1 // SPDX-License-Identifier: GPL-2.0-only
3 * bpf_jit_comp64.c: eBPF JIT compiler
5 * Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
8 * Based on the powerpc classic BPF JIT compiler by Matt Evans
10 #include <linux/moduleloader.h>
11 #include <asm/cacheflush.h>
12 #include <asm/asm-compat.h>
13 #include <linux/netdevice.h>
14 #include <linux/filter.h>
15 #include <linux/if_vlan.h>
16 #include <asm/kprobes.h>
17 #include <linux/bpf.h>
19 #include "bpf_jit64.h"
21 static void bpf_jit_fill_ill_insns(void *area
, unsigned int size
)
23 memset32(area
, BREAKPOINT_INSTRUCTION
, size
/4);
26 static inline void bpf_flush_icache(void *start
, void *end
)
29 flush_icache_range((unsigned long)start
, (unsigned long)end
);
32 static inline bool bpf_is_seen_register(struct codegen_context
*ctx
, int i
)
34 return (ctx
->seen
& (1 << (31 - b2p
[i
])));
37 static inline void bpf_set_seen_register(struct codegen_context
*ctx
, int i
)
39 ctx
->seen
|= (1 << (31 - b2p
[i
]));
42 static inline bool bpf_has_stack_frame(struct codegen_context
*ctx
)
45 * We only need a stack frame if:
46 * - we call other functions (kernel helpers), or
47 * - the bpf program uses its stack area
48 * The latter condition is deduced from the usage of BPF_REG_FP
50 return ctx
->seen
& SEEN_FUNC
|| bpf_is_seen_register(ctx
, BPF_REG_FP
);
54 * When not setting up our own stackframe, the redzone usage is:
56 * [ prev sp ] <-------------
58 * sp (r1) ---> [ stack pointer ] --------------
59 * [ nv gpr save area ] 6*8
62 * [ unused red zone ] 208 bytes protected
64 static int bpf_jit_stack_local(struct codegen_context
*ctx
)
66 if (bpf_has_stack_frame(ctx
))
67 return STACK_FRAME_MIN_SIZE
+ ctx
->stack_size
;
69 return -(BPF_PPC_STACK_SAVE
+ 16);
72 static int bpf_jit_stack_tailcallcnt(struct codegen_context
*ctx
)
74 return bpf_jit_stack_local(ctx
) + 8;
77 static int bpf_jit_stack_offsetof(struct codegen_context
*ctx
, int reg
)
79 if (reg
>= BPF_PPC_NVR_MIN
&& reg
< 32)
80 return (bpf_has_stack_frame(ctx
) ?
81 (BPF_PPC_STACKFRAME
+ ctx
->stack_size
) : 0)
84 pr_err("BPF JIT is asking about unknown registers");
88 static void bpf_jit_build_prologue(u32
*image
, struct codegen_context
*ctx
)
93 * Initialize tail_call_cnt if we do tail calls.
94 * Otherwise, put in NOPs so that it can be skipped when we are
95 * invoked through a tail call.
97 if (ctx
->seen
& SEEN_TAILCALL
) {
98 PPC_LI(b2p
[TMP_REG_1
], 0);
99 /* this goes in the redzone */
100 PPC_BPF_STL(b2p
[TMP_REG_1
], 1, -(BPF_PPC_STACK_SAVE
+ 8));
106 #define BPF_TAILCALL_PROLOGUE_SIZE 8
108 if (bpf_has_stack_frame(ctx
)) {
110 * We need a stack frame, but we don't necessarily need to
111 * save/restore LR unless we call other functions
113 if (ctx
->seen
& SEEN_FUNC
) {
114 EMIT(PPC_INST_MFLR
| __PPC_RT(R0
));
115 PPC_BPF_STL(0, 1, PPC_LR_STKOFF
);
118 PPC_BPF_STLU(1, 1, -(BPF_PPC_STACKFRAME
+ ctx
->stack_size
));
122 * Back up non-volatile regs -- BPF registers 6-10
123 * If we haven't created our own stack frame, we save these
124 * in the protected zone below the previous stack frame
126 for (i
= BPF_REG_6
; i
<= BPF_REG_10
; i
++)
127 if (bpf_is_seen_register(ctx
, i
))
128 PPC_BPF_STL(b2p
[i
], 1, bpf_jit_stack_offsetof(ctx
, b2p
[i
]));
130 /* Setup frame pointer to point to the bpf stack area */
131 if (bpf_is_seen_register(ctx
, BPF_REG_FP
))
132 PPC_ADDI(b2p
[BPF_REG_FP
], 1,
133 STACK_FRAME_MIN_SIZE
+ ctx
->stack_size
);
136 static void bpf_jit_emit_common_epilogue(u32
*image
, struct codegen_context
*ctx
)
141 for (i
= BPF_REG_6
; i
<= BPF_REG_10
; i
++)
142 if (bpf_is_seen_register(ctx
, i
))
143 PPC_BPF_LL(b2p
[i
], 1, bpf_jit_stack_offsetof(ctx
, b2p
[i
]));
145 /* Tear down our stack frame */
146 if (bpf_has_stack_frame(ctx
)) {
147 PPC_ADDI(1, 1, BPF_PPC_STACKFRAME
+ ctx
->stack_size
);
148 if (ctx
->seen
& SEEN_FUNC
) {
149 PPC_BPF_LL(0, 1, PPC_LR_STKOFF
);
155 static void bpf_jit_build_epilogue(u32
*image
, struct codegen_context
*ctx
)
157 bpf_jit_emit_common_epilogue(image
, ctx
);
159 /* Move result to r3 */
160 PPC_MR(3, b2p
[BPF_REG_0
]);
165 static void bpf_jit_emit_func_call_hlp(u32
*image
, struct codegen_context
*ctx
,
168 #ifdef PPC64_ELF_ABI_v1
169 /* func points to the function descriptor */
170 PPC_LI64(b2p
[TMP_REG_2
], func
);
171 /* Load actual entry point from function descriptor */
172 PPC_BPF_LL(b2p
[TMP_REG_1
], b2p
[TMP_REG_2
], 0);
173 /* ... and move it to LR */
174 PPC_MTLR(b2p
[TMP_REG_1
]);
176 * Load TOC from function descriptor at offset 8.
