1 // SPDX-License-Identifier: GPL-2.0
3 * IBM System z Huge TLB Page Support for Kernel.
5 * Copyright IBM Corp. 2007,2020
6 * Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com>
9 #define KMSG_COMPONENT "hugetlb"
10 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/sched/mm.h>
16 #include <linux/security.h>
19 * If the bit selected by single-bit bitmask "a" is set within "x", move
20 * it to the position indicated by single-bit bitmask "b".
22 #define move_set_bit(x, a, b) (((x) & (a)) >> ilog2(a) << ilog2(b))
24 static inline unsigned long __pte_to_rste(pte_t pte
)
29 * Convert encoding pte bits pmd / pud bits
30 * lIR.uswrdy.p dy..R...I...wr
31 * empty 010.000000.0 -> 00..0...1...00
32 * prot-none, clean, old 111.000000.1 -> 00..1...1...00
33 * prot-none, clean, young 111.000001.1 -> 01..1...1...00
34 * prot-none, dirty, old 111.000010.1 -> 10..1...1...00
35 * prot-none, dirty, young 111.000011.1 -> 11..1...1...00
36 * read-only, clean, old 111.000100.1 -> 00..1...1...01
37 * read-only, clean, young 101.000101.1 -> 01..1...0...01
38 * read-only, dirty, old 111.000110.1 -> 10..1...1...01
39 * read-only, dirty, young 101.000111.1 -> 11..1...0...01
40 * read-write, clean, old 111.001100.1 -> 00..1...1...11
41 * read-write, clean, young 101.001101.1 -> 01..1...0...11
42 * read-write, dirty, old 110.001110.1 -> 10..0...1...11
43 * read-write, dirty, young 100.001111.1 -> 11..0...0...11
44 * HW-bits: R read-only, I invalid
45 * SW-bits: p present, y young, d dirty, r read, w write, s special,
48 if (pte_present(pte
)) {
49 rste
= pte_val(pte
) & PAGE_MASK
;
50 rste
|= move_set_bit(pte_val(pte
), _PAGE_READ
,
52 rste
|= move_set_bit(pte_val(pte
), _PAGE_WRITE
,
53 _SEGMENT_ENTRY_WRITE
);
54 rste
|= move_set_bit(pte_val(pte
), _PAGE_INVALID
,
55 _SEGMENT_ENTRY_INVALID
);
56 rste
|= move_set_bit(pte_val(pte
), _PAGE_PROTECT
,
57 _SEGMENT_ENTRY_PROTECT
);
58 rste
|= move_set_bit(pte_val(pte
), _PAGE_DIRTY
,
59 _SEGMENT_ENTRY_DIRTY
);
60 rste
|= move_set_bit(pte_val(pte
), _PAGE_YOUNG
,
61 _SEGMENT_ENTRY_YOUNG
);
62 #ifdef CONFIG_MEM_SOFT_DIRTY
63 rste
|= move_set_bit(pte_val(pte
), _PAGE_SOFT_DIRTY
,
64 _SEGMENT_ENTRY_SOFT_DIRTY
);
66 rste
|= move_set_bit(pte_val(pte
), _PAGE_NOEXEC
,
67 _SEGMENT_ENTRY_NOEXEC
);
69 rste
= _SEGMENT_ENTRY_EMPTY
;
73 static inline pte_t
__rste_to_pte(unsigned long rste
)
78 if ((rste
& _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
79 present
= pud_present(__pud(rste
));
81 present
= pmd_present(__pmd(rste
));
84 * Convert encoding pmd / pud bits pte bits
85 * dy..R...I...wr lIR.uswrdy.p
86 * empty 00..0...1...00 -> 010.000000.0
87 * prot-none, clean, old 00..1...1...00 -> 111.000000.1
88 * prot-none, clean, young 01..1...1...00 -> 111.000001.1
89 * prot-none, dirty, old 10..1...1...00 -> 111.000010.1
90 * prot-none, dirty, young 11..1...1...00 -> 111.000011.1
91 * read-only, clean, old 00..1...1...01 -> 111.000100.1
92 * read-only, clean, young 01..1...0...01 -> 101.000101.1
93 * read-only, dirty, old 10..1...1...01 -> 111.000110.1
94 * read-only, dirty, young 11..1...0...01 -> 101.000111.1
95 * read-write, clean, old 00..1...1...11 -> 111.001100.1
