1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
6 * Copyright 2001-2012 IBM Corporation.
8 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
11 #include <linux/delay.h>
12 #include <linux/sched.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/pci.h>
16 #include <linux/iommu.h>
17 #include <linux/proc_fs.h>
18 #include <linux/rbtree.h>
19 #include <linux/reboot.h>
20 #include <linux/seq_file.h>
21 #include <linux/spinlock.h>
22 #include <linux/export.h>
25 #include <linux/atomic.h>
26 #include <asm/debugfs.h>
28 #include <asm/eeh_event.h>
30 #include <asm/iommu.h>
31 #include <asm/machdep.h>
32 #include <asm/ppc-pci.h>
34 #include <asm/pte-walk.h>
38 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39 * dealing with PCI bus errors that can't be dealt with within the
40 * usual PCI framework, except by check-stopping the CPU. Systems
41 * that are designed for high-availability/reliability cannot afford
42 * to crash due to a "mere" PCI error, thus the need for EEH.
43 * An EEH-capable bridge operates by converting a detected error
44 * into a "slot freeze", taking the PCI adapter off-line, making
45 * the slot behave, from the OS'es point of view, as if the slot
46 * were "empty": all reads return 0xff's and all writes are silently
47 * ignored. EEH slot isolation events can be triggered by parity
48 * errors on the address or data busses (e.g. during posted writes),
49 * which in turn might be caused by low voltage on the bus, dust,
50 * vibration, humidity, radioactivity or plain-old failed hardware.
52 * Note, however, that one of the leading causes of EEH slot
53 * freeze events are buggy device drivers, buggy device microcode,
54 * or buggy device hardware. This is because any attempt by the
55 * device to bus-master data to a memory address that is not
56 * assigned to the device will trigger a slot freeze. (The idea
57 * is to prevent devices-gone-wild from corrupting system memory).
58 * Buggy hardware/drivers will have a miserable time co-existing
61 * Ideally, a PCI device driver, when suspecting that an isolation
62 * event has occurred (e.g. by reading 0xff's), will then ask EEH
63 * whether this is the case, and then take appropriate steps to
64 * reset the PCI slot, the PCI device, and then resume operations.
65 * However, until that day, the checking is done here, with the
66 * eeh_check_failure() routine embedded in the MMIO macros. If
67 * the slot is found to be isolated, an "EEH Event" is synthesized
68 * and sent out for processing.
71 /* If a device driver keeps reading an MMIO register in an interrupt
72 * handler after a slot isolation event, it might be broken.
73 * This sets the threshold for how many read attempts we allow
74 * before printing an error message.
76 #define EEH_MAX_FAILS 2100000
78 /* Time to wait for a PCI slot to report status, in milliseconds */
79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
82 * EEH probe mode support, which is part of the flags,
83 * is to support multiple platforms for EEH. Some platforms
84 * like pSeries do PCI emunation based on device tree.
85 * However, other platforms like powernv probe PCI devices
86 * from hardware. The flag is used to distinguish that.
87 * In addition, struct eeh_ops::probe would be invoked for
88 * particular OF node or PCI device so that the corresponding
89 * PE would be created there.
91 int eeh_subsystem_flags
;
92 EXPORT_SYMBOL(eeh_subsystem_flags
);
95 * EEH allowed maximal frozen times. If one particular PE's
96 * frozen count in last hour exceeds this limit, the PE will
97 * be forced to be offline permanently.
99 u32 eeh_max_freezes
= 5;
102 * Controls whether a recovery event should be scheduled when an
103 * isolated device is discovered. This is only really useful for
104 * debugging problems with the EEH core.
106 bool eeh_debugfs_no_recover
;
108 /* Platform dependent EEH operations */
109 struct eeh_ops
*eeh_ops
= NULL
;
111 /* Lock to avoid races due to multiple reports of an error */
112 DEFINE_RAW_SPINLOCK(confirm_error_lock
);
113 EXPORT_SYMBOL_GPL(confirm_error_lock
);
115 /* Lock to protect passed flags */
116 static DEFINE_MUTEX(eeh_dev_mutex
);
118 /* Buffer for reporting pci register dumps. Its here in BSS, and
119 * not dynamically alloced, so that it ends up in RMO where RTAS
122 #define EEH_PCI_REGS_LOG_LEN 8192
123 static unsigned char pci_regs_buf
[EEH_PCI_REGS_LOG_LEN
];
126 * The struct is used to maintain the EEH global statistic
127 * information. Besides, the EEH global statistics will be
128 * exported to user space through procfs
131 u64 no_device
; /* PCI device not found */
132 u64 no_dn
; /* OF node not found */
133 u64 no_cfg_addr
; /* Config address not found */
134 u64 ignored_check
; /* EEH check skipped */
135 u64 total_mmio_ffs
; /* Total EEH checks */
136 u64 false_positives
; /* Unnecessary EEH checks */
137 u64 slot_resets
; /* PE reset */
140 static struct eeh_stats eeh_stats
;
142 static int __init
eeh_setup(char *str
)
144 if (!strcmp(str
, "off"))
145 eeh_add_flag(EEH_FORCE_DISABLED
);
146 else if (!strcmp(str
, "early_log"))
147 eeh_add_flag(EEH_EARLY_DUMP_LOG
);
151 __setup("eeh=", eeh_setup
);
153 void eeh_show_enabled(void)
155 if (eeh_has_flag(EEH_FORCE_DISABLED
))
156 pr_info("EEH: Recovery disabled by kernel parameter.\n");
157 else if (eeh_has_flag(EEH_ENABLED
))
158 pr_info("EEH: Capable adapter found: recovery enabled.\n");
160 pr_info("EEH: No capable adapters found: recovery disabled.\n");
164 * This routine captures assorted PCI configuration space data
165 * for the indicated PCI device, and puts them into a buffer
166 * for RTAS error logging.
