arm64: dts: Revert "specify console via command line"
[linux/fpc-iii.git] / arch / x86 / kernel / process.c
blob839b5244e3b7e17767fc69bc610ac7c9a487c7fd
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <asm/syscalls.h>
32 #include <linux/uaccess.h>
33 #include <asm/mwait.h>
34 #include <asm/fpu/internal.h>
35 #include <asm/debugreg.h>
36 #include <asm/nmi.h>
37 #include <asm/tlbflush.h>
38 #include <asm/mce.h>
39 #include <asm/vm86.h>
40 #include <asm/switch_to.h>
41 #include <asm/desc.h>
42 #include <asm/prctl.h>
43 #include <asm/spec-ctrl.h>
44 #include <asm/io_bitmap.h>
45 #include <asm/proto.h>
47 #include "process.h"
50 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
51 * no more per-task TSS's. The TSS size is kept cacheline-aligned
52 * so they are allowed to end up in the .data..cacheline_aligned
53 * section. Since TSS's are completely CPU-local, we want them
54 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
56 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
57 .x86_tss = {
59 * .sp0 is only used when entering ring 0 from a lower
60 * privilege level. Since the init task never runs anything
61 * but ring 0 code, there is no need for a valid value here.
62 * Poison it.
64 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
67 * .sp1 is cpu_current_top_of_stack. The init task never
68 * runs user code, but cpu_current_top_of_stack should still
69 * be well defined before the first context switch.
71 .sp1 = TOP_OF_INIT_STACK,
73 #ifdef CONFIG_X86_32
74 .ss0 = __KERNEL_DS,
75 .ss1 = __KERNEL_CS,
76 #endif
77 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
80 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
82 DEFINE_PER_CPU(bool, __tss_limit_invalid);
83 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
86 * this gets called so that we can store lazy state into memory and copy the
87 * current task into the new thread.
89 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
91 memcpy(dst, src, arch_task_struct_size);
92 #ifdef CONFIG_VM86
93 dst->thread.vm86 = NULL;
94 #endif
96 return fpu__copy(dst, src);
100 * Free current thread data structures etc..
102 void exit_thread(struct task_struct *tsk)
104 struct thread_struct *t = &tsk->thread;
105 struct fpu *fpu = &t->fpu;
107 if (test_thread_flag(TIF_IO_BITMAP))
108 io_bitmap_exit();
110 free_vm86(t);
112 fpu__drop(fpu);
115 static int set_new_tls(struct task_struct *p, unsigned long tls)
117 struct user_desc __user *utls = (struct user_desc __user *)tls;
119 if (in_ia32_syscall())
120 return do_set_thread_area(p, -1, utls, 0);
121 else
122 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
125 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
126 unsigned long arg, struct task_struct *p, unsigned long tls)
128 struct inactive_task_frame *frame;
129 struct fork_frame *fork_frame;
130 struct pt_regs *childregs;
131 int ret = 0;
133 childregs = task_pt_regs(p);
134 fork_frame = container_of(childregs, struct fork_frame, regs);
135 frame = &fork_frame->frame;
137 frame->bp = 0;
138 frame->ret_addr = (unsigned long) ret_from_fork;
139 p->thread.sp = (unsigned long) fork_frame;
140 p->thread.io_bitmap = NULL;
141 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
143 #ifdef CONFIG_X86_64
144 savesegment(gs, p->thread.gsindex);
145 p->thread.gsbase = p->thread.gsindex ? 0 : current->thread.gsbase;
146 savesegment(fs, p->thread.fsindex);
147 p->thread.fsbase = p->thread.fsindex ? 0 : current->thread.fsbase;
148 savesegment(es, p->thread.es);
149 savesegment(ds, p->thread.ds);
150 #else
151 p->thread.sp0 = (unsigned long) (childregs + 1);
153 * Clear all status flags including IF and set fixed bit. 64bit
154 * does not have this initialization as the frame does not contain
155 * flags. The flags consistency (especially vs. AC) is there
156 * ensured via objtool, which lacks 32bit support.
