1 // SPDX-License-Identifier: GPL-2.0
3 * srmmu.c: SRMMU specific routines for memory management.
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
54 enum mbus_module srmmu_modtype
;
55 static unsigned int hwbug_bitmask
;
57 EXPORT_SYMBOL(vac_cache_size
);
60 extern struct resource sparc_iomap
;
62 extern unsigned long last_valid_pfn
;
64 static pgd_t
*srmmu_swapper_pg_dir
;
66 const struct sparc32_cachetlb_ops
*sparc32_cachetlb_ops
;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops
);
70 const struct sparc32_cachetlb_ops
*local_ops
;
72 #define FLUSH_BEGIN(mm)
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
79 int flush_page_for_dma_global
= 1;
83 ctxd_t
*srmmu_ctx_table_phys
;
84 static ctxd_t
*srmmu_context_table
;
86 int viking_mxcc_present
;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock
);
89 static int is_hypersparc
;
91 static int srmmu_cache_pagetables
;
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size
;
95 static unsigned long srmmu_nocache_end
;
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103 void *srmmu_nocache_pool
;
104 static struct bit_map srmmu_nocache_map
;
106 static inline int srmmu_pmd_none(pmd_t pmd
)
107 { return !(pmd_val(pmd
) & 0xFFFFFFF); }
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t
*ctxp
, pgd_t
*pgdp
)
114 pte
= __pte((SRMMU_ET_PTD
| (__nocache_pa(pgdp
) >> 4)));
115 set_pte((pte_t
*)ctxp
, pte
);
119 * Locations of MSI Registers.
121 #define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */
124 * Useful bits in the MSI Registers.
126 #define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */
128 static void msi_set_sync(void)
130 __asm__
__volatile__ ("lda [%0] %1, %%g3\n\t"
131 "andn %%g3, %2, %%g3\n\t"
132 "sta %%g3, [%0] %1\n\t" : :
133 "r" (MSI_MBUS_ARBEN
),
134 "i" (ASI_M_CTL
), "r" (MSI_ASYNC_MODE
) : "g3");
137 void pmd_set(pmd_t
*pmdp
, pte_t
*ptep
)
139 unsigned long ptp
; /* Physical address, shifted right by 4 */
142 ptp
= __nocache_pa(ptep
) >> 4;
143 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
144 set_pte((pte_t
*)&pmdp
->pmdv
[i
], __pte(SRMMU_ET_PTD
| ptp
));
145 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
* sizeof(pte_t
) >> 4);
149 void pmd_populate(struct mm_struct
*mm
, pmd_t
*pmdp
, struct page
*ptep
)
151 unsigned long ptp
; /* Physical address, shifted right by 4 */
154 ptp
= page_to_pfn(ptep
) << (PAGE_SHIFT
-4); /* watch for overflow */
155 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
156 set_pte((pte_t
*)&pmdp
->pmdv
[i
], __pte(SRMMU_ET_PTD
| ptp
));
157 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
* sizeof(pte_t
) >> 4);
161 /* Find an entry in the third-level page table.. */
162 pte_t
*pte_offset_kernel(pmd_t
*dir
, unsigned long address
)
166 pte
= __nocache_va((dir
->pmdv
[0] & SRMMU_PTD_PMASK
) << 4);
167 return (pte_t
*) pte
+
168 ((address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1));
172 * size: bytes to allocate in the nocache area.
173 * align: bytes, number to align at.
174 * Returns the virtual address of the allocated area.
176 static void *__srmmu_get_nocache(int size
, int align
)
181 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
182 printk(KERN_ERR
"Size 0x%x too small for nocache request\n",
184 size
= SRMMU_NOCACHE_BITMAP_SHIFT
;
186 if (size
& (SRMMU_NOCACHE_BITMAP_SHIFT
- 1)) {
187 printk(KERN_ERR
"Size 0x%x unaligned int nocache request\n",
189 size
+= SRMMU_NOCACHE_BITMAP_SHIFT
- 1;
191 BUG_ON(align
> SRMMU_NOCACHE_ALIGN_MAX
);
193 offset
= bit_map_string_get(&srmmu_nocache_map
,
194 size
>> SRMMU_NOCACHE_BITMAP_SHIFT
,
195 align
>> SRMMU_NOCACHE_BITMAP_SHIFT
);
197 printk(KERN_ERR
"srmmu: out of nocache %d: %d/%d\n",
198 size
, (int) srmmu_nocache_size
,
199 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
203 addr
= SRMMU_NOCACHE_VADDR
+ (offset
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
207 void *srmmu_get_nocache(int size
, int align
)
211 tmp
= __srmmu_get_nocache(size
, align
);
214 memset(tmp
, 0, size
);
219 void srmmu_free_nocache(void *addr
, int size
)
224 vaddr
= (unsigned long)addr
;
225 if (vaddr
< SRMMU_NOCACHE_VADDR
) {
226 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
227 vaddr
, (unsigned long)SRMMU_NOCACHE_VADDR
);
230 if (vaddr
+ size
> srmmu_nocache_end
) {
231 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
232 vaddr
, srmmu_nocache_end
);
235 if (!is_power_of_2(size
)) {
236 printk("Size 0x%x is not a power of 2\n", size
);
239 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
240 printk("Size 0x%x is too small\n", size
);
243 if (vaddr
& (size
- 1)) {
244 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr
, size
);
248 offset
= (vaddr
- SRMMU_NOCACHE_VADDR
) >> SRMMU_NOCACHE_BITMAP_SHIFT
;
249 size
= size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
251 bit_map_clear(&srmmu_nocache_map
, offset
, size
);
254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start
,
257 /* Return how much physical memory we have. */
258 static unsigned long __init
probe_memory(void)
260 unsigned long total
= 0;
263 for (i
= 0; sp_banks
[i
].num_bytes
; i
++)
264 total
+= sp_banks
[i
].num_bytes
;
270 * Reserve nocache dynamically proportionally to the amount of
271 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
273 static void __init
srmmu_nocache_calcsize(void)
275 unsigned long sysmemavail
= probe_memory() / 1024;
276 int srmmu_nocache_npages
;
278 srmmu_nocache_npages
=
279 sysmemavail
/ SRMMU_NOCACHE_ALCRATIO
/ 1024 * 256;
281 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
282 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
283 if (srmmu_nocache_npages
< SRMMU_MIN_NOCACHE_PAGES
)
284 srmmu_nocache_npages
= SRMMU_MIN_NOCACHE_PAGES
;
286 /* anything above 1280 blows up */
287 if (srmmu_nocache_npages
> SRMMU_MAX_NOCACHE_PAGES
)
288 srmmu_nocache_npages
= SRMMU_MAX_NOCACHE_PAGES
;
290 srmmu_nocache_size
= srmmu_nocache_npages
* PAGE_SIZE
;
291 srmmu_nocache_end
= SRMMU_NOCACHE_VADDR
+ srmmu_nocache_size
;
294 static void __init
srmmu_nocache_init(void)
296 void *srmmu_nocache_bitmap
;
