arm64: dts: Revert "specify console via command line"
[linux/fpc-iii.git] / arch / powerpc / kernel / eeh.c
blob17cb3e9b5697f6282dc9f5f766b4f18c92fb6bd4
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
6 * Copyright 2001-2012 IBM Corporation.
8 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
9 */
11 #include <linux/delay.h>
12 #include <linux/sched.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/pci.h>
16 #include <linux/iommu.h>
17 #include <linux/proc_fs.h>
18 #include <linux/rbtree.h>
19 #include <linux/reboot.h>
20 #include <linux/seq_file.h>
21 #include <linux/spinlock.h>
22 #include <linux/export.h>
23 #include <linux/of.h>
25 #include <linux/atomic.h>
26 #include <asm/debugfs.h>
27 #include <asm/eeh.h>
28 #include <asm/eeh_event.h>
29 #include <asm/io.h>
30 #include <asm/iommu.h>
31 #include <asm/machdep.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/rtas.h>
34 #include <asm/pte-walk.h>
37 /** Overview:
38 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39 * dealing with PCI bus errors that can't be dealt with within the
40 * usual PCI framework, except by check-stopping the CPU. Systems
41 * that are designed for high-availability/reliability cannot afford
42 * to crash due to a "mere" PCI error, thus the need for EEH.
43 * An EEH-capable bridge operates by converting a detected error
44 * into a "slot freeze", taking the PCI adapter off-line, making
45 * the slot behave, from the OS'es point of view, as if the slot
46 * were "empty": all reads return 0xff's and all writes are silently
47 * ignored. EEH slot isolation events can be triggered by parity
48 * errors on the address or data busses (e.g. during posted writes),
49 * which in turn might be caused by low voltage on the bus, dust,
50 * vibration, humidity, radioactivity or plain-old failed hardware.
52 * Note, however, that one of the leading causes of EEH slot
53 * freeze events are buggy device drivers, buggy device microcode,
54 * or buggy device hardware. This is because any attempt by the
55 * device to bus-master data to a memory address that is not
56 * assigned to the device will trigger a slot freeze. (The idea
57 * is to prevent devices-gone-wild from corrupting system memory).
58 * Buggy hardware/drivers will have a miserable time co-existing
59 * with EEH.
61 * Ideally, a PCI device driver, when suspecting that an isolation
62 * event has occurred (e.g. by reading 0xff's), will then ask EEH
63 * whether this is the case, and then take appropriate steps to
64 * reset the PCI slot, the PCI device, and then resume operations.
65 * However, until that day, the checking is done here, with the
66 * eeh_check_failure() routine embedded in the MMIO macros. If
67 * the slot is found to be isolated, an "EEH Event" is synthesized
68 * and sent out for processing.
71 /* If a device driver keeps reading an MMIO register in an interrupt
72 * handler after a slot isolation event, it might be broken.
73 * This sets the threshold for how many read attempts we allow
74 * before printing an error message.
76 #define EEH_MAX_FAILS 2100000
78 /* Time to wait for a PCI slot to report status, in milliseconds */
79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
82 * EEH probe mode support, which is part of the flags,
83 * is to support multiple platforms for EEH. Some platforms
84 * like pSeries do PCI emunation based on device tree.
85 * However, other platforms like powernv probe PCI devices
86 * from hardware. The flag is used to distinguish that.
87 * In addition, struct eeh_ops::probe would be invoked for
88 * particular OF node or PCI device so that the corresponding
89 * PE would be created there.
91 int eeh_subsystem_flags;
92 EXPORT_SYMBOL(eeh_subsystem_flags);
95 * EEH allowed maximal frozen times. If one particular PE's
96 * frozen count in last hour exceeds this limit, the PE will
97 * be forced to be offline permanently.
99 u32 eeh_max_freezes = 5;
102 * Controls whether a recovery event should be scheduled when an
103 * isolated device is discovered. This is only really useful for
104 * debugging problems with the EEH core.
106 bool eeh_debugfs_no_recover;
108 /* Platform dependent EEH operations */
109 struct eeh_ops *eeh_ops = NULL;
111 /* Lock to avoid races due to multiple reports of an error */
112 DEFINE_RAW_SPINLOCK(confirm_error_lock);
113 EXPORT_SYMBOL_GPL(confirm_error_lock);
115 /* Lock to protect passed flags */
116 static DEFINE_MUTEX(eeh_dev_mutex);
118 /* Buffer for reporting pci register dumps. Its here in BSS, and
119 * not dynamically alloced, so that it ends up in RMO where RTAS
120 * can access it.
122 #define EEH_PCI_REGS_LOG_LEN 8192
123 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
126 * The struct is used to maintain the EEH global statistic
127 * information. Besides, the EEH global statistics will be
128 * exported to user space through procfs
130 struct eeh_stats {
131 u64 no_device; /* PCI device not found */
132 u64 no_dn; /* OF node not found */
133 u64 no_cfg_addr; /* Config address not found */
134 u64 ignored_check; /* EEH check skipped */
135 u64 total_mmio_ffs; /* Total EEH checks */
136 u64 false_positives; /* Unnecessary EEH checks */
137 u64 slot_resets; /* PE reset */
140 static struct eeh_stats eeh_stats;
142 static int __init eeh_setup(char *str)
144 if (!strcmp(str, "off"))
145 eeh_add_flag(EEH_FORCE_DISABLED);
146 else if (!strcmp(str, "early_log"))
147 eeh_add_flag(EEH_EARLY_DUMP_LOG);
149 return 1;
151 __setup("eeh=", eeh_setup);
153 void eeh_show_enabled(void)
155 if (eeh_has_flag(EEH_FORCE_DISABLED))
156 pr_info("EEH: Recovery disabled by kernel parameter.\n");
157 else if (eeh_has_flag(EEH_ENABLED))
158 pr_info("EEH: Capable adapter found: recovery enabled.\n");
159 else
160 pr_info("EEH: No capable adapters found: recovery disabled.\n");
164 * This routine captures assorted PCI configuration space data
165 * for the indicated PCI device, and puts them into a buffer
166 * for RTAS error logging.
