1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 1995 Linus Torvalds
5 * This file contains the setup_arch() code, which handles the architecture-dependent
6 * parts of early kernel initialization.
8 #include <linux/console.h>
9 #include <linux/crash_dump.h>
10 #include <linux/dmi.h>
11 #include <linux/efi.h>
12 #include <linux/init_ohci1394_dma.h>
13 #include <linux/initrd.h>
14 #include <linux/iscsi_ibft.h>
15 #include <linux/memblock.h>
16 #include <linux/pci.h>
17 #include <linux/root_dev.h>
18 #include <linux/sfi.h>
19 #include <linux/tboot.h>
20 #include <linux/usb/xhci-dbgp.h>
22 #include <uapi/linux/mount.h>
27 #include <asm/bios_ebda.h>
32 #include <asm/hypervisor.h>
33 #include <asm/io_apic.h>
34 #include <asm/kasan.h>
35 #include <asm/kaslr.h>
38 #include <asm/realmode.h>
39 #include <asm/olpc_ofw.h>
40 #include <asm/pci-direct.h>
42 #include <asm/proto.h>
43 #include <asm/unwind.h>
44 #include <asm/vsyscall.h>
45 #include <linux/vmalloc.h>
48 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
49 * max_pfn_mapped: highest directly mapped pfn > 4 GB
51 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
52 * represented by pfn_mapped[].
54 unsigned long max_low_pfn_mapped
;
55 unsigned long max_pfn_mapped
;
58 RESERVE_BRK(dmi_alloc
, 65536);
63 * Range of the BSS area. The size of the BSS area is determined
64 * at link time, with RESERVE_BRK*() facility reserving additional
68 unsigned long _brk_start
= (unsigned long)__brk_base
;
69 unsigned long _brk_end
= (unsigned long)__brk_base
;
71 struct boot_params boot_params
;
74 * These are the four main kernel memory regions, we put them into
75 * the resource tree so that kdump tools and other debugging tools
79 static struct resource rodata_resource
= {
80 .name
= "Kernel rodata",
83 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
86 static struct resource data_resource
= {
87 .name
= "Kernel data",
90 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
93 static struct resource code_resource
= {
94 .name
= "Kernel code",
97 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
100 static struct resource bss_resource
= {
101 .name
= "Kernel bss",
104 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
109 /* CPU data as detected by the assembly code in head_32.S */
110 struct cpuinfo_x86 new_cpu_data
;
112 /* Common CPU data for all CPUs */
113 struct cpuinfo_x86 boot_cpu_data __read_mostly
;
114 EXPORT_SYMBOL(boot_cpu_data
);
116 unsigned int def_to_bigsmp
;
118 /* For MCA, but anyone else can use it if they want */
119 unsigned int machine_id
;
120 unsigned int machine_submodel_id
;
121 unsigned int BIOS_revision
;
123 struct apm_info apm_info
;
124 EXPORT_SYMBOL(apm_info
);
126 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
127 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
128 struct ist_info ist_info
;
129 EXPORT_SYMBOL(ist_info
);
131 struct ist_info ist_info
;
135 struct cpuinfo_x86 boot_cpu_data __read_mostly
;
136 EXPORT_SYMBOL(boot_cpu_data
);
140 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
141 __visible
unsigned long mmu_cr4_features __ro_after_init
;
143 __visible
unsigned long mmu_cr4_features __ro_after_init
= X86_CR4_PAE
;
146 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
147 int bootloader_type
, bootloader_version
;
152 struct screen_info screen_info
;
153 EXPORT_SYMBOL(screen_info
);
154 struct edid_info edid_info
;
155 EXPORT_SYMBOL_GPL(edid_info
);
157 extern int root_mountflags
;
159 unsigned long saved_video_mode
;
161 #define RAMDISK_IMAGE_START_MASK 0x07FF
162 #define RAMDISK_PROMPT_FLAG 0x8000
163 #define RAMDISK_LOAD_FLAG 0x4000
165 static char __initdata command_line
[COMMAND_LINE_SIZE
];
166 #ifdef CONFIG_CMDLINE_BOOL
167 static char __initdata builtin_cmdline
[COMMAND_LINE_SIZE
] = CONFIG_CMDLINE
;
170 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
172 #ifdef CONFIG_EDD_MODULE
176 * copy_edd() - Copy the BIOS EDD information
177 * from boot_params into a safe place.