297 unsigned int bitmap_bits
;
303 unsigned long paddr
, vaddr
;
304 unsigned long pteval
;
306 bitmap_bits
= srmmu_nocache_size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
308 srmmu_nocache_pool
= memblock_alloc(srmmu_nocache_size
,
309 SRMMU_NOCACHE_ALIGN_MAX
);
310 if (!srmmu_nocache_pool
)
311 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
312 __func__
, srmmu_nocache_size
, SRMMU_NOCACHE_ALIGN_MAX
);
313 memset(srmmu_nocache_pool
, 0, srmmu_nocache_size
);
315 srmmu_nocache_bitmap
=
316 memblock_alloc(BITS_TO_LONGS(bitmap_bits
) * sizeof(long),
318 if (!srmmu_nocache_bitmap
)
319 panic("%s: Failed to allocate %zu bytes\n", __func__
,
320 BITS_TO_LONGS(bitmap_bits
) * sizeof(long));
321 bit_map_init(&srmmu_nocache_map
, srmmu_nocache_bitmap
, bitmap_bits
);
323 srmmu_swapper_pg_dir
= __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
324 memset(__nocache_fix(srmmu_swapper_pg_dir
), 0, SRMMU_PGD_TABLE_SIZE
);
325 init_mm
.pgd
= srmmu_swapper_pg_dir
;
327 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR
, srmmu_nocache_end
);
329 paddr
= __pa((unsigned long)srmmu_nocache_pool
);
330 vaddr
= SRMMU_NOCACHE_VADDR
;
332 while (vaddr
< srmmu_nocache_end
) {
333 pgd
= pgd_offset_k(vaddr
);
334 p4d
= p4d_offset(__nocache_fix(pgd
), vaddr
);
335 pud
= pud_offset(__nocache_fix(p4d
), vaddr
);
336 pmd
= pmd_offset(__nocache_fix(pgd
), vaddr
);
337 pte
= pte_offset_kernel(__nocache_fix(pmd
), vaddr
);
339 pteval
= ((paddr
>> 4) | SRMMU_ET_PTE
| SRMMU_PRIV
);
341 if (srmmu_cache_pagetables
)
342 pteval
|= SRMMU_CACHE
;
344 set_pte(__nocache_fix(pte
), __pte(pteval
));
354 pgd_t
*get_pgd_fast(void)
358 pgd
= __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
360 pgd_t
*init
= pgd_offset_k(0);
361 memset(pgd
, 0, USER_PTRS_PER_PGD
* sizeof(pgd_t
));
362 memcpy(pgd
+ USER_PTRS_PER_PGD
, init
+ USER_PTRS_PER_PGD
,
363 (PTRS_PER_PGD
- USER_PTRS_PER_PGD
) * sizeof(pgd_t
));
370 * Hardware needs alignment to 256 only, but we align to whole page size
371 * to reduce fragmentation problems due to the buddy principle.
372 * XXX Provide actual fragmentation statistics in /proc.
374 * Alignments up to the page size are the same for physical and virtual
375 * addresses of the nocache area.
377 pgtable_t
pte_alloc_one(struct mm_struct
*mm
)
382 if ((pte
= (unsigned long)pte_alloc_one_kernel(mm
)) == 0)
384 page
= pfn_to_page(__nocache_pa(pte
) >> PAGE_SHIFT
);
385 if (!pgtable_pte_page_ctor(page
)) {
392 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
396 pgtable_pte_page_dtor(pte
);
397 p
= (unsigned long)page_address(pte
); /* Cached address (for test) */
400 p
= page_to_pfn(pte
) << PAGE_SHIFT
; /* Physical address */
402 /* free non cached virtual address*/
403 srmmu_free_nocache(__nocache_va(p
), PTE_SIZE
);
406 /* context handling - a dynamically sized pool is used */
407 #define NO_CONTEXT -1
410 struct ctx_list
*next
;
411 struct ctx_list
*prev
;
412 unsigned int ctx_number
;
413 struct mm_struct
*ctx_mm
;
416 static struct ctx_list
*ctx_list_pool
;
417 static struct ctx_list ctx_free
;
418 static struct ctx_list ctx_used
;
420 /* At boot time we determine the number of contexts */
421 static int num_contexts
;
423 static inline void remove_from_ctx_list(struct ctx_list
*entry
)
425 entry
->next
->prev
= entry
->prev
;
426 entry
->prev
->next
= entry
->next
;
429 static inline void add_to_ctx_list(struct ctx_list
*head
, struct ctx_list
*entry
)
432 (entry
->prev
= head
->prev
)->next
= entry
;
435 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
436 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
439 static inline void alloc_context(struct mm_struct
*old_mm
, struct mm_struct
*mm
)
441 struct ctx_list
*ctxp
;
443 ctxp
= ctx_free
.next
;
444 if (ctxp
!= &ctx_free
) {
445 remove_from_ctx_list(ctxp
);
446 add_to_used_ctxlist(ctxp
);
447 mm
->context
= ctxp
->ctx_number
;
451 ctxp
= ctx_used
.next
;
452 if (ctxp
->ctx_mm
== old_mm
)
454 if (ctxp
== &ctx_used
)
455 panic("out of mmu contexts");
456 flush_cache_mm(ctxp
->ctx_mm
);
457 flush_tlb_mm(ctxp
->ctx_mm
);
458 remove_from_ctx_list(ctxp
);
459 add_to_used_ctxlist(ctxp
);
460 ctxp
->ctx_mm
->context
= NO_CONTEXT
;
462 mm
->context
= ctxp
->ctx_number
;
465 static inline void free_context(int context
)
467 struct ctx_list
*ctx_old
;
469 ctx_old
= ctx_list_pool
+ context
;
470 remove_from_ctx_list(ctx_old
);
471 add_to_free_ctxlist(ctx_old
);
474 static void __init
sparc_context_init(int numctx
)
479 size
= numctx
* sizeof(struct ctx_list
);
480 ctx_list_pool
= memblock_alloc(size
, SMP_CACHE_BYTES
);
482 panic("%s: Failed to allocate %lu bytes\n", __func__
, size
);
484 for (ctx
= 0; ctx
< numctx
; ctx
++) {
485 struct ctx_list
*clist
;
487 clist
= (ctx_list_pool
+ ctx
);
488 clist
->ctx_number
= ctx
;
489 clist
->ctx_mm
= NULL
;
491 ctx_free
.next
= ctx_free
.prev
= &ctx_free
;
492 ctx_used
.next
= ctx_used
.prev
= &ctx_used
;
493 for (ctx
= 0; ctx
< numctx
; ctx
++)
494 add_to_free_ctxlist(ctx_list_pool
+ ctx
);
497 void switch_mm(struct mm_struct
*old_mm
, struct mm_struct
*mm
,
498 struct task_struct
*tsk
)
502 if (mm
->context
== NO_CONTEXT
) {
503 spin_lock_irqsave(&srmmu_context_spinlock
, flags
);
504 alloc_context(old_mm
, mm
);
505 spin_unlock_irqrestore(&srmmu_context_spinlock
, flags
);
506 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], mm
->pgd
);
509 if (sparc_cpu_model
== sparc_leon
)
513 hyper_flush_whole_icache();
515 srmmu_set_context(mm
->context
);
518 /* Low level IO area allocation on the SRMMU. */
519 static inline void srmmu_mapioaddr(unsigned long physaddr
,
520 unsigned long virt_addr
, int bus_type
)
529 physaddr
&= PAGE_MASK
;
530 pgdp
= pgd_offset_k(virt_addr
);
531 p4dp
= p4d_offset(pgdp
, virt_addr
);
532 pudp
= pud_offset(p4dp
, virt_addr
);
533 pmdp
= pmd_offset(pudp
, virt_addr
);
534 ptep
= pte_offset_kernel(pmdp
, virt_addr
);
535 tmp
= (physaddr
>> 4) | SRMMU_ET_PTE
;
537 /* I need to test whether this is consistent over all
538 * sun4m's. The bus_type represents the upper 4 bits of
539 * 36-bit physical address on the I/O space lines...
