1 // SPDX-License-Identifier: GPL-2.0
3 * Watchdog support on powerpc systems.
5 * Copyright 2017, IBM Corporation.
7 * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
10 #define pr_fmt(fmt) "watchdog: " fmt
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/smp.h>
32 * The powerpc watchdog ensures that each CPU is able to service timers.
33 * The watchdog sets up a simple timer on each CPU to run once per timer
34 * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
37 * Then there are two systems to check that the heartbeat is still running.
38 * The local soft-NMI, and the SMP checker.
40 * The soft-NMI checker can detect lockups on the local CPU. When interrupts
41 * are disabled with local_irq_disable(), platforms that use soft-masking
42 * can leave hardware interrupts enabled and handle them with a masked
43 * interrupt handler. The masked handler can send the timer interrupt to the
44 * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
45 * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
47 * The soft-NMI checker will compare the heartbeat timestamp for this CPU
48 * with the current time, and take action if the difference exceeds the
51 * The limitation of the soft-NMI watchdog is that it does not work when
52 * interrupts are hard disabled or otherwise not being serviced. This is
53 * solved by also having a SMP watchdog where all CPUs check all other
56 * The SMP checker can detect lockups on other CPUs. A gobal "pending"
57 * cpumask is kept, containing all CPUs which enable the watchdog. Each
58 * CPU clears their pending bit in their heartbeat timer. When the bitmask
59 * becomes empty, the last CPU to clear its pending bit updates a global
60 * timestamp and refills the pending bitmask.
62 * In the heartbeat timer, if any CPU notices that the global timestamp has
63 * not been updated for a period exceeding the watchdog threshold, then it
64 * means the CPU(s) with their bit still set in the pending mask have had
65 * their heartbeat stop, and action is taken.
67 * Some platforms implement true NMI IPIs, which can be used by the SMP
68 * watchdog to detect an unresponsive CPU and pull it out of its stuck
69 * state with the NMI IPI, to get crash/debug data from it. This way the
70 * SMP watchdog can detect hardware interrupts off lockups.
73 static cpumask_t wd_cpus_enabled __read_mostly
;
75 static u64 wd_panic_timeout_tb __read_mostly
; /* timebase ticks until panic */
76 static u64 wd_smp_panic_timeout_tb __read_mostly
; /* panic other CPUs */
78 static u64 wd_timer_period_ms __read_mostly
; /* interval between heartbeat */
80 static DEFINE_PER_CPU(struct hrtimer
, wd_hrtimer
);
81 static DEFINE_PER_CPU(u64
, wd_timer_tb
);
83 /* SMP checker bits */
84 static unsigned long __wd_smp_lock
;
85 static cpumask_t wd_smp_cpus_pending
;
86 static cpumask_t wd_smp_cpus_stuck
;
87 static u64 wd_smp_last_reset_tb
;
89 static inline void wd_smp_lock(unsigned long *flags
)
92 * Avoid locking layers if possible.
93 * This may be called from low level interrupt handlers at some
96 raw_local_irq_save(*flags
);
97 hard_irq_disable(); /* Make it soft-NMI safe */
98 while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock
))) {
99 raw_local_irq_restore(*flags
);
100 spin_until_cond(!test_bit(0, &__wd_smp_lock
));
101 raw_local_irq_save(*flags
);
106 static inline void wd_smp_unlock(unsigned long *flags
)
108 clear_bit_unlock(0, &__wd_smp_lock
);
109 raw_local_irq_restore(*flags
);
112 static void wd_lockup_ipi(struct pt_regs
*regs
)
114 int cpu
= raw_smp_processor_id();
117 pr_emerg("CPU %d Hard LOCKUP\n", cpu
);
118 pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
119 cpu
, tb
, per_cpu(wd_timer_tb
, cpu
),
120 tb_to_ns(tb
- per_cpu(wd_timer_tb
, cpu
)) / 1000000);
122 print_irqtrace_events(current
);
128 /* Do not panic from here because that can recurse into NMI IPI layer */
131 static void set_cpumask_stuck(const struct cpumask
*cpumask
, u64 tb
)
133 cpumask_or(&wd_smp_cpus_stuck
, &wd_smp_cpus_stuck
, cpumask
);
134 cpumask_andnot(&wd_smp_cpus_pending
, &wd_smp_cpus_pending
, cpumask
);
135 if (cpumask_empty(&wd_smp_cpus_pending
)) {
136 wd_smp_last_reset_tb
= tb
;
137 cpumask_andnot(&wd_smp_cpus_pending
,
142 static void set_cpu_stuck(int cpu
, u64 tb
)
144 set_cpumask_stuck(cpumask_of(cpu
), tb
);
147 static void watchdog_smp_panic(int cpu
, u64 tb
)
153 /* Double check some things under lock */
154 if ((s64
)(tb
- wd_smp_last_reset_tb
) < (s64
)wd_smp_panic_timeout_tb
)
156 if (cpumask_test_cpu(cpu
, &wd_smp_cpus_pending
))
158 if (cpumask_weight(&wd_smp_cpus_pending
) == 0)
161 pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
162 cpu
, cpumask_pr_args(&wd_smp_cpus_pending
));
163 pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
164 cpu
, tb
, wd_smp_last_reset_tb
,
165 tb_to_ns(tb
- wd_smp_last_reset_tb
) / 1000000);
167 if (!sysctl_hardlockup_all_cpu_backtrace
) {
169 * Try to trigger the stuck CPUs, unless we are going to
170 * get a backtrace on all of them anyway.