168 static size_t eeh_dump_dev_log(struct eeh_dev
*edev
, char *buf
, size_t len
)
170 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
177 pr_warn("EEH: Note: No error log for absent device.\n");
181 n
+= scnprintf(buf
+n
, len
-n
, "%04x:%02x:%02x.%01x\n",
182 pdn
->phb
->global_number
, pdn
->busno
,
183 PCI_SLOT(pdn
->devfn
), PCI_FUNC(pdn
->devfn
));
184 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
185 pdn
->phb
->global_number
, pdn
->busno
,
186 PCI_SLOT(pdn
->devfn
), PCI_FUNC(pdn
->devfn
));
188 eeh_ops
->read_config(pdn
, PCI_VENDOR_ID
, 4, &cfg
);
189 n
+= scnprintf(buf
+n
, len
-n
, "dev/vend:%08x\n", cfg
);
190 pr_warn("EEH: PCI device/vendor: %08x\n", cfg
);
192 eeh_ops
->read_config(pdn
, PCI_COMMAND
, 4, &cfg
);
193 n
+= scnprintf(buf
+n
, len
-n
, "cmd/stat:%x\n", cfg
);
194 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg
);
196 /* Gather bridge-specific registers */
197 if (edev
->mode
& EEH_DEV_BRIDGE
) {
198 eeh_ops
->read_config(pdn
, PCI_SEC_STATUS
, 2, &cfg
);
199 n
+= scnprintf(buf
+n
, len
-n
, "sec stat:%x\n", cfg
);
200 pr_warn("EEH: Bridge secondary status: %04x\n", cfg
);
202 eeh_ops
->read_config(pdn
, PCI_BRIDGE_CONTROL
, 2, &cfg
);
203 n
+= scnprintf(buf
+n
, len
-n
, "brdg ctl:%x\n", cfg
);
204 pr_warn("EEH: Bridge control: %04x\n", cfg
);
207 /* Dump out the PCI-X command and status regs */
208 cap
= edev
->pcix_cap
;
210 eeh_ops
->read_config(pdn
, cap
, 4, &cfg
);
211 n
+= scnprintf(buf
+n
, len
-n
, "pcix-cmd:%x\n", cfg
);
212 pr_warn("EEH: PCI-X cmd: %08x\n", cfg
);
214 eeh_ops
->read_config(pdn
, cap
+4, 4, &cfg
);
215 n
+= scnprintf(buf
+n
, len
-n
, "pcix-stat:%x\n", cfg
);
216 pr_warn("EEH: PCI-X status: %08x\n", cfg
);
219 /* If PCI-E capable, dump PCI-E cap 10 */
220 cap
= edev
->pcie_cap
;
222 n
+= scnprintf(buf
+n
, len
-n
, "pci-e cap10:\n");
223 pr_warn("EEH: PCI-E capabilities and status follow:\n");
225 for (i
=0; i
<=8; i
++) {
226 eeh_ops
->read_config(pdn
, cap
+4*i
, 4, &cfg
);
227 n
+= scnprintf(buf
+n
, len
-n
, "%02x:%x\n", 4*i
, cfg
);
231 pr_warn("%s\n", buffer
);
233 l
= scnprintf(buffer
, sizeof(buffer
),
234 "EEH: PCI-E %02x: %08x ",
237 l
+= scnprintf(buffer
+l
, sizeof(buffer
)-l
,
243 pr_warn("%s\n", buffer
);
246 /* If AER capable, dump it */
249 n
+= scnprintf(buf
+n
, len
-n
, "pci-e AER:\n");
250 pr_warn("EEH: PCI-E AER capability register set follows:\n");
252 for (i
=0; i
<=13; i
++) {
253 eeh_ops
->read_config(pdn
, cap
+4*i
, 4, &cfg
);
254 n
+= scnprintf(buf
+n
, len
-n
, "%02x:%x\n", 4*i
, cfg
);
258 pr_warn("%s\n", buffer
);
260 l
= scnprintf(buffer
, sizeof(buffer
),
261 "EEH: PCI-E AER %02x: %08x ",
264 l
+= scnprintf(buffer
+l
, sizeof(buffer
)-l
,
269 pr_warn("%s\n", buffer
);
275 static void *eeh_dump_pe_log(struct eeh_pe
*pe
, void *flag
)
277 struct eeh_dev
*edev
, *tmp
;
280 eeh_pe_for_each_dev(pe
, edev
, tmp
)
281 *plen
+= eeh_dump_dev_log(edev
, pci_regs_buf
+ *plen
,
282 EEH_PCI_REGS_LOG_LEN
- *plen
);
288 * eeh_slot_error_detail - Generate combined log including driver log and error log
290 * @severity: temporary or permanent error log
292 * This routine should be called to generate the combined log, which
293 * is comprised of driver log and error log. The driver log is figured
294 * out from the config space of the corresponding PCI device, while
295 * the error log is fetched through platform dependent function call.
297 void eeh_slot_error_detail(struct eeh_pe
*pe
, int severity
)
302 * When the PHB is fenced or dead, it's pointless to collect
303 * the data from PCI config space because it should return
304 * 0xFF's. For ER, we still retrieve the data from the PCI
307 * For pHyp, we have to enable IO for log retrieval. Otherwise,
308 * 0xFF's is always returned from PCI config space.
310 * When the @severity is EEH_LOG_PERM, the PE is going to be
311 * removed. Prior to that, the drivers for devices included in
312 * the PE will be closed. The drivers rely on working IO path
313 * to bring the devices to quiet state. Otherwise, PCI traffic
314 * from those devices after they are removed is like to cause
315 * another unexpected EEH error.
317 if (!(pe
->type
& EEH_PE_PHB
)) {
318 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG
) ||
319 severity
== EEH_LOG_PERM
)
320 eeh_pci_enable(pe
, EEH_OPT_THAW_MMIO
);
323 * The config space of some PCI devices can't be accessed
324 * when their PEs are in frozen state. Otherwise, fenced
325 * PHB might be seen. Those PEs are identified with flag
326 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
327 * is set automatically when the PE is put to EEH_PE_ISOLATED.
329 * Restoring BARs possibly triggers PCI config access in
330 * (OPAL) firmware and then causes fenced PHB. If the
331 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
332 * pointless to restore BARs and dump config space.
334 eeh_ops
->configure_bridge(pe
);
335 if (!(pe
->state
& EEH_PE_CFG_BLOCKED
)) {
336 eeh_pe_restore_bars(pe
);
339 eeh_pe_traverse(pe
, eeh_dump_pe_log
, &loglen
);
343 eeh_ops
->get_log(pe
, severity
, pci_regs_buf
, loglen
);
347 * eeh_token_to_phys - Convert EEH address token to phys address
348 * @token: I/O token, should be address in the form 0xA....
350 * This routine should be called to convert virtual I/O address
353 static inline unsigned long eeh_token_to_phys(unsigned long token
)
360 * We won't find hugepages here(this is iomem). Hence we are not
361 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
362 * page table free, because of init_mm.
364 ptep
= find_init_mm_pte(token
, &hugepage_shift
);
370 /* On radix we can do hugepage mappings for io, so handle that */
371 if (hugepage_shift
) {
372 pa
<<= hugepage_shift
;
373 pa
|= token
& ((1ul << hugepage_shift
) - 1);
376 pa
|= token
& (PAGE_SIZE
- 1);
383 * On PowerNV platform, we might already have fenced PHB there.
384 * For that case, it's meaningless to recover frozen PE. Intead,
385 * We have to handle fenced PHB firstly.
387 static int eeh_phb_check_failure(struct eeh_pe
*pe
)
389 struct eeh_pe
*phb_pe
;
393 if (!eeh_has_flag(EEH_PROBE_MODE_DEV
))
396 /* Find the PHB PE */
397 phb_pe
= eeh_phb_pe_get(pe
->phb
);
399 pr_warn("%s Can't find PE for PHB#%x\n",
400 __func__
, pe
->phb
->global_number
);
404 /* If the PHB has been in problematic state */
405 eeh_serialize_lock(&flags
);
406 if (phb_pe
->state
& EEH_PE_ISOLATED
) {
411 /* Check PHB state */
412 ret
= eeh_ops
->get_state(phb_pe
, NULL
);
414 (ret
== EEH_STATE_NOT_SUPPORT
) || eeh_state_active(ret
)) {
419 /* Isolate the PHB and send event */
420 eeh_pe_mark_isolated(phb_pe
);
421 eeh_serialize_unlock(flags
);
423 pr_debug("EEH: PHB#%x failure detected, location: %s\n",
424 phb_pe
->phb
->global_number
, eeh_pe_loc_get(phb_pe
));
425 eeh_send_failure_event(phb_pe
);
428 eeh_serialize_unlock(flags
);
433 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
436 * Check for an EEH failure for the given device node. Call this
437 * routine if the result of a read was all 0xff's and you want to
438 * find out if this is due to an EEH slot freeze. This routine
439 * will query firmware for the EEH status.
441 * Returns 0 if there has not been an EEH error; otherwise returns
442 * a non-zero value and queues up a slot isolation event notification.
444 * It is safe to call this routine in an interrupt context.
446 int eeh_dev_check_failure(struct eeh_dev
*edev
)
450 struct device_node
*dn
;
452 struct eeh_pe
*pe
, *parent_pe
;
454 const char *location
= NULL
;
456 eeh_stats
.total_mmio_ffs
++;
465 dev
= eeh_dev_to_pci_dev(edev
);
466 pe
= eeh_dev_to_pe(edev
);
468 /* Access to IO BARs might get this far and still not want checking. */
470 eeh_stats
.ignored_check
++;
471 eeh_edev_dbg(edev
, "Ignored check\n");
475 if (!pe
->addr
&& !pe
->config_addr
) {
476 eeh_stats
.no_cfg_addr
++;
481 * On PowerNV platform, we might already have fenced PHB
482 * there and we need take care of that firstly.