168 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
170 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
171 u32 cfg;
172 int cap, i;
173 int n = 0, l = 0;
174 char buffer[128];
176 if (!pdn) {
177 pr_warn("EEH: Note: No error log for absent device.\n");
178 return 0;
181 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
182 pdn->phb->global_number, pdn->busno,
183 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
184 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
185 pdn->phb->global_number, pdn->busno,
186 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
188 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
189 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
190 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
192 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
193 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
194 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
196 /* Gather bridge-specific registers */
197 if (edev->mode & EEH_DEV_BRIDGE) {
198 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
199 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
200 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
202 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
203 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
204 pr_warn("EEH: Bridge control: %04x\n", cfg);
207 /* Dump out the PCI-X command and status regs */
208 cap = edev->pcix_cap;
209 if (cap) {
210 eeh_ops->read_config(pdn, cap, 4, &cfg);
211 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
212 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
214 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
215 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
216 pr_warn("EEH: PCI-X status: %08x\n", cfg);
219 /* If PCI-E capable, dump PCI-E cap 10 */
220 cap = edev->pcie_cap;
221 if (cap) {
222 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
223 pr_warn("EEH: PCI-E capabilities and status follow:\n");
225 for (i=0; i<=8; i++) {
226 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
227 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
229 if ((i % 4) == 0) {
230 if (i != 0)
231 pr_warn("%s\n", buffer);
233 l = scnprintf(buffer, sizeof(buffer),
234 "EEH: PCI-E %02x: %08x ",
235 4*i, cfg);
236 } else {
237 l += scnprintf(buffer+l, sizeof(buffer)-l,
238 "%08x ", cfg);
243 pr_warn("%s\n", buffer);
246 /* If AER capable, dump it */
247 cap = edev->aer_cap;
248 if (cap) {
249 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
250 pr_warn("EEH: PCI-E AER capability register set follows:\n");
252 for (i=0; i<=13; i++) {
253 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
254 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
256 if ((i % 4) == 0) {
257 if (i != 0)
258 pr_warn("%s\n", buffer);
260 l = scnprintf(buffer, sizeof(buffer),
261 "EEH: PCI-E AER %02x: %08x ",
262 4*i, cfg);
263 } else {
264 l += scnprintf(buffer+l, sizeof(buffer)-l,
265 "%08x ", cfg);
269 pr_warn("%s\n", buffer);
272 return n;
275 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
277 struct eeh_dev *edev, *tmp;
278 size_t *plen = flag;
280 eeh_pe_for_each_dev(pe, edev, tmp)
281 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
282 EEH_PCI_REGS_LOG_LEN - *plen);
284 return NULL;
288 * eeh_slot_error_detail - Generate combined log including driver log and error log
289 * @pe: EEH PE
290 * @severity: temporary or permanent error log
292 * This routine should be called to generate the combined log, which
293 * is comprised of driver log and error log. The driver log is figured
294 * out from the config space of the corresponding PCI device, while
295 * the error log is fetched through platform dependent function call.
297 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
299 size_t loglen = 0;
302 * When the PHB is fenced or dead, it's pointless to collect
303 * the data from PCI config space because it should return
304 * 0xFF's. For ER, we still retrieve the data from the PCI
305 * config space.
307 * For pHyp, we have to enable IO for log retrieval. Otherwise,
308 * 0xFF's is always returned from PCI config space.
310 * When the @severity is EEH_LOG_PERM, the PE is going to be
311 * removed. Prior to that, the drivers for devices included in
312 * the PE will be closed. The drivers rely on working IO path
313 * to bring the devices to quiet state. Otherwise, PCI traffic
314 * from those devices after they are removed is like to cause
315 * another unexpected EEH error.
317 if (!(pe->type & EEH_PE_PHB)) {
318 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
319 severity == EEH_LOG_PERM)
320 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
323 * The config space of some PCI devices can't be accessed
324 * when their PEs are in frozen state. Otherwise, fenced
325 * PHB might be seen. Those PEs are identified with flag
326 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
327 * is set automatically when the PE is put to EEH_PE_ISOLATED.
329 * Restoring BARs possibly triggers PCI config access in
330 * (OPAL) firmware and then causes fenced PHB. If the
331 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
332 * pointless to restore BARs and dump config space.
334 eeh_ops->configure_bridge(pe);
335 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
336 eeh_pe_restore_bars(pe);
338 pci_regs_buf[0] = 0;
339 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
343 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
347 * eeh_token_to_phys - Convert EEH address token to phys address
348 * @token: I/O token, should be address in the form 0xA....
350 * This routine should be called to convert virtual I/O address
351 * to physical one.
353 static inline unsigned long eeh_token_to_phys(unsigned long token)
355 pte_t *ptep;
356 unsigned long pa;
357 int hugepage_shift;
360 * We won't find hugepages here(this is iomem). Hence we are not
361 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
362 * page table free, because of init_mm.
364 ptep = find_init_mm_pte(token, &hugepage_shift);
365 if (!ptep)
366 return token;
368 pa = pte_pfn(*ptep);
370 /* On radix we can do hugepage mappings for io, so handle that */
371 if (hugepage_shift) {
372 pa <<= hugepage_shift;
373 pa |= token & ((1ul << hugepage_shift) - 1);
374 } else {
375 pa <<= PAGE_SHIFT;
376 pa |= token & (PAGE_SIZE - 1);
379 return pa;
383 * On PowerNV platform, we might already have fenced PHB there.
384 * For that case, it's meaningless to recover frozen PE. Intead,
385 * We have to handle fenced PHB firstly.
387 static int eeh_phb_check_failure(struct eeh_pe *pe)
389 struct eeh_pe *phb_pe;
390 unsigned long flags;
391 int ret;
393 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
394 return -EPERM;
396 /* Find the PHB PE */
397 phb_pe = eeh_phb_pe_get(pe->phb);
398 if (!phb_pe) {
399 pr_warn("%s Can't find PE for PHB#%x\n",
400 __func__, pe->phb->global_number);
401 return -EEXIST;
404 /* If the PHB has been in problematic state */
405 eeh_serialize_lock(&flags);
406 if (phb_pe->state & EEH_PE_ISOLATED) {
407 ret = 0;
408 goto out;
411 /* Check PHB state */
412 ret = eeh_ops->get_state(phb_pe, NULL);
413 if ((ret < 0) ||
414 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
415 ret = 0;
416 goto out;
419 /* Isolate the PHB and send event */
420 eeh_pe_mark_isolated(phb_pe);
421 eeh_serialize_unlock(flags);
423 pr_debug("EEH: PHB#%x failure detected, location: %s\n",
424 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
425 eeh_send_failure_event(phb_pe);
426 return 1;
427 out:
428 eeh_serialize_unlock(flags);
429 return ret;
433 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
434 * @edev: eeh device
436 * Check for an EEH failure for the given device node. Call this
437 * routine if the result of a read was all 0xff's and you want to
438 * find out if this is due to an EEH slot freeze. This routine
439 * will query firmware for the EEH status.
441 * Returns 0 if there has not been an EEH error; otherwise returns
442 * a non-zero value and queues up a slot isolation event notification.
444 * It is safe to call this routine in an interrupt context.
446 int eeh_dev_check_failure(struct eeh_dev *edev)
448 int ret;
449 unsigned long flags;
450 struct device_node *dn;
451 struct pci_dev *dev;
452 struct eeh_pe *pe, *parent_pe;
453 int rc = 0;
454 const char *location = NULL;
456 eeh_stats.total_mmio_ffs++;
458 if (!eeh_enabled())
459 return 0;
461 if (!edev) {
462 eeh_stats.no_dn++;
463 return 0;
465 dev = eeh_dev_to_pci_dev(edev);
466 pe = eeh_dev_to_pe(edev);
468 /* Access to IO BARs might get this far and still not want checking. */
469 if (!pe) {
470 eeh_stats.ignored_check++;
471 eeh_edev_dbg(edev, "Ignored check\n");
472 return 0;
475 if (!pe->addr && !pe->config_addr) {
476 eeh_stats.no_cfg_addr++;
477 return 0;
481 * On PowerNV platform, we might already have fenced PHB
482 * there and we need take care of that firstly.
484 ret = eeh_phb_check_failure(pe);
485 if (ret > 0)
486 return ret;
489 * If the PE isn't owned by us, we shouldn't check the
490 * state. Instead, let the owner handle it if the PE has
491 * been frozen.
493 if (eeh_pe_passed(pe))
494 return 0;
496 /* If we already have a pending isolation event for this
497 * slot, we know it's bad already, we don't need to check.
