1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Common time routines among all ppc machines.
5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
6 * Paul Mackerras' version and mine for PReP and Pmac.
7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
11 * to make clock more stable (2.4.0-test5). The only thing
12 * that this code assumes is that the timebases have been synchronized
13 * by firmware on SMP and are never stopped (never do sleep
14 * on SMP then, nap and doze are OK).
16 * Speeded up do_gettimeofday by getting rid of references to
17 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
19 * TODO (not necessarily in this file):
20 * - improve precision and reproducibility of timebase frequency
21 * measurement at boot time.
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <linux/kernel.h>
35 #include <linux/param.h>
36 #include <linux/string.h>
38 #include <linux/interrupt.h>
39 #include <linux/timex.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/time.h>
42 #include <linux/init.h>
43 #include <linux/profile.h>
44 #include <linux/cpu.h>
45 #include <linux/security.h>
46 #include <linux/percpu.h>
47 #include <linux/rtc.h>
48 #include <linux/jiffies.h>
49 #include <linux/posix-timers.h>
50 #include <linux/irq.h>
51 #include <linux/delay.h>
52 #include <linux/irq_work.h>
53 #include <linux/clk-provider.h>
54 #include <linux/suspend.h>
55 #include <linux/sched/cputime.h>
56 #include <linux/processor.h>
57 #include <asm/trace.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <linux/uaccess.h>
67 #include <asm/div64.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/asm-prototypes.h>
73 /* powerpc clocksource/clockevent code */
75 #include <linux/clockchips.h>
76 #include <linux/timekeeper_internal.h>
78 static u64
rtc_read(struct clocksource
*);
79 static struct clocksource clocksource_rtc
= {
82 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
83 .mask
= CLOCKSOURCE_MASK(64),
87 static u64
timebase_read(struct clocksource
*);
88 static struct clocksource clocksource_timebase
= {
91 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
92 .mask
= CLOCKSOURCE_MASK(64),
93 .read
= timebase_read
,
96 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
97 u64 decrementer_max
= DECREMENTER_DEFAULT_MAX
;
99 static int decrementer_set_next_event(unsigned long evt
,
100 struct clock_event_device
*dev
);
101 static int decrementer_shutdown(struct clock_event_device
*evt
);
103 struct clock_event_device decrementer_clockevent
= {
104 .name
= "decrementer",
107 .set_next_event
= decrementer_set_next_event
,
108 .set_state_oneshot_stopped
= decrementer_shutdown
,
109 .set_state_shutdown
= decrementer_shutdown
,
110 .tick_resume
= decrementer_shutdown
,
111 .features
= CLOCK_EVT_FEAT_ONESHOT
|
112 CLOCK_EVT_FEAT_C3STOP
,
114 EXPORT_SYMBOL(decrementer_clockevent
);
116 DEFINE_PER_CPU(u64
, decrementers_next_tb
);
117 static DEFINE_PER_CPU(struct clock_event_device
, decrementers
);
119 #define XSEC_PER_SEC (1024*1024)
122 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
124 /* compute ((xsec << 12) * max) >> 32 */
125 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
128 unsigned long tb_ticks_per_jiffy
;
129 unsigned long tb_ticks_per_usec
= 100; /* sane default */
130 EXPORT_SYMBOL(tb_ticks_per_usec
);
131 unsigned long tb_ticks_per_sec
;
132 EXPORT_SYMBOL(tb_ticks_per_sec
); /* for cputime_t conversions */
134 DEFINE_SPINLOCK(rtc_lock
);
135 EXPORT_SYMBOL_GPL(rtc_lock
);
137 static u64 tb_to_ns_scale __read_mostly
;
138 static unsigned tb_to_ns_shift __read_mostly
;
139 static u64 boot_tb __read_mostly
;
141 extern struct timezone sys_tz
;
142 static long timezone_offset
;
144 unsigned long ppc_proc_freq
;
145 EXPORT_SYMBOL_GPL(ppc_proc_freq
);
146 unsigned long ppc_tb_freq
;
147 EXPORT_SYMBOL_GPL(ppc_tb_freq
);
151 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
153 * Factor for converting from cputime_t (timebase ticks) to
154 * microseconds. This is stored as 0.64 fixed-point binary fraction.
156 u64 __cputime_usec_factor
;
157 EXPORT_SYMBOL(__cputime_usec_factor
);
159 #ifdef CONFIG_PPC_SPLPAR
160 void (*dtl_consumer
)(struct dtl_entry
*, u64
);
163 static void calc_cputime_factors(void)
165 struct div_result res
;
167 div128_by_32(1000000, 0, tb_ticks_per_sec
, &res
);
168 __cputime_usec_factor
= res
.result_low
;
172 * Read the SPURR on systems that have it, otherwise the PURR,
173 * or if that doesn't exist return the timebase value passed in.