541 tmp
|= (bus_type
<< 28);
543 __flush_page_to_ram(virt_addr
);
544 set_pte(ptep
, __pte(tmp
));
547 void srmmu_mapiorange(unsigned int bus
, unsigned long xpa
,
548 unsigned long xva
, unsigned int len
)
552 srmmu_mapioaddr(xpa
, xva
, bus
);
559 static inline void srmmu_unmapioaddr(unsigned long virt_addr
)
568 pgdp
= pgd_offset_k(virt_addr
);
569 p4dp
= p4d_offset(pgdp
, virt_addr
);
570 pudp
= pud_offset(p4dp
, virt_addr
);
571 pmdp
= pmd_offset(pudp
, virt_addr
);
572 ptep
= pte_offset_kernel(pmdp
, virt_addr
);
574 /* No need to flush uncacheable page. */
578 void srmmu_unmapiorange(unsigned long virt_addr
, unsigned int len
)
582 srmmu_unmapioaddr(virt_addr
);
583 virt_addr
+= PAGE_SIZE
;
589 extern void tsunami_flush_cache_all(void);
590 extern void tsunami_flush_cache_mm(struct mm_struct
*mm
);
591 extern void tsunami_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
592 extern void tsunami_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
593 extern void tsunami_flush_page_to_ram(unsigned long page
);
594 extern void tsunami_flush_page_for_dma(unsigned long page
);
595 extern void tsunami_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
596 extern void tsunami_flush_tlb_all(void);
597 extern void tsunami_flush_tlb_mm(struct mm_struct
*mm
);
598 extern void tsunami_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
599 extern void tsunami_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
600 extern void tsunami_setup_blockops(void);
603 extern void swift_flush_cache_all(void);
604 extern void swift_flush_cache_mm(struct mm_struct
*mm
);
605 extern void swift_flush_cache_range(struct vm_area_struct
*vma
,
606 unsigned long start
, unsigned long end
);
607 extern void swift_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
608 extern void swift_flush_page_to_ram(unsigned long page
);
609 extern void swift_flush_page_for_dma(unsigned long page
);
610 extern void swift_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
611 extern void swift_flush_tlb_all(void);
612 extern void swift_flush_tlb_mm(struct mm_struct
*mm
);
613 extern void swift_flush_tlb_range(struct vm_area_struct
*vma
,
614 unsigned long start
, unsigned long end
);
615 extern void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
617 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
618 void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
623 if ((ctx1
= vma
->vm_mm
->context
) != -1) {
624 cctx
= srmmu_get_context();
625 /* Is context # ever different from current context? P3 */
627 printk("flush ctx %02x curr %02x\n", ctx1
, cctx
);
628 srmmu_set_context(ctx1
);
629 swift_flush_page(page
);
630 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
631 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
632 srmmu_set_context(cctx
);
634 /* Rm. prot. bits from virt. c. */
635 /* swift_flush_cache_all(); */
636 /* swift_flush_cache_page(vma, page); */
637 swift_flush_page(page
);
639 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
640 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
641 /* same as above: srmmu_flush_tlb_page() */
648 * The following are all MBUS based SRMMU modules, and therefore could
649 * be found in a multiprocessor configuration. On the whole, these
650 * chips seems to be much more touchy about DVMA and page tables
651 * with respect to cache coherency.
655 extern void viking_flush_cache_all(void);
656 extern void viking_flush_cache_mm(struct mm_struct
*mm
);
657 extern void viking_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
,
659 extern void viking_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
660 extern void viking_flush_page_to_ram(unsigned long page
);
661 extern void viking_flush_page_for_dma(unsigned long page
);
662 extern void viking_flush_sig_insns(struct mm_struct
*mm
, unsigned long addr
);
663 extern void viking_flush_page(unsigned long page
);
664 extern void viking_mxcc_flush_page(unsigned long page
);
665 extern void viking_flush_tlb_all(void);
666 extern void viking_flush_tlb_mm(struct mm_struct
*mm
);
667 extern void viking_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
669 extern void viking_flush_tlb_page(struct vm_area_struct
*vma
,
671 extern void sun4dsmp_flush_tlb_all(void);
672 extern void sun4dsmp_flush_tlb_mm(struct mm_struct
*mm
);
673 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
675 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct
*vma
,
679 extern void hypersparc_flush_cache_all(void);
680 extern void hypersparc_flush_cache_mm(struct mm_struct
*mm
);
681 extern void hypersparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
682 extern void hypersparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
683 extern void hypersparc_flush_page_to_ram(unsigned long page
);
684 extern void hypersparc_flush_page_for_dma(unsigned long page
);
685 extern void hypersparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
686 extern void hypersparc_flush_tlb_all(void);
687 extern void hypersparc_flush_tlb_mm(struct mm_struct
*mm
);
688 extern void hypersparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
689 extern void hypersparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
690 extern void hypersparc_setup_blockops(void);
693 * NOTE: All of this startup code assumes the low 16mb (approx.) of
694 * kernel mappings are done with one single contiguous chunk of
695 * ram. On small ram machines (classics mainly) we only get
696 * around 8mb mapped for us.
699 static void __init
early_pgtable_allocfail(char *type
)
701 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type
);
705 static void __init
srmmu_early_allocate_ptable_skeleton(unsigned long start
,
714 while (start
< end
) {
715 pgdp
= pgd_offset_k(start
);
716 p4dp
= p4d_offset(pgdp
, start
);
717 pudp
= pud_offset(p4dp
, start
);
718 if (pud_none(*(pud_t
*)__nocache_fix(pudp
))) {
719 pmdp
= __srmmu_get_nocache(
720 SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
722 early_pgtable_allocfail("pmd");
723 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
724 pud_set(__nocache_fix(pudp
), pmdp
);
726 pmdp
= pmd_offset(__nocache_fix(pudp
), start
);
727 if (srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
728 ptep
= __srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
730 early_pgtable_allocfail("pte");
731 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
732 pmd_set(__nocache_fix(pmdp
), ptep
);
734 if (start
> (0xffffffffUL
- PMD_SIZE
))
736 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
740 static void __init
srmmu_allocate_ptable_skeleton(unsigned long start
,
749 while (start
< end
) {
750 pgdp
= pgd_offset_k(start
);
751 p4dp
= p4d_offset(pgdp
, start
);
752 pudp
= pud_offset(p4dp
, start
);
753 if (pud_none(*pudp
)) {
754 pmdp
= __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
756 early_pgtable_allocfail("pmd");
757 memset(pmdp
, 0, SRMMU_PMD_TABLE_SIZE
);
758 pud_set((pud_t
*)pgdp
, pmdp
);
760 pmdp
= pmd_offset(pudp
, start
);
761 if (srmmu_pmd_none(*pmdp
)) {
762 ptep
= __srmmu_get_nocache(PTE_SIZE
,
765 early_pgtable_allocfail("pte");
766 memset(ptep
, 0, PTE_SIZE
);
769 if (start
> (0xffffffffUL
- PMD_SIZE
))
771 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
775 /* These flush types are not available on all chips... */
776 static inline unsigned long srmmu_probe(unsigned long vaddr
)
778 unsigned long retval
;
780 if (sparc_cpu_model
!= sparc_leon
) {
783 __asm__
__volatile__("lda [%1] %2, %0\n\t" :
785 "r" (vaddr
| 0x400), "i" (ASI_M_FLUSH_PROBE
));
787 retval
= leon_swprobe(vaddr
, NULL
);
793 * This is much cleaner than poking around physical address space
794 * looking at the prom's page table directly which is what most
795 * other OS's do. Yuck... this is much better.