96 * read-write, clean, young 01..1...0...11 -> 101.001101.1
97 * read-write, dirty, old 10..0...1...11 -> 110.001110.1
98 * read-write, dirty, young 11..0...0...11 -> 100.001111.1
99 * HW-bits: R read-only, I invalid
100 * SW-bits: p present, y young, d dirty, r read, w write, s special,
104 pte_val(pte
) = rste
& _SEGMENT_ENTRY_ORIGIN_LARGE
;
105 pte_val(pte
) |= _PAGE_LARGE
| _PAGE_PRESENT
;
106 pte_val(pte
) |= move_set_bit(rste
, _SEGMENT_ENTRY_READ
,
108 pte_val(pte
) |= move_set_bit(rste
, _SEGMENT_ENTRY_WRITE
,
110 pte_val(pte
) |= move_set_bit(rste
, _SEGMENT_ENTRY_INVALID
,
112 pte_val(pte
) |= move_set_bit(rste
, _SEGMENT_ENTRY_PROTECT
,
114 pte_val(pte
) |= move_set_bit(rste
, _SEGMENT_ENTRY_DIRTY
,
116 pte_val(pte
) |= move_set_bit(rste
, _SEGMENT_ENTRY_YOUNG
,
118 #ifdef CONFIG_MEM_SOFT_DIRTY
119 pte_val(pte
) |= move_set_bit(rste
, _SEGMENT_ENTRY_SOFT_DIRTY
,
122 pte_val(pte
) |= move_set_bit(rste
, _SEGMENT_ENTRY_NOEXEC
,
125 pte_val(pte
) = _PAGE_INVALID
;
129 static void clear_huge_pte_skeys(struct mm_struct
*mm
, unsigned long rste
)
132 unsigned long size
, paddr
;
134 if (!mm_uses_skeys(mm
) ||
135 rste
& _SEGMENT_ENTRY_INVALID
)
138 if ((rste
& _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
) {
139 page
= pud_page(__pud(rste
));
141 paddr
= rste
& PUD_MASK
;
143 page
= pmd_page(__pmd(rste
));
145 paddr
= rste
& PMD_MASK
;
148 if (!test_and_set_bit(PG_arch_1
, &page
->flags
))
149 __storage_key_init_range(paddr
, paddr
+ size
- 1);
152 void set_huge_pte_at(struct mm_struct
*mm
, unsigned long addr
,
153 pte_t
*ptep
, pte_t pte
)
157 rste
= __pte_to_rste(pte
);
159 rste
&= ~_SEGMENT_ENTRY_NOEXEC
;
161 /* Set correct table type for 2G hugepages */
162 if ((pte_val(*ptep
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
163 rste
|= _REGION_ENTRY_TYPE_R3
| _REGION3_ENTRY_LARGE
;
165 rste
|= _SEGMENT_ENTRY_LARGE
;
166 clear_huge_pte_skeys(mm
, rste
);
167 pte_val(*ptep
) = rste
;
170 pte_t
huge_ptep_get(pte_t
*ptep
)
172 return __rste_to_pte(pte_val(*ptep
));
175 pte_t
huge_ptep_get_and_clear(struct mm_struct
*mm
,
176 unsigned long addr
, pte_t
*ptep
)
178 pte_t pte
= huge_ptep_get(ptep
);
179 pmd_t
*pmdp
= (pmd_t
*) ptep
;
180 pud_t
*pudp
= (pud_t
*) ptep
;
182 if ((pte_val(*ptep
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
183 pudp_xchg_direct(mm
, addr
, pudp
, __pud(_REGION3_ENTRY_EMPTY
));
185 pmdp_xchg_direct(mm
, addr
, pmdp
, __pmd(_SEGMENT_ENTRY_EMPTY
));
189 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
190 unsigned long addr
, unsigned long sz
)
197 pgdp
= pgd_offset(mm
, addr
);
198 p4dp
= p4d_alloc(mm
, pgdp
, addr
);
200 pudp
= pud_alloc(mm
, p4dp
, addr
);
203 return (pte_t
*) pudp
;
204 else if (sz
== PMD_SIZE
)
205 pmdp
= pmd_alloc(mm
, pudp
, addr
);
208 return (pte_t
*) pmdp
;
211 pte_t
*huge_pte_offset(struct mm_struct
*mm
,
212 unsigned long addr
, unsigned long sz
)
219 pgdp
= pgd_offset(mm
, addr
);
220 if (pgd_present(*pgdp
)) {
221 p4dp
= p4d_offset(pgdp
, addr
);
222 if (p4d_present(*p4dp
)) {
223 pudp
= pud_offset(p4dp
, addr
);
224 if (pud_present(*pudp
)) {
225 if (pud_large(*pudp
))
226 return (pte_t
*) pudp
;
227 pmdp