498 * Do this checking under a lock; as multiple PCI devices
499 * in one slot might report errors simultaneously, and we
500 * only want one error recovery routine running.
502 eeh_serialize_lock(&flags);
503 rc = 1;
504 if (pe->state & EEH_PE_ISOLATED) {
505 pe->check_count++;
506 if (pe->check_count == EEH_MAX_FAILS) {
507 dn = pci_device_to_OF_node(dev);
508 if (dn)
509 location = of_get_property(dn, "ibm,loc-code",
510 NULL);
511 eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
512 pe->check_count,
513 location ? location : "unknown",
514 eeh_driver_name(dev));
515 eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
516 eeh_driver_name(dev));
517 dump_stack();
519 goto dn_unlock;
523 * Now test for an EEH failure. This is VERY expensive.
524 * Note that the eeh_config_addr may be a parent device
525 * in the case of a device behind a bridge, or it may be
526 * function zero of a multi-function device.
527 * In any case they must share a common PHB.
529 ret = eeh_ops->get_state(pe, NULL);
531 /* Note that config-io to empty slots may fail;
532 * they are empty when they don't have children.
533 * We will punt with the following conditions: Failure to get
534 * PE's state, EEH not support and Permanently unavailable
535 * state, PE is in good state.
537 if ((ret < 0) ||
538 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
539 eeh_stats.false_positives++;
540 pe->false_positives++;
541 rc = 0;
542 goto dn_unlock;
546 * It should be corner case that the parent PE has been
547 * put into frozen state as well. We should take care
548 * that at first.
550 parent_pe = pe->parent;
551 while (parent_pe) {
552 /* Hit the ceiling ? */
553 if (parent_pe->type & EEH_PE_PHB)
554 break;
556 /* Frozen parent PE ? */
557 ret = eeh_ops->get_state(parent_pe, NULL);
558 if (ret > 0 && !eeh_state_active(ret)) {
559 pe = parent_pe;
560 pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
561 pe->phb->global_number, pe->addr,
562 pe->phb->global_number, parent_pe->addr);
565 /* Next parent level */
566 parent_pe = parent_pe->parent;
569 eeh_stats.slot_resets++;
571 /* Avoid repeated reports of this failure, including problems
572 * with other functions on this device, and functions under
573 * bridges.
575 eeh_pe_mark_isolated(pe);
576 eeh_serialize_unlock(flags);
578 /* Most EEH events are due to device driver bugs. Having
579 * a stack trace will help the device-driver authors figure
580 * out what happened. So print that out.
582 pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
583 __func__, pe->phb->global_number, pe->addr);
584 eeh_send_failure_event(pe);
586 return 1;
588 dn_unlock:
589 eeh_serialize_unlock(flags);
590 return rc;
593 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
596 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
597 * @token: I/O address
599 * Check for an EEH failure at the given I/O address. Call this
600 * routine if the result of a read was all 0xff's and you want to
601 * find out if this is due to an EEH slot freeze event. This routine
602 * will query firmware for the EEH status.
604 * Note this routine is safe to call in an interrupt context.
606 int eeh_check_failure(const volatile void __iomem *token)
608 unsigned long addr;
609 struct eeh_dev *edev;
611 /* Finding the phys addr + pci device; this is pretty quick. */
612 addr = eeh_token_to_phys((unsigned long __force) token);
613 edev = eeh_addr_cache_get_dev(addr);
614 if (!edev) {
615 eeh_stats.no_device++;
616 return 0;
619 return eeh_dev_check_failure(edev);
621 EXPORT_SYMBOL(eeh_check_failure);
625 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
626 * @pe: EEH PE
628 * This routine should be called to reenable frozen MMIO or DMA
629 * so that it would work correctly again. It's useful while doing
630 * recovery or log collection on the indicated device.
632 int eeh_pci_enable(struct eeh_pe *pe, int function)
634 int active_flag, rc;
637 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
638 * Also, it's pointless to enable them on unfrozen PE. So
639 * we have to check before enabling IO or DMA.
641 switch (function) {
642 case EEH_OPT_THAW_MMIO:
643 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
644 break;
645 case EEH_OPT_THAW_DMA:
646 active_flag = EEH_STATE_DMA_ACTIVE;
647 break;
648 case EEH_OPT_DISABLE:
649 case EEH_OPT_ENABLE:
650 case EEH_OPT_FREEZE_PE:
651 active_flag = 0;
652 break;
653 default:
654 pr_warn("%s: Invalid function %d\n",
655 __func__, function);
656 return -EINVAL;
660 * Check if IO or DMA has been enabled before
661 * enabling them.
663 if (active_flag) {
664 rc = eeh_ops->get_state(pe, NULL);
665 if (rc < 0)
666 return rc;
668 /* Needn't enable it at all */
669 if (rc == EEH_STATE_NOT_SUPPORT)
670 return 0;
672 /* It's already enabled */
673 if (rc & active_flag)
674 return 0;
678 /* Issue the request */
679 rc = eeh_ops->set_option(pe, function);
680 if (rc)
681 pr_warn("%s: Unexpected state change %d on "
682 "PHB#%x-PE#%x, err=%d\n",
683 __func__, function, pe->phb->global_number,
684 pe->addr, rc);
686 /* Check if the request is finished successfully */
687 if (active_flag) {
688 rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
689 if (rc < 0)
690 return rc;
692 if (rc & active_flag)
693 return 0;
695 return -EIO;
698 return rc;
701 static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
702 void *userdata)
704 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
705 struct pci_dev *dev = userdata;
708 * The caller should have disabled and saved the
709 * state for the specified device
711 if (!pdev || pdev == dev)
712 return;
714 /* Ensure we have D0 power state */
715 pci_set_power_state(pdev, PCI_D0);
717 /* Save device state */
718 pci_save_state(pdev);
721 * Disable device to avoid any DMA traffic and
722 * interrupt from the device
724 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
727 static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
729 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
730 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
731 struct pci_dev *dev = userdata;
733 if (!pdev)
734 return;
736 /* Apply customization from firmware */
737 if (pdn && eeh_ops->restore_config)
738 eeh_ops->restore_config(pdn);
740 /* The caller should restore state for the specified device */
741 if (pdev != dev)
742 pci_restore_state(pdev);
745 int eeh_restore_vf_config(struct pci_dn *pdn)
747 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
748 u32 devctl, cmd, cap2, aer_capctl;
749 int old_mps;
751 if (edev->pcie_cap) {
752 /* Restore MPS */
753 old_mps = (ffs(pdn->mps) - 8) << 5;
754 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
755 2, &devctl);
756 devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
757 devctl |= old_mps;
758 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
759 2, devctl);
761 /* Disable Completion Timeout if possible */
762 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
763 4, &cap2);
764 if (cap2 & PCI_EXP_DEVCAP2_COMP_TMOUT_DIS) {
765 eeh_ops->read_config(pdn,
766 edev->pcie_cap + PCI_EXP_DEVCTL2,
767 4, &cap2);
768 cap2 |= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS;
769 eeh_ops->write_config(pdn,
770 edev->pcie_cap + PCI_EXP_DEVCTL2,
771 4, cap2);
775 /* Enable SERR and parity checking */
776 eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
777 cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
778 eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
780 /* Enable report various errors */
781 if (edev->pcie_cap) {
782 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
783 2, &devctl);
784 devctl &= ~PCI_EXP_DEVCTL_CERE;
785 devctl |= (PCI_EXP_DEVCTL_NFERE |
786 PCI_EXP_DEVCTL_FERE |
787 PCI_EXP_DEVCTL_URRE);
788 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
789 2, devctl);
792 /* Enable ECRC generation and check */
793 if (edev->pcie_cap && edev->aer_cap) {
794 eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
795 4, &aer_capctl);
796 aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
797 eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
798 4, aer_capctl);
801 return 0;
805 * pcibios_set_pcie_reset_state - Set PCI-E reset state
806 * @dev: pci device struct
807 * @state: reset state to enter
809 * Return value:
810 * 0 if success
812 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
814 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
815 struct eeh_pe *pe = eeh_dev_to_pe(edev);
817 if (!pe) {
818 pr_err("%s: No PE found on PCI device %s\n",
819 __func__, pci_name(dev));
820 return -EINVAL;
823 switch (state) {
824 case pcie_deassert_reset:
825 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
826 eeh_unfreeze_pe(pe);
827 if (!(pe->type & EEH_PE_VF))
828 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
829 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
830 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
831 break;
832 case pcie_hot_reset:
833 eeh_pe_mark_isolated(pe);
834 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
835 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
836 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
837 if (!(pe->type & EEH_PE_VF))
838 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
839 eeh_ops->reset(pe, EEH_RESET_HOT);
840 break;
841 case pcie_warm_reset:
842 eeh_pe_mark_isolated(pe);
843 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
844 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
845 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
846 if (!(pe->type & EEH_PE_VF))
847 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
848 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
849 break;
850 default:
851 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
852 return -EINVAL;
855 return 0;
859 * eeh_set_pe_freset - Check the required reset for the indicated device
860 * @data: EEH device
861 * @flag: return value
863 * Each device might have its preferred reset type: fundamental or
864 * hot reset. The routine is used to collected the information for
865 * the indicated device and its children so that the bunch of the
866 * devices could be reset properly.