177 * We can clobber r2 since we get called through a
178 * function pointer (so caller will save/restore r2)
179 * and since we don't use a TOC ourself.
181 PPC_BPF_LL(2, b2p
[TMP_REG_2
], 8);
183 /* We can clobber r12 */
184 PPC_FUNC_ADDR(12, func
);
190 static void bpf_jit_emit_func_call_rel(u32
*image
, struct codegen_context
*ctx
,
193 unsigned int i
, ctx_idx
= ctx
->idx
;
195 /* Load function address into r12 */
198 /* For bpf-to-bpf function calls, the callee's address is unknown
199 * until the last extra pass. As seen above, we use PPC_LI64() to
200 * load the callee's address, but this may optimize the number of
201 * instructions required based on the nature of the address.
203 * Since we don't want the number of instructions emitted to change,
204 * we pad the optimized PPC_LI64() call with NOPs to guarantee that
205 * we always have a five-instruction sequence, which is the maximum
206 * that PPC_LI64() can emit.
208 for (i
= ctx
->idx
- ctx_idx
; i
< 5; i
++)
211 #ifdef PPC64_ELF_ABI_v1
213 * Load TOC from function descriptor at offset 8.
214 * We can clobber r2 since we get called through a
215 * function pointer (so caller will save/restore r2)
216 * and since we don't use a TOC ourself.
218 PPC_BPF_LL(2, 12, 8);
219 /* Load actual entry point from function descriptor */
220 PPC_BPF_LL(12, 12, 0);
227 static void bpf_jit_emit_tail_call(u32
*image
, struct codegen_context
*ctx
, u32 out
)
230 * By now, the eBPF program has already setup parameters in r3, r4 and r5
231 * r3/BPF_REG_1 - pointer to ctx -- passed as is to the next bpf program
232 * r4/BPF_REG_2 - pointer to bpf_array
233 * r5/BPF_REG_3 - index in bpf_array
235 int b2p_bpf_array
= b2p
[BPF_REG_2
];
236 int b2p_index
= b2p
[BPF_REG_3
];
239 * if (index >= array->map.max_entries)
242 PPC_LWZ(b2p
[TMP_REG_1
], b2p_bpf_array
, offsetof(struct bpf_array
, map
.max_entries
));
243 PPC_RLWINM(b2p_index
, b2p_index
, 0, 0, 31);
244 PPC_CMPLW(b2p_index
, b2p
[TMP_REG_1
]);
245 PPC_BCC(COND_GE
, out
);
248 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
251 PPC_BPF_LL(b2p
[TMP_REG_1
], 1, bpf_jit_stack_tailcallcnt(ctx
));
252 PPC_CMPLWI(b2p
[TMP_REG_1
], MAX_TAIL_CALL_CNT
);
253 PPC_BCC(COND_GT
, out
);
258 PPC_ADDI(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
], 1);
259 PPC_BPF_STL(b2p
[TMP_REG_1
], 1, bpf_jit_stack_tailcallcnt(ctx
));
261 /* prog = array->ptrs[index]; */
262 PPC_MULI(b2p
[TMP_REG_1
], b2p_index
, 8);
263 PPC_ADD(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
], b2p_bpf_array
);
264 PPC_BPF_LL(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
], offsetof(struct bpf_array
, ptrs
));
270 PPC_CMPLDI(b2p
[TMP_REG_1
], 0);
271 PPC_BCC(COND_EQ
, out
);
273 /* goto *(prog->bpf_func + prologue_size); */
274 PPC_BPF_LL(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
], offsetof(struct bpf_prog
, bpf_func
));
275 #ifdef PPC64_ELF_ABI_v1
276 /* skip past the function descriptor */
277 PPC_ADDI(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
],
278 FUNCTION_DESCR_SIZE
+ BPF_TAILCALL_PROLOGUE_SIZE
);
280 PPC_ADDI(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
], BPF_TAILCALL_PROLOGUE_SIZE
);
282 PPC_MTCTR(b2p
[TMP_REG_1
]);
284 /* tear down stack, restore NVRs, ... */
285 bpf_jit_emit_common_epilogue(image
, ctx
);
291 /* Assemble the body code between the prologue & epilogue */
292 static int bpf_jit_build_body(struct bpf_prog
*fp
, u32
*image
,
293 struct codegen_context
*ctx
,
294 u32
*addrs
, bool extra_pass
)
296 const struct bpf_insn
*insn
= fp
->insnsi
;
300 /* Start of epilogue code - will only be valid 2nd pass onwards */
301 u32 exit_addr
= addrs
[flen
];
303 for (i
= 0; i
< flen
; i
++) {
304 u32 code
= insn
[i
].code
;
305 u32 dst_reg
= b2p
[insn
[i
].dst_reg
];
306 u32 src_reg
= b2p
[insn
[i
].src_reg
];
307 s16 off
= insn
[i
].off
;
308 s32 imm
= insn
[i
].imm
;
309 bool func_addr_fixed
;
316 * addrs[] maps a BPF bytecode address into a real offset from
317 * the start of the body code.