484 ret
= eeh_phb_check_failure(pe
);
489 * If the PE isn't owned by us, we shouldn't check the
490 * state. Instead, let the owner handle it if the PE has
493 if (eeh_pe_passed(pe
))
496 /* If we already have a pending isolation event for this
497 * slot, we know it's bad already, we don't need to check.
498 * Do this checking under a lock; as multiple PCI devices
499 * in one slot might report errors simultaneously, and we
500 * only want one error recovery routine running.
502 eeh_serialize_lock(&flags
);
504 if (pe
->state
& EEH_PE_ISOLATED
) {
506 if (pe
->check_count
== EEH_MAX_FAILS
) {
507 dn
= pci_device_to_OF_node(dev
);
509 location
= of_get_property(dn
, "ibm,loc-code",
511 eeh_edev_err(edev
, "%d reads ignored for recovering device at location=%s driver=%s\n",
513 location
? location
: "unknown",
514 eeh_driver_name(dev
));
515 eeh_edev_err(edev
, "Might be infinite loop in %s driver\n",
516 eeh_driver_name(dev
));
523 * Now test for an EEH failure. This is VERY expensive.
524 * Note that the eeh_config_addr may be a parent device
525 * in the case of a device behind a bridge, or it may be
526 * function zero of a multi-function device.
527 * In any case they must share a common PHB.
529 ret
= eeh_ops
->get_state(pe
, NULL
);
531 /* Note that config-io to empty slots may fail;
532 * they are empty when they don't have children.
533 * We will punt with the following conditions: Failure to get
534 * PE's state, EEH not support and Permanently unavailable
535 * state, PE is in good state.
538 (ret
== EEH_STATE_NOT_SUPPORT
) || eeh_state_active(ret
)) {
539 eeh_stats
.false_positives
++;
540 pe
->false_positives
++;
546 * It should be corner case that the parent PE has been
547 * put into frozen state as well. We should take care
550 parent_pe
= pe
->parent
;
552 /* Hit the ceiling ? */
553 if (parent_pe
->type
& EEH_PE_PHB
)
556 /* Frozen parent PE ? */
557 ret
= eeh_ops
->get_state(parent_pe
, NULL
);
558 if (ret
> 0 && !eeh_state_active(ret
)) {
560 pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
561 pe
->phb
->global_number
, pe
->addr
,
562 pe
->phb
->global_number
, parent_pe
->addr
);
565 /* Next parent level */
566 parent_pe
= parent_pe
->parent
;
569 eeh_stats
.slot_resets
++;
571 /* Avoid repeated reports of this failure, including problems
572 * with other functions on this device, and functions under
575 eeh_pe_mark_isolated(pe
);
576 eeh_serialize_unlock(flags
);
578 /* Most EEH events are due to device driver bugs. Having
579 * a stack trace will help the device-driver authors figure
580 * out what happened. So print that out.
582 pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
583 __func__
, pe
->phb
->global_number
, pe
->addr
);
584 eeh_send_failure_event(pe
);
589 eeh_serialize_unlock(flags
);
593 EXPORT_SYMBOL_GPL(eeh_dev_check_failure
);
596 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
597 * @token: I/O address
599 * Check for an EEH failure at the given I/O address. Call this
600 * routine if the result of a read was all 0xff's and you want to
601 * find out if this is due to an EEH slot freeze event. This routine
602 * will query firmware for the EEH status.
604 * Note this routine is safe to call in an interrupt context.
606 int eeh_check_failure(const volatile void __iomem
*token
)
609 struct eeh_dev
*edev
;
611 /* Finding the phys addr + pci device; this is pretty quick. */
612 addr
= eeh_token_to_phys((unsigned long __force
) token
);
613 edev
= eeh_addr_cache_get_dev(addr
);
615 eeh_stats
.no_device
++;
619 return eeh_dev_check_failure(edev
);
621 EXPORT_SYMBOL(eeh_check_failure
);
625 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
628 * This routine should be called to reenable frozen MMIO or DMA
629 * so that it would work correctly again. It's useful while doing
630 * recovery or log collection on the indicated device.
632 int eeh_pci_enable(struct eeh_pe
*pe
, int function
)
637 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
638 * Also, it's pointless to enable them on unfrozen PE. So
639 * we have to check before enabling IO or DMA.
642 case EEH_OPT_THAW_MMIO
:
643 active_flag
= EEH_STATE_MMIO_ACTIVE
| EEH_STATE_MMIO_ENABLED
;
645 case EEH_OPT_THAW_DMA
:
646 active_flag
= EEH_STATE_DMA_ACTIVE
;
648 case EEH_OPT_DISABLE
:
650 case EEH_OPT_FREEZE_PE
:
654 pr_warn("%s: Invalid function %d\n",
660 * Check if IO or DMA has been enabled before
664 rc
= eeh_ops
->get_state(pe
, NULL
);
668 /* Needn't enable it at all */
669 if (rc
== EEH_STATE_NOT_SUPPORT
)
672 /* It's already enabled */
673 if (rc
& active_flag
)
678 /* Issue the request */
679 rc
= eeh_ops
->set_option(pe
, function
);
681 pr_warn("%s: Unexpected state change %d on "
682 "PHB#%x-PE#%x, err=%d\n",
683 __func__
, function
, pe
->phb
->global_number
,
686 /* Check if the request is finished successfully */
688 rc
= eeh_wait_state(pe
, PCI_BUS_RESET_WAIT_MSEC
);
692 if (rc
& active_flag
)
701 static void eeh_disable_and_save_dev_state(struct eeh_dev
*edev
,
704 struct pci_dev
*pdev
= eeh_dev_to_pci_dev(edev
);
705 struct pci_dev
*dev
= userdata
;
708 * The caller should have disabled and saved the
709 * state for the specified device
711 if (!pdev
|| pdev
== dev
)
714 /* Ensure we have D0 power state */
715 pci_set_power_state(pdev
, PCI_D0
);
717 /* Save device state */
718 pci_save_state(pdev
);
721 * Disable device to avoid any DMA traffic and
722 * interrupt from the device
724 pci_write_config_word(pdev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
727 static void eeh_restore_dev_state(struct eeh_dev
*edev
, void *userdata
)
729 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
730 struct pci_dev
*pdev
= eeh_dev_to_pci_dev(edev
);
731 struct pci_dev
*dev
= userdata
;
736 /* Apply customization from firmware */
737 if (pdn
&& eeh_ops
->restore_config
)
738 eeh_ops
->restore_config(pdn
);
740 /* The caller should restore state for the specified device */
742 pci_restore_state(pdev
);
745 int eeh_restore_vf_config(struct pci_dn
*pdn
)
747 struct eeh_dev
*edev
= pdn_to_eeh_dev(pdn
);
748 u32 devctl
, cmd
, cap2
, aer_capctl
;
751 if (edev
->pcie_cap
) {
753 old_mps
= (ffs(pdn
->mps
) - 8) << 5;
754 eeh_ops
->read_config(pdn
, edev
->pcie_cap
+ PCI_EXP_DEVCTL
,
756 devctl
&= ~PCI_EXP_DEVCTL_PAYLOAD
;
758 eeh_ops
->write_config(pdn
, edev
->pcie_cap
+ PCI_EXP_DEVCTL
,
761 /* Disable Completion Timeout if possible */