868 static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
870 struct pci_dev *dev;
871 unsigned int *freset = (unsigned int *)flag;
873 dev = eeh_dev_to_pci_dev(edev);
874 if (dev)
875 *freset |= dev->needs_freset;
878 static void eeh_pe_refreeze_passed(struct eeh_pe *root)
880 struct eeh_pe *pe;
881 int state;
883 eeh_for_each_pe(root, pe) {
884 if (eeh_pe_passed(pe)) {
885 state = eeh_ops->get_state(pe, NULL);
886 if (state &
887 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
888 pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
889 pe->phb->global_number, pe->addr);
890 eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
897 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
898 * @pe: EEH PE
900 * This function executes a full reset procedure on a PE, including setting
901 * the appropriate flags, performing a fundamental or hot reset, and then
902 * deactivating the reset status. It is designed to be used within the EEH
903 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
904 * only performs a single operation at a time.
906 * This function will attempt to reset a PE three times before failing.
908 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
910 int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
911 int type = EEH_RESET_HOT;
912 unsigned int freset = 0;
913 int i, state = 0, ret;
916 * Determine the type of reset to perform - hot or fundamental.
917 * Hot reset is the default operation, unless any device under the
918 * PE requires a fundamental reset.
920 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
922 if (freset)
923 type = EEH_RESET_FUNDAMENTAL;
925 /* Mark the PE as in reset state and block config space accesses */
926 eeh_pe_state_mark(pe, reset_state);
928 /* Make three attempts at resetting the bus */
929 for (i = 0; i < 3; i++) {
930 ret = eeh_pe_reset(pe, type, include_passed);
931 if (!ret)
932 ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
933 include_passed);
934 if (ret) {
935 ret = -EIO;
936 pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
937 state, pe->phb->global_number, pe->addr, i + 1);
938 continue;
940 if (i)
941 pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
942 pe->phb->global_number, pe->addr, i + 1);
944 /* Wait until the PE is in a functioning state */
945 state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
946 if (state < 0) {
947 pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
948 pe->phb->global_number, pe->addr);
949 ret = -ENOTRECOVERABLE;
950 break;
952 if (eeh_state_active(state))
953 break;
954 else
955 pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
956 pe->phb->global_number, pe->addr, state, i + 1);
959 /* Resetting the PE may have unfrozen child PEs. If those PEs have been
960 * (potentially) passed through to a guest, re-freeze them:
962 if (!include_passed)
963 eeh_pe_refreeze_passed(pe);
965 eeh_pe_state_clear(pe, reset_state, true);
966 return ret;
970 * eeh_save_bars - Save device bars
971 * @edev: PCI device associated EEH device
973 * Save the values of the device bars. Unlike the restore
974 * routine, this routine is *not* recursive. This is because
975 * PCI devices are added individually; but, for the restore,
976 * an entire slot is reset at a time.
978 void eeh_save_bars(struct eeh_dev *edev)
980 struct pci_dn *pdn;
981 int i;
983 pdn = eeh_dev_to_pdn(edev);
984 if (!pdn)
985 return;
987 for (i = 0; i < 16; i++)
988 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
991 * For PCI bridges including root port, we need enable bus
992 * master explicitly. Otherwise, it can't fetch IODA table
993 * entries correctly. So we cache the bit in advance so that
994 * we can restore it after reset, either PHB range or PE range.
996 if (edev->mode & EEH_DEV_BRIDGE)
997 edev->config_space[1] |= PCI_COMMAND_MASTER;
1001 * eeh_ops_register - Register platform dependent EEH operations
1002 * @ops: platform dependent EEH operations
1004 * Register the platform dependent EEH operation callback
1005 * functions. The platform should call this function before
1006 * any other EEH operations.
1008 int __init eeh_ops_register(struct eeh_ops *ops)
1010 if (!ops->name) {
1011 pr_warn("%s: Invalid EEH ops name for %p\n",
1012 __func__, ops);
1013 return -EINVAL;
1016 if (eeh_ops && eeh_ops != ops) {
1017 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
1018 __func__, eeh_ops->name, ops->name);
1019 return -EEXIST;
1022 eeh_ops = ops;
1024 return 0;
1028 * eeh_ops_unregister - Unreigster platform dependent EEH operations
1029 * @name: name of EEH platform operations
1031 * Unregister the platform dependent EEH operation callback
1032 * functions.
1034 int __exit eeh_ops_unregister(const char *name)
1036 if (!name || !strlen(name)) {
1037 pr_warn("%s: Invalid EEH ops name\n",
1038 __func__);
1039 return -EINVAL;
1042 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
1043 eeh_ops = NULL;
1044 return 0;
1047 return -EEXIST;
1050 static int eeh_reboot_notifier(struct notifier_block *nb,
1051 unsigned long action, void *unused)
1053 eeh_clear_flag(EEH_ENABLED);
1054 return NOTIFY_DONE;
1057 static struct notifier_block eeh_reboot_nb = {
1058 .notifier_call = eeh_reboot_notifier,
1062 * eeh_init - EEH initialization
1064 * Initialize EEH by trying to enable it for all of the adapters in the system.
1065 * As a side effect we can determine here if eeh is supported at all.