172 for_each_cpu(c
, &wd_smp_cpus_pending
) {
175 smp_send_nmi_ipi(c
, wd_lockup_ipi
, 1000000);
179 /* Take the stuck CPUs out of the watch group */
180 set_cpumask_stuck(&wd_smp_cpus_pending
, tb
);
182 wd_smp_unlock(&flags
);
186 * printk_safe_flush() seems to require another print
187 * before anything actually goes out to console.
189 if (sysctl_hardlockup_all_cpu_backtrace
)
190 trigger_allbutself_cpu_backtrace();
192 if (hardlockup_panic
)
193 nmi_panic(NULL
, "Hard LOCKUP");
198 wd_smp_unlock(&flags
);
201 static void wd_smp_clear_cpu_pending(int cpu
, u64 tb
)
203 if (!cpumask_test_cpu(cpu
, &wd_smp_cpus_pending
)) {
204 if (unlikely(cpumask_test_cpu(cpu
, &wd_smp_cpus_stuck
))) {
205 struct pt_regs
*regs
= get_irq_regs();
210 pr_emerg("CPU %d became unstuck TB:%lld\n",
212 print_irqtrace_events(current
);
218 cpumask_clear_cpu(cpu
, &wd_smp_cpus_stuck
);
219 wd_smp_unlock(&flags
);
223 cpumask_clear_cpu(cpu
, &wd_smp_cpus_pending
);
224 if (cpumask_empty(&wd_smp_cpus_pending
)) {
228 if (cpumask_empty(&wd_smp_cpus_pending
)) {
229 wd_smp_last_reset_tb
= tb
;
230 cpumask_andnot(&wd_smp_cpus_pending
,
234 wd_smp_unlock(&flags
);
238 static void watchdog_timer_interrupt(int cpu
)
242 per_cpu(wd_timer_tb
, cpu
) = tb
;
244 wd_smp_clear_cpu_pending(cpu
, tb
);
246 if ((s64
)(tb
- wd_smp_last_reset_tb
) >= (s64
)wd_smp_panic_timeout_tb
)
247 watchdog_smp_panic(cpu
, tb
);
250 void soft_nmi_interrupt(struct pt_regs
*regs
)
253 int cpu
= raw_smp_processor_id();
256 if (!cpumask_test_cpu(cpu
, &wd_cpus_enabled
))
261 __this_cpu_inc(irq_stat
.soft_nmi_irqs
);
264 if (tb
- per_cpu(wd_timer_tb
, cpu
) >= wd_panic_timeout_tb
) {
266 if (cpumask_test_cpu(cpu
, &wd_smp_cpus_stuck
)) {
267 wd_smp_unlock(&flags
);
270 set_cpu_stuck(cpu
, tb
);
272 pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
273 cpu
, (void *)regs
->nip
);
274 pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
275 cpu
, tb
, per_cpu(wd_timer_tb
, cpu
),
276 tb_to_ns(tb
- per_cpu(wd_timer_tb
, cpu
)) / 1000000);
278 print_irqtrace_events(current
);
281 wd_smp_unlock(&flags
);
283 if (sysctl_hardlockup_all_cpu_backtrace
)
284 trigger_allbutself_cpu_backtrace();
286 if (hardlockup_panic
)
287 nmi_panic(regs
, "Hard LOCKUP");
289 if (wd_panic_timeout_tb
< 0x7fffffff)
290 mtspr(SPRN_DEC
, wd_panic_timeout_tb
);
296 static enum hrtimer_restart
watchdog_timer_fn(struct hrtimer
*hrtimer
)
298 int cpu
= smp_processor_id();
300 if (!(watchdog_enabled
& NMI_WATCHDOG_ENABLED
))
301 return HRTIMER_NORESTART
;
303 if (!cpumask_test_cpu(cpu
, &watchdog_cpumask
))
304 return HRTIMER_NORESTART
;
306 watchdog_timer_interrupt(cpu
);
308 hrtimer_forward_now(hrtimer