319 addrs
[i
] = ctx
->idx
* 4;
322 * As an optimization, we note down which non-volatile registers
323 * are used so that we can only save/restore those in our
324 * prologue and epilogue. We do this here regardless of whether
325 * the actual BPF instruction uses src/dst registers or not
326 * (for instance, BPF_CALL does not use them). The expectation
327 * is that those instructions will have src_reg/dst_reg set to
328 * 0. Even otherwise, we just lose some prologue/epilogue
329 * optimization but everything else should work without
332 if (dst_reg
>= BPF_PPC_NVR_MIN
&& dst_reg
< 32)
333 bpf_set_seen_register(ctx
, insn
[i
].dst_reg
);
334 if (src_reg
>= BPF_PPC_NVR_MIN
&& src_reg
< 32)
335 bpf_set_seen_register(ctx
, insn
[i
].src_reg
);
339 * Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG
341 case BPF_ALU
| BPF_ADD
| BPF_X
: /* (u32) dst += (u32) src */
342 case BPF_ALU64
| BPF_ADD
| BPF_X
: /* dst += src */
343 PPC_ADD(dst_reg
, dst_reg
, src_reg
);
344 goto bpf_alu32_trunc
;
345 case BPF_ALU
| BPF_SUB
| BPF_X
: /* (u32) dst -= (u32) src */
346 case BPF_ALU64
| BPF_SUB
| BPF_X
: /* dst -= src */
347 PPC_SUB(dst_reg
, dst_reg
, src_reg
);
348 goto bpf_alu32_trunc
;
349 case BPF_ALU
| BPF_ADD
| BPF_K
: /* (u32) dst += (u32) imm */
350 case BPF_ALU
| BPF_SUB
| BPF_K
: /* (u32) dst -= (u32) imm */
351 case BPF_ALU64
| BPF_ADD
| BPF_K
: /* dst += imm */
352 case BPF_ALU64
| BPF_SUB
| BPF_K
: /* dst -= imm */
353 if (BPF_OP(code
) == BPF_SUB
)
356 if (imm
>= -32768 && imm
< 32768)
357 PPC_ADDI(dst_reg
, dst_reg
, IMM_L(imm
));
359 PPC_LI32(b2p
[TMP_REG_1
], imm
);
360 PPC_ADD(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]);
363 goto bpf_alu32_trunc
;
364 case BPF_ALU
| BPF_MUL
| BPF_X
: /* (u32) dst *= (u32) src */
365 case BPF_ALU64
| BPF_MUL
| BPF_X
: /* dst *= src */
366 if (BPF_CLASS(code
) == BPF_ALU
)
367 PPC_MULW(dst_reg
, dst_reg
, src_reg
);
369 PPC_MULD(dst_reg
, dst_reg
, src_reg
);
370 goto bpf_alu32_trunc
;
371 case BPF_ALU
| BPF_MUL
| BPF_K
: /* (u32) dst *= (u32) imm */
372 case BPF_ALU64
| BPF_MUL
| BPF_K
: /* dst *= imm */
373 if (imm
>= -32768 && imm
< 32768)
374 PPC_MULI(dst_reg
, dst_reg
, IMM_L(imm
));
376 PPC_LI32(b2p
[TMP_REG_1
], imm
);
377 if (BPF_CLASS(code
) == BPF_ALU
)
378 PPC_MULW(dst_reg
, dst_reg
,
381 PPC_MULD(dst_reg
, dst_reg
,
384 goto bpf_alu32_trunc
;
385 case BPF_ALU
| BPF_DIV
| BPF_X
: /* (u32) dst /= (u32) src */
386 case BPF_ALU
| BPF_MOD
| BPF_X
: /* (u32) dst %= (u32) src */
387 if (BPF_OP(code
) == BPF_MOD
) {
388 PPC_DIVWU(b2p
[TMP_REG_1
], dst_reg
, src_reg
);
389 PPC_MULW(b2p
[TMP_REG_1
], src_reg
,
391 PPC_SUB(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]);
393 PPC_DIVWU(dst_reg
, dst_reg
, src_reg
);
394 goto bpf_alu32_trunc
;
395 case BPF_ALU64
| BPF_DIV
| BPF_X
: /* dst /= src */
396 case BPF_ALU64
| BPF_MOD
| BPF_X
: /* dst %= src */
397 if (BPF_OP(code
) == BPF_MOD
) {
398 PPC_DIVDU(b2p
[TMP_REG_1
], dst_reg
, src_reg
);
399 PPC_MULD(b2p
[TMP_REG_1
], src_reg
,
401 PPC_SUB(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]);
403 PPC_DIVDU(dst_reg
, dst_reg
, src_reg
);
405 case BPF_ALU
| BPF_MOD
| BPF_K
: /* (u32) dst %= (u32) imm */
406 case BPF_ALU
| BPF_DIV
| BPF_K
: /* (u32) dst /= (u32) imm */
407 case BPF_ALU64
| BPF_MOD
| BPF_K
: /* dst %= imm */
408 case BPF_ALU64
| BPF_DIV
| BPF_K
: /* dst /= imm */
412 goto bpf_alu32_trunc
;
414 PPC_LI32(b2p
[TMP_REG_1
], imm
);
415 switch (BPF_CLASS(code
)) {
417 if (BPF_OP(code
) == BPF_MOD
) {
418 PPC_DIVWU(b2p
[TMP_REG_2
], dst_reg
,
420 PPC_MULW(b2p
[TMP_REG_1
],
423 PPC_SUB(dst_reg
, dst_reg
,
426 PPC_DIVWU(dst_reg
, dst_reg
,
430 if (BPF_OP(code
) == BPF_MOD
) {
431 PPC_DIVDU(b2p
[TMP_REG_2
], dst_reg
,
433 PPC_MULD(b2p
[TMP_REG_1
],
436 PPC_SUB(dst_reg
, dst_reg
,
439 PPC_DIVDU(dst_reg
, dst_reg
,
443 goto bpf_alu32_trunc
;
444 case BPF_ALU
| BPF_NEG
: /* (u32) dst = -dst */
445 case BPF_ALU64
| BPF_NEG
: /* dst = -dst */
446 PPC_NEG(dst_reg
, dst_reg
);
447 goto bpf_alu32_trunc
;
450 * Logical operations: AND/OR/XOR/[A]LSH/[A]RSH
452 case BPF_ALU
| BPF_AND
| BPF_X
: /* (u32) dst = dst & src */
453 case BPF_ALU64
| BPF_AND
| BPF_X
: /* dst = dst & src */
454 PPC_AND(dst_reg
, dst_reg
, src_reg
);
455 goto bpf_alu32_trunc
;
456 case BPF_ALU
| BPF_AND
| BPF_K
: /* (u32) dst = dst & imm */
457 case BPF_ALU64
| BPF_AND
| BPF_K
: /* dst = dst & imm */