762 eeh_ops
->read_config(pdn
, edev
->pcie_cap
+ PCI_EXP_DEVCAP2
,
764 if (cap2
& PCI_EXP_DEVCAP2_COMP_TMOUT_DIS
) {
765 eeh_ops
->read_config(pdn
,
766 edev
->pcie_cap
+ PCI_EXP_DEVCTL2
,
768 cap2
|= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS
;
769 eeh_ops
->write_config(pdn
,
770 edev
->pcie_cap
+ PCI_EXP_DEVCTL2
,
775 /* Enable SERR and parity checking */
776 eeh_ops
->read_config(pdn
, PCI_COMMAND
, 2, &cmd
);
777 cmd
|= (PCI_COMMAND_PARITY
| PCI_COMMAND_SERR
);
778 eeh_ops
->write_config(pdn
, PCI_COMMAND
, 2, cmd
);
780 /* Enable report various errors */
781 if (edev
->pcie_cap
) {
782 eeh_ops
->read_config(pdn
, edev
->pcie_cap
+ PCI_EXP_DEVCTL
,
784 devctl
&= ~PCI_EXP_DEVCTL_CERE
;
785 devctl
|= (PCI_EXP_DEVCTL_NFERE
|
786 PCI_EXP_DEVCTL_FERE
|
787 PCI_EXP_DEVCTL_URRE
);
788 eeh_ops
->write_config(pdn
, edev
->pcie_cap
+ PCI_EXP_DEVCTL
,
792 /* Enable ECRC generation and check */
793 if (edev
->pcie_cap
&& edev
->aer_cap
) {
794 eeh_ops
->read_config(pdn
, edev
->aer_cap
+ PCI_ERR_CAP
,
796 aer_capctl
|= (PCI_ERR_CAP_ECRC_GENE
| PCI_ERR_CAP_ECRC_CHKE
);
797 eeh_ops
->write_config(pdn
, edev
->aer_cap
+ PCI_ERR_CAP
,
805 * pcibios_set_pcie_reset_state - Set PCI-E reset state
806 * @dev: pci device struct
807 * @state: reset state to enter
812 int pcibios_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
814 struct eeh_dev
*edev
= pci_dev_to_eeh_dev(dev
);
815 struct eeh_pe
*pe
= eeh_dev_to_pe(edev
);
818 pr_err("%s: No PE found on PCI device %s\n",
819 __func__
, pci_name(dev
));
824 case pcie_deassert_reset
:
825 eeh_ops
->reset(pe
, EEH_RESET_DEACTIVATE
);
827 if (!(pe
->type
& EEH_PE_VF
))
828 eeh_pe_state_clear(pe
, EEH_PE_CFG_BLOCKED
, true);
829 eeh_pe_dev_traverse(pe
, eeh_restore_dev_state
, dev
);
830 eeh_pe_state_clear(pe
, EEH_PE_ISOLATED
, true);
833 eeh_pe_mark_isolated(pe
);
834 eeh_pe_state_clear(pe
, EEH_PE_CFG_BLOCKED
, true);
835 eeh_ops
->set_option(pe
, EEH_OPT_FREEZE_PE
);
836 eeh_pe_dev_traverse(pe
, eeh_disable_and_save_dev_state
, dev
);
837 if (!(pe
->type
& EEH_PE_VF
))
838 eeh_pe_state_mark(pe
, EEH_PE_CFG_BLOCKED
);
839 eeh_ops
->reset(pe
, EEH_RESET_HOT
);
841 case pcie_warm_reset
:
842 eeh_pe_mark_isolated(pe
);
843 eeh_pe_state_clear(pe
, EEH_PE_CFG_BLOCKED
, true);
844 eeh_ops
->set_option(pe
, EEH_OPT_FREEZE_PE
);
845 eeh_pe_dev_traverse(pe
, eeh_disable_and_save_dev_state
, dev
);
846 if (!(pe
->type
& EEH_PE_VF
))
847 eeh_pe_state_mark(pe
, EEH_PE_CFG_BLOCKED
);
848 eeh_ops
->reset(pe
, EEH_RESET_FUNDAMENTAL
);
851 eeh_pe_state_clear(pe
, EEH_PE_ISOLATED
| EEH_PE_CFG_BLOCKED
, true);
859 * eeh_set_pe_freset - Check the required reset for the indicated device
861 * @flag: return value
863 * Each device might have its preferred reset type: fundamental or
864 * hot reset. The routine is used to collected the information for
865 * the indicated device and its children so that the bunch of the
866 * devices could be reset properly.
868 static void eeh_set_dev_freset(struct eeh_dev
*edev
, void *flag
)
871 unsigned int *freset
= (unsigned int *)flag
;
873 dev
= eeh_dev_to_pci_dev(edev
);
875 *freset
|= dev
->needs_freset
;
878 static void eeh_pe_refreeze_passed(struct eeh_pe
*root
)
883 eeh_for_each_pe(root
, pe
) {
884 if (eeh_pe_passed(pe
)) {
885 state
= eeh_ops
->get_state(pe
, NULL
);
887 (EEH_STATE_MMIO_ACTIVE
| EEH_STATE_MMIO_ENABLED
)) {
888 pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
889 pe
->phb
->global_number
, pe
->addr
);
890 eeh_pe_set_option(pe
, EEH_OPT_FREEZE_PE
);
897 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
900 * This function executes a full reset procedure on a PE, including setting
901 * the appropriate flags, performing a fundamental or hot reset, and then
902 * deactivating the reset status. It is designed to be used within the EEH
903 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
904 * only performs a single operation at a time.
906 * This function will attempt to reset a PE three times before failing.
908 int eeh_pe_reset_full(struct eeh_pe
*pe
, bool include_passed
)
910 int reset_state
= (EEH_PE_RESET
| EEH_PE_CFG_BLOCKED
);
911 int type
= EEH_RESET_HOT
;
912 unsigned int freset
= 0;
913 int i
, state
= 0, ret
;
916 * Determine the type of reset to perform - hot or fundamental.
917 * Hot reset is the default operation, unless any device under the
918 * PE requires a fundamental reset.
920 eeh_pe_dev_traverse(pe
, eeh_set_dev_freset
, &freset
);
923 type
= EEH_RESET_FUNDAMENTAL
;
925 /* Mark the PE as in reset state and block config space accesses */
926 eeh_pe_state_mark(pe
, reset_state
);
928 /* Make three attempts at resetting the bus */
929 for (i
= 0; i
< 3; i
++) {
930 ret
= eeh_pe_reset(pe
, type
, include_passed
);
932 ret
= eeh_pe_reset(pe
, EEH_RESET_DEACTIVATE
,
936 pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
937 state
, pe
->phb
->global_number
, pe
->addr
, i
+ 1);
941 pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
942 pe
->phb
->global_number
, pe
->addr
, i
+ 1);
944 /* Wait until the PE is in a functioning state */
945 state
= eeh_wait_state(pe
, PCI_BUS_RESET_WAIT_MSEC
);
947 pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
948 pe
->phb
->global_number
, pe
->addr
);
949 ret
= -ENOTRECOVERABLE
;
952 if (eeh_state_active(state
))
955 pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
956 pe
->phb
->global_number
, pe
->addr
, state
, i
+ 1);
959 /* Resetting the PE may have unfrozen child PEs. If those PEs have been
960 * (potentially) passed through to a guest, re-freeze them:
963 eeh_pe_refreeze_passed(pe
);
965 eeh_pe_state_clear(pe
, reset_state
, true);
970 * eeh_save_bars - Save device bars
971 * @edev: PCI device associated EEH device
973 * Save the values of the device bars. Unlike the restore
974 * routine, this routine is *not* recursive. This is because
975 * PCI devices are added individually; but, for the restore,
976 * an entire slot is reset at a time.
978 void eeh_save_bars(struct eeh_dev
*edev
)
983 pdn
= eeh_dev_to_pdn(edev
);
987 for (i
= 0; i
< 16; i
++)
988 eeh_ops
->read_config(pdn
, i
* 4, 4, &edev
->config_space
[i
]);
991 * For PCI bridges including root port, we need enable bus
992 * master explicitly. Otherwise, it can't fetch IODA table
993 * entries correctly. So we cache the bit in advance so that
994 * we can restore it after reset, either PHB range or PE range.