1066 * Note that we leave EEH on so failed config cycles won't cause a machine
1067 * check. If a user turns off EEH for a particular adapter they are really
1068 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1069 * grant access to a slot if EEH isn't enabled, and so we always enable
1070 * EEH for all slots/all devices.
1072 * The eeh-force-off option disables EEH checking globally, for all slots.
1073 * Even if force-off is set, the EEH hardware is still enabled, so that
1074 * newer systems can boot.
1076 static int eeh_init(void)
1078 struct pci_controller *hose, *tmp;
1079 int ret = 0;
1081 /* Register reboot notifier */
1082 ret = register_reboot_notifier(&eeh_reboot_nb);
1083 if (ret) {
1084 pr_warn("%s: Failed to register notifier (%d)\n",
1085 __func__, ret);
1086 return ret;
1089 /* call platform initialization function */
1090 if (!eeh_ops) {
1091 pr_warn("%s: Platform EEH operation not found\n",
1092 __func__);
1093 return -EEXIST;
1094 } else if ((ret = eeh_ops->init()))
1095 return ret;
1097 /* Initialize PHB PEs */
1098 list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1099 eeh_dev_phb_init_dynamic(hose);
1101 eeh_addr_cache_init();
1103 /* Initialize EEH event */
1104 return eeh_event_init();
1107 core_initcall_sync(eeh_init);
1110 * eeh_add_device_early - Enable EEH for the indicated device node
1111 * @pdn: PCI device node for which to set up EEH
1113 * This routine must be used to perform EEH initialization for PCI
1114 * devices that were added after system boot (e.g. hotplug, dlpar).
1115 * This routine must be called before any i/o is performed to the
1116 * adapter (inluding any config-space i/o).
1117 * Whether this actually enables EEH or not for this device depends
1118 * on the CEC architecture, type of the device, on earlier boot
1119 * command-line arguments & etc.
1121 void eeh_add_device_early(struct pci_dn *pdn)
1123 struct pci_controller *phb = pdn ? pdn->phb : NULL;
1124 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1126 if (!edev)
1127 return;
1129 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1130 return;
1132 /* USB Bus children of PCI devices will not have BUID's */
1133 if (NULL == phb ||
1134 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1135 return;
1137 eeh_ops->probe(pdn, NULL);
1141 * eeh_add_device_tree_early - Enable EEH for the indicated device
1142 * @pdn: PCI device node
1144 * This routine must be used to perform EEH initialization for the
1145 * indicated PCI device that was added after system boot (e.g.
1146 * hotplug, dlpar).
1148 void eeh_add_device_tree_early(struct pci_dn *pdn)
1150 struct pci_dn *n;
1152 if (!pdn)
1153 return;
1155 list_for_each_entry(n, &pdn->child_list, list)
1156 eeh_add_device_tree_early(n);
1157 eeh_add_device_early(pdn);
1159 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1162 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1163 * @dev: pci device for which to set up EEH
1165 * This routine must be used to complete EEH initialization for PCI
1166 * devices that were added after system boot (e.g. hotplug, dlpar).
1168 void eeh_add_device_late(struct pci_dev *dev)
1170 struct pci_dn *pdn;
1171 struct eeh_dev *edev;
1173 if (!dev)
1174 return;
1176 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1177 edev = pdn_to_eeh_dev(pdn);
1178 eeh_edev_dbg(edev, "Adding device\n");
1179 if (edev->pdev == dev) {
1180 eeh_edev_dbg(edev, "Device already referenced!\n");
1181 return;
1185 * The EEH cache might not be removed correctly because of
1186 * unbalanced kref to the device during unplug time, which
1187 * relies on pcibios_release_device(). So we have to remove
1188 * that here explicitly.
1190 if (edev->pdev) {
1191 eeh_rmv_from_parent_pe(edev);
1192 eeh_addr_cache_rmv_dev(edev->pdev);
1193 eeh_sysfs_remove_device(edev->pdev);
1196 * We definitely should have the PCI device removed
1197 * though it wasn't correctly. So we needn't call
1198 * into error handler afterwards.
1200 edev->mode |= EEH_DEV_NO_HANDLER;
1202 edev->pdev = NULL;
1203 dev->dev.archdata.edev = NULL;
1206 if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1207 eeh_ops->probe(pdn, NULL);
1209 edev->pdev = dev;
1210 dev->dev.archdata.edev = edev;
1212 eeh_addr_cache_insert_dev(dev);
1216 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1217 * @bus: PCI bus
1219 * This routine must be used to perform EEH initialization for PCI
1220 * devices which are attached to the indicated PCI bus. The PCI bus
1221 * is added after system boot through hotplug or dlpar.
1223 void eeh_add_device_tree_late(struct pci_bus *bus)
1225 struct pci_dev *dev;
1227 if (eeh_has_flag(EEH_FORCE_DISABLED))
1228 return;
1229 list_for_each_entry(dev, &bus->devices, bus_list) {
1230 eeh_add_device_late(dev);
1231 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1232 struct pci_bus *subbus = dev->subordinate;
1233 if (subbus)
1234 eeh_add_device_tree_late(subbus);
1238 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1241 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1242 * @bus: PCI bus
1244 * This routine must be used to add EEH sysfs files for PCI
1245 * devices which are attached to the indicated PCI bus. The PCI bus
1246 * is added after system boot through hotplug or dlpar.
1248 void eeh_add_sysfs_files(struct pci_bus *bus)
1250 struct pci_dev *dev;
1252 list_for_each_entry(dev, &bus->devices, bus_list) {
1253 eeh_sysfs_add_device(dev);
1254 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1255 struct pci_bus *subbus = dev->subordinate;
1256 if (subbus)
1257 eeh_add_sysfs_files(subbus);
1261 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1264 * eeh_remove_device - Undo EEH setup for the indicated pci device
1265 * @dev: pci device to be removed
1267 * This routine should be called when a device is removed from
1268 * a running system (e.g. by hotplug or dlpar). It unregisters
1269 * the PCI device from the EEH subsystem. I/O errors affecting
1270 * this device will no longer be detected after this call; thus,
1271 * i/o errors affecting this slot may leave this device unusable.
1273 void eeh_remove_device(struct pci_dev *dev)
1275 struct eeh_dev *edev;
1277 if (!dev || !eeh_enabled())
1278 return;
1279 edev = pci_dev_to_eeh_dev(dev);
1281 /* Unregister the device with the EEH/PCI address search system */
1282 dev_dbg(&dev->dev, "EEH: Removing device\n");
1284 if (!edev || !edev->pdev || !edev->pe) {
1285 dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1286 return;
1290 * During the hotplug for EEH error recovery, we need the EEH
1291 * device attached to the parent PE in order for BAR restore
1292 * a bit later. So we keep it for BAR restore and remove it
1293 * from the parent PE during the BAR resotre.
1295 edev->pdev = NULL;
1298 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1299 * remove the sysfs files before clearing dev.archdata.edev
1301 if (edev->mode & EEH_DEV_SYSFS)
1302 eeh_sysfs_remove_device(dev);
1305 * We're removing from the PCI subsystem, that means
1306 * the PCI device driver can't support EEH or not
1307 * well. So we rely on hotplug completely to do recovery
1308 * for the specific PCI device.
