1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * The file intends to implement PE based on the information from
4 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
5 * All the PEs should be organized as hierarchy tree. The first level
6 * of the tree will be associated to existing PHBs since the particular
7 * PE is only meaningful in one PHB domain.
9 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/gfp.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/string.h>
19 #include <asm/pci-bridge.h>
20 #include <asm/ppc-pci.h>
22 static int eeh_pe_aux_size
= 0;
23 static LIST_HEAD(eeh_phb_pe
);
26 * eeh_set_pe_aux_size - Set PE auxillary data size
27 * @size: PE auxillary data size
29 * Set PE auxillary data size
31 void eeh_set_pe_aux_size(int size
)
36 eeh_pe_aux_size
= size
;
40 * eeh_pe_alloc - Allocate PE
41 * @phb: PCI controller
44 * Allocate PE instance dynamically.
46 static struct eeh_pe
*eeh_pe_alloc(struct pci_controller
*phb
, int type
)
51 alloc_size
= sizeof(struct eeh_pe
);
52 if (eeh_pe_aux_size
) {
53 alloc_size
= ALIGN(alloc_size
, cache_line_size());
54 alloc_size
+= eeh_pe_aux_size
;
58 pe
= kzalloc(alloc_size
, GFP_KERNEL
);
61 /* Initialize PHB PE */
64 INIT_LIST_HEAD(&pe
->child_list
);
65 INIT_LIST_HEAD(&pe
->edevs
);
67 pe
->data
= (void *)pe
+ ALIGN(sizeof(struct eeh_pe
),
73 * eeh_phb_pe_create - Create PHB PE
74 * @phb: PCI controller
76 * The function should be called while the PHB is detected during
77 * system boot or PCI hotplug in order to create PHB PE.
79 int eeh_phb_pe_create(struct pci_controller
*phb
)
84 pe
= eeh_pe_alloc(phb
, EEH_PE_PHB
);
86 pr_err("%s: out of memory!\n", __func__
);
90 /* Put it into the list */
91 list_add_tail(&pe
->child
, &eeh_phb_pe
);
93 pr_debug("EEH: Add PE for PHB#%x\n", phb
->global_number
);
99 * eeh_wait_state - Wait for PE state
101 * @max_wait: maximal period in millisecond
103 * Wait for the state of associated PE. It might take some time
104 * to retrieve the PE's state.
106 int eeh_wait_state(struct eeh_pe
*pe
, int max_wait
)
112 * According to PAPR, the state of PE might be temporarily
113 * unavailable. Under the circumstance, we have to wait
114 * for indicated time determined by firmware. The maximal
115 * wait time is 5 minutes, which is acquired from the original
116 * EEH implementation. Also, the original implementation
117 * also defined the minimal wait time as 1 second.
119 #define EEH_STATE_MIN_WAIT_TIME (1000)
120 #define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
123 ret
= eeh_ops
->get_state(pe
, &mwait
);
125 if (ret
!= EEH_STATE_UNAVAILABLE
)
129 pr_warn("%s: Timeout when getting PE's state (%d)\n",
131 return EEH_STATE_NOT_SUPPORT
;
134 if (mwait
< EEH_STATE_MIN_WAIT_TIME
) {
135 pr_warn("%s: Firmware returned bad wait value %d\n",
137 mwait
= EEH_STATE_MIN_WAIT_TIME
;
138 } else if (mwait
> EEH_STATE_MAX_WAIT_TIME
) {
139 pr_warn("%s: Firmware returned too long wait value %d\n",
141 mwait
= EEH_STATE_MAX_WAIT_TIME
;
144 msleep(min(mwait
, max_wait
));
150 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
151 * @phb: PCI controller
153 * The overall PEs form hierarchy tree. The first layer of the
154 * hierarchy tree is composed of PHB PEs. The function is used
155 * to retrieve the corresponding PHB PE according to the given PHB.