459 PPC_ANDI(dst_reg
, dst_reg
, IMM_L(imm
));
462 PPC_LI32(b2p
[TMP_REG_1
], imm
);
463 PPC_AND(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]);
465 goto bpf_alu32_trunc
;
466 case BPF_ALU
| BPF_OR
| BPF_X
: /* dst = (u32) dst | (u32) src */
467 case BPF_ALU64
| BPF_OR
| BPF_X
: /* dst = dst | src */
468 PPC_OR(dst_reg
, dst_reg
, src_reg
);
469 goto bpf_alu32_trunc
;
470 case BPF_ALU
| BPF_OR
| BPF_K
:/* dst = (u32) dst | (u32) imm */
471 case BPF_ALU64
| BPF_OR
| BPF_K
:/* dst = dst | imm */
472 if (imm
< 0 && BPF_CLASS(code
) == BPF_ALU64
) {
474 PPC_LI32(b2p
[TMP_REG_1
], imm
);
475 PPC_OR(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]);
478 PPC_ORI(dst_reg
, dst_reg
, IMM_L(imm
));
480 PPC_ORIS(dst_reg
, dst_reg
, IMM_H(imm
));
482 goto bpf_alu32_trunc
;
483 case BPF_ALU
| BPF_XOR
| BPF_X
: /* (u32) dst ^= src */
484 case BPF_ALU64
| BPF_XOR
| BPF_X
: /* dst ^= src */
485 PPC_XOR(dst_reg
, dst_reg
, src_reg
);
486 goto bpf_alu32_trunc
;
487 case BPF_ALU
| BPF_XOR
| BPF_K
: /* (u32) dst ^= (u32) imm */
488 case BPF_ALU64
| BPF_XOR
| BPF_K
: /* dst ^= imm */
489 if (imm
< 0 && BPF_CLASS(code
) == BPF_ALU64
) {
491 PPC_LI32(b2p
[TMP_REG_1
], imm
);
492 PPC_XOR(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]);
495 PPC_XORI(dst_reg
, dst_reg
, IMM_L(imm
));
497 PPC_XORIS(dst_reg
, dst_reg
, IMM_H(imm
));
499 goto bpf_alu32_trunc
;
500 case BPF_ALU
| BPF_LSH
| BPF_X
: /* (u32) dst <<= (u32) src */
501 /* slw clears top 32 bits */
502 PPC_SLW(dst_reg
, dst_reg
, src_reg
);
503 /* skip zero extension move, but set address map. */
504 if (insn_is_zext(&insn
[i
+ 1]))
505 addrs
[++i
] = ctx
->idx
* 4;
507 case BPF_ALU64
| BPF_LSH
| BPF_X
: /* dst <<= src; */
508 PPC_SLD(dst_reg
, dst_reg
, src_reg
);
510 case BPF_ALU
| BPF_LSH
| BPF_K
: /* (u32) dst <<== (u32) imm */
511 /* with imm 0, we still need to clear top 32 bits */
512 PPC_SLWI(dst_reg
, dst_reg
, imm
);
513 if (insn_is_zext(&insn
[i
+ 1]))
514 addrs
[++i
] = ctx
->idx
* 4;
516 case BPF_ALU64
| BPF_LSH
| BPF_K
: /* dst <<== imm */
518 PPC_SLDI(dst_reg
, dst_reg
, imm
);
520 case BPF_ALU
| BPF_RSH
| BPF_X
: /* (u32) dst >>= (u32) src */
521 PPC_SRW(dst_reg
, dst_reg
, src_reg
);
522 if (insn_is_zext(&insn
[i
+ 1]))
523 addrs
[++i
] = ctx
->idx
* 4;
525 case BPF_ALU64
| BPF_RSH
| BPF_X
: /* dst >>= src */
526 PPC_SRD(dst_reg
, dst_reg
, src_reg
);
528 case BPF_ALU
| BPF_RSH
| BPF_K
: /* (u32) dst >>= (u32) imm */
529 PPC_SRWI(dst_reg
, dst_reg
, imm
);
530 if (insn_is_zext(&insn
[i
+ 1]))
531 addrs
[++i
] = ctx
->idx
* 4;
533 case BPF_ALU64
| BPF_RSH
| BPF_K
: /* dst >>= imm */
535 PPC_SRDI(dst_reg
, dst_reg
, imm
);
537 case BPF_ALU
| BPF_ARSH
| BPF_X
: /* (s32) dst >>= src */
538 PPC_SRAW(dst_reg
, dst_reg
, src_reg
);
539 goto bpf_alu32_trunc
;
540 case BPF_ALU64
| BPF_ARSH
| BPF_X
: /* (s64) dst >>= src */
541 PPC_SRAD(dst_reg
, dst_reg
, src_reg
);
543 case BPF_ALU
| BPF_ARSH
| BPF_K
: /* (s32) dst >>= imm */
544 PPC_SRAWI(dst_reg
, dst_reg
, imm
);
545 goto bpf_alu32_trunc
;
546 case BPF_ALU64
| BPF_ARSH
| BPF_K
: /* (s64) dst >>= imm */
548 PPC_SRADI(dst_reg
, dst_reg
, imm
);
554 case BPF_ALU
| BPF_MOV
| BPF_X
: /* (u32) dst = src */
555 case BPF_ALU64
| BPF_MOV
| BPF_X
: /* dst = src */
557 /* special mov32 for zext */
558 PPC_RLWINM(dst_reg
, dst_reg
, 0, 0, 31);
561 PPC_MR(dst_reg
, src_reg
);
562 goto bpf_alu32_trunc
;
563 case BPF_ALU
| BPF_MOV
| BPF_K
: /* (u32) dst = imm */
564 case BPF_ALU64
| BPF_MOV
| BPF_K
: /* dst = (s64) imm */
565 PPC_LI32(dst_reg
, imm
);
567 goto bpf_alu32_trunc
;
568 else if (insn_is_zext(&insn
[i
+ 1]))
569 addrs
[++i
] = ctx
->idx
* 4;
573 /* Truncate to 32-bits */
574 if (BPF_CLASS(code
) == BPF_ALU
&& !fp
->aux
->verifier_zext
)
575 PPC_RLWINM(dst_reg
, dst_reg
, 0, 0, 31);
581 case BPF_ALU
| BPF_END
| BPF_FROM_LE
:
582 case BPF_ALU
| BPF_END
| BPF_FROM_BE
:
583 #ifdef __BIG_ENDIAN__
584 if (BPF_SRC(code
) == BPF_FROM_BE
)
586 #else /* !__BIG_ENDIAN__ */
587 if (BPF_SRC(code
) == BPF_FROM_LE
)
592 /* Rotate 8 bits left & mask with 0x0000ff00 */
593 PPC_RLWINM(b2p
[TMP_REG_1
], dst_reg
, 8, 16, 23);
594 /* Rotate 8 bits right & insert LSB to reg */
595 PPC_RLWIMI(b2p
[TMP_REG_1
], dst_reg
, 24, 24, 31);
596 /* Move result back to dst_reg */
597 PPC_MR(dst_reg
, b2p
[TMP_REG_1
]);
601 * Rotate word left by 8 bits:
602 * 2 bytes are already in their final position