175 static inline unsigned long read_spurr(unsigned long tb
)
177 if (cpu_has_feature(CPU_FTR_SPURR
))
178 return mfspr(SPRN_SPURR
);
179 if (cpu_has_feature(CPU_FTR_PURR
))
180 return mfspr(SPRN_PURR
);
184 #ifdef CONFIG_PPC_SPLPAR
187 * Scan the dispatch trace log and count up the stolen time.
188 * Should be called with interrupts disabled.
190 static u64
scan_dispatch_log(u64 stop_tb
)
192 u64 i
= local_paca
->dtl_ridx
;
193 struct dtl_entry
*dtl
= local_paca
->dtl_curr
;
194 struct dtl_entry
*dtl_end
= local_paca
->dispatch_log_end
;
195 struct lppaca
*vpa
= local_paca
->lppaca_ptr
;
203 if (i
== be64_to_cpu(vpa
->dtl_idx
))
205 while (i
< be64_to_cpu(vpa
->dtl_idx
)) {
206 dtb
= be64_to_cpu(dtl
->timebase
);
207 tb_delta
= be32_to_cpu(dtl
->enqueue_to_dispatch_time
) +
208 be32_to_cpu(dtl
->ready_to_enqueue_time
);
210 if (i
+ N_DISPATCH_LOG
< be64_to_cpu(vpa
->dtl_idx
)) {
211 /* buffer has overflowed */
212 i
= be64_to_cpu(vpa
->dtl_idx
) - N_DISPATCH_LOG
;
213 dtl
= local_paca
->dispatch_log
+ (i
% N_DISPATCH_LOG
);
219 dtl_consumer(dtl
, i
);
224 dtl
= local_paca
->dispatch_log
;
226 local_paca
->dtl_ridx
= i
;
227 local_paca
->dtl_curr
= dtl
;
232 * Accumulate stolen time by scanning the dispatch trace log.
233 * Called on entry from user mode.
235 void notrace
accumulate_stolen_time(void)
238 unsigned long save_irq_soft_mask
= irq_soft_mask_return();
239 struct cpu_accounting_data
*acct
= &local_paca
->accounting
;
241 /* We are called early in the exception entry, before
242 * soft/hard_enabled are sync'ed to the expected state
243 * for the exception. We are hard disabled but the PACA
244 * needs to reflect that so various debug stuff doesn't
247 irq_soft_mask_set(IRQS_DISABLED
);
249 sst
= scan_dispatch_log(acct
->starttime_user
);
250 ust
= scan_dispatch_log(acct
->starttime
);
253 acct
->steal_time
+= ust
+ sst
;
255 irq_soft_mask_set(save_irq_soft_mask
);
258 static inline u64
calculate_stolen_time(u64 stop_tb
)
260 if (!firmware_has_feature(FW_FEATURE_SPLPAR
))
263 if (get_paca()->dtl_ridx
!= be64_to_cpu(get_lppaca()->dtl_idx
))
264 return scan_dispatch_log(stop_tb
);
269 #else /* CONFIG_PPC_SPLPAR */
270 static inline u64
calculate_stolen_time(u64 stop_tb
)
275 #endif /* CONFIG_PPC_SPLPAR */
278 * Account time for a transition between system, hard irq
281 static unsigned long vtime_delta_scaled(struct cpu_accounting_data
*acct
,
282 unsigned long now
, unsigned long stime
)
284 unsigned long stime_scaled
= 0;
285 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
286 unsigned long nowscaled
, deltascaled
;
287 unsigned long utime
, utime_scaled
;
289 nowscaled
= read_spurr(now
);
290 deltascaled
= nowscaled
- acct
->startspurr
;
291 acct
->startspurr
= nowscaled
;
292 utime
= acct
->utime
- acct
->utime_sspurr
;
293 acct
->utime_sspurr
= acct
->utime
;
296 * Because we don't read the SPURR on every kernel entry/exit,
297 * deltascaled includes both user and system SPURR ticks.
298 * Apportion these ticks to system SPURR ticks and user
299 * SPURR ticks in the same ratio as the system time (delta)
300 * and user time (udelta) values obtained from the timebase
301 * over the same interval. The system ticks get accounted here;
302 * the user ticks get saved up in paca->user_time_scaled to be
303 * used by account_process_tick.