797 static void __init
srmmu_inherit_prom_mappings(unsigned long start
,
800 unsigned long probed
;
807 int what
; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
809 while (start
<= end
) {
811 break; /* probably wrap around */
812 if (start
== 0xfef00000)
813 start
= KADB_DEBUGGER_BEGVM
;
814 probed
= srmmu_probe(start
);
816 /* continue probing until we find an entry */
821 /* A red snapper, see what it really is. */
823 addr
= start
- PAGE_SIZE
;
825 if (!(start
& ~(SRMMU_REAL_PMD_MASK
))) {
826 if (srmmu_probe(addr
+ SRMMU_REAL_PMD_SIZE
) == probed
)
830 if (!(start
& ~(SRMMU_PGDIR_MASK
))) {
831 if (srmmu_probe(addr
+ SRMMU_PGDIR_SIZE
) == probed
)
835 pgdp
= pgd_offset_k(start
);
836 p4dp
= p4d_offset(pgdp
, start
);
837 pudp
= pud_offset(p4dp
, start
);
839 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(probed
);
840 start
+= SRMMU_PGDIR_SIZE
;
843 if (pud_none(*(pud_t
*)__nocache_fix(pudp
))) {
844 pmdp
= __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
,
845 SRMMU_PMD_TABLE_SIZE
);
847 early_pgtable_allocfail("pmd");
848 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
849 pud_set(__nocache_fix(pudp
), pmdp
);
851 pmdp
= pmd_offset(__nocache_fix(pgdp
), start
);
852 if (srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
853 ptep
= __srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
855 early_pgtable_allocfail("pte");
856 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
857 pmd_set(__nocache_fix(pmdp
), ptep
);
860 /* We bend the rule where all 16 PTPs in a pmd_t point
861 * inside the same PTE page, and we leak a perfectly
862 * good hardware PTE piece. Alternatives seem worse.
864 unsigned int x
; /* Index of HW PMD in soft cluster */
866 x
= (start
>> PMD_SHIFT
) & 15;
867 val
= &pmdp
->pmdv
[x
];
868 *(unsigned long *)__nocache_fix(val
) = probed
;
869 start
+= SRMMU_REAL_PMD_SIZE
;
872 ptep
= pte_offset_kernel(__nocache_fix(pmdp
), start
);
873 *(pte_t
*)__nocache_fix(ptep
) = __pte(probed
);
878 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
880 /* Create a third-level SRMMU 16MB page mapping. */
881 static void __init
do_large_mapping(unsigned long vaddr
, unsigned long phys_base
)
883 pgd_t
*pgdp
= pgd_offset_k(vaddr
);
884 unsigned long big_pte
;
886 big_pte
= KERNEL_PTE(phys_base
>> 4);
887 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(big_pte
);
890 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
891 static unsigned long __init
map_spbank(unsigned long vbase
, int sp_entry
)
893 unsigned long pstart
= (sp_banks
[sp_entry
].base_addr
& SRMMU_PGDIR_MASK
);
894 unsigned long vstart
= (vbase
& SRMMU_PGDIR_MASK
);
895 unsigned long vend
= SRMMU_PGDIR_ALIGN(vbase
+ sp_banks
[sp_entry
].num_bytes
);
896 /* Map "low" memory only */
897 const unsigned long min_vaddr
= PAGE_OFFSET
;
898 const unsigned long max_vaddr
= PAGE_OFFSET
+ SRMMU_MAXMEM
;
900 if (vstart
< min_vaddr
|| vstart
>= max_vaddr
)
903 if (vend
> max_vaddr
|| vend
< min_vaddr
)
906 while (vstart
< vend
) {
907 do_large_mapping(vstart
, pstart
);
908 vstart
+= SRMMU_PGDIR_SIZE
; pstart
+= SRMMU_PGDIR_SIZE
;
913 static void __init
map_kernel(void)
918 do_large_mapping(PAGE_OFFSET
, phys_base
);
921 for (i
= 0; sp_banks
[i
].num_bytes
!= 0; i
++) {
922 map_spbank((unsigned long)__va(sp_banks
[i
].base_addr
), i
);
926 void (*poke_srmmu
)(void) = NULL
;
928 void __init
srmmu_paging_init(void)
938 unsigned long pages_avail
;
940 init_mm
.context
= (unsigned long) NO_CONTEXT
;
941 sparc_iomap
.start
= SUN4M_IOBASE_VADDR
; /* 16MB of IOSPACE on all sun4m's. */
943 if (sparc_cpu_model
== sun4d
)
944 num_contexts
= 65536; /* We know it is Viking */
946 /* Find the number of contexts on the srmmu. */
947 cpunode
= prom_getchild(prom_root_node
);
949 while (cpunode
!= 0) {
950 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
951 if (!strcmp(node_str
, "cpu")) {
952 num_contexts
= prom_getintdefault(cpunode
, "mmu-nctx", 0x8);
955 cpunode
= prom_getsibling(cpunode
);
960 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
965 last_valid_pfn
= bootmem_init(&pages_avail
);
967 srmmu_nocache_calcsize();
968 srmmu_nocache_init();
969 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM
- PAGE_SIZE
));
972 /* ctx table has to be physically aligned to its size */
973 srmmu_context_table
= __srmmu_get_nocache(num_contexts
* sizeof(ctxd_t
), num_contexts
* sizeof(ctxd_t
));
974 srmmu_ctx_table_phys
= (ctxd_t
*)__nocache_pa(srmmu_context_table
);
976 for (i
= 0; i
< num_contexts
; i
++)
977 srmmu_ctxd_set((ctxd_t
*)__nocache_fix(&srmmu_context_table
[i
]), srmmu_swapper_pg_dir
);
980 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys
);
982 /* Stop from hanging here... */
983 local_ops
->tlb_all();
989 srmmu_allocate_ptable_skeleton(sparc_iomap
.start
, IOBASE_END
);
990 srmmu_allocate_ptable_skeleton(DVMA_VADDR
, DVMA_END
);
992 srmmu_allocate_ptable_skeleton(
993 __fix_to_virt(__end_of_fixed_addresses