157 struct eeh_pe
*eeh_phb_pe_get(struct pci_controller
*phb
)
161 list_for_each_entry(pe
, &eeh_phb_pe
, child
) {
163 * Actually, we needn't check the type since
164 * the PE for PHB has been determined when that
167 if ((pe
->type
& EEH_PE_PHB
) && pe
->phb
== phb
)
175 * eeh_pe_next - Retrieve the next PE in the tree
179 * The function is used to retrieve the next PE in the
182 struct eeh_pe
*eeh_pe_next(struct eeh_pe
*pe
, struct eeh_pe
*root
)
184 struct list_head
*next
= pe
->child_list
.next
;
186 if (next
== &pe
->child_list
) {
190 next
= pe
->child
.next
;
191 if (next
!= &pe
->parent
->child_list
)
197 return list_entry(next
, struct eeh_pe
, child
);
201 * eeh_pe_traverse - Traverse PEs in the specified PHB
204 * @flag: extra parameter to callback
206 * The function is used to traverse the specified PE and its
207 * child PEs. The traversing is to be terminated once the
208 * callback returns something other than NULL, or no more PEs
211 void *eeh_pe_traverse(struct eeh_pe
*root
,
212 eeh_pe_traverse_func fn
, void *flag
)
217 eeh_for_each_pe(root
, pe
) {
226 * eeh_pe_dev_traverse - Traverse the devices from the PE
228 * @fn: function callback
229 * @flag: extra parameter to callback
231 * The function is used to traverse the devices of the specified
232 * PE and its child PEs.
234 void eeh_pe_dev_traverse(struct eeh_pe
*root
,
235 eeh_edev_traverse_func fn
, void *flag
)
238 struct eeh_dev
*edev
, *tmp
;
241 pr_warn("%s: Invalid PE %p\n",
246 /* Traverse root PE */
247 eeh_for_each_pe(root
, pe
)
248 eeh_pe_for_each_dev(pe
, edev
, tmp
)
253 * __eeh_pe_get - Check the PE address
257 * For one particular PE, it can be identified by PE address
258 * or tranditional BDF address. BDF address is composed of
259 * Bus/Device/Function number. The extra data referred by flag
260 * indicates which type of address should be used.
262 struct eeh_pe_get_flag
{
267 static void *__eeh_pe_get(struct eeh_pe
*pe
, void *flag
)
269 struct eeh_pe_get_flag
*tmp
= (struct eeh_pe_get_flag
*) flag
;
271 /* Unexpected PHB PE */
272 if (pe
->type
& EEH_PE_PHB
)
276 * We prefer PE address. For most cases, we should
277 * have non-zero PE address
279 if (eeh_has_flag(EEH_VALID_PE_ZERO
)) {
280 if (tmp
->pe_no
== pe
->addr
)
284 (tmp
->pe_no
== pe
->addr
))
288 /* Try BDF address */
289 if (tmp
->config_addr
&&
290 (tmp
->config_addr
== pe
->config_addr
))
297 * eeh_pe_get - Search PE based on the given address
298 * @phb: PCI controller
300 * @config_addr: Config address
302 * Search the corresponding PE based on the specified address which
303 * is included in the eeh device. The function is used to check if
304 * the associated PE has been created against the PE address. It's
305 * notable that the PE address has 2 format: traditional PE address
306 * which is composed of PCI bus/device/function number, or unified
309 struct eeh_pe
*eeh_pe_get(struct pci_controller
*phb
,
310 int pe_no
, int config_addr
)
312 struct eeh_pe
*root
= eeh_phb_pe_get(phb
);
313 struct eeh_pe_get_flag tmp
= { pe_no
, config_addr
};
316 pe
= eeh_pe_traverse(root
, __eeh_pe_get
, &tmp
);
322 * eeh_pe_get_parent - Retrieve the parent PE
325 * The whole PEs existing in the system are organized as hierarchy
326 * tree. The function is used to retrieve the parent PE according
327 * to the parent EEH device.
329 static struct eeh_pe
*eeh_pe_get_parent(struct eeh_dev
*edev
)
331 struct eeh_dev
*parent
;
332 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
335 * It might have the case for the indirect parent
336 * EEH device already having associated PE, but
337 * the direct parent EEH device doesn't have yet.
340 pdn
= pci_get_pdn(edev
->physfn
);
342 pdn
= pdn
? pdn
->parent
: NULL
;
344 /* We're poking out of PCI territory */
345 parent
= pdn_to_eeh_dev(pdn
);
359 * eeh_add_to_parent_pe - Add EEH device to parent PE
362 * Add EEH device to the parent PE. If the parent PE already
363 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
364 * we have to create new PE to hold the EEH device and the new
365 * PE will be linked to its parent PE as well.