180 static inline void __init
copy_edd(void)
182 memcpy(edd
.mbr_signature
, boot_params
.edd_mbr_sig_buffer
,
183 sizeof(edd
.mbr_signature
));
184 memcpy(edd
.edd_info
, boot_params
.eddbuf
, sizeof(edd
.edd_info
));
185 edd
.mbr_signature_nr
= boot_params
.edd_mbr_sig_buf_entries
;
186 edd
.edd_info_nr
= boot_params
.eddbuf_entries
;
189 static inline void __init
copy_edd(void)
194 void * __init
extend_brk(size_t size
, size_t align
)
196 size_t mask
= align
- 1;
199 BUG_ON(_brk_start
== 0);
200 BUG_ON(align
& mask
);
202 _brk_end
= (_brk_end
+ mask
) & ~mask
;
203 BUG_ON((char *)(_brk_end
+ size
) > __brk_limit
);
205 ret
= (void *)_brk_end
;
208 memset(ret
, 0, size
);
214 static void __init
cleanup_highmap(void)
219 static void __init
reserve_brk(void)
221 if (_brk_end
> _brk_start
)
222 memblock_reserve(__pa_symbol(_brk_start
),
223 _brk_end
- _brk_start
);
225 /* Mark brk area as locked down and no longer taking any
230 u64 relocated_ramdisk
;
232 #ifdef CONFIG_BLK_DEV_INITRD
234 static u64 __init
get_ramdisk_image(void)
236 u64 ramdisk_image
= boot_params
.hdr
.ramdisk_image
;
238 ramdisk_image
|= (u64
)boot_params
.ext_ramdisk_image
<< 32;
240 return ramdisk_image
;
242 static u64 __init
get_ramdisk_size(void)
244 u64 ramdisk_size
= boot_params
.hdr
.ramdisk_size
;
246 ramdisk_size
|= (u64
)boot_params
.ext_ramdisk_size
<< 32;
251 static void __init
relocate_initrd(void)
253 /* Assume only end is not page aligned */
254 u64 ramdisk_image
= get_ramdisk_image();
255 u64 ramdisk_size
= get_ramdisk_size();
256 u64 area_size
= PAGE_ALIGN(ramdisk_size
);
258 /* We need to move the initrd down into directly mapped mem */
259 relocated_ramdisk
= memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped
),
260 area_size
, PAGE_SIZE
);
262 if (!relocated_ramdisk
)
263 panic("Cannot find place for new RAMDISK of size %lld\n",
266 /* Note: this includes all the mem currently occupied by
267 the initrd, we rely on that fact to keep the data intact. */
268 memblock_reserve(relocated_ramdisk
, area_size
);
269 initrd_start
= relocated_ramdisk
+ PAGE_OFFSET
;
270 initrd_end
= initrd_start
+ ramdisk_size
;
271 printk(KERN_INFO
"Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
272 relocated_ramdisk
, relocated_ramdisk
+ ramdisk_size
- 1);
274 copy_from_early_mem((void *)initrd_start
, ramdisk_image
, ramdisk_size
);
276 printk(KERN_INFO
"Move RAMDISK from [mem %#010llx-%#010llx] to"
277 " [mem %#010llx-%#010llx]\n",
278 ramdisk_image
, ramdisk_image
+ ramdisk_size
- 1,
279 relocated_ramdisk
, relocated_ramdisk
+ ramdisk_size
- 1);
282 static void __init
early_reserve_initrd(void)
284 /* Assume only end is not page aligned */
285 u64 ramdisk_image
= get_ramdisk_image();
286 u64 ramdisk_size
= get_ramdisk_size();
287 u64 ramdisk_end
= PAGE_ALIGN(ramdisk_image
+ ramdisk_size
);
289 if (!boot_params
.hdr
.type_of_loader
||
290 !ramdisk_image
|| !ramdisk_size
)
291 return; /* No initrd provided by bootloader */
293 memblock_reserve(ramdisk_image
, ramdisk_end
- ramdisk_image
);
295 static void __init
reserve_initrd(void)
297 /* Assume only end is not page aligned */
298 u64 ramdisk_image
= get_ramdisk_image();
299 u64 ramdisk_size
= get_ramdisk_size();
300 u64 ramdisk_end
= PAGE_ALIGN(ramdisk_image
+ ramdisk_size
);
303 if (!boot_params
.hdr
.type_of_loader
||
304 !ramdisk_image
|| !ramdisk_size
)