- 1), FIXADDR_TOP
);
994 srmmu_allocate_ptable_skeleton(PKMAP_BASE
, PKMAP_END
);
996 pgd
= pgd_offset_k(PKMAP_BASE
);
997 p4d
= p4d_offset(pgd
, PKMAP_BASE
);
998 pud
= pud_offset(p4d
, PKMAP_BASE
);
999 pmd
= pmd_offset(pud
, PKMAP_BASE
);
1000 pte
= pte_offset_kernel(pmd
, PKMAP_BASE
);
1001 pkmap_page_table
= pte
;
1006 sparc_context_init(num_contexts
);
1011 unsigned long zones_size
[MAX_NR_ZONES
];
1012 unsigned long zholes_size
[MAX_NR_ZONES
];
1013 unsigned long npages
;
1016 for (znum
= 0; znum
< MAX_NR_ZONES
; znum
++)
1017 zones_size
[znum
] = zholes_size
[znum
] = 0;
1019 npages
= max_low_pfn
- pfn_base
;
1021 zones_size
[ZONE_DMA
] = npages
;
1022 zholes_size
[ZONE_DMA
] = npages
- pages_avail
;
1024 npages
= highend_pfn
- max_low_pfn
;
1025 zones_size
[ZONE_HIGHMEM
] = npages
;
1026 zholes_size
[ZONE_HIGHMEM
] = npages
- calc_highpages();
1028 free_area_init_node(0, zones_size
, pfn_base
, zholes_size
);
1032 void mmu_info(struct seq_file
*m
)
1037 "nocache total\t: %ld\n"
1038 "nocache used\t: %d\n",
1042 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
1045 int init_new_context(struct task_struct
*tsk
, struct mm_struct
*mm
)
1047 mm
->context
= NO_CONTEXT
;
1051 void destroy_context(struct mm_struct
*mm
)
1053 unsigned long flags
;
1055 if (mm
->context
!= NO_CONTEXT
) {
1057 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], srmmu_swapper_pg_dir
);
1059 spin_lock_irqsave(&srmmu_context_spinlock
, flags
);
1060 free_context(mm
->context
);
1061 spin_unlock_irqrestore(&srmmu_context_spinlock
, flags
);
1062 mm
->context
= NO_CONTEXT
;
1066 /* Init various srmmu chip types. */
1067 static void __init
srmmu_is_bad(void)
1069 prom_printf("Could not determine SRMMU chip type.\n");
1073 static void __init
init_vac_layout(void)
1080 unsigned long max_size
= 0;
1081 unsigned long min_line_size
= 0x10000000;
1084 nd
= prom_getchild(prom_root_node
);
1085 while ((nd
= prom_getsibling(nd
)) != 0) {
1086 prom_getstring(nd
, "device_type", node_str
, sizeof(node_str
));
1087 if (!strcmp(node_str
, "cpu")) {
1088 vac_line_size
= prom_getint(nd
, "cache-line-size");
1089 if (vac_line_size
== -1) {
1090 prom_printf("can't determine cache-line-size, halting.\n");
1093 cache_lines
= prom_getint(nd
, "cache-nlines");
1094 if (cache_lines
== -1) {
1095 prom_printf("can't determine cache-nlines, halting.\n");
1099 vac_cache_size
= cache_lines
* vac_line_size
;
1101 if (vac_cache_size
> max_size
)
1102 max_size
= vac_cache_size
;
1103 if (vac_line_size
< min_line_size
)
1104 min_line_size
= vac_line_size
;
1105 //FIXME: cpus not contiguous!!
1107 if (cpu
>= nr_cpu_ids
|| !cpu_online(cpu
))
1115 prom_printf("No CPU nodes found, halting.\n");
1119 vac_cache_size
= max_size
;
1120 vac_line_size
= min_line_size
;
1122 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1123 (int)vac_cache_size
, (int)vac_line_size
);
1126 static void poke_hypersparc(void)
1128 volatile unsigned long clear
;
1129 unsigned long mreg
= srmmu_get_mmureg();
1131 hyper_flush_unconditional_combined();
1133 mreg
&= ~(HYPERSPARC_CWENABLE
);
1134 mreg
|= (HYPERSPARC_CENABLE
| HYPERSPARC_WBENABLE
);
1135 mreg
|= (HYPERSPARC_CMODE
);
1137 srmmu_set_mmureg(mreg
);
1139 #if 0 /* XXX I think this is bad news... -DaveM */
1140 hyper_clear_all_tags();
1143 put_ross_icr(HYPERSPARC_ICCR_FTD
| HYPERSPARC_ICCR_ICE
);
1144 hyper_flush_whole_icache();
1145 clear
= srmmu_get_faddr();
1146 clear
= srmmu_get_fstatus();
1149 static const struct sparc32_cachetlb_ops hypersparc_ops
= {
1150 .cache_all
= hypersparc_flush_cache_all
,
1151 .cache_mm
= hypersparc_flush_cache_mm
,
1152 .cache_page
= hypersparc_flush_cache_page
,
1153 .cache_range
= hypersparc_flush_cache_range
,
1154 .tlb_all
= hypersparc_flush_tlb_all
,
1155 .tlb_mm
= hypersparc_flush_tlb_mm
,
1156 .tlb_page
= hypersparc_flush_tlb_page
,
1157 .tlb_range
= hypersparc_flush_tlb_range
,
1158 .page_to_ram
= hypersparc_flush_page_to_ram
,
1159 .sig_insns
= hypersparc_flush_sig_insns
,
1160 .page_for_dma
= hypersparc_flush_page_for_dma
,
1163 static void __init
init_hypersparc(void)
1165 srmmu_name
= "ROSS HyperSparc";
1166 srmmu_modtype
= HyperSparc
;
1171 sparc32_cachetlb_ops
= &hypersparc_ops
;
1173 poke_srmmu
= poke_hypersparc
;
1175 hypersparc_setup_blockops();
1178 static void poke_swift(void)
1182 /* Clear any crap from the cache or else... */
1183 swift_flush_cache_all();
1185 /* Enable I & D caches */
1186 mreg
= srmmu_get_mmureg();
1187 mreg
|= (SWIFT_IE
| SWIFT_DE
);
1189 * The Swift branch folding logic is completely broken. At
1190 * trap time, if things are just right, if can mistakenly
1191 * think that a trap is coming from kernel mode when in fact
1192 * it is coming from user mode (it mis-executes the branch in
1193 * the trap code). So you see things like crashme completely
1194 * hosing your machine which is completely unacceptable. Turn
1195 * this shit off... nice job Fujitsu.