, ms_to_ktime(wd_timer_period_ms
));
310 return HRTIMER_RESTART
;
313 void arch_touch_nmi_watchdog(void)
315 unsigned long ticks
= tb_ticks_per_usec
* wd_timer_period_ms
* 1000;
316 int cpu
= smp_processor_id();
319 if (tb
- per_cpu(wd_timer_tb
, cpu
) >= ticks
) {
320 per_cpu(wd_timer_tb
, cpu
) = tb
;
321 wd_smp_clear_cpu_pending(cpu
, tb
);
324 EXPORT_SYMBOL(arch_touch_nmi_watchdog
);
326 static void start_watchdog(void *arg
)
328 struct hrtimer
*hrtimer
= this_cpu_ptr(&wd_hrtimer
);
329 int cpu
= smp_processor_id();
332 if (cpumask_test_cpu(cpu
, &wd_cpus_enabled
)) {
337 if (!(watchdog_enabled
& NMI_WATCHDOG_ENABLED
))
340 if (!cpumask_test_cpu(cpu
, &watchdog_cpumask
))
344 cpumask_set_cpu(cpu
, &wd_cpus_enabled
);
345 if (cpumask_weight(&wd_cpus_enabled
) == 1) {
346 cpumask_set_cpu(cpu
, &wd_smp_cpus_pending
);
347 wd_smp_last_reset_tb
= get_tb();
349 wd_smp_unlock(&flags
);
351 *this_cpu_ptr(&wd_timer_tb
) = get_tb();
353 hrtimer_init(hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
354 hrtimer
->function
= watchdog_timer_fn
;
355 hrtimer_start(hrtimer
, ms_to_ktime(wd_timer_period_ms
),
356 HRTIMER_MODE_REL_PINNED
);
359 static int start_watchdog_on_cpu(unsigned int cpu
)
361 return smp_call_function_single(cpu
, start_watchdog
, NULL
, true);
364 static void stop_watchdog(void *arg
)
366 struct hrtimer
*hrtimer
= this_cpu_ptr(&wd_hrtimer
);
367 int cpu
= smp_processor_id();
370 if (!cpumask_test_cpu(cpu
, &wd_cpus_enabled
))
371 return; /* Can happen in CPU unplug case */
373 hrtimer_cancel(hrtimer
);
376 cpumask_clear_cpu(cpu
, &wd_cpus_enabled
);
377 wd_smp_unlock(&flags
);
379 wd_smp_clear_cpu_pending(cpu
, get_tb());
382 static int stop_watchdog_on_cpu(unsigned int cpu
)
384 return smp_call_function_single(cpu
, stop_watchdog
, NULL
, true);
387 static void watchdog_calc_timeouts(void)
389 wd_panic_timeout_tb
= watchdog_thresh
* ppc_tb_freq
;
391 /* Have the SMP detector trigger a bit later */
392 wd_smp_panic_timeout_tb
= wd_panic_timeout_tb
* 3 / 2;
394 /* 2/5 is the factor that the perf based detector uses */
395 wd_timer_period_ms
= watchdog_thresh
* 1000 * 2 / 5;
398 void watchdog_nmi_stop(void)
402 for_each_cpu(cpu
, &wd_cpus_enabled
)
403 stop_watchdog_on_cpu(cpu
);
406 void watchdog_nmi_start(void)
410 watchdog_calc_timeouts();
411 for_each_cpu_and(cpu
, cpu_online_mask
, &watchdog_cpumask
)
412 start_watchdog_on_cpu(cpu
);
416 * Invoked from core watchdog init.
418 int __init
watchdog_nmi_probe(void)
422 err
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
423 "powerpc/watchdog:online",
424 start_watchdog_on_cpu
,
425 stop_watchdog_on_cpu
);
427 pr_warn("could not be initialized");