367 int eeh_add_to_parent_pe(struct eeh_dev
*edev
)
369 struct eeh_pe
*pe
, *parent
;
370 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
371 int config_addr
= (pdn
->busno
<< 8) | (pdn
->devfn
);
373 /* Check if the PE number is valid */
374 if (!eeh_has_flag(EEH_VALID_PE_ZERO
) && !edev
->pe_config_addr
) {
375 eeh_edev_err(edev
, "PE#0 is invalid for this PHB!\n");
380 * Search the PE has been existing or not according
381 * to the PE address. If that has been existing, the
382 * PE should be composed of PCI bus and its subordinate
385 pe
= eeh_pe_get(pdn
->phb
, edev
->pe_config_addr
, config_addr
);
387 if (pe
->type
& EEH_PE_INVALID
) {
388 list_add_tail(&edev
->entry
, &pe
->edevs
);
391 * We're running to here because of PCI hotplug caused by
392 * EEH recovery. We need clear EEH_PE_INVALID until the top.
396 if (!(parent
->type
& EEH_PE_INVALID
))
398 parent
->type
&= ~EEH_PE_INVALID
;
399 parent
= parent
->parent
;
403 "Added to device PE (parent: PE#%x)\n",
406 /* Mark the PE as type of PCI bus */
407 pe
->type
= EEH_PE_BUS
;
410 /* Put the edev to PE */
411 list_add_tail(&edev
->entry
, &pe
->edevs
);
412 eeh_edev_dbg(edev
, "Added to bus PE\n");
417 /* Create a new EEH PE */
419 pe
= eeh_pe_alloc(pdn
->phb
, EEH_PE_VF
);
421 pe
= eeh_pe_alloc(pdn
->phb
, EEH_PE_DEVICE
);
423 pr_err("%s: out of memory!\n", __func__
);
426 pe
->addr
= edev
->pe_config_addr
;
427 pe
->config_addr
= config_addr
;
430 * Put the new EEH PE into hierarchy tree. If the parent
431 * can't be found, the newly created PE will be attached
432 * to PHB directly. Otherwise, we have to associate the
433 * PE with its parent.
435 parent
= eeh_pe_get_parent(edev
);
437 parent
= eeh_phb_pe_get(pdn
->phb
);
439 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
440 __func__
, pdn
->phb
->global_number
);
449 * Put the newly created PE into the child list and
450 * link the EEH device accordingly.
452 list_add_tail(&pe
->child
, &parent
->child_list
);
453 list_add_tail(&edev
->entry
, &pe
->edevs
);
455 eeh_edev_dbg(edev
, "Added to device PE (parent: PE#%x)\n",
462 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
465 * The PE hierarchy tree might be changed when doing PCI hotplug.
466 * Also, the PCI devices or buses could be removed from the system
467 * during EEH recovery. So we have to call the function remove the
468 * corresponding PE accordingly if necessary.
470 int eeh_rmv_from_parent_pe(struct eeh_dev
*edev
)
472 struct eeh_pe
*pe
, *parent
, *child
;
476 pe
= eeh_dev_to_pe(edev
);
478 eeh_edev_dbg(edev
, "No PE found for device.\n");
482 /* Remove the EEH device */
484 list_del(&edev
->entry
);
487 * Check if the parent PE includes any EEH devices.
488 * If not, we should delete that. Also, we should
489 * delete the parent PE if it doesn't have associated
490 * child PEs and EEH devices.
495 /* PHB PEs should never be removed */
496 if (pe
->type
& EEH_PE_PHB
)
500 * XXX: KEEP is set while resetting a PE. I don't think it's
501 * ever set without RECOVERING also being set. I could
502 * be wrong though so catch that with a WARN.
504 keep
= !!(pe
->state
& EEH_PE_KEEP
);
505 recover
= !!(pe
->state
& EEH_PE_RECOVERING
);
506 WARN_ON(keep
&& !recover
);
508 if (!keep
&& !recover
) {
509 if (list_empty(&pe
->edevs
) &&
510 list_empty(&pe
->child_list
)) {
511 list_del(&pe
->child
);
518 * Mark the PE as invalid. At the end of the recovery
519 * process any invalid PEs will be garbage collected.
521 * We need to delay the free()ing of them since we can
522 * remove edev's while traversing the PE tree which
523 * might trigger the removal of a PE and we can't
524 * deal with that (yet).