1197 mreg
&= ~(SWIFT_BF
);
1198 srmmu_set_mmureg(mreg
);
1201 static const struct sparc32_cachetlb_ops swift_ops
= {
1202 .cache_all
= swift_flush_cache_all
,
1203 .cache_mm
= swift_flush_cache_mm
,
1204 .cache_page
= swift_flush_cache_page
,
1205 .cache_range
= swift_flush_cache_range
,
1206 .tlb_all
= swift_flush_tlb_all
,
1207 .tlb_mm
= swift_flush_tlb_mm
,
1208 .tlb_page
= swift_flush_tlb_page
,
1209 .tlb_range
= swift_flush_tlb_range
,
1210 .page_to_ram
= swift_flush_page_to_ram
,
1211 .sig_insns
= swift_flush_sig_insns
,
1212 .page_for_dma
= swift_flush_page_for_dma
,
1215 #define SWIFT_MASKID_ADDR 0x10003018
1216 static void __init
init_swift(void)
1218 unsigned long swift_rev
;
1220 __asm__
__volatile__("lda [%1] %2, %0\n\t"
1221 "srl %0, 0x18, %0\n\t" :
1223 "r" (SWIFT_MASKID_ADDR
), "i" (ASI_M_BYPASS
));
1224 srmmu_name
= "Fujitsu Swift";
1225 switch (swift_rev
) {
1230 srmmu_modtype
= Swift_lots_o_bugs
;
1231 hwbug_bitmask
|= (HWBUG_KERN_ACCBROKEN
| HWBUG_KERN_CBITBROKEN
);
1233 * Gee george, I wonder why Sun is so hush hush about
1234 * this hardware bug... really braindamage stuff going
1235 * on here. However I think we can find a way to avoid
1236 * all of the workaround overhead under Linux. Basically,
1237 * any page fault can cause kernel pages to become user
1238 * accessible (the mmu gets confused and clears some of
1239 * the ACC bits in kernel ptes). Aha, sounds pretty
1240 * horrible eh? But wait, after extensive testing it appears
1241 * that if you use pgd_t level large kernel pte's (like the
1242 * 4MB pages on the Pentium) the bug does not get tripped
1243 * at all. This avoids almost all of the major overhead.
1244 * Welcome to a world where your vendor tells you to,
1245 * "apply this kernel patch" instead of "sorry for the
1246 * broken hardware, send it back and we'll give you
1247 * properly functioning parts"
1252 srmmu_modtype
= Swift_bad_c
;
1253 hwbug_bitmask
|= HWBUG_KERN_CBITBROKEN
;
1255 * You see Sun allude to this hardware bug but never
1256 * admit things directly, they'll say things like,
1257 * "the Swift chip cache problems" or similar.
1261 srmmu_modtype
= Swift_ok
;
1265 sparc32_cachetlb_ops
= &swift_ops
;
1266 flush_page_for_dma_global
= 0;
1269 * Are you now convinced that the Swift is one of the
1270 * biggest VLSI abortions of all time? Bravo Fujitsu!
1271 * Fujitsu, the !#?!%$'d up processor people. I bet if
1272 * you examined the microcode of the Swift you'd find
1273 * XXX's all over the place.
1275 poke_srmmu
= poke_swift
;
1278 static void turbosparc_flush_cache_all(void)
1280 flush_user_windows();
1281 turbosparc_idflash_clear();
1284 static void turbosparc_flush_cache_mm(struct mm_struct
*mm
)
1287 flush_user_windows();
1288 turbosparc_idflash_clear();
1292 static void turbosparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1294 FLUSH_BEGIN(vma
->vm_mm
)
1295 flush_user_windows();
1296 turbosparc_idflash_clear();
1300 static void turbosparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1302 FLUSH_BEGIN(vma
->vm_mm
)
1303 flush_user_windows();
1304 if (vma
->vm_flags
& VM_EXEC
)
1305 turbosparc_flush_icache();
1306 turbosparc_flush_dcache();
1310 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1311 static void turbosparc_flush_page_to_ram(unsigned long page
)
1313 #ifdef TURBOSPARC_WRITEBACK
1314 volatile unsigned long clear
;
1316 if (srmmu_probe(page
))
1317 turbosparc_flush_page_cache(page
);
1318 clear
= srmmu_get_fstatus();
1322 static void turbosparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1326 static void turbosparc_flush_page_for_dma(unsigned long page
)
1328 turbosparc_flush_dcache();
1331 static void turbosparc_flush_tlb_all(void)
1333 srmmu_flush_whole_tlb();
1336 static void turbosparc_flush_tlb_mm(struct mm_struct
*mm
)
1339 srmmu_flush_whole_tlb();
1343 static void turbosparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1345 FLUSH_BEGIN(vma
->vm_mm
)
1346 srmmu_flush_whole_tlb();
1350 static void turbosparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1352 FLUSH_BEGIN(vma
->vm_mm
)
1353 srmmu_flush_whole_tlb();
1358 static void poke_turbosparc(void)
1360 unsigned long mreg
= srmmu_get_mmureg();
1361 unsigned long ccreg
;
1363 /* Clear any crap from the cache or else... */
1364 turbosparc_flush_cache_all();
1365 /* Temporarily disable I & D caches */
1366 mreg
&= ~(TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
);
1367 mreg
&= ~(TURBOSPARC_PCENABLE
); /* Don't check parity */
1368 srmmu_set_mmureg(mreg
);
1370 ccreg
= turbosparc_get_ccreg();
1372 #ifdef TURBOSPARC_WRITEBACK
1373 ccreg
|= (TURBOSPARC_SNENABLE
); /* Do DVMA snooping in Dcache */
1374 ccreg
&= ~(TURBOSPARC_uS2
| TURBOSPARC_WTENABLE
);
1375 /* Write-back D-cache, emulate VLSI
1376 * abortion number three, not number one */
1378 /* For now let's play safe, optimize later */
1379 ccreg
|= (TURBOSPARC_SNENABLE
| TURBOSPARC_WTENABLE
);
1380 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1381 ccreg
&= ~(TURBOSPARC_uS2
);
1382 /* Emulate VLSI abortion number three, not number one */
1385 switch (ccreg
& 7) {
1386 case 0: /* No SE cache */
1387 case 7: /* Test mode */
1390 ccreg
|= (TURBOSPARC_SCENABLE
);
1392 turbosparc_set_ccreg(ccreg
);
1394 mreg
|= (TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
); /* I & D caches on */
1395 mreg
|= (TURBOSPARC_ICSNOOP
); /* Icache snooping on */
1396 srmmu_set_mmureg(mreg
);
1399 static const struct sparc32_cachetlb_ops turbosparc_ops
= {
1400 .cache_all
= turbosparc_flush_cache_all
,
1401 .cache_mm
= turbosparc_flush_cache_mm
,
1402 .cache_page
= turbosparc_flush_cache_page
,
1403 .cache_range
= turbosparc_flush_cache_range
,
1404 .tlb_all
= turbosparc_flush_tlb_all
,
1405 .tlb_mm
= turbosparc_flush_tlb_mm
,
1406 .tlb_page
= turbosparc_flush_tlb_page
,
1407 .tlb_range
= turbosparc_flush_tlb_range
,
1408 .page_to_ram
= turbosparc_flush_page_to_ram
,
1409 .sig_insns
= turbosparc_flush_sig_insns
,
1410 .page_for_dma
= turbosparc_flush_page_for_dma
,
1413 static void __init
init_turbosparc(void)
1415 srmmu_name
= "Fujitsu TurboSparc";
1416 srmmu_modtype
= TurboSparc
;
1417 sparc32_cachetlb_ops
= &turbosparc_ops
;
1418 poke_srmmu
= poke_turbosparc
;
1421 static void poke_tsunami(void)
1423 unsigned long mreg
= srmmu_get_mmureg();
1425 tsunami_flush_icache();
1426 tsunami_flush_dcache();
1427 mreg
&= ~TSUNAMI_ITD
;
1428 mreg
|= (TSUNAMI_IENAB
| TSUNAMI_DENAB
);
1429 srmmu_set_mmureg(mreg
);
1432 static const struct sparc32_cachetlb_ops tsunami_ops
= {
1433 .cache_all
= tsunami_flush_cache_all
,
1434 .cache_mm
= tsunami_flush_cache_mm
,
1435 .cache_page
= tsunami_flush_cache_page
,
1436 .cache_range
= tsunami_flush_cache_range
,
1437 .tlb_all
= tsunami_flush_tlb_all
,
1438 .tlb_mm
= tsunami_flush_tlb_mm
,
1439 .tlb_page
= tsunami_flush_tlb_page
,
1440 .tlb_range
= tsunami_flush_tlb_range
,
1441 .page_to_ram
= tsunami_flush_page_to_ram
,
1442 .sig_insns
= tsunami_flush_sig_insns
,
1443 .page_for_dma
= tsunami_flush_page_for_dma
,
1446 static void __init
init_tsunami(void)
1449 * Tsunami's pretty sane, Sun and TI actually got it
1450 * somewhat right this time. Fujitsu should have
1451 * taken some lessons from them.