603 * -- byte 2 and 4 (of bytes 1, 2, 3 and 4)
605 PPC_RLWINM(b2p
[TMP_REG_1
], dst_reg
, 8, 0, 31);
606 /* Rotate 24 bits and insert byte 1 */
607 PPC_RLWIMI(b2p
[TMP_REG_1
], dst_reg
, 24, 0, 7);
608 /* Rotate 24 bits and insert byte 3 */
609 PPC_RLWIMI(b2p
[TMP_REG_1
], dst_reg
, 24, 16, 23);
610 PPC_MR(dst_reg
, b2p
[TMP_REG_1
]);
614 * Way easier and faster(?) to store the value
615 * into stack and then use ldbrx
617 * ctx->seen will be reliable in pass2, but
618 * the instructions generated will remain the
619 * same across all passes
621 PPC_BPF_STL(dst_reg
, 1, bpf_jit_stack_local(ctx
));
622 PPC_ADDI(b2p
[TMP_REG_1
], 1, bpf_jit_stack_local(ctx
));
623 PPC_LDBRX(dst_reg
, 0, b2p
[TMP_REG_1
]);
631 /* zero-extend 16 bits into 64 bits */
632 PPC_RLDICL(dst_reg
, dst_reg
, 0, 48);
633 if (insn_is_zext(&insn
[i
+ 1]))
634 addrs
[++i
] = ctx
->idx
* 4;
637 if (!fp
->aux
->verifier_zext
)
638 /* zero-extend 32 bits into 64 bits */
639 PPC_RLDICL(dst_reg
, dst_reg
, 0, 32);
650 case BPF_STX
| BPF_MEM
| BPF_B
: /* *(u8 *)(dst + off) = src */
651 case BPF_ST
| BPF_MEM
| BPF_B
: /* *(u8 *)(dst + off) = imm */
652 if (BPF_CLASS(code
) == BPF_ST
) {
653 PPC_LI(b2p
[TMP_REG_1
], imm
);
654 src_reg
= b2p
[TMP_REG_1
];
656 PPC_STB(src_reg
, dst_reg
, off
);
658 case BPF_STX
| BPF_MEM
| BPF_H
: /* (u16 *)(dst + off) = src */
659 case BPF_ST
| BPF_MEM
| BPF_H
: /* (u16 *)(dst + off) = imm */
660 if (BPF_CLASS(code
) == BPF_ST
) {
661 PPC_LI(b2p
[TMP_REG_1
], imm
);
662 src_reg
= b2p
[TMP_REG_1
];
664 PPC_STH(src_reg
, dst_reg
, off
);
666 case BPF_STX
| BPF_MEM
| BPF_W
: /* *(u32 *)(dst + off) = src */
667 case BPF_ST
| BPF_MEM
| BPF_W
: /* *(u32 *)(dst + off) = imm */
668 if (BPF_CLASS(code
) == BPF_ST
) {
669 PPC_LI32(b2p
[TMP_REG_1
], imm
);
670 src_reg
= b2p
[TMP_REG_1
];
672 PPC_STW(src_reg
, dst_reg
, off
);
674 case BPF_STX
| BPF_MEM
| BPF_DW
: /* (u64 *)(dst + off) = src */
675 case BPF_ST
| BPF_MEM
| BPF_DW
: /* *(u64 *)(dst + off) = imm */
676 if (BPF_CLASS(code
) == BPF_ST
) {
677 PPC_LI32(b2p
[TMP_REG_1
], imm
);
678 src_reg
= b2p
[TMP_REG_1
];
680 PPC_BPF_STL(src_reg
, dst_reg
, off
);
684 * BPF_STX XADD (atomic_add)
686 /* *(u32 *)(dst + off) += src */
687 case BPF_STX
| BPF_XADD
| BPF_W
:
688 /* Get EA into TMP_REG_1 */
689 PPC_ADDI(b2p
[TMP_REG_1
], dst_reg
, off
);
690 tmp_idx
= ctx
->idx
* 4;
691 /* load value from memory into TMP_REG_2 */
692 PPC_BPF_LWARX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
], 0);
693 /* add value from src_reg into this */
694 PPC_ADD(b2p
[TMP_REG_2
], b2p
[TMP_REG_2
], src_reg
);
695 /* store result back */
696 PPC_BPF_STWCX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
]);
697 /* we're done if this succeeded */
698 PPC_BCC_SHORT(COND_NE
, tmp_idx
);
700 /* *(u64 *)(dst + off) += src */
701 case BPF_STX
| BPF_XADD
| BPF_DW
:
702 PPC_ADDI(b2p
[TMP_REG_1
], dst_reg
, off
);
703 tmp_idx
= ctx
->idx
* 4;
704 PPC_BPF_LDARX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
], 0);
705 PPC_ADD(b2p
[TMP_REG_2
], b2p
[TMP_REG_2
], src_reg
);
706 PPC_BPF_STDCX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
]);
707 PPC_BCC_SHORT(COND_NE
, tmp_idx
);
713 /* dst = *(u8 *)(ul) (src + off) */
714 case BPF_LDX
| BPF_MEM
| BPF_B
:
715 PPC_LBZ(dst_reg
, src_reg
, off
);
716 if (insn_is_zext(&insn
[i
+ 1]))
717 addrs
[++i
] = ctx
->idx
* 4;
719 /* dst = *(u16 *)(ul) (src + off) */
720 case BPF_LDX
| BPF_MEM
| BPF_H
:
721 PPC_LHZ(dst_reg
, src_reg
, off
);
722 if (insn_is_zext(&insn
[i
+ 1]))
723 addrs
[++i
] = ctx
->idx
* 4;
725 /* dst = *(u32 *)(ul) (src + off) */
726 case BPF_LDX
| BPF_MEM
| BPF_W
:
727 PPC_LWZ(dst_reg
, src_reg
, off
);
728 if (insn_is_zext(&insn
[i
+ 1]))
729 addrs
[++i
] = ctx
->idx
* 4;
731 /* dst = *(u64 *)(ul) (src + off) */
732 case BPF_LDX
| BPF_MEM
| BPF_DW
:
733 PPC_BPF_LL(dst_reg
, src_reg
, off
);
738 * 16 byte instruction that uses two 'struct bpf_insn'
740 case BPF_LD
| BPF_IMM
| BPF_DW
: /* dst = (u64) imm */
741 imm64
= ((u64
)(u32
) insn
[i
].imm
) |
742 (((u64
)(u32
) insn
[i
+1].imm
) << 32);
743 /* Adjust for two bpf instructions */
744 addrs
[++i
] = ctx
->idx
* 4;
745 PPC_LI64(dst_reg
, imm64
);
751 case BPF_JMP
| BPF_EXIT
:
753 * If this isn't the very last instruction, branch to
754 * the epilogue. If we _are_ the last instruction,
755 * we'll just fall through to the epilogue.