= pmd_offset(pudp
, addr
);
231 return (pte_t
*) pmdp
;
234 int pmd_huge(pmd_t pmd
)
236 return pmd_large(pmd
);
239 int pud_huge(pud_t pud
)
241 return pud_large(pud
);
245 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
246 pud_t
*pud
, int flags
)
248 if (flags
& FOLL_GET
)
251 return pud_page(*pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
254 static __init
int setup_hugepagesz(char *opt
)
259 size
= memparse(opt
, &opt
);
260 if (MACHINE_HAS_EDAT1
&& size
== PMD_SIZE
) {
261 hugetlb_add_hstate(PMD_SHIFT
- PAGE_SHIFT
);
262 } else if (MACHINE_HAS_EDAT2
&& size
== PUD_SIZE
) {
263 hugetlb_add_hstate(PUD_SHIFT
- PAGE_SHIFT
);
266 pr_err("hugepagesz= specifies an unsupported page size %s\n",
272 __setup("hugepagesz=", setup_hugepagesz
);
274 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file
*file
,
275 unsigned long addr
, unsigned long len
,
276 unsigned long pgoff
, unsigned long flags
)
278 struct hstate
*h
= hstate_file(file
);
279 struct vm_unmapped_area_info info
;
283 info
.low_limit
= current
->mm
->mmap_base
;
284 info
.high_limit
= TASK_SIZE
;
285 info
.align_mask
= PAGE_MASK
& ~huge_page_mask(h
);
286 info
.align_offset
= 0;
287 return vm_unmapped_area(&info
);
290 static unsigned long hugetlb_get_unmapped_area_topdown(struct file
*file
,
291 unsigned long addr0
, unsigned long len
,
292 unsigned long pgoff
, unsigned long flags
)
294 struct hstate
*h
= hstate_file(file
);
295 struct vm_unmapped_area_info info
;
298 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
300 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
301 info
.high_limit
= current
->mm
->mmap_base
;
302 info
.align_mask
= PAGE_MASK
& ~huge_page_mask(h
);
303 info
.align_offset
= 0;
304 addr
= vm_unmapped_area(&info
);
307 * A failed mmap() very likely causes application failure,
308 * so fall back to the bottom-up function here. This scenario
309 * can happen with large stack limits and large mmap()
312 if (addr
& ~PAGE_MASK
) {
313 VM_BUG_ON(addr
!= -ENOMEM
);
315 info
.low_limit
= TASK_UNMAPPED_BASE
;
316 info
.high_limit
= TASK_SIZE
;
317 addr
= vm_unmapped_area(&info
);
323 unsigned long hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
324 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
326 struct hstate
*h
= hstate_file(file
);
327 struct mm_struct
*mm
= current
->mm
;
328 struct vm_area_struct
*vma
;
331 if (len
& ~huge_page_mask(h
))
333 if (len
> TASK_SIZE
- mmap_min_addr
)
336 if (flags
& MAP_FIXED
) {
337 if (prepare_hugepage_range(file
, addr
, len
))
339 goto check_asce_limit
;
343 addr
= ALIGN(addr
, huge_page_size(h
));
344 vma
= find_vma(mm
, addr
);
345 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
346 (!vma
|| addr
+ len
<= vm_start_gap(vma
)))
347 goto check_asce_limit
;
350 if (mm
->get_unmapped_area
== arch_get_unmapped_area
)
351 addr
= hugetlb_get_unmapped_area_bottomup(file
, addr
, len
,
354 addr
= hugetlb_get_unmapped_area_topdown(file
, addr
, len
,
356 if (addr
& ~PAGE_MASK
)
360 if (addr
+ len
> current
->mm
->context
.asce_limit
&&
361 addr
+ len
<= TASK_SIZE
) {
362 rc
= crst_table_upgrade(mm
, addr
+ len
);
364 return (unsigned long) rc
;