305 stime_scaled
= stime
;
306 utime_scaled
= utime
;
307 if (deltascaled
!= stime
+ utime
) {
309 stime_scaled
= deltascaled
* stime
/ (stime
+ utime
);
310 utime_scaled
= deltascaled
- stime_scaled
;
312 stime_scaled
= deltascaled
;
315 acct
->utime_scaled
+= utime_scaled
;
321 static unsigned long vtime_delta(struct task_struct
*tsk
,
322 unsigned long *stime_scaled
,
323 unsigned long *steal_time
)
325 unsigned long now
, stime
;
326 struct cpu_accounting_data
*acct
= get_accounting(tsk
);
328 WARN_ON_ONCE(!irqs_disabled());
331 stime
= now
- acct
->starttime
;
332 acct
->starttime
= now
;
334 *stime_scaled
= vtime_delta_scaled(acct
, now
, stime
);
336 *steal_time
= calculate_stolen_time(now
);
341 void vtime_account_kernel(struct task_struct
*tsk
)
343 unsigned long stime
, stime_scaled
, steal_time
;
344 struct cpu_accounting_data
*acct
= get_accounting(tsk
);
346 stime
= vtime_delta(tsk
, &stime_scaled
, &steal_time
);
348 stime
-= min(stime
, steal_time
);
349 acct
->steal_time
+= steal_time
;
351 if ((tsk
->flags
& PF_VCPU
) && !irq_count()) {
352 acct
->gtime
+= stime
;
353 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
354 acct
->utime_scaled
+= stime_scaled
;
358 acct
->hardirq_time
+= stime
;
359 else if (in_serving_softirq())
360 acct
->softirq_time
+= stime
;
362 acct
->stime
+= stime
;
364 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
365 acct
->stime_scaled
+= stime_scaled
;
369 EXPORT_SYMBOL_GPL(vtime_account_kernel
);
371 void vtime_account_idle(struct task_struct
*tsk
)
373 unsigned long stime
, stime_scaled
, steal_time
;
374 struct cpu_accounting_data
*acct
= get_accounting(tsk
);
376 stime
= vtime_delta(tsk
, &stime_scaled
, &steal_time
);
377 acct
->idle_time
+= stime
+ steal_time
;
380 static void vtime_flush_scaled(struct task_struct
*tsk
,
381 struct cpu_accounting_data
*acct
)
383 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
384 if (acct
->utime_scaled
)
385 tsk
->utimescaled
+= cputime_to_nsecs(acct
->utime_scaled
);
386 if (acct
->stime_scaled
)
387 tsk
->stimescaled
+= cputime_to_nsecs(acct
->stime_scaled
);
389 acct
->utime_scaled
= 0;
390 acct
->utime_sspurr
= 0;
391 acct
->stime_scaled
= 0;
396 * Account the whole cputime accumulated in the paca
397 * Must be called with interrupts disabled.
398 * Assumes that vtime_account_kernel/idle() has been called
399 * recently (i.e. since the last entry from usermode) so that
400 * get_paca()->user_time_scaled is up to date.
402 void vtime_flush(struct task_struct
*tsk
)
404 struct cpu_accounting_data
*acct
= get_accounting(tsk
);
407 account_user_time(tsk
, cputime_to_nsecs(acct
->utime
));
410 account_guest_time(tsk
, cputime_to_nsecs(acct
->gtime
));
412 if (IS_ENABLED(CONFIG_PPC_SPLPAR
) && acct
->steal_time
) {
413 account_steal_time(cputime_to_nsecs(acct
->steal_time
));
414 acct
->steal_time
= 0;
418 account_idle_time(cputime_to_nsecs(acct
->idle_time
));
421 account_system_index_time(tsk
, cputime_to_nsecs(acct
->stime
),
424 if (acct
->hardirq_time
)
425 account_system_index_time(tsk
, cputime_to_nsecs(acct
->hardirq_time
),
427 if (acct
->softirq_time
)
428 account_system_index_time(tsk
, cputime_to_nsecs(acct
->softirq_time
),
431 vtime_flush_scaled(tsk
, acct
);
437 acct
->hardirq_time
= 0;
438 acct
->softirq_time
= 0;
441 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
442 #define calc_cputime_factors()
445 void __delay(unsigned long loops
)
454 /* the RTCL register wraps at 1000000000 */
455 diff
= get_rtcl() - start
;
459 } while (diff
< loops
);
460 } else if (tb_invalid
) {
462 * TB is in error state and isn't ticking anymore.