305 return; /* No initrd provided by bootloader */
309 mapped_size
= memblock_mem_size(max_pfn_mapped
);
310 if (ramdisk_size
>= (mapped_size
>>1))
311 panic("initrd too large to handle, "
312 "disabling initrd (%lld needed, %lld available)\n",
313 ramdisk_size
, mapped_size
>>1);
315 printk(KERN_INFO
"RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image
,
318 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image
),
319 PFN_DOWN(ramdisk_end
))) {
320 /* All are mapped, easy case */
321 initrd_start
= ramdisk_image
+ PAGE_OFFSET
;
322 initrd_end
= initrd_start
+ ramdisk_size
;
328 memblock_free(ramdisk_image
, ramdisk_end
- ramdisk_image
);
332 static void __init
early_reserve_initrd(void)
335 static void __init
reserve_initrd(void)
338 #endif /* CONFIG_BLK_DEV_INITRD */
340 static void __init
parse_setup_data(void)
342 struct setup_data
*data
;
343 u64 pa_data
, pa_next
;
345 pa_data
= boot_params
.hdr
.setup_data
;
347 u32 data_len
, data_type
;
349 data
= early_memremap(pa_data
, sizeof(*data
));
350 data_len
= data
->len
+ sizeof(struct setup_data
);
351 data_type
= data
->type
;
352 pa_next
= data
->next
;
353 early_memunmap(data
, sizeof(*data
));
357 e820__memory_setup_extended(pa_data
, data_len
);
363 parse_efi_setup(pa_data
, data_len
);
372 static void __init
memblock_x86_reserve_range_setup_data(void)
374 struct setup_data
*data
;
377 pa_data
= boot_params
.hdr
.setup_data
;
379 data
= early_memremap(pa_data
, sizeof(*data
));
380 memblock_reserve(pa_data
, sizeof(*data
) + data
->len
);
382 if (data
->type
== SETUP_INDIRECT
&&
383 ((struct setup_indirect
*)data
->data
)->type
!= SETUP_INDIRECT
)
384 memblock_reserve(((struct setup_indirect
*)data
->data
)->addr
,
385 ((struct setup_indirect
*)data
->data
)->len
);
387 pa_data
= data
->next
;
388 early_memunmap(data
, sizeof(*data
));
393 * --------- Crashkernel reservation ------------------------------
396 #ifdef CONFIG_KEXEC_CORE
398 /* 16M alignment for crash kernel regions */
399 #define CRASH_ALIGN SZ_16M
402 * Keep the crash kernel below this limit.
404 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
405 * due to mapping restrictions.
407 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
408 * the upper limit of system RAM in 4-level paging mode. Since the kdump
409 * jump could be from 5-level paging to 4-level paging, the jump will fail if
410 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
411 * no good way to detect the paging mode of the target kernel which will be
412 * loaded for dumping.
415 # define CRASH_ADDR_LOW_MAX SZ_512M
416 # define CRASH_ADDR_HIGH_MAX SZ_512M
418 # define CRASH_ADDR_LOW_MAX SZ_4G
419 # define CRASH_ADDR_HIGH_MAX SZ_64T
422 static int __init
reserve_crashkernel_low(void)
425 unsigned long long base
, low_base
= 0, low_size
= 0;
426 unsigned long total_low_mem
;
429 total_low_mem
= memblock_mem_size(1UL << (32 - PAGE_SHIFT
));
431 /* crashkernel=Y,low */
432 ret
= parse_crashkernel_low(boot_command_line
, total_low_mem
, &low_size
, &base
);
435 * two parts from kernel/dma/swiotlb.c:
436 * -swiotlb size: user-specified with swiotlb= or default.
438 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
439 * to 8M for other buffers that may need to stay low too. Also
440 * make sure we allocate enough extra low memory so that we
441 * don't run out of DMA buffers for 32-bit devices.
