * also have dedicated RiXi exception handlers, so this
2228 * shouldn't be hit.
2230 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2232 uasm_i_tlbr(&p);
2234 switch (current_cpu_type()) {
2235 default:
2236 if (cpu_has_mips_r2_exec_hazard) {
2237 uasm_i_ehb(&p);
2239 case CPU_CAVIUM_OCTEON:
2240 case CPU_CAVIUM_OCTEON_PLUS:
2241 case CPU_CAVIUM_OCTEON2:
2242 break;
2246 /* Examine entrylo 0 or 1 based on ptr. */
2247 if (use_bbit_insns()) {
2248 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2249 } else {
2250 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2251 uasm_i_beqz(&p, wr.r3, 8);
2253 /* load it in the delay slot*/
2254 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2255 /* load it if ptr is odd */
2256 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2258 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2259 * XI must have triggered it.
2261 if (use_bbit_insns()) {
2262 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2263 } else {
2264 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2265 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2267 if (PM_DEFAULT_MASK == 0)
2268 uasm_i_nop(&p);
2270 * We clobbered C0_PAGEMASK, restore it. On the other branch
2271 * it is restored in build_huge_tlb_write_entry.
2273 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2275 uasm_l_tlbl_goaround2(&l, p);
2277 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2278 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2279 #endif
2281 uasm_l_nopage_tlbl(&l, p);
2282 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2283 uasm_i_sync(&p, 0);
2284 build_restore_work_registers(&p);
2285 #ifdef CONFIG_CPU_MICROMIPS
2286 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2287 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2288 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2289 uasm_i_jr(&p, K0);
2290 } else
2291 #endif
2292 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2293 uasm_i_nop(&p);
2295 if (p >= (u32 *)handle_tlbl_end)
2296 panic("TLB load handler fastpath space exceeded");
2298 uasm_resolve_relocs(relocs, labels);
2299 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2300 (unsigned int)(p - (u32 *)handle_tlbl));
2302 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_end);
2305 static void build_r4000_tlb_store_handler(void)
2307 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs);
2308 struct uasm_label *l = labels;
2309 struct uasm_reloc *r = relocs;
2310 struct work_registers wr;
2312 memset(p, 0, handle_tlbs_end - (char *)p);
2313 memset(labels, 0, sizeof(labels));
2314 memset(relocs, 0, sizeof(relocs));
2316 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2317 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2318 if (m4kc_tlbp_war())
2319 build_tlb_probe_entry(&p);
2320 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2321 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2323 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2325 * This is the entry point when
2326 * build_r4000_tlbchange_handler_head spots a huge page.
2328 uasm_l_tlb_huge_update(&l, p);
2329 iPTE_LW(&p, wr.r1, wr.r2);
2330 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2331 build_tlb_probe_entry(&p);
2332 uasm_i_ori(&p, wr.r1, wr.r1,
2333 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2334 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2335 #endif
2337 uasm_l_nopage_tlbs(&l, p);
2338 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2339 uasm_i_sync(&p, 0);
2340 build_restore_work_registers(&p);
2341 #ifdef CONFIG_CPU_MICROMIPS
2342 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2343 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2344 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2345 uasm_i_jr(&p, K0);
2346 } else
2347 #endif
2348 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2349 uasm_i_nop(&p);
2351 if (p >= (u32 *)handle_tlbs_end)
2352 panic("TLB store handler fastpath space exceeded");
2354 uasm_resolve_relocs(relocs, labels);
2355 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2356 (unsigned int)(p - (u32 *)handle_tlbs));
2358 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_end);
2361 static void build_r4000_tlb_modify_handler(void)
2363 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm);
2364 struct uasm_label *l = labels;
2365 struct uasm_reloc *r = relocs;
2366 struct work_registers wr;
2368 memset(p, 0, handle_tlbm_end - (char *)p);
2369 memset(labels, 0, sizeof(labels));
2370 memset(relocs, 0, sizeof(relocs));
2372 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2373 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2374 if (m4kc_tlbp_war())
2375 build_tlb_probe_entry(&p);
2376 /* Present and writable bits set, set accessed and dirty bits. */
2377 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2378 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2380 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2382 * This is the entry point when
2383 * build_r4000_tlbchange_handler_head spots a huge page.