526 if (list_empty(&pe
->edevs
)) {
528 list_for_each_entry(child
, &pe
->child_list
, child
) {
529 if (!(child
->type
& EEH_PE_INVALID
)) {
536 pe
->type
|= EEH_PE_INVALID
;
549 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
552 * We have time stamp for each PE to trace its time of getting
553 * frozen in last hour. The function should be called to update
554 * the time stamp on first error of the specific PE. On the other
555 * handle, we needn't account for errors happened in last hour.
557 void eeh_pe_update_time_stamp(struct eeh_pe
*pe
)
563 if (pe
->freeze_count
<= 0) {
564 pe
->freeze_count
= 0;
565 pe
->tstamp
= ktime_get_seconds();
567 tstamp
= ktime_get_seconds();
568 if (tstamp
- pe
->tstamp
> 3600) {
570 pe
->freeze_count
= 0;
576 * eeh_pe_state_mark - Mark specified state for PE and its associated device
579 * EEH error affects the current PE and its child PEs. The function
580 * is used to mark appropriate state for the affected PEs and the
581 * associated devices.
583 void eeh_pe_state_mark(struct eeh_pe
*root
, int state
)
587 eeh_for_each_pe(root
, pe
)
588 if (!(pe
->state
& EEH_PE_REMOVED
))
591 EXPORT_SYMBOL_GPL(eeh_pe_state_mark
);
594 * eeh_pe_mark_isolated
597 * Record that a PE has been isolated by marking the PE and it's children as
598 * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices
599 * as pci_channel_io_frozen.
601 void eeh_pe_mark_isolated(struct eeh_pe
*root
)
604 struct eeh_dev
*edev
;
605 struct pci_dev
*pdev
;
607 eeh_pe_state_mark(root
, EEH_PE_ISOLATED
);
608 eeh_for_each_pe(root
, pe
) {
609 list_for_each_entry(edev
, &pe
->edevs
, entry
) {
610 pdev
= eeh_dev_to_pci_dev(edev
);
612 pdev
->error_state
= pci_channel_io_frozen
;
614 /* Block PCI config access if required */
615 if (pe
->state
& EEH_PE_CFG_RESTRICTED
)
616 pe
->state
|= EEH_PE_CFG_BLOCKED
;
619 EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated
);
621 static void __eeh_pe_dev_mode_mark(struct eeh_dev
*edev
, void *flag
)
623 int mode
= *((int *)flag
);
629 * eeh_pe_dev_state_mark - Mark state for all device under the PE
632 * Mark specific state for all child devices of the PE.
634 void eeh_pe_dev_mode_mark(struct eeh_pe
*pe
, int mode
)
636 eeh_pe_dev_traverse(pe
, __eeh_pe_dev_mode_mark
, &mode
);
640 * eeh_pe_state_clear - Clear state for the PE
643 * @include_passed: include passed-through devices?
645 * The function is used to clear the indicated state from the
646 * given PE. Besides, we also clear the check count of the PE
649 void eeh_pe_state_clear(struct eeh_pe
*root
, int state
, bool include_passed
)
652 struct eeh_dev
*edev
, *tmp
;
653 struct pci_dev
*pdev
;
655 eeh_for_each_pe(root
, pe
) {
656 /* Keep the state of permanently removed PE intact */
657 if (pe
->state
& EEH_PE_REMOVED
)
660 if (!include_passed
&& eeh_pe_passed(pe
))
666 * Special treatment on clearing isolated state. Clear
667 * check count since last isolation and put all affected
668 * devices to normal state.
670 if (!(state
& EEH_PE_ISOLATED
))
674 eeh_pe_for_each_dev(pe
, edev
, tmp
) {
675 pdev
= eeh_dev_to_pci_dev(edev
);
679 pdev
->error_state
= pci_channel_io_normal
;
682 /* Unblock PCI config access if required */
683 if (pe
->state
& EEH_PE_CFG_RESTRICTED
)
684 pe
->state
&= ~EEH_PE_CFG_BLOCKED
;
689 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
690 * buses assigned explicitly by firmware, and we probably have
691 * lost that after reset. So we have to delay the check until
692 * the PCI-CFG registers have been restored for the parent
695 * Don't use normal PCI-CFG accessors, which probably has been
696 * blocked on normal path during the stage. So we need utilize
697 * eeh operations, which is always permitted.