463 * HMI handler was unable to recover from TB error.
464 * Return immediately, so that kernel won't get stuck here.
469 while (get_tbl() - start
< loops
)
474 EXPORT_SYMBOL(__delay
);
476 void udelay(unsigned long usecs
)
478 __delay(tb_ticks_per_usec
* usecs
);
480 EXPORT_SYMBOL(udelay
);
483 unsigned long profile_pc(struct pt_regs
*regs
)
485 unsigned long pc
= instruction_pointer(regs
);
487 if (in_lock_functions(pc
))
492 EXPORT_SYMBOL(profile_pc
);
495 #ifdef CONFIG_IRQ_WORK
498 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
501 static inline unsigned long test_irq_work_pending(void)
505 asm volatile("lbz %0,%1(13)"
507 : "i" (offsetof(struct paca_struct
, irq_work_pending
)));
511 static inline void set_irq_work_pending_flag(void)
513 asm volatile("stb %0,%1(13)" : :
515 "i" (offsetof(struct paca_struct
, irq_work_pending
)));
518 static inline void clear_irq_work_pending(void)
520 asm volatile("stb %0,%1(13)" : :
522 "i" (offsetof(struct paca_struct
, irq_work_pending
)));
525 void arch_irq_work_raise(void)
528 set_irq_work_pending_flag();
530 * Non-nmi code running with interrupts disabled will replay
531 * irq_happened before it re-enables interrupts, so setthe
532 * decrementer there instead of causing a hardware exception
533 * which would immediately hit the masked interrupt handler
534 * and have the net effect of setting the decrementer in
537 * NMI interrupts can not check this when they return, so the
538 * decrementer hardware exception is raised, which will fire
539 * when interrupts are next enabled.
541 * BookE does not support this yet, it must audit all NMI
542 * interrupt handlers to ensure they call nmi_enter() so this
543 * check would be correct.
545 if (IS_ENABLED(CONFIG_BOOKE
) || !irqs_disabled() || in_nmi()) {
549 local_paca
->irq_happened
|= PACA_IRQ_DEC
;
556 DEFINE_PER_CPU(u8
, irq_work_pending
);
558 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
559 #define test_irq_work_pending() __this_cpu_read(irq_work_pending)
560 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
562 void arch_irq_work_raise(void)
565 set_irq_work_pending_flag();
570 #endif /* 32 vs 64 bit */
572 #else /* CONFIG_IRQ_WORK */
574 #define test_irq_work_pending() 0
575 #define clear_irq_work_pending()
577 #endif /* CONFIG_IRQ_WORK */
580 * timer_interrupt - gets called when the decrementer overflows,
581 * with interrupts disabled.
583 void timer_interrupt(struct pt_regs
*regs
)
585 struct clock_event_device
*evt
= this_cpu_ptr(&decrementers
);
586 u64
*next_tb
= this_cpu_ptr(&decrementers_next_tb
);
587 struct pt_regs
*old_regs
;
590 /* Some implementations of hotplug will get timer interrupts while
591 * offline, just ignore these and we also need to set
592 * decrementers_next_tb as MAX to make sure __check_irq_replay
593 * don't replay timer interrupt when return, otherwise we'll trap
596 if (unlikely(!cpu_online(smp_processor_id()))) {
598 set_dec(decrementer_max
);
602 /* Ensure a positive value is written to the decrementer, or else
603 * some CPUs will continue to take decrementer exceptions. When the
604 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
605 * 31 bits, which is about 4 seconds on most systems, which gives
606 * the watchdog a chance of catching timer interrupt hard lockups.
608 if (IS_ENABLED(CONFIG_PPC_WATCHDOG
))
611 set_dec(decrementer_max
);
613 /* Conditionally hard-enable interrupts now that the DEC has been
614 * bumped to its maximum value
616 may_hard_irq_enable();
619 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
620 if (atomic_read(&ppc_n_lost_interrupts
) != 0)
624 old_regs
= set_irq_regs(regs
);
626 trace_timer_interrupt_entry(regs
);
628 if (test_irq_work_pending()) {
629 clear_irq_work_pending();
633 now
= get_tb_or_rtc();
634 if (now
>= *next_tb
) {
636 if (evt
->event_handler
)
637 evt
->event_handler(evt
);
638 __this_cpu_inc(irq_stat
.timer_irqs_event
);
640 now
= *next_tb
- now
;
641 if (now
<= decrementer_max
)
643 /* We may have raced with new irq work */
644 if (test_irq_work_pending())
646 __this_cpu_inc(irq_stat
.timer_irqs_others
);
649 trace_timer_interrupt_exit(regs
);
651 set_irq_regs(old_regs
);
653 EXPORT_SYMBOL(timer_interrupt
);
655 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
656 void timer_broadcast_interrupt(void)
658 u64
*next_tb
= this_cpu_ptr(&decrementers_next_tb
);
661 tick_receive_broadcast();
662 __this_cpu_inc(irq_stat
.broadcast_irqs_event
);
667 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
668 * left pending on exit from a KVM guest. We don't need to do anything
669 * to clear them, as they are edge-triggered.