443 low_size
= max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
445 /* passed with crashkernel=0,low ? */
450 low_base
= memblock_find_in_range(0, 1ULL << 32, low_size
, CRASH_ALIGN
);
452 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
453 (unsigned long)(low_size
>> 20));
457 ret
= memblock_reserve(low_base
, low_size
);
459 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__
);
463 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
464 (unsigned long)(low_size
>> 20),
465 (unsigned long)(low_base
>> 20),
466 (unsigned long)(total_low_mem
>> 20));
468 crashk_low_res
.start
= low_base
;
469 crashk_low_res
.end
= low_base
+ low_size
- 1;
470 insert_resource(&iomem_resource
, &crashk_low_res
);
475 static void __init
reserve_crashkernel(void)
477 unsigned long long crash_size
, crash_base
, total_mem
;
481 total_mem
= memblock_phys_mem_size();
484 ret
= parse_crashkernel(boot_command_line
, total_mem
, &crash_size
, &crash_base
);
485 if (ret
!= 0 || crash_size
<= 0) {
486 /* crashkernel=X,high */
487 ret
= parse_crashkernel_high(boot_command_line
, total_mem
,
488 &crash_size
, &crash_base
);
489 if (ret
!= 0 || crash_size
<= 0)
494 if (xen_pv_domain()) {
495 pr_info("Ignoring crashkernel for a Xen PV domain\n");
499 /* 0 means: find the address automatically */
502 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
503 * crashkernel=x,high reserves memory over 4G, also allocates
504 * 256M extra low memory for DMA buffers and swiotlb.
505 * But the extra memory is not required for all machines.
506 * So try low memory first and fall back to high memory
507 * unless "crashkernel=size[KMG],high" is specified.
510 crash_base
= memblock_find_in_range(CRASH_ALIGN
,
512 crash_size
, CRASH_ALIGN
);
514 crash_base
= memblock_find_in_range(CRASH_ALIGN
,
516 crash_size
, CRASH_ALIGN
);
518 pr_info("crashkernel reservation failed - No suitable area found.\n");
522 unsigned long long start
;
524 start
= memblock_find_in_range(crash_base
,
525 crash_base
+ crash_size
,
526 crash_size
, 1 << 20);
527 if (start
!= crash_base
) {
528 pr_info("crashkernel reservation failed - memory is in use.\n");
532 ret
= memblock_reserve(crash_base
, crash_size
);
534 pr_err("%s: Error reserving crashkernel memblock.\n", __func__
);
538 if (crash_base
>= (1ULL << 32) && reserve_crashkernel_low()) {
539 memblock_free(crash_base
, crash_size
);
543 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
544 (unsigned long)(crash_size
>> 20),
545 (unsigned long)(crash_base
>> 20),
546 (unsigned long)(total_mem
>> 20));
548 crashk_res
.start
= crash_base
;
549 crashk_res
.end
= crash_base
+ crash_size
- 1;
550 insert_resource(&iomem_resource
, &crashk_res
);
553 static void __init
reserve_crashkernel(void)
558 static struct resource standard_io_resources
[] = {
559 { .name
= "dma1", .start
= 0x00, .end
= 0x1f,
560 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
561 { .name
= "pic1", .start
= 0x20, .end
= 0x21,
562 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
563 { .name
= "timer0", .start
= 0x40, .end
= 0x43,
564 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
565 { .name
= "timer1", .start
= 0x50, .end
= 0x53,
566 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
567 { .name
= "keyboard", .start
= 0x60, .end
= 0x60,
568 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
569 { .name
= "keyboard", .start
= 0x64, .end
= 0x64,
570 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
571 { .name
= "dma page reg", .start
= 0x80, .end
= 0x8f,
572 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
573 { .name
= "pic2", .start
= 0xa0, .end
= 0xa1,
574 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
575 { .name
= "dma2", .start
= 0xc0, .end
= 0xdf,
576 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
577 { .name
= "fpu", .start
= 0xf0, .end
= 0xff,
578 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
}
581 void __init
reserve_standard_io_resources(void)
585 /* request I/O space for devices used on all i[345]86 PCs */
586 for (i
= 0; i
< ARRAY_SIZE(standard_io_resources
); i
++)
587 request_resource(&ioport_resource
, &standard_io_resources
[i
]);
591 static __init
void reserve_ibft_region(void)
593 unsigned long addr
, size
= 0;
595 addr
= find_ibft_region(&size
);
598 memblock_reserve(addr
, size
);
601 static bool __init
snb_gfx_workaround_needed(void)
606 static const __initconst u16 snb_ids
[] = {
616 /* Assume no if something weird is going on with PCI */
617 if (!early_pci_allowed())
620 vendor
= read_pci_config_16(0, 2, 0, PCI_VENDOR_ID
);
621 if (vendor
!= 0x8086)
624 devid
= read_pci_config_16(0, 2, 0, PCI_DEVICE_ID
);
625 for (i
= 0; i
< ARRAY_SIZE(snb_ids
); i
++)
626 if (devid
== snb_ids
[i
])
634 * Sandy Bridge graphics has trouble with certain ranges, exclude
635 * them from allocation.