996 if (edev
->mode
& EEH_DEV_BRIDGE
)
997 edev
->config_space
[1] |= PCI_COMMAND_MASTER
;
1001 * eeh_ops_register - Register platform dependent EEH operations
1002 * @ops: platform dependent EEH operations
1004 * Register the platform dependent EEH operation callback
1005 * functions. The platform should call this function before
1006 * any other EEH operations.
1008 int __init
eeh_ops_register(struct eeh_ops
*ops
)
1011 pr_warn("%s: Invalid EEH ops name for %p\n",
1016 if (eeh_ops
&& eeh_ops
!= ops
) {
1017 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
1018 __func__
, eeh_ops
->name
, ops
->name
);
1028 * eeh_ops_unregister - Unreigster platform dependent EEH operations
1029 * @name: name of EEH platform operations
1031 * Unregister the platform dependent EEH operation callback
1034 int __exit
eeh_ops_unregister(const char *name
)
1036 if (!name
|| !strlen(name
)) {
1037 pr_warn("%s: Invalid EEH ops name\n",
1042 if (eeh_ops
&& !strcmp(eeh_ops
->name
, name
)) {
1050 static int eeh_reboot_notifier(struct notifier_block
*nb
,
1051 unsigned long action
, void *unused
)
1053 eeh_clear_flag(EEH_ENABLED
);
1057 static struct notifier_block eeh_reboot_nb
= {
1058 .notifier_call
= eeh_reboot_notifier
,
1062 * eeh_init - EEH initialization
1064 * Initialize EEH by trying to enable it for all of the adapters in the system.
1065 * As a side effect we can determine here if eeh is supported at all.
1066 * Note that we leave EEH on so failed config cycles won't cause a machine
1067 * check. If a user turns off EEH for a particular adapter they are really
1068 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1069 * grant access to a slot if EEH isn't enabled, and so we always enable
1070 * EEH for all slots/all devices.
1072 * The eeh-force-off option disables EEH checking globally, for all slots.
1073 * Even if force-off is set, the EEH hardware is still enabled, so that
1074 * newer systems can boot.
1076 static int eeh_init(void)
1078 struct pci_controller
*hose
, *tmp
;
1081 /* Register reboot notifier */
1082 ret
= register_reboot_notifier(&eeh_reboot_nb
);
1084 pr_warn("%s: Failed to register notifier (%d)\n",
1089 /* call platform initialization function */
1091 pr_warn("%s: Platform EEH operation not found\n",
1094 } else if ((ret
= eeh_ops
->init()))
1097 /* Initialize PHB PEs */
1098 list_for_each_entry_safe(hose
, tmp
, &hose_list
, list_node
)
1099 eeh_dev_phb_init_dynamic(hose
);
1101 eeh_addr_cache_init();
1103 /* Initialize EEH event */
1104 return eeh_event_init();
1107 core_initcall_sync(eeh_init
);
1110 * eeh_add_device_early - Enable EEH for the indicated device node
1111 * @pdn: PCI device node for which to set up EEH
1113 * This routine must be used to perform EEH initialization for PCI
1114 * devices that were added after system boot (e.g. hotplug, dlpar).
1115 * This routine must be called before any i/o is performed to the
1116 * adapter (inluding any config-space i/o).
1117 * Whether this actually enables EEH or not for this device depends
1118 * on the CEC architecture, type of the device, on earlier boot
1119 * command-line arguments & etc.
1121 void eeh_add_device_early(struct pci_dn
*pdn
)
1123 struct pci_controller
*phb
= pdn
? pdn
->phb
: NULL
;
1124 struct eeh_dev
*edev
= pdn_to_eeh_dev(pdn
);
1129 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE
))
1132 /* USB Bus children of PCI devices will not have BUID's */
1134 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE
) && 0 == phb
->buid
))
1137 eeh_ops
->probe(pdn
, NULL
);
1141 * eeh_add_device_tree_early - Enable EEH for the indicated device
1142 * @pdn: PCI device node
1144 * This routine must be used to perform EEH initialization for the
1145 * indicated PCI device that was added after system boot (e.g.
1148 void eeh_add_device_tree_early(struct pci_dn
*pdn
)
1155 list_for_each_entry(n
, &pdn
->child_list
, list
)
1156 eeh_add_device_tree_early(n
);
1157 eeh_add_device_early(pdn
);
1159 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early
);
1162 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1163 * @dev: pci device for which to set up EEH
1165 * This routine must be used to complete EEH initialization for PCI
1166 * devices that were added after system boot (e.g. hotplug, dlpar).
1168 void eeh_add_device_late(struct pci_dev
*dev
)
1171 struct eeh_dev
*edev
;
1176 pdn
= pci_get_pdn_by_devfn(dev
->bus
, dev
->devfn
);
1177 edev
= pdn_to_eeh_dev(pdn
);
1178 eeh_edev_dbg(edev
, "Adding device\n");
1179 if (edev
->pdev
== dev
) {
1180 eeh_edev_dbg(edev
, "Device already referenced!\n");
1185 * The EEH cache might not be removed correctly because of
1186 * unbalanced kref to the device during unplug time, which
1187 * relies on pcibios_release_device(). So we have to remove
1188 * that here explicitly.
1191 eeh_rmv_from_parent_pe(edev
);
1192 eeh_addr_cache_rmv_dev(edev
->pdev
);
1193 eeh_sysfs_remove_device(edev
->pdev
);
1196 * We definitely should have the PCI device removed
1197 * though it wasn't correctly. So we needn't call
1198 * into error handler afterwards.
1200 edev
->mode
|= EEH_DEV_NO_HANDLER
;
1203 dev
->dev
.archdata
.edev
= NULL
;
1206 if (eeh_has_flag(EEH_PROBE_MODE_DEV
))
1207 eeh_ops
->probe(pdn
, NULL
);
1210 dev
->dev
.archdata
.edev
= edev
;
1212 eeh_addr_cache_insert_dev(dev
);
1216 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1219 * This routine must be used to perform EEH initialization for PCI
1220 * devices which are attached to the indicated PCI bus. The PCI bus
1221 * is added after system boot through hotplug or dlpar.
1223 void eeh_add_device_tree_late(struct pci_bus
*bus
)
1225 struct pci_dev
*dev
;
1227 if (eeh_has_flag(EEH_FORCE_DISABLED
))
1229 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
1230 eeh_add_device_late(dev
);
1231 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
1232 struct pci_bus
*subbus
= dev
->subordinate
;
1234 eeh_add_device_tree_late(subbus
);
1238 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late
);
1241 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1244 * This routine must be used to add EEH sysfs files for PCI
1245 * devices which are attached to the indicated PCI bus. The PCI bus
1246 * is added after system boot through hotplug or dlpar.
1248 void eeh_add_sysfs_files(struct pci_bus
*bus
)
1250 struct pci_dev
*dev
;
1252 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
1253 eeh_sysfs_add_device(dev
);
1254 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
1255 struct pci_bus
*subbus
= dev
->subordinate
;
1257 eeh_add_sysfs_files(subbus
);
1261 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files
);
1264 * eeh_remove_device - Undo EEH setup for the indicated pci device
1265 * @dev: pci device to be removed
1267 * This routine should be called when a device is removed from
1268 * a running system (e.g. by hotplug or dlpar). It unregisters
1269 * the PCI device from the EEH subsystem. I/O errors affecting
1270 * this device will no longer be detected after this call; thus,
1271 * i/o errors affecting this slot may leave this device unusable.