1310 edev->mode |= EEH_DEV_NO_HANDLER;
1312 eeh_addr_cache_rmv_dev(dev);
1315 * The flag "in_error" is used to trace EEH devices for VFs
1316 * in error state or not. It's set in eeh_report_error(). If
1317 * it's not set, eeh_report_{reset,resume}() won't be called
1318 * for the VF EEH device.
1320 edev->in_error = false;
1321 dev->dev.archdata.edev = NULL;
1322 if (!(edev->pe->state & EEH_PE_KEEP))
1323 eeh_rmv_from_parent_pe(edev);
1324 else
1325 edev->mode |= EEH_DEV_DISCONNECTED;
1328 int eeh_unfreeze_pe(struct eeh_pe *pe)
1330 int ret;
1332 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1333 if (ret) {
1334 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1335 __func__, ret, pe->phb->global_number, pe->addr);
1336 return ret;
1339 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1340 if (ret) {
1341 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1342 __func__, ret, pe->phb->global_number, pe->addr);
1343 return ret;
1346 return ret;
1350 static struct pci_device_id eeh_reset_ids[] = {
1351 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1352 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1353 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1354 { 0 }
1357 static int eeh_pe_change_owner(struct eeh_pe *pe)
1359 struct eeh_dev *edev, *tmp;
1360 struct pci_dev *pdev;
1361 struct pci_device_id *id;
1362 int ret;
1364 /* Check PE state */
1365 ret = eeh_ops->get_state(pe, NULL);
1366 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1367 return 0;
1369 /* Unfrozen PE, nothing to do */
1370 if (eeh_state_active(ret))
1371 return 0;
1373 /* Frozen PE, check if it needs PE level reset */
1374 eeh_pe_for_each_dev(pe, edev, tmp) {
1375 pdev = eeh_dev_to_pci_dev(edev);
1376 if (!pdev)
1377 continue;
1379 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1380 if (id->vendor != PCI_ANY_ID &&
1381 id->vendor != pdev->vendor)
1382 continue;
1383 if (id->device != PCI_ANY_ID &&
1384 id->device != pdev->device)
1385 continue;
1386 if (id->subvendor != PCI_ANY_ID &&
1387 id->subvendor != pdev->subsystem_vendor)
1388 continue;
1389 if (id->subdevice != PCI_ANY_ID &&
1390 id->subdevice != pdev->subsystem_device)
1391 continue;
1393 return eeh_pe_reset_and_recover(pe);
1397 ret = eeh_unfreeze_pe(pe);
1398 if (!ret)
1399 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1400 return ret;
1404 * eeh_dev_open - Increase count of pass through devices for PE
1405 * @pdev: PCI device
1407 * Increase count of passed through devices for the indicated
1408 * PE. In the result, the EEH errors detected on the PE won't be
1409 * reported. The PE owner will be responsible for detection
1410 * and recovery.
1412 int eeh_dev_open(struct pci_dev *pdev)
1414 struct eeh_dev *edev;
1415 int ret = -ENODEV;
1417 mutex_lock(&eeh_dev_mutex);
1419 /* No PCI device ? */
1420 if (!pdev)
1421 goto out;
1423 /* No EEH device or PE ? */
1424 edev = pci_dev_to_eeh_dev(pdev);
1425 if (!edev || !edev->pe)
1426 goto out;
1429 * The PE might have been put into frozen state, but we
1430 * didn't detect that yet. The passed through PCI devices
1431 * in frozen PE won't work properly. Clear the frozen state
1432 * in advance.
1434 ret = eeh_pe_change_owner(edev->pe);
1435 if (ret)
1436 goto out;
1438 /* Increase PE's pass through count */
1439 atomic_inc(&edev->pe->pass_dev_cnt);
1440 mutex_unlock(&eeh_dev_mutex);
1442 return 0;
1443 out:
1444 mutex_unlock(&eeh_dev_mutex);
1445 return ret;
1447 EXPORT_SYMBOL_GPL(eeh_dev_open);
1450 * eeh_dev_release - Decrease count of pass through devices for PE
1451 * @pdev: PCI device
1453 * Decrease count of pass through devices for the indicated PE. If
1454 * there is no passed through device in PE, the EEH errors detected
1455 * on the PE will be reported and handled as usual.
1457 void eeh_dev_release(struct pci_dev *pdev)
1459 struct eeh_dev *edev;
1461 mutex_lock(&eeh_dev_mutex);
1463 /* No PCI device ? */
1464 if (!pdev)
1465 goto out;
1467 /* No EEH device ? */
1468 edev = pci_dev_to_eeh_dev(pdev);
1469 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1470 goto out;
1472 /* Decrease PE's pass through count */
1473 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1474 eeh_pe_change_owner(edev->pe);
1475 out:
1476 mutex_unlock(&eeh_dev_mutex);
1478 EXPORT_SYMBOL(eeh_dev_release);
1480 #ifdef CONFIG_IOMMU_API
1482 static int dev_has_iommu_table(struct device *dev, void *data)
1484 struct pci_dev *pdev = to_pci_dev(dev);
1485 struct pci_dev **ppdev = data;
1487 if (!dev)
1488 return 0;
1490 if (device_iommu_mapped(dev)) {
1491 *ppdev = pdev;
1492 return 1;
1495 return 0;
1499 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1500 * @group: IOMMU group
1502 * The routine is called to convert IOMMU group to EEH PE.
1504 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1506 struct pci_dev *pdev = NULL;
1507 struct eeh_dev *edev;
1508 int ret;
1510 /* No IOMMU group ? */
1511 if (!group)
1512 return NULL;
1514 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1515 if (!ret || !pdev)
1516 return NULL;
1518 /* No EEH device or PE ? */
1519 edev = pci_dev_to_eeh_dev(pdev);
1520 if (!edev || !edev->pe)
1521 return NULL;
1523 return edev->pe;
1525 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1527 #endif /* CONFIG_IOMMU_API */
1530 * eeh_pe_set_option - Set options for the indicated PE
1531 * @pe: EEH PE
1532 * @option: requested option
1534 * The routine is called to enable or disable EEH functionality
1535 * on the indicated PE, to enable IO or DMA for the frozen PE.
1537 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1539 int ret = 0;
1541 /* Invalid PE ? */
1542 if (!pe)
1543 return -ENODEV;
1546 * EEH functionality could possibly be disabled, just
1547 * return error for the case. And the EEH functinality
1548 * isn't expected to be disabled on one specific PE.
1550 switch (option) {
1551 case EEH_OPT_ENABLE:
1552 if (eeh_enabled()) {
1553 ret = eeh_pe_change_owner(pe);
1554 break;
1556 ret = -EIO;
1557 break;
1558 case EEH_OPT_DISABLE:
1559 break;
1560 case EEH_OPT_THAW_MMIO:
1561 case EEH_OPT_THAW_DMA:
1562 case EEH_OPT_FREEZE_PE:
1563 if (!eeh_ops || !eeh_ops->set_option) {
1564 ret = -ENOENT;
1565 break;
1568 ret = eeh_pci_enable(pe, option);
1569 break;
1570 default:
1571 pr_debug("%s: Option %d out of range (%d, %d)\n",
1572 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1573 ret = -EINVAL;
1576 return ret;
1578 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1581 * eeh_pe_get_state - Retrieve PE's state
1582 * @pe: EEH PE
1584 * Retrieve the PE's state, which includes 3 aspects: enabled
1585 * DMA, enabled IO and asserted reset.