671 void hdec_interrupt(struct pt_regs
*regs
)
675 #ifdef CONFIG_SUSPEND
676 static void generic_suspend_disable_irqs(void)
678 /* Disable the decrementer, so that it doesn't interfere
682 set_dec(decrementer_max
);
684 set_dec(decrementer_max
);
687 static void generic_suspend_enable_irqs(void)
692 /* Overrides the weak version in kernel/power/main.c */
693 void arch_suspend_disable_irqs(void)
695 if (ppc_md
.suspend_disable_irqs
)
696 ppc_md
.suspend_disable_irqs();
697 generic_suspend_disable_irqs();
700 /* Overrides the weak version in kernel/power/main.c */
701 void arch_suspend_enable_irqs(void)
703 generic_suspend_enable_irqs();
704 if (ppc_md
.suspend_enable_irqs
)
705 ppc_md
.suspend_enable_irqs();
709 unsigned long long tb_to_ns(unsigned long long ticks
)
711 return mulhdu(ticks
, tb_to_ns_scale
) << tb_to_ns_shift
;
713 EXPORT_SYMBOL_GPL(tb_to_ns
);
716 * Scheduler clock - returns current time in nanosec units.
718 * Note: mulhdu(a, b) (multiply high double unsigned) returns
719 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
720 * are 64-bit unsigned numbers.
722 notrace
unsigned long long sched_clock(void)
726 return mulhdu(get_tb() - boot_tb
, tb_to_ns_scale
) << tb_to_ns_shift
;
730 #ifdef CONFIG_PPC_PSERIES
733 * Running clock - attempts to give a view of time passing for a virtualised
735 * Uses the VTB register if available otherwise a next best guess.
737 unsigned long long running_clock(void)
740 * Don't read the VTB as a host since KVM does not switch in host
741 * timebase into the VTB when it takes a guest off the CPU, reading the
742 * VTB would result in reading 'last switched out' guest VTB.
744 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
745 * would be unsafe to rely only on the #ifdef above.
747 if (firmware_has_feature(FW_FEATURE_LPAR
) &&
748 cpu_has_feature(CPU_FTR_ARCH_207S
))
749 return mulhdu(get_vtb() - boot_tb
, tb_to_ns_scale
) << tb_to_ns_shift
;
752 * This is a next best approximation without a VTB.
753 * On a host which is running bare metal there should never be any stolen
754 * time and on a host which doesn't do any virtualisation TB *should* equal
755 * VTB so it makes no difference anyway.
757 return local_clock() - kcpustat_this_cpu
->cpustat
[CPUTIME_STEAL
];
761 static int __init
get_freq(char *name
, int cells
, unsigned long *val
)
763 struct device_node
*cpu
;
767 /* The cpu node should have timebase and clock frequency properties */
768 cpu
= of_find_node_by_type(NULL
, "cpu");
771 fp
= of_get_property(cpu
, name
, NULL
);
774 *val
= of_read_ulong(fp
, cells
);
783 static void start_cpu_decrementer(void)
785 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
788 /* Clear any pending timer interrupts */
789 mtspr(SPRN_TSR
, TSR_ENW
| TSR_WIS
| TSR_DIS
| TSR_FIS
);
791 tcr
= mfspr(SPRN_TCR
);
793 * The watchdog may have already been enabled by u-boot. So leave
794 * TRC[WP] (Watchdog Period) alone.