158 frame->flags = X86_EFLAGS_FIXED;
159 #endif
161 /* Kernel thread ? */
162 if (unlikely(p->flags & PF_KTHREAD)) {
163 memset(childregs, 0, sizeof(struct pt_regs));
164 kthread_frame_init(frame, sp, arg);
165 return 0;
168 frame->bx = 0;
169 *childregs = *current_pt_regs();
170 childregs->ax = 0;
171 if (sp)
172 childregs->sp = sp;
174 #ifdef CONFIG_X86_32
175 task_user_gs(p) = get_user_gs(current_pt_regs());
176 #endif
178 /* Set a new TLS for the child thread? */
179 if (clone_flags & CLONE_SETTLS)
180 ret = set_new_tls(p, tls);
182 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
183 io_bitmap_share(p);
185 return ret;
188 void flush_thread(void)
190 struct task_struct *tsk = current;
192 flush_ptrace_hw_breakpoint(tsk);
193 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
195 fpu__clear(&tsk->thread.fpu);
198 void disable_TSC(void)
200 preempt_disable();
201 if (!test_and_set_thread_flag(TIF_NOTSC))
203 * Must flip the CPU state synchronously with
204 * TIF_NOTSC in the current running context.
206 cr4_set_bits(X86_CR4_TSD);
207 preempt_enable();
210 static void enable_TSC(void)
212 preempt_disable();
213 if (test_and_clear_thread_flag(TIF_NOTSC))
215 * Must flip the CPU state synchronously with
216 * TIF_NOTSC in the current running context.
218 cr4_clear_bits(X86_CR4_TSD);
219 preempt_enable();
222 int get_tsc_mode(unsigned long adr)
224 unsigned int val;
226 if (test_thread_flag(TIF_NOTSC))
227 val = PR_TSC_SIGSEGV;
228 else
229 val = PR_TSC_ENABLE;
231 return put_user(val, (unsigned int __user *)adr);
234 int set_tsc_mode(unsigned int val)
236 if (val == PR_TSC_SIGSEGV)
237 disable_TSC();
238 else if (val == PR_TSC_ENABLE)
239 enable_TSC();
240 else
241 return -EINVAL;
243 return 0;
246 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
248 static void set_cpuid_faulting(bool on)
250 u64 msrval;
252 msrval = this_cpu_read(msr_misc_features_shadow);
253 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
254 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
255 this_cpu_write(msr_misc_features_shadow, msrval);
256 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
259 static void disable_cpuid(void)
261 preempt_disable();
262 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
264 * Must flip the CPU state synchronously with
265 * TIF_NOCPUID in the current running context.
267 set_cpuid_faulting(true);
269 preempt_enable();
272 static void enable_cpuid(void)
274 preempt_disable();
275 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
277 * Must flip the CPU state synchronously with
278 * TIF_NOCPUID in the current running context.
280 set_cpuid_faulting(false);
282 preempt_enable();
285 static int get_cpuid_mode(void)
287 return !test_thread_flag(TIF_NOCPUID);
290 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
292 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
293 return -ENODEV;
295 if (cpuid_enabled)
296 enable_cpuid();
297 else
298 disable_cpuid();
300 return 0;
304 * Called immediately after a successful exec.
306 void arch_setup_new_exec(void)
308 /* If cpuid was previously disabled for this task, re-enable it. */
309 if (test_thread_flag(TIF_NOCPUID))
310 enable_cpuid();
313 * Don't inherit TIF_SSBD across exec boundary when
314 * PR_SPEC_DISABLE_NOEXEC is used.
316 if (test_thread_flag(TIF_SSBD) &&
317 task_spec_ssb_noexec(current)) {
318 clear_thread_flag(TIF_SSBD);
319 task_clear_spec_ssb_disable(current);
320 task_clear_spec_ssb_noexec(current);
321 speculation_ctrl_update(task_thread_info(current)->flags);
325 #ifdef CONFIG_X86_IOPL_IOPERM
326 static inline void tss_invalidate_io_bitmap(struct tss_struct *tss)
329 * Invalidate the I/O bitmap by moving io_bitmap_base outside the
330 * TSS limit so any subsequent I/O access from user space will
331 * trigger a #GP.