1273 void eeh_remove_device(struct pci_dev
*dev
)
1275 struct eeh_dev
*edev
;
1277 if (!dev
|| !eeh_enabled())
1279 edev
= pci_dev_to_eeh_dev(dev
);
1281 /* Unregister the device with the EEH/PCI address search system */
1282 dev_dbg(&dev
->dev
, "EEH: Removing device\n");
1284 if (!edev
|| !edev
->pdev
|| !edev
->pe
) {
1285 dev_dbg(&dev
->dev
, "EEH: Device not referenced!\n");
1290 * During the hotplug for EEH error recovery, we need the EEH
1291 * device attached to the parent PE in order for BAR restore
1292 * a bit later. So we keep it for BAR restore and remove it
1293 * from the parent PE during the BAR resotre.
1298 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1299 * remove the sysfs files before clearing dev.archdata.edev
1301 if (edev
->mode
& EEH_DEV_SYSFS
)
1302 eeh_sysfs_remove_device(dev
);
1305 * We're removing from the PCI subsystem, that means
1306 * the PCI device driver can't support EEH or not
1307 * well. So we rely on hotplug completely to do recovery
1308 * for the specific PCI device.
1310 edev
->mode
|= EEH_DEV_NO_HANDLER
;
1312 eeh_addr_cache_rmv_dev(dev
);
1315 * The flag "in_error" is used to trace EEH devices for VFs
1316 * in error state or not. It's set in eeh_report_error(). If
1317 * it's not set, eeh_report_{reset,resume}() won't be called
1318 * for the VF EEH device.
1320 edev
->in_error
= false;
1321 dev
->dev
.archdata
.edev
= NULL
;
1322 if (!(edev
->pe
->state
& EEH_PE_KEEP
))
1323 eeh_rmv_from_parent_pe(edev
);
1325 edev
->mode
|= EEH_DEV_DISCONNECTED
;
1328 int eeh_unfreeze_pe(struct eeh_pe
*pe
)
1332 ret
= eeh_pci_enable(pe
, EEH_OPT_THAW_MMIO
);
1334 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1335 __func__
, ret
, pe
->phb
->global_number
, pe
->addr
);
1339 ret
= eeh_pci_enable(pe
, EEH_OPT_THAW_DMA
);
1341 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1342 __func__
, ret
, pe
->phb
->global_number
, pe
->addr
);
1350 static struct pci_device_id eeh_reset_ids
[] = {
1351 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1352 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1353 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1357 static int eeh_pe_change_owner(struct eeh_pe
*pe
)
1359 struct eeh_dev
*edev
, *tmp
;
1360 struct pci_dev
*pdev
;
1361 struct pci_device_id
*id
;
1364 /* Check PE state */
1365 ret
= eeh_ops
->get_state(pe
, NULL
);
1366 if (ret
< 0 || ret
== EEH_STATE_NOT_SUPPORT
)
1369 /* Unfrozen PE, nothing to do */
1370 if (eeh_state_active(ret
))
1373 /* Frozen PE, check if it needs PE level reset */
1374 eeh_pe_for_each_dev(pe
, edev
, tmp
) {
1375 pdev
= eeh_dev_to_pci_dev(edev
);
1379 for (id
= &eeh_reset_ids
[0]; id
->vendor
!= 0; id
++) {
1380 if (id
->vendor
!= PCI_ANY_ID
&&
1381 id
->vendor
!= pdev
->vendor
)
1383 if (id
->device
!= PCI_ANY_ID
&&
1384 id
->device
!= pdev
->device
)
1386 if (id
->subvendor
!= PCI_ANY_ID
&&
1387 id
->subvendor
!= pdev
->subsystem_vendor
)
1389 if (id
->subdevice
!= PCI_ANY_ID
&&
1390 id
->subdevice
!= pdev
->subsystem_device
)
1393 return eeh_pe_reset_and_recover(pe
);
1397 ret
= eeh_unfreeze_pe(pe
);
1399 eeh_pe_state_clear(pe
, EEH_PE_ISOLATED
, true);
1404 * eeh_dev_open - Increase count of pass through devices for PE
1407 * Increase count of passed through devices for the indicated
1408 * PE. In the result, the EEH errors detected on the PE won't be
1409 * reported. The PE owner will be responsible for detection
1412 int eeh_dev_open(struct pci_dev
*pdev
)
1414 struct eeh_dev
*edev
;
1417 mutex_lock(&eeh_dev_mutex
);
1419 /* No PCI device ? */
1423 /* No EEH device or PE ? */
1424 edev
= pci_dev_to_eeh_dev(pdev
);
1425 if (!edev
|| !edev
->pe
)
1429 * The PE might have been put into frozen state, but we
1430 * didn't detect that yet. The passed through PCI devices
1431 * in frozen PE won't work properly. Clear the frozen state
1434 ret
= eeh_pe_change_owner(edev
->pe
);
1438 /* Increase PE's pass through count */
1439 atomic_inc(&edev
->pe
->pass_dev_cnt
);
1440 mutex_unlock(&eeh_dev_mutex
);
1444 mutex_unlock(&eeh_dev_mutex
);
1447 EXPORT_SYMBOL_GPL(eeh_dev_open
);
1450 * eeh_dev_release - Decrease count of pass through devices for PE
1453 * Decrease count of pass through devices for the indicated PE. If
1454 * there is no passed through device in PE, the EEH errors detected
1455 * on the PE will be reported and handled as usual.
1457 void eeh_dev_release(struct pci_dev
*pdev
)
1459 struct eeh_dev
*edev
;
1461 mutex_lock(&eeh_dev_mutex
);
1463 /* No PCI device ? */
1467 /* No EEH device ? */
1468 edev
= pci_dev_to_eeh_dev(pdev
);
1469 if (!edev
|| !edev
->pe
|| !eeh_pe_passed(edev
->pe
))
1472 /* Decrease PE's pass through count */
1473 WARN_ON(atomic_dec_if_positive(&edev
->pe
->pass_dev_cnt
) < 0);
1474 eeh_pe_change_owner(edev
->pe
);
1476 mutex_unlock(&eeh_dev_mutex
);
1478 EXPORT_SYMBOL(eeh_dev_release
);
1480 #ifdef CONFIG_IOMMU_API
1482 static int dev_has_iommu_table(struct device
*dev
, void *data
)
1484 struct pci_dev
*pdev
= to_pci_dev(dev
);
1485 struct pci_dev
**ppdev
= data
;
1490 if (device_iommu_mapped(dev
)) {
1499 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1500 * @group: IOMMU group
1502 * The routine is called to convert IOMMU group to EEH PE.
1504 struct eeh_pe
*eeh_iommu_group_to_pe(struct iommu_group
*group
)
1506 struct pci_dev
*pdev
= NULL
;
1507 struct eeh_dev
*edev
;
1510 /* No IOMMU group ? */
1514 ret
= iommu_group_for_each_dev(group
, &pdev
, dev_has_iommu_table
);
1518 /* No EEH device or PE ? */
1519 edev
= pci_dev_to_eeh_dev(pdev
);
1520 if (!edev
|| !edev
->pe
)
1525 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe
);
1527 #endif /* CONFIG_IOMMU_API */
1530 * eeh_pe_set_option - Set options for the indicated PE
1532 * @option: requested option
1534 * The routine is called to enable or disable EEH functionality
1535 * on the indicated PE, to enable IO or DMA for the frozen PE.
1537 int eeh_pe_set_option(struct eeh_pe
*pe
, int option
)
1546 * EEH functionality could possibly be disabled, just
1547 * return error for the case. And the EEH functinality
1548 * isn't expected to be disabled on one specific PE.
1551 case EEH_OPT_ENABLE
:
1552 if (eeh_enabled()) {
1553 ret
= eeh_pe_change_owner(pe
);
1558 case EEH_OPT_DISABLE
:
1560 case EEH_OPT_THAW_MMIO
:
1561 case EEH_OPT_THAW_DMA
:
1562 case EEH_OPT_FREEZE_PE
:
1563 if (!eeh_ops
|| !eeh_ops
->set_option
) {
1568 ret
= eeh_pci_enable(pe
, option
);
1571 pr_debug("%s: Option %d out of range (%d, %d)\n",
1572 __func__
, option
, EEH_OPT_DISABLE
, EEH_OPT_THAW_DMA
);
1578 EXPORT_SYMBOL_GPL(eeh_pe_set_option
);
1581 * eeh_pe_get_state - Retrieve PE's state
1584 * Retrieve the PE's state, which includes 3 aspects: enabled
1585 * DMA, enabled IO and asserted reset.