637 static void __init
trim_snb_memory(void)
639 static const __initconst
unsigned long bad_pages
[] = {
648 if (!snb_gfx_workaround_needed())
651 printk(KERN_DEBUG
"reserving inaccessible SNB gfx pages\n");
654 * Reserve all memory below the 1 MB mark that has not
655 * already been reserved.
657 memblock_reserve(0, 1<<20);
659 for (i
= 0; i
< ARRAY_SIZE(bad_pages
); i
++) {
660 if (memblock_reserve(bad_pages
[i
], PAGE_SIZE
))
661 printk(KERN_WARNING
"failed to reserve 0x%08lx\n",
667 * Here we put platform-specific memory range workarounds, i.e.
668 * memory known to be corrupt or otherwise in need to be reserved on
669 * specific platforms.
671 * If this gets used more widely it could use a real dispatch mechanism.
673 static void __init
trim_platform_memory_ranges(void)
678 static void __init
trim_bios_range(void)
681 * A special case is the first 4Kb of memory;
682 * This is a BIOS owned area, not kernel ram, but generally
683 * not listed as such in the E820 table.
685 * This typically reserves additional memory (64KiB by default)
686 * since some BIOSes are known to corrupt low memory. See the
687 * Kconfig help text for X86_RESERVE_LOW.
689 e820__range_update(0, PAGE_SIZE
, E820_TYPE_RAM
, E820_TYPE_RESERVED
);
692 * special case: Some BIOSes report the PC BIOS
693 * area (640Kb -> 1Mb) as RAM even though it is not.
696 e820__range_remove(BIOS_BEGIN
, BIOS_END
- BIOS_BEGIN
, E820_TYPE_RAM
, 1);
698 e820__update_table(e820_table
);
701 /* called before trim_bios_range() to spare extra sanitize */
702 static void __init
e820_add_kernel_range(void)
704 u64 start
= __pa_symbol(_text
);
705 u64 size
= __pa_symbol(_end
) - start
;
708 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
709 * attempt to fix it by adding the range. We may have a confused BIOS,
710 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
711 * exclude kernel range. If we really are running on top non-RAM,
712 * we will crash later anyways.
714 if (e820__mapped_all(start
, start
+ size
, E820_TYPE_RAM
))
717 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
718 e820__range_remove(start
, size
, E820_TYPE_RAM
, 0);
719 e820__range_add(start
, size
, E820_TYPE_RAM
);
722 static unsigned reserve_low
= CONFIG_X86_RESERVE_LOW
<< 10;
724 static int __init
parse_reservelow(char *p
)
726 unsigned long long size
;
731 size
= memparse(p
, &p
);
744 early_param("reservelow", parse_reservelow
);
746 static void __init
trim_low_memory_range(void)
748 memblock_reserve(0, ALIGN(reserve_low
, PAGE_SIZE
));
752 * Dump out kernel offset information on panic.
755 dump_kernel_offset(struct notifier_block
*self
, unsigned long v
, void *p
)
757 if (kaslr_enabled()) {
758 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
764 pr_emerg("Kernel Offset: disabled\n");
771 * Determine if we were loaded by an EFI loader. If so, then we have also been
772 * passed the efi memmap, systab, etc., so we should use these data structures
773 * for initialization. Note, the efi init code path is determined by the
774 * global efi_enabled. This allows the same kernel image to be used on existing
775 * systems (with a traditional BIOS) as well as on EFI systems.
778 * setup_arch - architecture-specific boot-time initializations
780 * Note: On x86_64, fixmaps are ready for use even before this is called.
783 void __init
setup_arch(char **cmdline_p
)
786 * Reserve the memory occupied by the kernel between _text and
787 * __end_of_kernel_reserve symbols. Any kernel sections after the
788 * __end_of_kernel_reserve symbol must be explicitly reserved with a
789 * separate memblock_reserve() or they will be discarded.