333 * This is correct even when VMEXIT rewrites the TSS limit
334 * to 0x67 as the only requirement is that the base points
335 * outside the limit.
337 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
340 static inline void switch_to_bitmap(unsigned long tifp)
343 * Invalidate I/O bitmap if the previous task used it. This prevents
344 * any possible leakage of an active I/O bitmap.
346 * If the next task has an I/O bitmap it will handle it on exit to
347 * user mode.
349 if (tifp & _TIF_IO_BITMAP)
350 tss_invalidate_io_bitmap(this_cpu_ptr(&cpu_tss_rw));
353 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
356 * Copy at least the byte range of the incoming tasks bitmap which
357 * covers the permitted I/O ports.
359 * If the previous task which used an I/O bitmap had more bits
360 * permitted, then the copy needs to cover those as well so they
361 * get turned off.
363 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
364 max(tss->io_bitmap.prev_max, iobm->max));
367 * Store the new max and the sequence number of this bitmap
368 * and a pointer to the bitmap itself.
370 tss->io_bitmap.prev_max = iobm->max;
371 tss->io_bitmap.prev_sequence = iobm->sequence;
375 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
377 void tss_update_io_bitmap(void)
379 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
380 struct thread_struct *t = &current->thread;
381 u16 *base = &tss->x86_tss.io_bitmap_base;
383 if (!test_thread_flag(TIF_IO_BITMAP)) {
384 tss_invalidate_io_bitmap(tss);
385 return;
388 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
389 *base = IO_BITMAP_OFFSET_VALID_ALL;
390 } else {
391 struct io_bitmap *iobm = t->io_bitmap;
394 * Only copy bitmap data when the sequence number differs. The
395 * update time is accounted to the incoming task.
397 if (tss->io_bitmap.prev_sequence != iobm->sequence)
398 tss_copy_io_bitmap(tss, iobm);
400 /* Enable the bitmap */
401 *base = IO_BITMAP_OFFSET_VALID_MAP;
405 * Make sure that the TSS limit is covering the IO bitmap. It might have
406 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
407 * access from user space to trigger a #GP because tbe bitmap is outside
408 * the TSS limit.
410 refresh_tss_limit();
412 #else /* CONFIG_X86_IOPL_IOPERM */
413 static inline void switch_to_bitmap(unsigned long tifp) { }
414 #endif
416 #ifdef CONFIG_SMP
418 struct ssb_state {
419 struct ssb_state *shared_state;
420 raw_spinlock_t lock;
421 unsigned int disable_state;
422 unsigned long local_state;
425 #define LSTATE_SSB 0
427 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
429 void speculative_store_bypass_ht_init(void)
431 struct ssb_state *st = this_cpu_ptr(&ssb_state);
432 unsigned int this_cpu = smp_processor_id();
433 unsigned int cpu;
435 st->local_state = 0;
438 * Shared state setup happens once on the first bringup
439 * of the CPU. It's not destroyed on CPU hotunplug.
441 if (st->shared_state)
442 return;
444 raw_spin_lock_init(&st->lock);
447 * Go over HT siblings and check whether one of them has set up the
448 * shared state pointer already.
450 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
451 if (cpu == this_cpu)
452 continue;
454 if (!per_cpu(ssb_state, cpu).shared_state)
455 continue;
457 /* Link it to the state of the sibling: */
458 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
459 return;
463 * First HT sibling to come up on the core. Link shared state of
464 * the first HT sibling to itself. The siblings on the same core
465 * which come up later will see the shared state pointer and link
466 * themself to the state of this CPU.