1454 srmmu_name
= "TI Tsunami";
1455 srmmu_modtype
= Tsunami
;
1456 sparc32_cachetlb_ops
= &tsunami_ops
;
1457 poke_srmmu
= poke_tsunami
;
1459 tsunami_setup_blockops();
1462 static void poke_viking(void)
1464 unsigned long mreg
= srmmu_get_mmureg();
1465 static int smp_catch
;
1467 if (viking_mxcc_present
) {
1468 unsigned long mxcc_control
= mxcc_get_creg();
1470 mxcc_control
|= (MXCC_CTL_ECE
| MXCC_CTL_PRE
| MXCC_CTL_MCE
);
1471 mxcc_control
&= ~(MXCC_CTL_RRC
);
1472 mxcc_set_creg(mxcc_control
);
1475 * We don't need memory parity checks.
1476 * XXX This is a mess, have to dig out later. ecd.
1477 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1480 /* We do cache ptables on MXCC. */
1481 mreg
|= VIKING_TCENABLE
;
1483 unsigned long bpreg
;
1485 mreg
&= ~(VIKING_TCENABLE
);
1487 /* Must disable mixed-cmd mode here for other cpu's. */
1488 bpreg
= viking_get_bpreg();
1489 bpreg
&= ~(VIKING_ACTION_MIX
);
1490 viking_set_bpreg(bpreg
);
1492 /* Just in case PROM does something funny. */
1497 mreg
|= VIKING_SPENABLE
;
1498 mreg
|= (VIKING_ICENABLE
| VIKING_DCENABLE
);
1499 mreg
|= VIKING_SBENABLE
;
1500 mreg
&= ~(VIKING_ACENABLE
);
1501 srmmu_set_mmureg(mreg
);
1504 static struct sparc32_cachetlb_ops viking_ops __ro_after_init
= {
1505 .cache_all
= viking_flush_cache_all
,
1506 .cache_mm
= viking_flush_cache_mm
,
1507 .cache_page
= viking_flush_cache_page
,
1508 .cache_range
= viking_flush_cache_range
,
1509 .tlb_all
= viking_flush_tlb_all
,
1510 .tlb_mm
= viking_flush_tlb_mm
,
1511 .tlb_page
= viking_flush_tlb_page
,
1512 .tlb_range
= viking_flush_tlb_range
,
1513 .page_to_ram
= viking_flush_page_to_ram
,
1514 .sig_insns
= viking_flush_sig_insns
,
1515 .page_for_dma
= viking_flush_page_for_dma
,
1519 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1520 * perform the local TLB flush and all the other cpus will see it.
1521 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1522 * that requires that we add some synchronization to these flushes.
1524 * The bug is that the fifo which keeps track of all the pending TLB
1525 * broadcasts in the system is an entry or two too small, so if we
1526 * have too many going at once we'll overflow that fifo and lose a TLB
1527 * flush resulting in corruption.
1529 * Our workaround is to take a global spinlock around the TLB flushes,
1530 * which guarentees we won't ever have too many pending. It's a big
1531 * hammer, but a semaphore like system to make sure we only have N TLB
1532 * flushes going at once will require SMP locking anyways so there's
1533 * no real value in trying any harder than this.
1535 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init
= {
1536 .cache_all
= viking_flush_cache_all
,
1537 .cache_mm
= viking_flush_cache_mm
,
1538 .cache_page
= viking_flush_cache_page
,
1539 .cache_range
= viking_flush_cache_range
,
1540 .tlb_all
= sun4dsmp_flush_tlb_all
,
1541 .tlb_mm
= sun4dsmp_flush_tlb_mm
,
1542 .tlb_page
= sun4dsmp_flush_tlb_page
,
1543 .tlb_range
= sun4dsmp_flush_tlb_range
,
1544 .page_to_ram
= viking_flush_page_to_ram
,
1545 .sig_insns
= viking_flush_sig_insns
,
1546 .page_for_dma
= viking_flush_page_for_dma
,
1550 static void __init
init_viking(void)
1552 unsigned long mreg
= srmmu_get_mmureg();
1554 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1555 if (mreg
& VIKING_MMODE
) {
1556 srmmu_name
= "TI Viking";
1557 viking_mxcc_present
= 0;
1561 * We need this to make sure old viking takes no hits
1562 * on it's cache for dma snoops to workaround the
1563 * "load from non-cacheable memory" interrupt bug.
1564 * This is only necessary because of the new way in
1565 * which we use the IOMMU.
1567 viking_ops
.page_for_dma
= viking_flush_page
;
1569 viking_sun4d_smp_ops
.page_for_dma
= viking_flush_page
;
1571 flush_page_for_dma_global
= 0;
1573 srmmu_name
= "TI Viking/MXCC";
1574 viking_mxcc_present
= 1;
1575 srmmu_cache_pagetables
= 1;
1578 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1581 if (sparc_cpu_model
== sun4d
)
1582 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1583 &viking_sun4d_smp_ops
;
1586 poke_srmmu
= poke_viking
;
1589 /* Probe for the srmmu chip version. */
1590 static void __init
get_srmmu_type(void)
1592 unsigned long mreg
, psr
;
1593 unsigned long mod_typ
, mod_rev
, psr_typ
, psr_vers
;
1595 srmmu_modtype
= SRMMU_INVAL_MOD
;
1598 mreg
= srmmu_get_mmureg(); psr
= get_psr();
1599 mod_typ
= (mreg
& 0xf0000000) >> 28;
1600 mod_rev
= (mreg
& 0x0f000000) >> 24;
1601 psr_typ
= (psr
>> 28) & 0xf;
1602 psr_vers
= (psr
>> 24) & 0xf;
1604 /* First, check for sparc-leon. */
1605 if (sparc_cpu_model
== sparc_leon
) {
1610 /* Second, check for HyperSparc or Cypress. */
1614 /* UP or MP Hypersparc */
1626 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1633 /* Now Fujitsu TurboSparc. It might happen that it is
1634 * in Swift emulation mode, so we will check later...