1587 int eeh_pe_get_state(struct eeh_pe
*pe
)
1589 int result
, ret
= 0;
1590 bool rst_active
, dma_en
, mmio_en
;
1596 if (!eeh_ops
|| !eeh_ops
->get_state
)
1600 * If the parent PE is owned by the host kernel and is undergoing
1601 * error recovery, we should return the PE state as temporarily
1602 * unavailable so that the error recovery on the guest is suspended
1603 * until the recovery completes on the host.
1606 !(pe
->state
& EEH_PE_REMOVED
) &&
1607 (pe
->parent
->state
& (EEH_PE_ISOLATED
| EEH_PE_RECOVERING
)))
1608 return EEH_PE_STATE_UNAVAIL
;
1610 result
= eeh_ops
->get_state(pe
, NULL
);
1611 rst_active
= !!(result
& EEH_STATE_RESET_ACTIVE
);
1612 dma_en
= !!(result
& EEH_STATE_DMA_ENABLED
);
1613 mmio_en
= !!(result
& EEH_STATE_MMIO_ENABLED
);
1616 ret
= EEH_PE_STATE_RESET
;
1617 else if (dma_en
&& mmio_en
)
1618 ret
= EEH_PE_STATE_NORMAL
;
1619 else if (!dma_en
&& !mmio_en
)
1620 ret
= EEH_PE_STATE_STOPPED_IO_DMA
;
1621 else if (!dma_en
&& mmio_en
)
1622 ret
= EEH_PE_STATE_STOPPED_DMA
;
1624 ret
= EEH_PE_STATE_UNAVAIL
;
1628 EXPORT_SYMBOL_GPL(eeh_pe_get_state
);
1630 static int eeh_pe_reenable_devices(struct eeh_pe
*pe
, bool include_passed
)
1632 struct eeh_dev
*edev
, *tmp
;
1633 struct pci_dev
*pdev
;
1636 eeh_pe_restore_bars(pe
);
1639 * Reenable PCI devices as the devices passed
1640 * through are always enabled before the reset.
1642 eeh_pe_for_each_dev(pe
, edev
, tmp
) {
1643 pdev
= eeh_dev_to_pci_dev(edev
);
1647 ret
= pci_reenable_device(pdev
);
1649 pr_warn("%s: Failure %d reenabling %s\n",
1650 __func__
, ret
, pci_name(pdev
));
1655 /* The PE is still in frozen state */
1656 if (include_passed
|| !eeh_pe_passed(pe
)) {
1657 ret
= eeh_unfreeze_pe(pe
);
1659 pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1660 pe
->phb
->global_number
, pe
->addr
);
1662 eeh_pe_state_clear(pe
, EEH_PE_ISOLATED
, include_passed
);
1668 * eeh_pe_reset - Issue PE reset according to specified type
1670 * @option: reset type
1672 * The routine is called to reset the specified PE with the
1673 * indicated type, either fundamental reset or hot reset.
1674 * PE reset is the most important part for error recovery.
1676 int eeh_pe_reset(struct eeh_pe
*pe
, int option
, bool include_passed
)
1684 if (!eeh_ops
|| !eeh_ops
->set_option
|| !eeh_ops
->reset
)
1688 case EEH_RESET_DEACTIVATE
:
1689 ret
= eeh_ops
->reset(pe
, option
);
1690 eeh_pe_state_clear(pe
, EEH_PE_CFG_BLOCKED
, include_passed
);
1694 ret
= eeh_pe_reenable_devices(pe
, include_passed
);
1697 case EEH_RESET_FUNDAMENTAL
:
1699 * Proactively freeze the PE to drop all MMIO access
1700 * during reset, which should be banned as it's always
1701 * cause recursive EEH error.
1703 eeh_ops
->set_option(pe
, EEH_OPT_FREEZE_PE
);
1705 eeh_pe_state_mark(pe
, EEH_PE_CFG_BLOCKED
);
1706 ret
= eeh_ops
->reset(pe
, option
);
1709 pr_debug("%s: Unsupported option %d\n",
1716 EXPORT_SYMBOL_GPL(eeh_pe_reset
);
1719 * eeh_pe_configure - Configure PCI bridges after PE reset
1722 * The routine is called to restore the PCI config space for
1723 * those PCI devices, especially PCI bridges affected by PE
1724 * reset issued previously.
1726 int eeh_pe_configure(struct eeh_pe
*pe
)
1736 EXPORT_SYMBOL_GPL(eeh_pe_configure
);
1739 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1740 * @pe: the indicated PE
1742 * @function: error function
1744 * @mask: address mask
1746 * The routine is called to inject the specified PCI error, which
1747 * is determined by @type and @function, to the indicated PE for
1750 int eeh_pe_inject_err(struct eeh_pe
*pe
, int type
, int func
,
1751 unsigned long addr
, unsigned long mask
)
1757 /* Unsupported operation ? */
1758 if (!eeh_ops
|| !eeh_ops
->err_inject
)
1761 /* Check on PCI error type */
1762 if (type
!= EEH_ERR_TYPE_32
&& type
!= EEH_ERR_TYPE_64
)
1765 /* Check on PCI error function */
1766 if (func
< EEH_ERR_FUNC_MIN
|| func
> EEH_ERR_FUNC_MAX
)
1769 return eeh_ops
->err_inject(pe
, type
, func
, addr
, mask
);
1771 EXPORT_SYMBOL_GPL(eeh_pe_inject_err
);
1773 static int proc_eeh_show(struct seq_file
*m
, void *v
)
1775 if (!eeh_enabled()) {
1776 seq_printf(m
, "EEH Subsystem is globally disabled\n");
1777 seq_printf(m
, "eeh_total_mmio_ffs=%llu\n", eeh_stats
.total_mmio_ffs
);
1779 seq_printf(m
, "EEH Subsystem is enabled\n");
1782 "no device node=%llu\n"
1783 "no config address=%llu\n"
1784 "check not wanted=%llu\n"
1785 "eeh_total_mmio_ffs=%llu\n"
1786 "eeh_false_positives=%llu\n"
1787 "eeh_slot_resets=%llu\n",
1788 eeh_stats
.no_device
,
1790 eeh_stats
.no_cfg_addr
,
1791 eeh_stats
.ignored_check
,
1792 eeh_stats
.total_mmio_ffs
,
1793 eeh_stats
.false_positives
,
1794 eeh_stats
.slot_resets
);
1800 #ifdef CONFIG_DEBUG_FS
1801 static int eeh_enable_dbgfs_set(void *data
, u64 val
)
1804 eeh_clear_flag(EEH_FORCE_DISABLED
);
1806 eeh_add_flag(EEH_FORCE_DISABLED
);
1811 static int eeh_enable_dbgfs_get(void *data
, u64
*val
)
1820 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops
, eeh_enable_dbgfs_get
,
1821 eeh_enable_dbgfs_set
, "0x%llx\n");
1823 static ssize_t
eeh_force_recover_write(struct file
*filp
,
1824 const char __user
*user_buf
,
1825 size_t count
, loff_t
*ppos
)
1827 struct pci_controller
*hose
;
1828 uint32_t phbid
, pe_no
;
1833 ret
= simple_write_to_buffer(buf
, sizeof(buf
), ppos
, user_buf
, count
);
1838 * When PE is NULL the event is a "special" event. Rather than
1839 * recovering a specific PE it forces the EEH core to scan for failed
1840 * PHBs and recovers each. This needs to be done before any device
1841 * recoveries can occur.