468 st->shared_state = st;
472 * Logic is: First HT sibling enables SSBD for both siblings in the core
473 * and last sibling to disable it, disables it for the whole core. This how
474 * MSR_SPEC_CTRL works in "hardware":
476 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
478 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
480 struct ssb_state *st = this_cpu_ptr(&ssb_state);
481 u64 msr = x86_amd_ls_cfg_base;
483 if (!static_cpu_has(X86_FEATURE_ZEN)) {
484 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
485 wrmsrl(MSR_AMD64_LS_CFG, msr);
486 return;
489 if (tifn & _TIF_SSBD) {
491 * Since this can race with prctl(), block reentry on the
492 * same CPU.
494 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
495 return;
497 msr |= x86_amd_ls_cfg_ssbd_mask;
499 raw_spin_lock(&st->shared_state->lock);
500 /* First sibling enables SSBD: */
501 if (!st->shared_state->disable_state)
502 wrmsrl(MSR_AMD64_LS_CFG, msr);
503 st->shared_state->disable_state++;
504 raw_spin_unlock(&st->shared_state->lock);
505 } else {
506 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
507 return;
509 raw_spin_lock(&st->shared_state->lock);
510 st->shared_state->disable_state--;
511 if (!st->shared_state->disable_state)
512 wrmsrl(MSR_AMD64_LS_CFG, msr);
513 raw_spin_unlock(&st->shared_state->lock);
516 #else
517 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
519 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
521 wrmsrl(MSR_AMD64_LS_CFG, msr);
523 #endif
525 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
528 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
529 * so ssbd_tif_to_spec_ctrl() just works.
531 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
535 * Update the MSRs managing speculation control, during context switch.
537 * tifp: Previous task's thread flags
538 * tifn: Next task's thread flags
540 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
541 unsigned long tifn)
543 unsigned long tif_diff = tifp ^ tifn;
544 u64 msr = x86_spec_ctrl_base;
545 bool updmsr = false;
547 lockdep_assert_irqs_disabled();
550 * If TIF_SSBD is different, select the proper mitigation
551 * method. Note that if SSBD mitigation is disabled or permanentely
552 * enabled this branch can't be taken because nothing can set
553 * TIF_SSBD.
555 if (tif_diff & _TIF_SSBD) {
556 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
557 amd_set_ssb_virt_state(tifn);
558 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
559 amd_set_core_ssb_state(tifn);
560 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
561 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
562 msr |= ssbd_tif_to_spec_ctrl(tifn);
563 updmsr = true;
568 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
569 * otherwise avoid the MSR write.
571 if (IS_ENABLED(CONFIG_SMP) &&
572 static_branch_unlikely(&switch_to_cond_stibp)) {
573 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
574 msr |= stibp_tif_to_spec_ctrl(tifn);
577 if (updmsr)
578 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
581 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
583 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
584 if (task_spec_ssb_disable(tsk))
585 set_tsk_thread_flag(tsk, TIF_SSBD);
586 else
587 clear_tsk_thread_flag(tsk, TIF_SSBD);
589 if (task_spec_ib_disable(tsk))
590 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
591 else
592 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
594 /* Return the updated threadinfo flags*/
595 return task_thread_info(tsk)->flags;
598 void speculation_ctrl_update(unsigned long tif)
600 unsigned long flags;
602 /* Forced update. Make sure all relevant TIF flags are different */
603 local_irq_save(flags);
604 __speculation_ctrl_update(~tif, tif);
605 local_irq_restore(flags);
608 /* Called from seccomp/prctl update */
609 void speculation_ctrl_update_current(void)
611 preempt_disable();
612 speculation_ctrl_update(speculation_ctrl_update_tif(current));
613 preempt_enable();
616 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
618 unsigned long tifp, tifn;
620 tifn = READ_ONCE(task_thread_info(next_p)->flags);
621 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
623 switch_to_bitmap(tifp);
625 propagate_user_return_notify(prev_p, next_p);
627 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
628 arch_has_block_step()) {
629 unsigned long debugctl, msk;
631 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
632 debugctl &= ~DEBUGCTLMSR_BTF;
633 msk = tifn & _TIF_BLOCKSTEP;
634 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
635 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
638 if ((tifp ^ tifn) & _TIF_NOTSC)
639 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
641 if ((tifp ^ tifn) & _TIF_NOCPUID)
642 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
644 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
645 __speculation_ctrl_update(tifp, tifn);
646 } else {
647 speculation_ctrl_update_tif(prev_p);
648 tifn = speculation_ctrl_update_tif(next_p);
650 /* Enforce MSR update to ensure consistent state */
651 __speculation_ctrl_update(~tifn, tifn);
656 * Idle related variables and functions
658 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
659 EXPORT_SYMBOL(boot_option_idle_override);
661 static void (*x86_idle)(void);
663 #ifndef CONFIG_SMP
664 static inline void play_dead(void)
666 BUG();
668 #endif
670 void arch_cpu_idle_enter(void)
672 tsc_verify_tsc_adjust(false);
673 local_touch_nmi();
676 void arch_cpu_idle_dead(void)
678 play_dead();
682 * Called from the generic idle code.