759 /* else fall through to the epilogue */
763 * Call kernel helper or bpf function
765 case BPF_JMP
| BPF_CALL
:
766 ctx
->seen
|= SEEN_FUNC
;
768 ret
= bpf_jit_get_func_addr(fp
, &insn
[i
], extra_pass
,
769 &func_addr
, &func_addr_fixed
);
774 bpf_jit_emit_func_call_hlp(image
, ctx
, func_addr
);
776 bpf_jit_emit_func_call_rel(image
, ctx
, func_addr
);
777 /* move return value from r3 to BPF_REG_0 */
778 PPC_MR(b2p
[BPF_REG_0
], 3);
784 case BPF_JMP
| BPF_JA
:
785 PPC_JMP(addrs
[i
+ 1 + off
]);
788 case BPF_JMP
| BPF_JGT
| BPF_K
:
789 case BPF_JMP
| BPF_JGT
| BPF_X
:
790 case BPF_JMP
| BPF_JSGT
| BPF_K
:
791 case BPF_JMP
| BPF_JSGT
| BPF_X
:
792 case BPF_JMP32
| BPF_JGT
| BPF_K
:
793 case BPF_JMP32
| BPF_JGT
| BPF_X
:
794 case BPF_JMP32
| BPF_JSGT
| BPF_K
:
795 case BPF_JMP32
| BPF_JSGT
| BPF_X
:
798 case BPF_JMP
| BPF_JLT
| BPF_K
:
799 case BPF_JMP
| BPF_JLT
| BPF_X
:
800 case BPF_JMP
| BPF_JSLT
| BPF_K
:
801 case BPF_JMP
| BPF_JSLT
| BPF_X
:
802 case BPF_JMP32
| BPF_JLT
| BPF_K
:
803 case BPF_JMP32
| BPF_JLT
| BPF_X
:
804 case BPF_JMP32
| BPF_JSLT
| BPF_K
:
805 case BPF_JMP32
| BPF_JSLT
| BPF_X
:
808 case BPF_JMP
| BPF_JGE
| BPF_K
:
809 case BPF_JMP
| BPF_JGE
| BPF_X
:
810 case BPF_JMP
| BPF_JSGE
| BPF_K
:
811 case BPF_JMP
| BPF_JSGE
| BPF_X
:
812 case BPF_JMP32
| BPF_JGE
| BPF_K
:
813 case BPF_JMP32
| BPF_JGE
| BPF_X
:
814 case BPF_JMP32
| BPF_JSGE
| BPF_K
:
815 case BPF_JMP32
| BPF_JSGE
| BPF_X
:
818 case BPF_JMP
| BPF_JLE
| BPF_K
:
819 case BPF_JMP
| BPF_JLE
| BPF_X
:
820 case BPF_JMP
| BPF_JSLE
| BPF_K
:
821 case BPF_JMP
| BPF_JSLE
| BPF_X
:
822 case BPF_JMP32
| BPF_JLE
| BPF_K
:
823 case BPF_JMP32
| BPF_JLE
| BPF_X
:
824 case BPF_JMP32
| BPF_JSLE
| BPF_K
:
825 case BPF_JMP32
| BPF_JSLE
| BPF_X
:
828 case BPF_JMP
| BPF_JEQ
| BPF_K
:
829 case BPF_JMP
| BPF_JEQ
| BPF_X
:
830 case BPF_JMP32
| BPF_JEQ
| BPF_K
:
831 case BPF_JMP32
| BPF_JEQ
| BPF_X
:
834 case BPF_JMP
| BPF_JNE
| BPF_K
:
835 case BPF_JMP
| BPF_JNE
| BPF_X
:
836 case BPF_JMP32
| BPF_JNE
| BPF_K
:
837 case BPF_JMP32
| BPF_JNE
| BPF_X
:
840 case BPF_JMP
| BPF_JSET
| BPF_K
:
841 case BPF_JMP
| BPF_JSET
| BPF_X
:
842 case BPF_JMP32
| BPF_JSET
| BPF_K
:
843 case BPF_JMP32
| BPF_JSET
| BPF_X
:
849 case BPF_JMP
| BPF_JGT
| BPF_X
:
850 case BPF_JMP
| BPF_JLT
| BPF_X
:
851 case BPF_JMP
| BPF_JGE
| BPF_X
:
852 case BPF_JMP
| BPF_JLE
| BPF_X
:
853 case BPF_JMP
| BPF_JEQ
| BPF_X
:
854 case BPF_JMP
| BPF_JNE
| BPF_X
:
855 case BPF_JMP32
| BPF_JGT
| BPF_X
:
856 case BPF_JMP32
| BPF_JLT
| BPF_X
:
857 case BPF_JMP32
| BPF_JGE
| BPF_X
:
858 case BPF_JMP32
| BPF_JLE
| BPF_X
:
859 case BPF_JMP32
| BPF_JEQ
| BPF_X
:
860 case BPF_JMP32
| BPF_JNE
| BPF_X
:
861 /* unsigned comparison */
862 if (BPF_CLASS(code
) == BPF_JMP32
)
863 PPC_CMPLW(dst_reg
, src_reg
);
865 PPC_CMPLD(dst_reg
, src_reg
);
867 case BPF_JMP
| BPF_JSGT
| BPF_X
:
868 case BPF_JMP
| BPF_JSLT
| BPF_X
:
869 case BPF_JMP
| BPF_JSGE
| BPF_X
:
870 case BPF_JMP
| BPF_JSLE
| BPF_X
:
871 case BPF_JMP32
| BPF_JSGT
| BPF_X
:
872 case BPF_JMP32
| BPF_JSLT
| BPF_X
:
873 case BPF_JMP32
| BPF_JSGE
| BPF_X
:
874 case BPF_JMP32
| BPF_JSLE
| BPF_X
:
875 /* signed comparison */
876 if (BPF_CLASS(code
) == BPF_JMP32
)
877 PPC_CMPW(dst_reg
, src_reg
);
879 PPC_CMPD(dst_reg
, src_reg
);
881 case BPF_JMP
| BPF_JSET
| BPF_X
:
882 case BPF_JMP32
| BPF_JSET
| BPF_X
:
883 if (BPF_CLASS(code
) == BPF_JMP
) {
884 PPC_AND_DOT(b2p
[TMP_REG_1
], dst_reg
,
887 int tmp_reg