796 tcr
&= TCR_WP_MASK
; /* Clear all bits except for TCR[WP] */
797 tcr
|= TCR_DIE
; /* Enable decrementer */
798 mtspr(SPRN_TCR
, tcr
);
802 void __init
generic_calibrate_decr(void)
804 ppc_tb_freq
= DEFAULT_TB_FREQ
; /* hardcoded default */
806 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq
) &&
807 !get_freq("timebase-frequency", 1, &ppc_tb_freq
)) {
809 printk(KERN_ERR
"WARNING: Estimating decrementer frequency "
813 ppc_proc_freq
= DEFAULT_PROC_FREQ
; /* hardcoded default */
815 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq
) &&
816 !get_freq("clock-frequency", 1, &ppc_proc_freq
)) {
818 printk(KERN_ERR
"WARNING: Estimating processor frequency "
823 int update_persistent_clock64(struct timespec64 now
)
827 if (!ppc_md
.set_rtc_time
)
830 rtc_time64_to_tm(now
.tv_sec
+ 1 + timezone_offset
, &tm
);
832 return ppc_md
.set_rtc_time(&tm
);
835 static void __read_persistent_clock(struct timespec64
*ts
)
838 static int first
= 1;
841 /* XXX this is a litle fragile but will work okay in the short term */
844 if (ppc_md
.time_init
)
845 timezone_offset
= ppc_md
.time_init();
847 /* get_boot_time() isn't guaranteed to be safe to call late */
848 if (ppc_md
.get_boot_time
) {
849 ts
->tv_sec
= ppc_md
.get_boot_time() - timezone_offset
;
853 if (!ppc_md
.get_rtc_time
) {
857 ppc_md
.get_rtc_time(&tm
);
859 ts
->tv_sec
= rtc_tm_to_time64(&tm
);
862 void read_persistent_clock64(struct timespec64
*ts
)
864 __read_persistent_clock(ts
);
866 /* Sanitize it in case real time clock is set below EPOCH */
867 if (ts
->tv_sec
< 0) {
874 /* clocksource code */
875 static notrace u64
rtc_read(struct clocksource
*cs
)
877 return (u64
)get_rtc();
880 static notrace u64
timebase_read(struct clocksource
*cs
)
882 return (u64
)get_tb();
886 void update_vsyscall(struct timekeeper
*tk
)
888 struct timespec64 xt
;
889 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
890 u32 mult
= tk
->tkr_mono
.mult
;
891 u32 shift
= tk
->tkr_mono
.shift
;
892 u64 cycle_last
= tk
->tkr_mono
.cycle_last
;
893 u64 new_tb_to_xs
, new_stamp_xsec
;
896 if (clock
!= &clocksource_timebase
)
899 xt
.tv_sec
= tk
->xtime_sec
;
900 xt
.tv_nsec
= (long)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
902 /* Make userspace gettimeofday spin until we're done. */
903 ++vdso_data
->tb_update_count
;
907 * This computes ((2^20 / 1e9) * mult) >> shift as a
908 * 0.64 fixed-point fraction.
909 * The computation in the else clause below won't overflow
910 * (as long as the timebase frequency is >= 1.049 MHz)
911 * but loses precision because we lose the low bits of the constant
912 * in the shift. Note that 19342813113834067 ~= 2^(20+64) / 1e9.
913 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
914 * over a second. (Shift values are usually 22, 23 or 24.)
915 * For high frequency clocks such as the 512MHz timebase clock
916 * on POWER[6789], the mult value is small (e.g. 32768000)
917 * and so we can shift the constant by 16 initially
918 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
919 * remaining shifts after the multiplication, which gives a
920 * more accurate result (e.g. with mult = 32768000, shift = 24,
921 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
923 if (mult
<= 62500000 && clock
->shift
>= 16)
924 new_tb_to_xs
= ((u64
) mult
* 295147905179ULL) >> (clock
->shift
- 16);
926 new_tb_to_xs
= (u64
) mult
* (19342813113834067ULL >> clock
->shift
);
929 * Compute the fractional second in units of 2^-32 seconds.
930 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
931 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
932 * it in units of 2^-32 seconds.
933 * We assume shift <= 32 because clocks_calc_mult_shift()
934 * generates shift values in the range 0 - 32.
936 frac_sec
= tk
->tkr_mono
.xtime_nsec
<< (32 - shift
);
937 do_div(frac_sec
, NSEC_PER_SEC
);
940 * Work out new stamp_xsec value for any legacy users of systemcfg.
941 * stamp_xsec is in units of 2^-20 seconds.
943 new_stamp_xsec
= frac_sec
>> 12;
944 new_stamp_xsec
+= tk
->xtime_sec
* XSEC_PER_SEC
;
947 * tb_update_count is used to allow the userspace gettimeofday code
948 * to assure itself that it sees a consistent view of the tb_to_xs and
949 * stamp_xsec variables. It reads the tb_update_count, then reads
950 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
951 * the two values of tb_update_count match and are even then the
952 * tb_to_xs and stamp_xsec values are consistent. If not, then it
953 * loops back and reads them again until this criteria is met.