2385 uasm_l_tlb_huge_update(&l, p);
2386 iPTE_LW(&p, wr.r1, wr.r2);
2387 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2388 build_tlb_probe_entry(&p);
2389 uasm_i_ori(&p, wr.r1, wr.r1,
2390 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2391 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2392 #endif
2394 uasm_l_nopage_tlbm(&l, p);
2395 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2396 uasm_i_sync(&p, 0);
2397 build_restore_work_registers(&p);
2398 #ifdef CONFIG_CPU_MICROMIPS
2399 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2400 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2401 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2402 uasm_i_jr(&p, K0);
2403 } else
2404 #endif
2405 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2406 uasm_i_nop(&p);
2408 if (p >= (u32 *)handle_tlbm_end)
2409 panic("TLB modify handler fastpath space exceeded");
2411 uasm_resolve_relocs(relocs, labels);
2412 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2413 (unsigned int)(p - (u32 *)handle_tlbm));
2415 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_end);
2418 static void flush_tlb_handlers(void)
2420 local_flush_icache_range((unsigned long)handle_tlbl,
2421 (unsigned long)handle_tlbl_end);
2422 local_flush_icache_range((unsigned long)handle_tlbs,
2423 (unsigned long)handle_tlbs_end);
2424 local_flush_icache_range((unsigned long)handle_tlbm,
2425 (unsigned long)handle_tlbm_end);
2426 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2427 (unsigned long)tlbmiss_handler_setup_pgd_end);
2430 static void print_htw_config(void)
2432 unsigned long config;
2433 unsigned int pwctl;
2434 const int field = 2 * sizeof(unsigned long);
2436 config = read_c0_pwfield();
2437 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2438 field, config,
2439 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2440 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2441 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2442 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2443 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2445 config = read_c0_pwsize();
2446 pr_debug("PWSize (0x%0*lx): PS: 0x%lx GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2447 field, config,
2448 (config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT,
2449 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2450 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2451 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2452 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2453 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2455 pwctl = read_c0_pwctl();
2456 pr_debug("PWCtl (0x%x): PWEn: 0x%x XK: 0x%x XS: 0x%x XU: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2457 pwctl,
2458 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2459 (pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT,
2460 (pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT,
2461 (pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT,
2462 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2463 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2464 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2467 static void config_htw_params(void)
2469 unsigned long pwfield, pwsize, ptei;
2470 unsigned int config;
2473 * We are using 2-level page tables, so we only need to
2474 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2475 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2476 * write values less than 0xc in these fields because the entire
2477 * write will be dropped. As a result of which, we must preserve
2478 * the original reset values and overwrite only what we really want.
2481 pwfield = read_c0_pwfield();
2482 /* re-initialize the GDI field */
2483 pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2484 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2485 /* re-initialize the PTI field including the even/odd bit */
2486 pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2487 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2488 if (CONFIG_PGTABLE_LEVELS >= 3) {
2489 pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2490 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2492 /* Set the PTEI right shift */
2493 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2494 pwfield |= ptei;
2495 write_c0_pwfield(pwfield);
2496 /* Check whether the PTEI value is supported */
2497 back_to_back_c0_hazard();
2498 pwfield = read_c0_pwfield();
2499 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2500 != ptei) {
2501 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2502 ptei);
2504 * Drop option to avoid HTW being enabled via another path
2505 * (eg htw_reset())
2507 current_cpu_data.options &= ~MIPS_CPU_HTW;
2508 return;
2511 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2512 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2513 if (CONFIG_PGTABLE_LEVELS >= 3)
2514 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2516 /* Set pointer size to size of directory pointers */
2517 if (IS_ENABLED(CONFIG_64BIT))
2518 pwsize |= MIPS_PWSIZE_PS_MASK;
2519 /* PTEs may be multiple pointers long (e.g. with XPA) */
2520 pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT)
2521 & MIPS_PWSIZE_PTEW_MASK;
2523 write_c0_pwsize(pwsize);
2525 /* Make sure everything is set before we enable the HTW */
2526 back_to_back_c0_hazard();
2529 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of
2530 * the pwctl fields.