699 static void eeh_bridge_check_link(struct eeh_dev
*edev
)
701 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
707 * We only check root port and downstream ports of
710 if (!(edev
->mode
& (EEH_DEV_ROOT_PORT
| EEH_DEV_DS_PORT
)))
713 eeh_edev_dbg(edev
, "Checking PCIe link...\n");
715 /* Check slot status */
716 cap
= edev
->pcie_cap
;
717 eeh_ops
->read_config(pdn
, cap
+ PCI_EXP_SLTSTA
, 2, &val
);
718 if (!(val
& PCI_EXP_SLTSTA_PDS
)) {
719 eeh_edev_dbg(edev
, "No card in the slot (0x%04x) !\n", val
);
723 /* Check power status if we have the capability */
724 eeh_ops
->read_config(pdn
, cap
+ PCI_EXP_SLTCAP
, 2, &val
);
725 if (val
& PCI_EXP_SLTCAP_PCP
) {
726 eeh_ops
->read_config(pdn
, cap
+ PCI_EXP_SLTCTL
, 2, &val
);
727 if (val
& PCI_EXP_SLTCTL_PCC
) {
728 eeh_edev_dbg(edev
, "In power-off state, power it on ...\n");
729 val
&= ~(PCI_EXP_SLTCTL_PCC
| PCI_EXP_SLTCTL_PIC
);
730 val
|= (0x0100 & PCI_EXP_SLTCTL_PIC
);
731 eeh_ops
->write_config(pdn
, cap
+ PCI_EXP_SLTCTL
, 2, val
);
737 eeh_ops
->read_config(pdn
, cap
+ PCI_EXP_LNKCTL
, 2, &val
);
738 val
&= ~PCI_EXP_LNKCTL_LD
;
739 eeh_ops
->write_config(pdn
, cap
+ PCI_EXP_LNKCTL
, 2, val
);
742 eeh_ops
->read_config(pdn
, cap
+ PCI_EXP_LNKCAP
, 4, &val
);
743 if (!(val
& PCI_EXP_LNKCAP_DLLLARC
)) {
744 eeh_edev_dbg(edev
, "No link reporting capability (0x%08x) \n", val
);
749 /* Wait the link is up until timeout (5s) */
751 while (timeout
< 5000) {
755 eeh_ops
->read_config(pdn
, cap
+ PCI_EXP_LNKSTA
, 2, &val
);
756 if (val
& PCI_EXP_LNKSTA_DLLLA
)
760 if (val
& PCI_EXP_LNKSTA_DLLLA
)
761 eeh_edev_dbg(edev
, "Link up (%s)\n",
762 (val
& PCI_EXP_LNKSTA_CLS_2_5GB
) ? "2.5GB" : "5GB");
764 eeh_edev_dbg(edev
, "Link not ready (0x%04x)\n", val
);
767 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
768 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
770 static void eeh_restore_bridge_bars(struct eeh_dev
*edev
)
772 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
776 * Device BARs: 0x10 - 0x18
777 * Bus numbers and windows: 0x18 - 0x30
779 for (i
= 4; i
< 13; i
++)
780 eeh_ops
->write_config(pdn
, i
*4, 4, edev
->config_space
[i
]);
782 eeh_ops
->write_config(pdn
, 14*4, 4, edev
->config_space
[14]);
784 /* Cache line & Latency timer: 0xC 0xD */
785 eeh_ops
->write_config(pdn
, PCI_CACHE_LINE_SIZE
, 1,
786 SAVED_BYTE(PCI_CACHE_LINE_SIZE
));
787 eeh_ops
->write_config(pdn
, PCI_LATENCY_TIMER
, 1,
788 SAVED_BYTE(PCI_LATENCY_TIMER
));
789 /* Max latency, min grant, interrupt ping and line: 0x3C */
790 eeh_ops
->write_config(pdn
, 15*4, 4, edev
->config_space
[15]);
792 /* PCI Command: 0x4 */
793 eeh_ops
->write_config(pdn
, PCI_COMMAND
, 4, edev
->config_space
[1] |
794 PCI_COMMAND_MEMORY
| PCI_COMMAND_MASTER
);
796 /* Check the PCIe link is ready */
797 eeh_bridge_check_link(edev
);
800 static void eeh_restore_device_bars(struct eeh_dev
*edev
)
802 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
806 for (i
= 4; i
< 10; i
++)
807 eeh_ops
->write_config(pdn
, i
*4, 4, edev
->config_space
[i
]);
808 /* 12 == Expansion ROM Address */
809 eeh_ops
->write_config(pdn
, 12*4, 4, edev
->config_space