955 vdso_data
->tb_orig_stamp
= cycle_last
;
956 vdso_data
->stamp_xsec
= new_stamp_xsec
;
957 vdso_data
->tb_to_xs
= new_tb_to_xs
;
958 vdso_data
->wtom_clock_sec
= tk
->wall_to_monotonic
.tv_sec
;
959 vdso_data
->wtom_clock_nsec
= tk
->wall_to_monotonic
.tv_nsec
;
960 vdso_data
->stamp_xtime_sec
= xt
.tv_sec
;
961 vdso_data
->stamp_xtime_nsec
= xt
.tv_nsec
;
962 vdso_data
->stamp_sec_fraction
= frac_sec
;
963 vdso_data
->hrtimer_res
= hrtimer_resolution
;
965 ++(vdso_data
->tb_update_count
);
968 void update_vsyscall_tz(void)
970 vdso_data
->tz_minuteswest
= sys_tz
.tz_minuteswest
;
971 vdso_data
->tz_dsttime
= sys_tz
.tz_dsttime
;
974 static void __init
clocksource_init(void)
976 struct clocksource
*clock
;
979 clock
= &clocksource_rtc
;
981 clock
= &clocksource_timebase
;
983 if (clocksource_register_hz(clock
, tb_ticks_per_sec
)) {
984 printk(KERN_ERR
"clocksource: %s is already registered\n",
989 printk(KERN_INFO
"clocksource: %s mult[%x] shift[%d] registered\n",
990 clock
->name
, clock
->mult
, clock
->shift
);
993 static int decrementer_set_next_event(unsigned long evt
,
994 struct clock_event_device
*dev
)
996 __this_cpu_write(decrementers_next_tb
, get_tb_or_rtc() + evt
);
999 /* We may have raced with new irq work */
1000 if (test_irq_work_pending())
1006 static int decrementer_shutdown(struct clock_event_device
*dev
)
1008 decrementer_set_next_event(decrementer_max
, dev
);
1012 static void register_decrementer_clockevent(int cpu
)
1014 struct clock_event_device
*dec
= &per_cpu(decrementers
, cpu
);
1016 *dec
= decrementer_clockevent
;
1017 dec
->cpumask
= cpumask_of(cpu
);
1019 clockevents_config_and_register(dec
, ppc_tb_freq
, 2, decrementer_max
);
1021 printk_once(KERN_DEBUG
"clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
1022 dec
->name
, dec
->mult
, dec
->shift
, cpu
);
1024 /* Set values for KVM, see kvm_emulate_dec() */
1025 decrementer_clockevent
.mult
= dec
->mult
;
1026 decrementer_clockevent
.shift
= dec
->shift
;
1029 static void enable_large_decrementer(void)
1031 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
1034 if (decrementer_max
<= DECREMENTER_DEFAULT_MAX
)
1038 * If we're running as the hypervisor we need to enable the LD manually
1039 * otherwise firmware should have done it for us.
1041 if (cpu_has_feature(CPU_FTR_HVMODE
))
1042 mtspr(SPRN_LPCR
, mfspr(SPRN_LPCR
) | LPCR_LD
);
1045 static void __init
set_decrementer_max(void)
1047 struct device_node
*cpu
;
1050 /* Prior to ISAv3 the decrementer is always 32 bit */
1051 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
1054 cpu
= of_find_node_by_type(NULL
, "cpu");
1056 if (of_property_read_u32(cpu
, "ibm,dec-bits", &bits
) == 0) {
1057 if (bits
> 64 || bits
< 32) {
1058 pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1062 /* calculate the signed maximum given this many bits */
1063 decrementer_max
= (1ul << (bits
- 1)) - 1;
1068 pr_info("time_init: %u bit decrementer (max: %llx)\n",
1069 bits
, decrementer_max
);
1072 static void __init
init_decrementer_clockevent(void)
1074 register_decrementer_clockevent(smp_processor_id());
1077 void secondary_cpu_time_init(void)
1079 /* Enable and test the large decrementer for this cpu */
1080 enable_large_decrementer();
1082 /* Start the decrementer on CPUs that have manual control
1085 start_cpu_decrementer();
1087 /* FIME: Should make unrelatred change to move snapshot_timebase
1089 register_decrementer_clockevent(smp_processor_id());
1092 /* This function is only called on the boot processor */
1093 void __init
time_init(void)
1095 struct div_result res
;
1100 /* 601 processor: dec counts down by 128 every 128ns */
1101 ppc_tb_freq
= 1000000000;
1103 /* Normal PowerPC with timebase register */
1104 ppc_md
.calibrate_decr();
1105 printk(KERN_DEBUG
"time_init: decrementer frequency = %lu.%.6lu MHz\n",
1106 ppc_tb_freq
/ 1000000, ppc_tb_freq
% 1000000);
1107 printk(KERN_DEBUG
"time_init: processor frequency = %lu.%.6lu MHz\n",
1108 ppc_proc_freq
/ 1000000, ppc_proc_freq
% 1000000);
1111 tb_ticks_per_jiffy
= ppc_tb_freq
/ HZ
;
1112 tb_ticks_per_sec
= ppc_tb_freq
;
1113 tb_ticks_per_usec
= ppc_tb_freq
/ 1000000;
1114 calc_cputime_factors();
1117 * Compute scale factor for sched_clock.