791 memblock_reserve(__pa_symbol(_text
),
792 (unsigned long)__end_of_kernel_reserve
- (unsigned long)_text
);
795 * Make sure page 0 is always reserved because on systems with
796 * L1TF its contents can be leaked to user processes.
798 memblock_reserve(0, PAGE_SIZE
);
800 early_reserve_initrd();
803 * At this point everything still needed from the boot loader
804 * or BIOS or kernel text should be early reserved or marked not
805 * RAM in e820. All other memory is free game.
809 memcpy(&boot_cpu_data
, &new_cpu_data
, sizeof(new_cpu_data
));
812 * copy kernel address range established so far and switch
813 * to the proper swapper page table
815 clone_pgd_range(swapper_pg_dir
+ KERNEL_PGD_BOUNDARY
,
816 initial_page_table
+ KERNEL_PGD_BOUNDARY
,
819 load_cr3(swapper_pg_dir
);
821 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
822 * a cr3 based tlb flush, so the following __flush_tlb_all()
823 * will not flush anything because the CPU quirk which clears
824 * X86_FEATURE_PGE has not been invoked yet. Though due to the
825 * load_cr3() above the TLB has been flushed already. The
826 * quirk is invoked before subsequent calls to __flush_tlb_all()
827 * so proper operation is guaranteed.
831 printk(KERN_INFO
"Command line: %s\n", boot_command_line
);
832 boot_cpu_data
.x86_phys_bits
= MAX_PHYSMEM_BITS
;
836 * If we have OLPC OFW, we might end up relocating the fixmap due to
837 * reserve_top(), so do this before touching the ioremap area.
841 idt_setup_early_traps();
843 arch_init_ideal_nops();
845 early_ioremap_init();
847 setup_olpc_ofw_pgd();
849 ROOT_DEV
= old_decode_dev(boot_params
.hdr
.root_dev
);
850 screen_info
= boot_params
.screen_info
;
851 edid_info
= boot_params
.edid_info
;
853 apm_info
.bios
= boot_params
.apm_bios_info
;
854 ist_info
= boot_params
.ist_info
;
856 saved_video_mode
= boot_params
.hdr
.vid_mode
;
857 bootloader_type
= boot_params
.hdr
.type_of_loader
;
858 if ((bootloader_type
>> 4) == 0xe) {
859 bootloader_type
&= 0xf;
860 bootloader_type
|= (boot_params
.hdr
.ext_loader_type
+0x10) << 4;
862 bootloader_version
= bootloader_type
& 0xf;
863 bootloader_version
|= boot_params
.hdr
.ext_loader_ver
<< 4;
865 #ifdef CONFIG_BLK_DEV_RAM
866 rd_image_start
= boot_params
.hdr
.ram_size
& RAMDISK_IMAGE_START_MASK
;
867 rd_prompt
= ((boot_params
.hdr
.ram_size
& RAMDISK_PROMPT_FLAG
) != 0);
868 rd_doload
= ((boot_params
.hdr
.ram_size
& RAMDISK_LOAD_FLAG
) != 0);
871 if (!strncmp((char *)&boot_params
.efi_info
.efi_loader_signature
,
872 EFI32_LOADER_SIGNATURE
, 4)) {
873 set_bit(EFI_BOOT
, &efi
.flags
);
874 } else if (!strncmp((char *)&boot_params
.efi_info
.efi_loader_signature
,
875 EFI64_LOADER_SIGNATURE
, 4)) {
876 set_bit(EFI_BOOT
, &efi
.flags
);
877 set_bit(EFI_64BIT
, &efi
.flags
);
881 x86_init
.oem
.arch_setup();
883 iomem_resource
.end
= (1ULL << boot_cpu_data
.x86_phys_bits
) - 1;
884 e820__memory_setup();
889 if (!boot_params
.hdr
.root_flags
)
890 root_mountflags
&= ~MS_RDONLY
;
891 init_mm
.start_code
= (unsigned long) _text
;
892 init_mm
.end_code
= (unsigned long) _etext
;
893 init_mm
.end_data
= (unsigned long) _edata
;
894 init_mm
.brk
= _brk_end
;
896 code_resource
.start
= __pa_symbol(_text
);
897 code_resource
.end
= __pa_symbol(_etext
)-1;
898 rodata_resource
.start
= __pa_symbol(__start_rodata
);
899 rodata_resource
.end
= __pa_symbol(__end_rodata
)-1;
900 data_resource
.start
= __pa_symbol(_sdata
);
901 data_resource
.end
= __pa_symbol(_edata
)-1;
902 bss_resource
.start
= __pa_symbol(__bss_start
);