= b2p
[TMP_REG_1
];
889 PPC_AND(tmp_reg
, dst_reg
, src_reg
);
890 PPC_RLWINM_DOT(tmp_reg
, tmp_reg
, 0, 0,
894 case BPF_JMP
| BPF_JNE
| BPF_K
:
895 case BPF_JMP
| BPF_JEQ
| BPF_K
:
896 case BPF_JMP
| BPF_JGT
| BPF_K
:
897 case BPF_JMP
| BPF_JLT
| BPF_K
:
898 case BPF_JMP
| BPF_JGE
| BPF_K
:
899 case BPF_JMP
| BPF_JLE
| BPF_K
:
900 case BPF_JMP32
| BPF_JNE
| BPF_K
:
901 case BPF_JMP32
| BPF_JEQ
| BPF_K
:
902 case BPF_JMP32
| BPF_JGT
| BPF_K
:
903 case BPF_JMP32
| BPF_JLT
| BPF_K
:
904 case BPF_JMP32
| BPF_JGE
| BPF_K
:
905 case BPF_JMP32
| BPF_JLE
| BPF_K
:
907 bool is_jmp32
= BPF_CLASS(code
) == BPF_JMP32
;
910 * Need sign-extended load, so only positive
911 * values can be used as imm in cmpldi
913 if (imm
>= 0 && imm
< 32768) {
915 PPC_CMPLWI(dst_reg
, imm
);
917 PPC_CMPLDI(dst_reg
, imm
);
919 /* sign-extending load */
920 PPC_LI32(b2p
[TMP_REG_1
], imm
);
921 /* ... but unsigned comparison */
931 case BPF_JMP
| BPF_JSGT
| BPF_K
:
932 case BPF_JMP
| BPF_JSLT
| BPF_K
:
933 case BPF_JMP
| BPF_JSGE
| BPF_K
:
934 case BPF_JMP
| BPF_JSLE
| BPF_K
:
935 case BPF_JMP32
| BPF_JSGT
| BPF_K
:
936 case BPF_JMP32
| BPF_JSLT
| BPF_K
:
937 case BPF_JMP32
| BPF_JSGE
| BPF_K
:
938 case BPF_JMP32
| BPF_JSLE
| BPF_K
:
940 bool is_jmp32
= BPF_CLASS(code
) == BPF_JMP32
;
943 * signed comparison, so any 16-bit value
944 * can be used in cmpdi
946 if (imm
>= -32768 && imm
< 32768) {
948 PPC_CMPWI(dst_reg
, imm
);
950 PPC_CMPDI(dst_reg
, imm
);
952 PPC_LI32(b2p
[TMP_REG_1
], imm
);
962 case BPF_JMP
| BPF_JSET
| BPF_K
:
963 case BPF_JMP32
| BPF_JSET
| BPF_K
:
964 /* andi does not sign-extend the immediate */
965 if (imm
>= 0 && imm
< 32768)
966 /* PPC_ANDI is _only/always_ dot-form */
967 PPC_ANDI(b2p
[TMP_REG_1
], dst_reg
, imm
);
969 int tmp_reg
= b2p
[TMP_REG_1
];
971 PPC_LI32(tmp_reg
, imm
);
972 if (BPF_CLASS(code
) == BPF_JMP
) {
973 PPC_AND_DOT(tmp_reg
, dst_reg
,
976 PPC_AND(tmp_reg
, dst_reg
,
978 PPC_RLWINM_DOT(tmp_reg
, tmp_reg
,
984 PPC_BCC(true_cond
, addrs
[i
+ 1 + off
]);
990 case BPF_JMP
| BPF_TAIL_CALL
:
991 ctx
->seen
|= SEEN_TAILCALL
;
992 bpf_jit_emit_tail_call(image
, ctx
, addrs
[i
+ 1]);
997 * The filter contains something cruel & unusual.
998 * We don't handle it, but also there shouldn't be
999 * anything missing from our list.
1001 pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n",
1007 /* Set end-of-body-code address for exit. */
1008 addrs
[i
] = ctx
->idx
* 4;
1013 /* Fix the branch target addresses for subprog calls */
1014 static int bpf_jit_fixup_subprog_calls(struct bpf_prog
*fp
, u32
*image
,
1015 struct codegen_context
*ctx
, u32
*addrs
)
1017 const struct bpf_insn
*insn
= fp
->insnsi
;
1018 bool func_addr_fixed
;
1023 for (i
= 0; i
< fp
->len
; i
++) {
1025 * During the extra pass, only the branch target addresses for
1026 * the subprog calls need to be fixed. All other instructions
1027 * can left untouched.
1029 * The JITed image length does not change because we already
1030 * ensure that the JITed instruction sequence for these calls
1031 * are of fixed length by padding them with NOPs.
1033 if (insn
[i
].code
== (BPF_JMP
| BPF_CALL
) &&
1034 insn
[i
].src_reg
== BPF_PSEUDO_CALL
) {
1035 ret
= bpf_jit_get_func_addr(fp
, &insn
[i
], true,
1042 * Save ctx->idx as this would currently point to the
1043 * end of the JITed image and set it to the offset of
1044 * the instruction sequence corresponding to the
1045 * subprog call temporarily.