1118 * The calibrate_decr() function has set tb_ticks_per_sec,
1119 * which is the timebase frequency.
1120 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1121 * the 128-bit result as a 64.64 fixed-point number.
1122 * We then shift that number right until it is less than 1.0,
1123 * giving us the scale factor and shift count to use in
1126 div128_by_32(1000000000, 0, tb_ticks_per_sec
, &res
);
1127 scale
= res
.result_low
;
1128 for (shift
= 0; res
.result_high
!= 0; ++shift
) {
1129 scale
= (scale
>> 1) | (res
.result_high
<< 63);
1130 res
.result_high
>>= 1;
1132 tb_to_ns_scale
= scale
;
1133 tb_to_ns_shift
= shift
;
1134 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1135 boot_tb
= get_tb_or_rtc();
1137 /* If platform provided a timezone (pmac), we correct the time */
1138 if (timezone_offset
) {
1139 sys_tz
.tz_minuteswest
= -timezone_offset
/ 60;
1140 sys_tz
.tz_dsttime
= 0;
1143 vdso_data
->tb_update_count
= 0;
1144 vdso_data
->tb_ticks_per_sec
= tb_ticks_per_sec
;
1146 /* initialise and enable the large decrementer (if we have one) */
1147 set_decrementer_max();
1148 enable_large_decrementer();
1150 /* Start the decrementer on CPUs that have manual control
1153 start_cpu_decrementer();
1155 /* Register the clocksource */
1158 init_decrementer_clockevent();
1159 tick_setup_hrtimer_broadcast();
1161 #ifdef CONFIG_COMMON_CLK
1167 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1170 void div128_by_32(u64 dividend_high
, u64 dividend_low
,
1171 unsigned divisor
, struct div_result
*dr
)
1173 unsigned long a
, b
, c
, d
;
1174 unsigned long w
, x
, y
, z
;
1177 a
= dividend_high
>> 32;
1178 b
= dividend_high
& 0xffffffff;
1179 c
= dividend_low
>> 32;
1180 d
= dividend_low
& 0xffffffff;
1183 ra
= ((u64
)(a
- (w
* divisor
)) << 32) + b
;
1185 rb
= ((u64
) do_div(ra
, divisor
) << 32) + c
;
1188 rc
= ((u64
) do_div(rb
, divisor
) << 32) + d
;
1191 do_div(rc
, divisor
);
1194 dr
->result_high
= ((u64
)w
<< 32) + x
;
1195 dr
->result_low
= ((u64
)y
<< 32) + z
;
1199 /* We don't need to calibrate delay, we use the CPU timebase for that */
1200 void calibrate_delay(void)
1202 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1203 * as the number of __delay(1) in a jiffy, so make it so
1205 loops_per_jiffy
= tb_ticks_per_jiffy
;
1208 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1209 static int rtc_generic_get_time(struct device
*dev
, struct rtc_time
*tm
)
1211 ppc_md
.get_rtc_time(tm
);
1215 static int rtc_generic_set_time(struct device
*dev
, struct rtc_time
*tm
)
1217 if (!ppc_md
.set_rtc_time
)
1220 if (ppc_md
.set_rtc_time(tm
) < 0)
1226 static const struct rtc_class_ops rtc_generic_ops
= {
1227 .read_time
= rtc_generic_get_time
,
1228 .set_time
= rtc_generic_set_time
,
1231 static int __init
rtc_init(void)
1233 struct platform_device
*pdev
;
1235 if (!ppc_md
.get_rtc_time
)
1238 pdev
= platform_device_register_data(NULL
, "rtc-generic", -1,
1240 sizeof(rtc_generic_ops
));
1242 return PTR_ERR_OR_ZERO(pdev
);
1245 device_initcall(rtc_init
);