1587 int eeh_pe_get_state(struct eeh_pe *pe)
1589 int result, ret = 0;
1590 bool rst_active, dma_en, mmio_en;
1592 /* Existing PE ? */
1593 if (!pe)
1594 return -ENODEV;
1596 if (!eeh_ops || !eeh_ops->get_state)
1597 return -ENOENT;
1600 * If the parent PE is owned by the host kernel and is undergoing
1601 * error recovery, we should return the PE state as temporarily
1602 * unavailable so that the error recovery on the guest is suspended
1603 * until the recovery completes on the host.
1605 if (pe->parent &&
1606 !(pe->state & EEH_PE_REMOVED) &&
1607 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1608 return EEH_PE_STATE_UNAVAIL;
1610 result = eeh_ops->get_state(pe, NULL);
1611 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1612 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1613 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1615 if (rst_active)
1616 ret = EEH_PE_STATE_RESET;
1617 else if (dma_en && mmio_en)
1618 ret = EEH_PE_STATE_NORMAL;
1619 else if (!dma_en && !mmio_en)
1620 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1621 else if (!dma_en && mmio_en)
1622 ret = EEH_PE_STATE_STOPPED_DMA;
1623 else
1624 ret = EEH_PE_STATE_UNAVAIL;
1626 return ret;
1628 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1630 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1632 struct eeh_dev *edev, *tmp;
1633 struct pci_dev *pdev;
1634 int ret = 0;
1636 eeh_pe_restore_bars(pe);
1639 * Reenable PCI devices as the devices passed
1640 * through are always enabled before the reset.
1642 eeh_pe_for_each_dev(pe, edev, tmp) {
1643 pdev = eeh_dev_to_pci_dev(edev);
1644 if (!pdev)
1645 continue;
1647 ret = pci_reenable_device(pdev);
1648 if (ret) {
1649 pr_warn("%s: Failure %d reenabling %s\n",
1650 __func__, ret, pci_name(pdev));
1651 return ret;
1655 /* The PE is still in frozen state */
1656 if (include_passed || !eeh_pe_passed(pe)) {
1657 ret = eeh_unfreeze_pe(pe);
1658 } else
1659 pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1660 pe->phb->global_number, pe->addr);
1661 if (!ret)
1662 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1663 return ret;
1668 * eeh_pe_reset - Issue PE reset according to specified type
1669 * @pe: EEH PE
1670 * @option: reset type
1672 * The routine is called to reset the specified PE with the
1673 * indicated type, either fundamental reset or hot reset.
1674 * PE reset is the most important part for error recovery.
1676 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1678 int ret = 0;
1680 /* Invalid PE ? */
1681 if (!pe)
1682 return -ENODEV;
1684 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1685 return -ENOENT;
1687 switch (option) {
1688 case EEH_RESET_DEACTIVATE:
1689 ret = eeh_ops->reset(pe, option);
1690 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1691 if (ret)
1692 break;
1694 ret = eeh_pe_reenable_devices(pe, include_passed);
1695 break;
1696 case EEH_RESET_HOT:
1697 case EEH_RESET_FUNDAMENTAL:
1699 * Proactively freeze the PE to drop all MMIO access
1700 * during reset, which should be banned as it's always
1701 * cause recursive EEH error.
1703 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1705 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1706 ret = eeh_ops->reset(pe, option);
1707 break;
1708 default:
1709 pr_debug("%s: Unsupported option %d\n",
1710 __func__, option);
1711 ret = -EINVAL;
1714 return ret;
1716 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1719 * eeh_pe_configure - Configure PCI bridges after PE reset
1720 * @pe: EEH PE
1722 * The routine is called to restore the PCI config space for
1723 * those PCI devices, especially PCI bridges affected by PE
1724 * reset issued previously.
1726 int eeh_pe_configure(struct eeh_pe *pe)
1728 int ret = 0;
1730 /* Invalid PE ? */
1731 if (!pe)
1732 return -ENODEV;
1734 return ret;
1736 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1739 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1740 * @pe: the indicated PE
1741 * @type: error type
1742 * @function: error function
1743 * @addr: address
1744 * @mask: address mask
1746 * The routine is called to inject the specified PCI error, which
1747 * is determined by @type and @function, to the indicated PE for
1748 * testing purpose.
1750 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1751 unsigned long addr, unsigned long mask)
1753 /* Invalid PE ? */
1754 if (!pe)
1755 return -ENODEV;
1757 /* Unsupported operation ? */
1758 if (!eeh_ops || !eeh_ops->err_inject)
1759 return -ENOENT;
1761 /* Check on PCI error type */
1762 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1763 return -EINVAL;
1765 /* Check on PCI error function */
1766 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1767 return -EINVAL;
1769 return eeh_ops->err_inject(pe, type, func, addr, mask);
1771 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1773 static int proc_eeh_show(struct seq_file *m, void *v)
1775 if (!eeh_enabled()) {
1776 seq_printf(m, "EEH Subsystem is globally disabled\n");
1777 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1778 } else {
1779 seq_printf(m, "EEH Subsystem is enabled\n");
1780 seq_printf(m,
1781 "no device=%llu\n"
1782 "no device node=%llu\n"
1783 "no config address=%llu\n"
1784 "check not wanted=%llu\n"
1785 "eeh_total_mmio_ffs=%llu\n"
1786 "eeh_false_positives=%llu\n"
1787 "eeh_slot_resets=%llu\n",
1788 eeh_stats.no_device,
1789 eeh_stats.no_dn,
1790 eeh_stats.no_cfg_addr,
1791 eeh_stats.ignored_check,
1792 eeh_stats.total_mmio_ffs,
1793 eeh_stats.false_positives,
1794 eeh_stats.slot_resets);
1797 return 0;
1800 #ifdef CONFIG_DEBUG_FS
1801 static int eeh_enable_dbgfs_set(void *data, u64 val)
1803 if (val)
1804 eeh_clear_flag(EEH_FORCE_DISABLED);
1805 else
1806 eeh_add_flag(EEH_FORCE_DISABLED);
1808 return 0;
1811 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1813 if (eeh_enabled())
1814 *val = 0x1ul;
1815 else
1816 *val = 0x0ul;
1817 return 0;
1820 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1821 eeh_enable_dbgfs_set, "0x%llx\n");
1823 static ssize_t eeh_force_recover_write(struct file *filp,
1824 const char __user *user_buf,
1825 size_t count, loff_t *ppos)
1827 struct pci_controller *hose;
1828 uint32_t phbid, pe_no;
1829 struct eeh_pe *pe;
1830 char buf[20];
1831 int ret;
1833 ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1834 if (!ret)
1835 return -EFAULT;
1838 * When PE is NULL the event is a "special" event. Rather than
1839 * recovering a specific PE it forces the EEH core to scan for failed
1840 * PHBs and recovers each. This needs to be done before any device
1841 * recoveries can occur.