684 void arch_cpu_idle(void)
686 x86_idle();
690 * We use this if we don't have any better idle routine..
692 void __cpuidle default_idle(void)
694 trace_cpu_idle_rcuidle(1, smp_processor_id());
695 safe_halt();
696 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
698 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
699 EXPORT_SYMBOL(default_idle);
700 #endif
702 #ifdef CONFIG_XEN
703 bool xen_set_default_idle(void)
705 bool ret = !!x86_idle;
707 x86_idle = default_idle;
709 return ret;
711 #endif
713 void stop_this_cpu(void *dummy)
715 local_irq_disable();
717 * Remove this CPU:
719 set_cpu_online(smp_processor_id(), false);
720 disable_local_APIC();
721 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
724 * Use wbinvd on processors that support SME. This provides support
725 * for performing a successful kexec when going from SME inactive
726 * to SME active (or vice-versa). The cache must be cleared so that
727 * if there are entries with the same physical address, both with and
728 * without the encryption bit, they don't race each other when flushed
729 * and potentially end up with the wrong entry being committed to
730 * memory.
732 if (boot_cpu_has(X86_FEATURE_SME))
733 native_wbinvd();
734 for (;;) {
736 * Use native_halt() so that memory contents don't change
737 * (stack usage and variables) after possibly issuing the
738 * native_wbinvd() above.
740 native_halt();
745 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
746 * states (local apic timer and TSC stop).
748 static void amd_e400_idle(void)
751 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
752 * gets set after static_cpu_has() places have been converted via
753 * alternatives.
755 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
756 default_idle();
757 return;
760 tick_broadcast_enter();
762 default_idle();
765 * The switch back from broadcast mode needs to be called with
766 * interrupts disabled.
768 local_irq_disable();
769 tick_broadcast_exit();
770 local_irq_enable();
774 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
775 * We can't rely on cpuidle installing MWAIT, because it will not load
776 * on systems that support only C1 -- so the boot default must be MWAIT.
778 * Some AMD machines are the opposite, they depend on using HALT.
780 * So for default C1, which is used during boot until cpuidle loads,
781 * use MWAIT-C1 on Intel HW that has it, else use HALT.
783 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
785 if (c->x86_vendor != X86_VENDOR_INTEL)
786 return 0;
788 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
789 return 0;
791 return 1;
795 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
796 * with interrupts enabled and no flags, which is backwards compatible with the
797 * original MWAIT implementation.