[12]);
811 eeh_ops
->write_config(pdn
, PCI_CACHE_LINE_SIZE
, 1,
812 SAVED_BYTE(PCI_CACHE_LINE_SIZE
));
813 eeh_ops
->write_config(pdn
, PCI_LATENCY_TIMER
, 1,
814 SAVED_BYTE(PCI_LATENCY_TIMER
));
816 /* max latency, min grant, interrupt pin and line */
817 eeh_ops
->write_config(pdn
, 15*4, 4, edev
->config_space
[15]);
820 * Restore PERR & SERR bits, some devices require it,
821 * don't touch the other command bits
823 eeh_ops
->read_config(pdn
, PCI_COMMAND
, 4, &cmd
);
824 if (edev
->config_space
[1] & PCI_COMMAND_PARITY
)
825 cmd
|= PCI_COMMAND_PARITY
;
827 cmd
&= ~PCI_COMMAND_PARITY
;
828 if (edev
->config_space
[1] & PCI_COMMAND_SERR
)
829 cmd
|= PCI_COMMAND_SERR
;
831 cmd
&= ~PCI_COMMAND_SERR
;
832 eeh_ops
->write_config(pdn
, PCI_COMMAND
, 4, cmd
);
836 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
840 * Loads the PCI configuration space base address registers,
841 * the expansion ROM base address, the latency timer, and etc.
842 * from the saved values in the device node.
844 static void eeh_restore_one_device_bars(struct eeh_dev
*edev
, void *flag
)
846 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
848 /* Do special restore for bridges */
849 if (edev
->mode
& EEH_DEV_BRIDGE
)
850 eeh_restore_bridge_bars(edev
);
852 eeh_restore_device_bars(edev
);
854 if (eeh_ops
->restore_config
&& pdn
)
855 eeh_ops
->restore_config(pdn
);
859 * eeh_pe_restore_bars - Restore the PCI config space info
862 * This routine performs a recursive walk to the children
863 * of this device as well.
865 void eeh_pe_restore_bars(struct eeh_pe
*pe
)
868 * We needn't take the EEH lock since eeh_pe_dev_traverse()
871 eeh_pe_dev_traverse(pe
, eeh_restore_one_device_bars
, NULL
);
875 * eeh_pe_loc_get - Retrieve location code binding to the given PE
878 * Retrieve the location code of the given PE. If the primary PE bus
879 * is root bus, we will grab location code from PHB device tree node
880 * or root port. Otherwise, the upstream bridge's device tree node
881 * of the primary PE bus will be checked for the location code.
883 const char *eeh_pe_loc_get(struct eeh_pe
*pe
)
885 struct pci_bus
*bus
= eeh_pe_bus_get(pe
);
886 struct device_node
*dn
;
887 const char *loc
= NULL
;
890 dn
= pci_bus_to_OF_node(bus
);
896 if (pci_is_root_bus(bus
))
897 loc
= of_get_property(dn
, "ibm,io-base-loc-code", NULL
);
899 loc
= of_get_property(dn
, "ibm,slot-location-code",
912 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
915 * Retrieve the PCI bus according to the given PE. Basically,
916 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
917 * primary PCI bus will be retrieved. The parent bus will be
918 * returned for BUS PE. However, we don't have associated PCI
921 struct pci_bus
*eeh_pe_bus_get(struct eeh_pe
*pe
)
923 struct eeh_dev
*edev
;
924 struct pci_dev
*pdev
;
926 if (pe
->type
& EEH_PE_PHB
)
929 /* The primary bus might be cached during probe time */
930 if (pe
->state
& EEH_PE_PRI_BUS
)
933 /* Retrieve the parent PCI bus of first (top) PCI device */
934 edev
= list_first_entry_or_null(&pe
->edevs
, struct eeh_dev
, entry
);
935 pdev
= eeh_dev_to_pci_dev(edev
);