903 bss_resource
.end
= __pa_symbol(__bss_stop
)-1;
905 #ifdef CONFIG_CMDLINE_BOOL
906 #ifdef CONFIG_CMDLINE_OVERRIDE
907 strlcpy(boot_command_line
, builtin_cmdline
, COMMAND_LINE_SIZE
);
909 if (builtin_cmdline
[0]) {
910 /* append boot loader cmdline to builtin */
911 strlcat(builtin_cmdline
, " ", COMMAND_LINE_SIZE
);
912 strlcat(builtin_cmdline
, boot_command_line
, COMMAND_LINE_SIZE
);
913 strlcpy(boot_command_line
, builtin_cmdline
, COMMAND_LINE_SIZE
);
918 strlcpy(command_line
, boot_command_line
, COMMAND_LINE_SIZE
);
919 *cmdline_p
= command_line
;
922 * x86_configure_nx() is called before parse_early_param() to detect
923 * whether hardware doesn't support NX (so that the early EHCI debug
924 * console setup can safely call set_fixmap()). It may then be called
925 * again from within noexec_setup() during parsing early parameters
926 * to honor the respective command line option.
932 if (efi_enabled(EFI_BOOT
))
933 efi_memblock_x86_reserve_range();
934 #ifdef CONFIG_MEMORY_HOTPLUG
936 * Memory used by the kernel cannot be hot-removed because Linux
937 * cannot migrate the kernel pages. When memory hotplug is
938 * enabled, we should prevent memblock from allocating memory
941 * ACPI SRAT records all hotpluggable memory ranges. But before
942 * SRAT is parsed, we don't know about it.
944 * The kernel image is loaded into memory at very early time. We
945 * cannot prevent this anyway. So on NUMA system, we set any
946 * node the kernel resides in as un-hotpluggable.
948 * Since on modern servers, one node could have double-digit
949 * gigabytes memory, we can assume the memory around the kernel
950 * image is also un-hotpluggable. So before SRAT is parsed, just
951 * allocate memory near the kernel image to try the best to keep
952 * the kernel away from hotpluggable memory.
954 if (movable_node_is_enabled())
955 memblock_set_bottom_up(true);
960 /* after early param, so could get panic from serial */
961 memblock_x86_reserve_range_setup_data();
963 if (acpi_mps_check()) {
964 #ifdef CONFIG_X86_LOCAL_APIC
967 setup_clear_cpu_cap(X86_FEATURE_APIC
);
970 e820__reserve_setup_data();
971 e820__finish_early_params();
973 if (efi_enabled(EFI_BOOT
))
979 * VMware detection requires dmi to be available, so this
980 * needs to be done after dmi_setup(), for the boot CPU.
982 init_hypervisor_platform();
985 x86_init
.resources
.probe_roms();
987 /* after parse_early_param, so could debug it */
988 insert_resource(&iomem_resource
, &code_resource
);
989 insert_resource(&iomem_resource
, &rodata_resource
);
990 insert_resource(&iomem_resource
, &data_resource
);
991 insert_resource(&iomem_resource
, &bss_resource
);
993 e820_add_kernel_range();
996 if (ppro_with_ram_bug()) {
997 e820__range_update(0x70000000ULL
, 0x40000ULL
, E820_TYPE_RAM
,
999 e820__update_table(e820_table
);
1000 printk(KERN_INFO
"fixed physical RAM map:\n");
1001 e820__print_table("bad_ppro");
1004 early_gart_iommu_check();
1008 * partially used pages are not usable - thus
1009 * we are rounding upwards:
1011 max_pfn
= e820__end_of_ram_pfn();
1013 /* update e820 for memory not covered by WB MTRRs */
1015 if (mtrr_trim_uncached_memory(max_pfn
))
1016 max_pfn
= e820__end_of_ram_pfn();
1018 max_possible_pfn
= max_pfn
;
1021 * This call is required when the CPU does not support PAT. If
1022 * mtrr_bp_init() invoked it already via pat_init() the call has no
1028 * Define random base addresses for memory sections after max_pfn is
1029 * defined and before each memory section base is used.