1048 ctx
->idx
= addrs
[i
] / 4;
1049 bpf_jit_emit_func_call_rel(image
, ctx
, func_addr
);
1052 * Restore ctx->idx here. This is safe as the length
1053 * of the JITed sequence remains unchanged.
1062 struct powerpc64_jit_data
{
1063 struct bpf_binary_header
*header
;
1067 struct codegen_context ctx
;
1070 bool bpf_jit_needs_zext(void)
1075 struct bpf_prog
*bpf_int_jit_compile(struct bpf_prog
*fp
)
1082 struct powerpc64_jit_data
*jit_data
;
1083 struct codegen_context cgctx
;
1086 struct bpf_binary_header
*bpf_hdr
;
1087 struct bpf_prog
*org_fp
= fp
;
1088 struct bpf_prog
*tmp_fp
;
1089 bool bpf_blinded
= false;
1090 bool extra_pass
= false;
1092 if (!fp
->jit_requested
)
1095 tmp_fp
= bpf_jit_blind_constants(org_fp
);
1099 if (tmp_fp
!= org_fp
) {
1104 jit_data
= fp
->aux
->jit_data
;
1106 jit_data
= kzalloc(sizeof(*jit_data
), GFP_KERNEL
);
1111 fp
->aux
->jit_data
= jit_data
;
1115 addrs
= jit_data
->addrs
;
1117 cgctx
= jit_data
->ctx
;
1118 image
= jit_data
->image
;
1119 bpf_hdr
= jit_data
->header
;
1120 proglen
= jit_data
->proglen
;
1121 alloclen
= proglen
+ FUNCTION_DESCR_SIZE
;
1126 addrs
= kcalloc(flen
+ 1, sizeof(*addrs
), GFP_KERNEL
);
1127 if (addrs
== NULL
) {
1132 memset(&cgctx
, 0, sizeof(struct codegen_context
));
1134 /* Make sure that the stack is quadword aligned. */
1135 cgctx
.stack_size
= round_up(fp
->aux
->stack_depth
, 16);
1137 /* Scouting faux-generate pass 0 */
1138 if (bpf_jit_build_body(fp
, 0, &cgctx
, addrs
, false)) {
1139 /* We hit something illegal or unsupported. */
1145 * If we have seen a tail call, we need a second pass.
1146 * This is because bpf_jit_emit_common_epilogue() is called
1147 * from bpf_jit_emit_tail_call() with a not yet stable ctx->seen.
1149 if (cgctx
.seen
& SEEN_TAILCALL
) {
1151 if (bpf_jit_build_body(fp
, 0, &cgctx
, addrs
, false)) {
1158 * Pretend to build prologue, given the features we've seen. This will
1159 * update ctgtx.idx as it pretends to output instructions, then we can
1160 * calculate total size from idx.
1162 bpf_jit_build_prologue(0, &cgctx
);
1163 bpf_jit_build_epilogue(0, &cgctx
);
1165 proglen
= cgctx
.idx
* 4;
1166 alloclen
= proglen
+ FUNCTION_DESCR_SIZE
;
1168 bpf_hdr
= bpf_jit_binary_alloc(alloclen
, &image
, 4,
1169 bpf_jit_fill_ill_insns
);
1176 code_base
= (u32
*)(image
+ FUNCTION_DESCR_SIZE
);
1180 * Do not touch the prologue and epilogue as they will remain
1181 * unchanged. Only fix the branch target address for subprog
1182 * calls in the body.
1184 * This does not change the offsets and lengths of the subprog
1185 * call instruction sequences and hence, the size of the JITed
1188 bpf_jit_fixup_subprog_calls(fp
, code_base
, &cgctx
, addrs
);
1190 /* There is no need to perform the usual passes. */
1191 goto skip_codegen_passes
;
1194 /* Code generation passes 1-2 */
1195 for (pass
= 1; pass
< 3; pass
++) {
1196 /* Now build the prologue, body code & epilogue for real. */
1198 bpf_jit_build_prologue(code_base
, &cgctx
);
1199 bpf_jit_build_body(fp
, code_base
, &cgctx
, addrs
, extra_pass
);
1200 bpf_jit_build_epilogue(code_base
, &cgctx
);
1202 if (bpf_jit_enable
> 1)
1203 pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass
,
1204 proglen
- (cgctx
.idx
* 4), cgctx
.seen
);
1207 skip_codegen_passes
:
1208 if (bpf_jit_enable
> 1)
1210 * Note that we output the base address of the code_base
1211 * rather than image, since opcodes are in code_base.
1213 bpf_jit_dump(flen
, proglen
, pass
, code_base
);
1215 #ifdef PPC64_ELF_ABI_v1
1216 /* Function descriptor nastiness: Address + TOC */
1217 ((u64
*)image
)[0] = (u64
)code_base
;
1218 ((u64
*)image
)[1] = local_paca
->kernel_toc
;
1221 fp
->bpf_func
= (void *)image
;
1223 fp
->jited_len
= alloclen
;
1225 bpf_flush_icache(bpf_hdr
, (u8
*)bpf_hdr
+ (bpf_hdr
->pages
* PAGE_SIZE
));
1226 if (!fp
->is_func
|| extra_pass
) {
1227 bpf_prog_fill_jited_linfo(fp
, addrs
);
1231 fp
->aux
->jit_data
= NULL
;
1233 jit_data
->addrs
= addrs
;
1234 jit_data
->ctx
= cgctx
;
1235 jit_data
->proglen
= proglen
;
1236 jit_data
->image
= image
;
1237 jit_data
->header
= bpf_hdr
;
1242 bpf_jit_prog_release_other(fp
, fp
== org_fp
? tmp_fp
: org_fp
);
1247 /* Overriding bpf_jit_free() as we don't set images read-only. */
1248 void bpf_jit_free(struct bpf_prog
*fp
)
1250 unsigned long addr
= (unsigned long)fp
->bpf_func
& PAGE_MASK
;
1251 struct bpf_binary_header
*bpf_hdr
= (void *)addr
;
1254 bpf_jit_binary_free(bpf_hdr
);
1256 bpf_prog_unlock_free(fp
);