1843 if (!strncmp(buf
, "hwcheck", 7)) {
1844 __eeh_send_failure_event(NULL
);
1848 ret
= sscanf(buf
, "%x:%x", &phbid
, &pe_no
);
1852 hose
= pci_find_controller_for_domain(phbid
);
1857 pe
= eeh_pe_get(hose
, pe_no
, 0);
1862 * We don't do any state checking here since the detection
1863 * process is async to the recovery process. The recovery
1864 * thread *should* not break even if we schedule a recovery
1865 * from an odd state (e.g. PE removed, or recovery of a
1868 __eeh_send_failure_event(pe
);
1870 return ret
< 0 ? ret
: count
;
1873 static const struct file_operations eeh_force_recover_fops
= {
1874 .open
= simple_open
,
1875 .llseek
= no_llseek
,
1876 .write
= eeh_force_recover_write
,
1879 static ssize_t
eeh_debugfs_dev_usage(struct file
*filp
,
1880 char __user
*user_buf
,
1881 size_t count
, loff_t
*ppos
)
1883 static const char usage
[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1885 return simple_read_from_buffer(user_buf
, count
, ppos
,
1886 usage
, sizeof(usage
) - 1);
1889 static ssize_t
eeh_dev_check_write(struct file
*filp
,
1890 const char __user
*user_buf
,
1891 size_t count
, loff_t
*ppos
)
1893 uint32_t domain
, bus
, dev
, fn
;
1894 struct pci_dev
*pdev
;
1895 struct eeh_dev
*edev
;
1899 memset(buf
, 0, sizeof(buf
));
1900 ret
= simple_write_to_buffer(buf
, sizeof(buf
)-1, ppos
, user_buf
, count
);
1904 ret
= sscanf(buf
, "%x:%x:%x.%x", &domain
, &bus
, &dev
, &fn
);
1906 pr_err("%s: expected 4 args, got %d\n", __func__
, ret
);
1910 pdev
= pci_get_domain_bus_and_slot(domain
, bus
, (dev
<< 3) | fn
);
1914 edev
= pci_dev_to_eeh_dev(pdev
);
1916 pci_err(pdev
, "No eeh_dev for this device!\n");
1921 ret
= eeh_dev_check_failure(edev
);
1922 pci_info(pdev
, "eeh_dev_check_failure(%04x:%02x:%02x.%01x) = %d\n",
1923 domain
, bus
, dev
, fn
, ret
);
1930 static const struct file_operations eeh_dev_check_fops
= {
1931 .open
= simple_open
,
1932 .llseek
= no_llseek
,
1933 .write
= eeh_dev_check_write
,
1934 .read
= eeh_debugfs_dev_usage
,
1937 static int eeh_debugfs_break_device(struct pci_dev
*pdev
)
1939 struct resource
*bar
= NULL
;
1940 void __iomem
*mapped
;
1944 /* Do we have an MMIO BAR to disable? */
1945 for (i
= 0; i
<= PCI_STD_RESOURCE_END
; i
++) {
1946 struct resource
*r
= &pdev
->resource
[i
];
1948 if (!r
->flags
|| !r
->start
)
1950 if (r
->flags
& IORESOURCE_IO
)
1952 if (r
->flags
& IORESOURCE_UNSET
)
1960 pci_err(pdev
, "Unable to find Memory BAR to cause EEH with\n");
1964 pci_err(pdev
, "Going to break: %pR\n", bar
);
1966 if (pdev
->is_virtfn
) {
1967 #ifndef CONFIG_PCI_IOV
1971 * VFs don't have a per-function COMMAND register, so the best
1972 * we can do is clear the Memory Space Enable bit in the PF's
1973 * SRIOV control reg.
1975 * Unfortunately, this requires that we have a PF (i.e doesn't
1976 * work for a passed-through VF) and it has the potential side
1977 * effect of also causing an EEH on every other VF under the
1980 pdev
= pdev
->physfn
;
1982 return -ENXIO
; /* passed through VFs have no PF */
1984 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_SRIOV
);
1985 pos
+= PCI_SRIOV_CTRL
;
1986 bit
= PCI_SRIOV_CTRL_MSE
;
1987 #endif /* !CONFIG_PCI_IOV */
1989 bit
= PCI_COMMAND_MEMORY
;
1996 * 1. Disable Memory space.
1998 * 2. Perform an MMIO to the device. This should result in an error
1999 * (CA / UR) being raised by the device which results in an EEH
2000 * PE freeze. Using the in_8() accessor skips the eeh detection hook
2001 * so the freeze hook so the EEH Detection machinery won't be
2002 * triggered here. This is to match the usual behaviour of EEH
2003 * where the HW will asyncronously freeze a PE and it's up to
2004 * the kernel to notice and deal with it.
2006 * 3. Turn Memory space back on. This is more important for VFs
2007 * since recovery will probably fail if we don't. For normal
2008 * the COMMAND register is reset as a part of re-initialising
2011 * Breaking stuff is the point so who cares if it's racy ;)
2013 pci_read_config_word(pdev
, pos
, &old
);
2015 mapped
= ioremap(bar
->start
, PAGE_SIZE
);
2017 pci_err(pdev
, "Unable to map MMIO BAR %pR\n", bar
);
2021 pci_write_config_word(pdev
, pos
, old
& ~bit
);
2023 pci_write_config_word(pdev
, pos
, old
);
2030 static ssize_t
eeh_dev_break_write(struct file
*filp
,
2031 const char __user
*user_buf
,
2032 size_t count
, loff_t
*ppos
)
2034 uint32_t domain
, bus
, dev
, fn
;
2035 struct pci_dev
*pdev
;
2039 memset(buf
, 0, sizeof(buf
));
2040 ret
= simple_write_to_buffer(buf
, sizeof(buf
)-1, ppos
, user_buf
, count
);
2044 ret
= sscanf(buf
, "%x:%x:%x.%x", &domain
, &bus
, &dev
, &fn
);
2046 pr_err("%s: expected 4 args, got %d\n", __func__
, ret
);
2050 pdev
= pci_get_domain_bus_and_slot(domain
, bus
, (dev
<< 3) | fn
);
2054 ret
= eeh_debugfs_break_device(pdev
);
2063 static const struct file_operations eeh_dev_break_fops
= {
2064 .open
= simple_open
,
2065 .llseek
= no_llseek
,
2066 .write
= eeh_dev_break_write
,
2067 .read
= eeh_debugfs_dev_usage
,
2072 static int __init
eeh_init_proc(void)
2074 if (machine_is(pseries
) || machine_is(powernv
)) {
2075 proc_create_single("powerpc/eeh", 0, NULL
, proc_eeh_show
);
2076 #ifdef CONFIG_DEBUG_FS
2077 debugfs_create_file_unsafe("eeh_enable", 0600,
2078 powerpc_debugfs_root
, NULL
,
2079 &eeh_enable_dbgfs_ops
);
2080 debugfs_create_u32("eeh_max_freezes", 0600,
2081 powerpc_debugfs_root
, &eeh_max_freezes
);
2082 debugfs_create_bool("eeh_disable_recovery", 0600,
2083 powerpc_debugfs_root
,
2084 &eeh_debugfs_no_recover
);
2085 debugfs_create_file_unsafe("eeh_dev_check", 0600,
2086 powerpc_debugfs_root
, NULL
,
2087 &eeh_dev_check_fops
);
2088 debugfs_create_file_unsafe("eeh_dev_break", 0600,
2089 powerpc_debugfs_root
, NULL
,
2090 &eeh_dev_break_fops
);
2091 debugfs_create_file_unsafe("eeh_force_recover", 0600,
2092 powerpc_debugfs_root
, NULL
,
2093 &eeh_force_recover_fops
);
2094 eeh_cache_debugfs_init();
2100 __initcall(eeh_init_proc
);