1843 if (!strncmp(buf, "hwcheck", 7)) {
1844 __eeh_send_failure_event(NULL);
1845 return count;
1848 ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1849 if (ret != 2)
1850 return -EINVAL;
1852 hose = pci_find_controller_for_domain(phbid);
1853 if (!hose)
1854 return -ENODEV;
1856 /* Retrieve PE */
1857 pe = eeh_pe_get(hose, pe_no, 0);
1858 if (!pe)
1859 return -ENODEV;
1862 * We don't do any state checking here since the detection
1863 * process is async to the recovery process. The recovery
1864 * thread *should* not break even if we schedule a recovery
1865 * from an odd state (e.g. PE removed, or recovery of a
1866 * non-isolated PE)
1868 __eeh_send_failure_event(pe);
1870 return ret < 0 ? ret : count;
1873 static const struct file_operations eeh_force_recover_fops = {
1874 .open = simple_open,
1875 .llseek = no_llseek,
1876 .write = eeh_force_recover_write,
1879 static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1880 char __user *user_buf,
1881 size_t count, loff_t *ppos)
1883 static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1885 return simple_read_from_buffer(user_buf, count, ppos,
1886 usage, sizeof(usage) - 1);
1889 static ssize_t eeh_dev_check_write(struct file *filp,
1890 const char __user *user_buf,
1891 size_t count, loff_t *ppos)
1893 uint32_t domain, bus, dev, fn;
1894 struct pci_dev *pdev;
1895 struct eeh_dev *edev;
1896 char buf[20];
1897 int ret;
1899 memset(buf, 0, sizeof(buf));
1900 ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1901 if (!ret)
1902 return -EFAULT;
1904 ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1905 if (ret != 4) {
1906 pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1907 return -EINVAL;
1910 pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1911 if (!pdev)
1912 return -ENODEV;
1914 edev = pci_dev_to_eeh_dev(pdev);
1915 if (!edev) {
1916 pci_err(pdev, "No eeh_dev for this device!\n");
1917 pci_dev_put(pdev);
1918 return -ENODEV;
1921 ret = eeh_dev_check_failure(edev);
1922 pci_info(pdev, "eeh_dev_check_failure(%04x:%02x:%02x.%01x) = %d\n",
1923 domain, bus, dev, fn, ret);
1925 pci_dev_put(pdev);
1927 return count;
1930 static const struct file_operations eeh_dev_check_fops = {
1931 .open = simple_open,
1932 .llseek = no_llseek,
1933 .write = eeh_dev_check_write,
1934 .read = eeh_debugfs_dev_usage,
1937 static int eeh_debugfs_break_device(struct pci_dev *pdev)
1939 struct resource *bar = NULL;
1940 void __iomem *mapped;
1941 u16 old, bit;
1942 int i, pos;
1944 /* Do we have an MMIO BAR to disable? */
1945 for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1946 struct resource *r = &pdev->resource[i];
1948 if (!r->flags || !r->start)
1949 continue;
1950 if (r->flags & IORESOURCE_IO)
1951 continue;
1952 if (r->flags & IORESOURCE_UNSET)
1953 continue;
1955 bar = r;
1956 break;
1959 if (!bar) {
1960 pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1961 return -ENXIO;
1964 pci_err(pdev, "Going to break: %pR\n", bar);
1966 if (pdev->is_virtfn) {
1967 #ifndef CONFIG_PCI_IOV
1968 return -ENXIO;
1969 #else
1971 * VFs don't have a per-function COMMAND register, so the best
1972 * we can do is clear the Memory Space Enable bit in the PF's
1973 * SRIOV control reg.
1975 * Unfortunately, this requires that we have a PF (i.e doesn't
1976 * work for a passed-through VF) and it has the potential side
1977 * effect of also causing an EEH on every other VF under the
1978 * PF. Oh well.
1980 pdev = pdev->physfn;
1981 if (!pdev)
1982 return -ENXIO; /* passed through VFs have no PF */
1984 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1985 pos += PCI_SRIOV_CTRL;
1986 bit = PCI_SRIOV_CTRL_MSE;
1987 #endif /* !CONFIG_PCI_IOV */
1988 } else {
1989 bit = PCI_COMMAND_MEMORY;
1990 pos = PCI_COMMAND;
1994 * Process here is:
1996 * 1. Disable Memory space.
1998 * 2. Perform an MMIO to the device. This should result in an error
1999 * (CA / UR) being raised by the device which results in an EEH
2000 * PE freeze. Using the in_8() accessor skips the eeh detection hook
2001 * so the freeze hook so the EEH Detection machinery won't be
2002 * triggered here. This is to match the usual behaviour of EEH
2003 * where the HW will asyncronously freeze a PE and it's up to
2004 * the kernel to notice and deal with it.
2006 * 3. Turn Memory space back on. This is more important for VFs
2007 * since recovery will probably fail if we don't. For normal
2008 * the COMMAND register is reset as a part of re-initialising
2009 * the device.
2011 * Breaking stuff is the point so who cares if it's racy ;)
2013 pci_read_config_word(pdev, pos, &old);
2015 mapped = ioremap(bar->start, PAGE_SIZE);
2016 if (!mapped) {
2017 pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
2018 return -ENXIO;
2021 pci_write_config_word(pdev, pos, old & ~bit);
2022 in_8(mapped);
2023 pci_write_config_word(pdev, pos, old);
2025 iounmap(mapped);
2027 return 0;
2030 static ssize_t eeh_dev_break_write(struct file *filp,
2031 const char __user *user_buf,
2032 size_t count, loff_t *ppos)
2034 uint32_t domain, bus, dev, fn;
2035 struct pci_dev *pdev;
2036 char buf[20];
2037 int ret;
2039 memset(buf, 0, sizeof(buf));
2040 ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
2041 if (!ret)
2042 return -EFAULT;
2044 ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
2045 if (ret != 4) {
2046 pr_err("%s: expected 4 args, got %d\n", __func__, ret);
2047 return -EINVAL;
2050 pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
2051 if (!pdev)
2052 return -ENODEV;
2054 ret = eeh_debugfs_break_device(pdev);
2055 pci_dev_put(pdev);
2057 if (ret < 0)
2058 return ret;
2060 return count;
2063 static const struct file_operations eeh_dev_break_fops = {
2064 .open = simple_open,
2065 .llseek = no_llseek,
2066 .write = eeh_dev_break_write,
2067 .read = eeh_debugfs_dev_usage,
2070 #endif
2072 static int __init eeh_init_proc(void)
2074 if (machine_is(pseries) || machine_is(powernv)) {
2075 proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
2076 #ifdef CONFIG_DEBUG_FS
2077 debugfs_create_file_unsafe("eeh_enable", 0600,
2078 powerpc_debugfs_root, NULL,
2079 &eeh_enable_dbgfs_ops);
2080 debugfs_create_u32("eeh_max_freezes", 0600,
2081 powerpc_debugfs_root, &eeh_max_freezes);
2082 debugfs_create_bool("eeh_disable_recovery", 0600,
2083 powerpc_debugfs_root,
2084 &eeh_debugfs_no_recover);
2085 debugfs_create_file_unsafe("eeh_dev_check", 0600,
2086 powerpc_debugfs_root, NULL,
2087 &eeh_dev_check_fops);
2088 debugfs_create_file_unsafe("eeh_dev_break", 0600,
2089 powerpc_debugfs_root, NULL,
2090 &eeh_dev_break_fops);
2091 debugfs_create_file_unsafe("eeh_force_recover", 0600,
2092 powerpc_debugfs_root, NULL,
2093 &eeh_force_recover_fops);
2094 eeh_cache_debugfs_init();
2095 #endif
2098 return 0;
2100 __initcall(eeh_init_proc);