2532 config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2533 if (IS_ENABLED(CONFIG_64BIT))
2534 config |= MIPS_PWCTL_XU_MASK;
2535 write_c0_pwctl(config);
2536 pr_info("Hardware Page Table Walker enabled\n");
2538 print_htw_config();
2541 static void config_xpa_params(void)
2543 #ifdef CONFIG_XPA
2544 unsigned int pagegrain;
2546 if (mips_xpa_disabled) {
2547 pr_info("Extended Physical Addressing (XPA) disabled\n");
2548 return;
2551 pagegrain = read_c0_pagegrain();
2552 write_c0_pagegrain(pagegrain | PG_ELPA);
2553 back_to_back_c0_hazard();
2554 pagegrain = read_c0_pagegrain();
2556 if (pagegrain & PG_ELPA)
2557 pr_info("Extended Physical Addressing (XPA) enabled\n");
2558 else
2559 panic("Extended Physical Addressing (XPA) disabled");
2560 #endif
2563 static void check_pabits(void)
2565 unsigned long entry;
2566 unsigned pabits, fillbits;
2568 if (!cpu_has_rixi || !_PAGE_NO_EXEC) {
2570 * We'll only be making use of the fact that we can rotate bits
2571 * into the fill if the CPU supports RIXI, so don't bother
2572 * probing this for CPUs which don't.
2574 return;
2577 write_c0_entrylo0(~0ul);
2578 back_to_back_c0_hazard();
2579 entry = read_c0_entrylo0();
2581 /* clear all non-PFN bits */
2582 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2583 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2585 /* find a lower bound on PABITS, and upper bound on fill bits */
2586 pabits = fls_long(entry) + 6;
2587 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2589 /* minus the RI & XI bits */
2590 fillbits -= min_t(unsigned, fillbits, 2);
2592 if (fillbits >= ilog2(_PAGE_NO_EXEC))
2593 fill_includes_sw_bits = true;
2595 pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2598 void build_tlb_refill_handler(void)
2601 * The refill handler is generated per-CPU, multi-node systems
2602 * may have local storage for it. The other handlers are only
2603 * needed once.
2605 static int run_once = 0;
2607 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi)
2608 panic("Kernels supporting XPA currently require CPUs with RIXI");
2610 output_pgtable_bits_defines();
2611 check_pabits();
2613 #ifdef CONFIG_64BIT
2614 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2615 #endif
2617 if (cpu_has_3kex) {
2618 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2619 if (!run_once) {
2620 build_setup_pgd();
2621 build_r3000_tlb_refill_handler();
2622 build_r3000_tlb_load_handler();
2623 build_r3000_tlb_store_handler();
2624 build_r3000_tlb_modify_handler();
2625 flush_tlb_handlers();
2626 run_once++;
2628 #else
2629 panic("No R3000 TLB refill handler");
2630 #endif
2631 return;
2634 if (cpu_has_ldpte)
2635 setup_pw();
2637 if (!run_once) {
2638 scratch_reg = allocate_kscratch();
2639 build_setup_pgd();
2640 build_r4000_tlb_load_handler();
2641 build_r4000_tlb_store_handler();
2642 build_r4000_tlb_modify_handler();
2643 if (cpu_has_ldpte)
2644 build_loongson3_tlb_refill_handler();
2645 else
2646 build_r4000_tlb_refill_handler();
2647 flush_tlb_handlers();
2648 run_once++;
2650 if (cpu_has_xpa)
2651 config_xpa_params();
2652 if (cpu_has_htw)
2653 config_htw_params();