1636 if (psr_typ
== 0 && psr_vers
== 5) {
1641 /* Next check for Fujitsu Swift. */
1642 if (psr_typ
== 0 && psr_vers
== 4) {
1646 /* Look if it is not a TurboSparc emulating Swift... */
1647 cpunode
= prom_getchild(prom_root_node
);
1648 while ((cpunode
= prom_getsibling(cpunode
)) != 0) {
1649 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
1650 if (!strcmp(node_str
, "cpu")) {
1651 if (!prom_getintdefault(cpunode
, "psr-implementation", 1) &&
1652 prom_getintdefault(cpunode
, "psr-version", 1) == 5) {
1664 /* Now the Viking family of srmmu. */
1667 ((psr_vers
== 1) && (mod_typ
== 0) && (mod_rev
== 0)))) {
1672 /* Finally the Tsunami. */
1673 if (psr_typ
== 4 && psr_vers
== 1 && (mod_typ
|| mod_rev
)) {
1683 /* Local cross-calls. */
1684 static void smp_flush_page_for_dma(unsigned long page
)
1686 xc1((smpfunc_t
) local_ops
->page_for_dma
, page
);
1687 local_ops
->page_for_dma(page
);
1690 static void smp_flush_cache_all(void)
1692 xc0((smpfunc_t
) local_ops
->cache_all
);
1693 local_ops
->cache_all();
1696 static void smp_flush_tlb_all(void)
1698 xc0((smpfunc_t
) local_ops
->tlb_all
);
1699 local_ops
->tlb_all();
1702 static void smp_flush_cache_mm(struct mm_struct
*mm
)
1704 if (mm
->context
!= NO_CONTEXT
) {
1706 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1707 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1708 if (!cpumask_empty(&cpu_mask
))
1709 xc1((smpfunc_t
) local_ops
->cache_mm
, (unsigned long) mm
);
1710 local_ops
->cache_mm(mm
);
1714 static void smp_flush_tlb_mm(struct mm_struct
*mm
)
1716 if (mm
->context
!= NO_CONTEXT
) {
1718 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1719 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1720 if (!cpumask_empty(&cpu_mask
)) {
1721 xc1((smpfunc_t
) local_ops
->tlb_mm
, (unsigned long) mm
);
1722 if (atomic_read(&mm
->mm_users
) == 1 && current
->active_mm
== mm
)
1723 cpumask_copy(mm_cpumask(mm
),
1724 cpumask_of(smp_processor_id()));
1726 local_ops
->tlb_mm(mm
);
1730 static void smp_flush_cache_range(struct vm_area_struct
*vma
,
1731 unsigned long start
,
1734 struct mm_struct
*mm
= vma
->vm_mm
;
1736 if (mm
->context
!= NO_CONTEXT
) {
1738 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1739 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1740 if (!cpumask_empty(&cpu_mask
))
1741 xc3((smpfunc_t
) local_ops
->cache_range
,
1742 (unsigned long) vma
, start
, end
);
1743 local_ops
->cache_range(vma
, start
, end
);
1747 static void smp_flush_tlb_range(struct vm_area_struct
*vma
,
1748 unsigned long start
,
1751 struct mm_struct
*mm
= vma
->vm_mm
;
1753 if (mm
->context
!= NO_CONTEXT
) {
1755 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1756 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1757 if (!cpumask_empty(&cpu_mask
))
1758 xc3((smpfunc_t
) local_ops
->tlb_range
,
1759 (unsigned long) vma
, start
, end
);
1760 local_ops
->tlb_range(vma
, start
, end
);
1764 static void smp_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1766 struct mm_struct
*mm
= vma
->vm_mm
;
1768 if (mm
->context
!= NO_CONTEXT
) {
1770 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1771 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1772 if (!cpumask_empty(&cpu_mask
))
1773 xc2((smpfunc_t
) local_ops
->cache_page
,
1774 (unsigned long) vma
, page
);
1775 local_ops
->cache_page(vma
, page
);
1779 static void smp_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1781 struct mm_struct
*mm
= vma
->vm_mm
;
1783 if (mm
->context
!= NO_CONTEXT
) {
1785 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1786 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1787 if (!cpumask_empty(&cpu_mask
))
1788 xc2((smpfunc_t
) local_ops
->tlb_page
,
1789 (unsigned long) vma
, page
);
1790 local_ops
->tlb_page(vma
, page
);
1794 static void smp_flush_page_to_ram(unsigned long page
)
1796 /* Current theory is that those who call this are the one's
1797 * who have just dirtied their cache with the pages contents
1798 * in kernel space, therefore we only run this on local cpu.
1800 * XXX This experiment failed, research further... -DaveM
1803 xc1((smpfunc_t
) local_ops
->page_to_ram
, page
);
1805 local_ops
->page_to_ram(page
);
1808 static void smp_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1811 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1812 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1813 if (!cpumask_empty(&cpu_mask
))
1814 xc2((smpfunc_t
) local_ops
->sig_insns
,
1815 (unsigned long) mm
, insn_addr
);
1816 local_ops
->sig_insns(mm
, insn_addr
);
1819 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init
= {
1820 .cache_all
= smp_flush_cache_all
,
1821 .cache_mm
= smp_flush_cache_mm
,
1822 .cache_page
= smp_flush_cache_page
,
1823 .cache_range
= smp_flush_cache_range
,
1824 .tlb_all
= smp_flush_tlb_all
,
1825 .tlb_mm
= smp_flush_tlb_mm
,
1826 .tlb_page
= smp_flush_tlb_page
,
1827 .tlb_range
= smp_flush_tlb_range
,
1828 .page_to_ram
= smp_flush_page_to_ram
,
1829 .sig_insns
= smp_flush_sig_insns
,
1830 .page_for_dma
= smp_flush_page_for_dma
,
1834 /* Load up routines and constants for sun4m and sun4d mmu */
1835 void __init
load_mmu(void)
1841 /* El switcheroo... */
1842 local_ops
= sparc32_cachetlb_ops
;
1844 if (sparc_cpu_model
== sun4d
|| sparc_cpu_model
== sparc_leon
) {
1845 smp_cachetlb_ops
.tlb_all
= local_ops
->tlb_all
;
1846 smp_cachetlb_ops
.tlb_mm
= local_ops
->tlb_mm
;
1847 smp_cachetlb_ops
.tlb_range
= local_ops
->tlb_range
;
1848 smp_cachetlb_ops
.tlb_page
= local_ops
->tlb_page
;
1851 if (poke_srmmu
== poke_viking
) {
1852 /* Avoid unnecessary cross calls. */
1853 smp_cachetlb_ops
.cache_all
= local_ops
->cache_all
;
1854 smp_cachetlb_ops
.cache_mm
= local_ops
->cache_mm
;
1855 smp_cachetlb_ops
.cache_range
= local_ops
->cache_range
;
1856 smp_cachetlb_ops
.cache_page
= local_ops
->cache_page
;
1858 smp_cachetlb_ops
.page_to_ram
= local_ops
->page_to_ram
;
1859 smp_cachetlb_ops
.sig_insns
= local_ops
->sig_insns
;
1860 smp_cachetlb_ops
.page_for_dma
= local_ops
->page_for_dma
;
1863 /* It really is const after this point. */
1864 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1868 if (sparc_cpu_model
== sun4d
)
1873 if (sparc_cpu_model
== sun4d
)
1875 else if (sparc_cpu_model
== sparc_leon
)