799 static __cpuidle void mwait_idle(void)
801 if (!current_set_polling_and_test()) {
802 trace_cpu_idle_rcuidle(1, smp_processor_id());
803 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
804 mb(); /* quirk */
805 clflush((void *)&current_thread_info()->flags);
806 mb(); /* quirk */
809 __monitor((void *)&current_thread_info()->flags, 0, 0);
810 if (!need_resched())
811 __sti_mwait(0, 0);
812 else
813 local_irq_enable();
814 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
815 } else {
816 local_irq_enable();
818 __current_clr_polling();
821 void select_idle_routine(const struct cpuinfo_x86 *c)
823 #ifdef CONFIG_SMP
824 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
825 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
826 #endif
827 if (x86_idle || boot_option_idle_override == IDLE_POLL)
828 return;
830 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
831 pr_info("using AMD E400 aware idle routine\n");
832 x86_idle = amd_e400_idle;
833 } else if (prefer_mwait_c1_over_halt(c)) {
834 pr_info("using mwait in idle threads\n");
835 x86_idle = mwait_idle;
836 } else
837 x86_idle = default_idle;
840 void amd_e400_c1e_apic_setup(void)
842 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
843 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
844 local_irq_disable();
845 tick_broadcast_force();
846 local_irq_enable();
850 void __init arch_post_acpi_subsys_init(void)
852 u32 lo, hi;
854 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
855 return;
858 * AMD E400 detection needs to happen after ACPI has been enabled. If
859 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
860 * MSR_K8_INT_PENDING_MSG.
862 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
863 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
864 return;
866 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
868 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
869 mark_tsc_unstable("TSC halt in AMD C1E");
870 pr_info("System has AMD C1E enabled\n");
873 static int __init idle_setup(char *str)
875 if (!str)
876 return -EINVAL;
878 if (!strcmp(str, "poll")) {
879 pr_info("using polling idle threads\n");
880 boot_option_idle_override = IDLE_POLL;
881 cpu_idle_poll_ctrl(true);
882 } else if (!strcmp(str, "halt")) {
884 * When the boot option of idle=halt is added, halt is
885 * forced to be used for CPU idle. In such case CPU C2/C3
886 * won't be used again.
887 * To continue to load the CPU idle driver, don't touch
888 * the boot_option_idle_override.
890 x86_idle = default_idle;
891 boot_option_idle_override = IDLE_HALT;
892 } else if (!strcmp(str, "nomwait")) {
894 * If the boot option of "idle=nomwait" is added,
895 * it means that mwait will be disabled for CPU C2/C3
896 * states. In such case it won't touch the variable
897 * of boot_option_idle_override.
899 boot_option_idle_override = IDLE_NOMWAIT;
900 } else
901 return -1;
903 return 0;
905 early_param("idle", idle_setup);
907 unsigned long arch_align_stack(unsigned long sp)
909 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
910 sp -= get_random_int() % 8192;
911 return sp & ~0xf;
914 unsigned long arch_randomize_brk(struct mm_struct *mm)
916 return randomize_page(mm->brk, 0x02000000);
920 * Called from fs/proc with a reference on @p to find the function
921 * which called into schedule(). This needs to be done carefully
922 * because the task might wake up and we might look at a stack
923 * changing under us.
925 unsigned long get_wchan(struct task_struct *p)
927 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
928 int count = 0;
930 if (p == current || p->state == TASK_RUNNING)
931 return 0;
933 if (!try_get_task_stack(p))
934 return 0;
936 start = (unsigned long)task_stack_page(p);
937 if (!start)
938 goto out;
941 * Layout of the stack page:
943 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
944 * PADDING
945 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
946 * stack
947 * ----------- bottom = start
949 * The tasks stack pointer points at the location where the
950 * framepointer is stored. The data on the stack is:
951 * ... IP FP ... IP FP
953 * We need to read FP and IP, so we need to adjust the upper
954 * bound by another unsigned long.
956 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
957 top -= 2 * sizeof(unsigned long);
958 bottom = start;
960 sp = READ_ONCE(p->thread.sp);
961 if (sp < bottom || sp > top)
962 goto out;
964 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
965 do {
966 if (fp < bottom || fp > top)
967 goto out;
968 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
969 if (!in_sched_functions(ip)) {
970 ret = ip;
971 goto out;
973 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
974 } while (count++ < 16 && p->state != TASK_RUNNING);
976 out:
977 put_task_stack(p);
978 return ret;
981 long do_arch_prctl_common(struct task_struct *task, int option,
982 unsigned long cpuid_enabled)
984 switch (option) {
985 case ARCH_GET_CPUID:
986 return get_cpuid_mode();
987 case ARCH_SET_CPUID:
988 return set_cpuid_mode(task, cpuid_enabled);
991 return -EINVAL;