1031 kernel_randomize_memory();
1033 #ifdef CONFIG_X86_32
1034 /* max_low_pfn get updated here */
1035 find_low_pfn_range();
1039 /* How many end-of-memory variables you have, grandma! */
1040 /* need this before calling reserve_initrd */
1041 if (max_pfn
> (1UL<<(32 - PAGE_SHIFT
)))
1042 max_low_pfn
= e820__end_of_low_ram_pfn();
1044 max_low_pfn
= max_pfn
;
1046 high_memory
= (void *)__va(max_pfn
* PAGE_SIZE
- 1) + 1;
1050 * Find and reserve possible boot-time SMP configuration:
1054 reserve_ibft_region();
1056 early_alloc_pgt_buf();
1059 * Need to conclude brk, before e820__memblock_setup()
1060 * it could use memblock_find_in_range, could overlap with
1067 memblock_set_current_limit(ISA_END_ADDRESS
);
1068 e820__memblock_setup();
1070 reserve_bios_regions();
1077 * The EFI specification says that boot service code won't be
1078 * called after ExitBootServices(). This is, in fact, a lie.
1080 efi_reserve_boot_services();
1082 /* preallocate 4k for mptable mpc */
1083 e820__memblock_alloc_reserved_mpc_new();
1085 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1086 setup_bios_corruption_check();
1089 #ifdef CONFIG_X86_32
1090 printk(KERN_DEBUG
"initial memory mapped: [mem 0x00000000-%#010lx]\n",
1091 (max_pfn_mapped
<<PAGE_SHIFT
) - 1);
1094 reserve_real_mode();
1096 trim_platform_memory_ranges();
1097 trim_low_memory_range();
1101 idt_setup_early_pf();
1104 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1105 * with the current CR4 value. This may not be necessary, but
1106 * auditing all the early-boot CR4 manipulation would be needed to
1109 * Mask off features that don't work outside long mode (just
1112 mmu_cr4_features
= __read_cr4() & ~X86_CR4_PCIDE
;
1114 memblock_set_current_limit(get_max_mapped());
1117 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1120 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1121 if (init_ohci1394_dma_early
)
1122 init_ohci1394_dma_on_all_controllers();
1124 /* Allocate bigger log buffer */
1127 if (efi_enabled(EFI_BOOT
)) {
1128 switch (boot_params
.secure_boot
) {
1129 case efi_secureboot_mode_disabled
:
1130 pr_info("Secure boot disabled\n");
1132 case efi_secureboot_mode_enabled
:
1133 pr_info("Secure boot enabled\n");
1136 pr_info("Secure boot could not be determined\n");
1143 acpi_table_upgrade();
1149 early_platform_quirks();
1152 * Parse the ACPI tables for possible boot-time SMP configuration.
1154 acpi_boot_table_init();
1156 early_acpi_boot_init();
1159 dma_contiguous_reserve(max_pfn_mapped
<< PAGE_SHIFT
);
1162 * Reserve memory for crash kernel after SRAT is parsed so that it
1163 * won't consume hotpluggable memory.
1165 reserve_crashkernel();
1167 memblock_find_dma_reserve();
1169 if (!early_xdbc_setup_hardware())
1170 early_xdbc_register_console();
1172 x86_init
.paging
.pagetable_init();
1177 * Sync back kernel address range.
1179 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1182 sync_initial_page_table();
1188 generic_apic_probe();
1193 * Read APIC and some other early information from ACPI tables.
1200 * get boot-time SMP configuration:
1205 * Systems w/o ACPI and mptables might not have it mapped the local
1206 * APIC yet, but prefill_possible_map() might need to access it.
1208 init_apic_mappings();
1210 prefill_possible_map();
1214 io_apic_init_mappings();
1216 x86_init
.hyper
.guest_late_init();
1218 e820__reserve_resources();
1219 e820__register_nosave_regions(max_pfn
);
1221 x86_init
.resources
.reserve_resources();
1223 e820__setup_pci_gap();
1226 #if defined(CONFIG_VGA_CONSOLE)
1227 if (!efi_enabled(EFI_BOOT
) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY
))
1228 conswitchp
= &vga_con
;
1231 x86_init
.oem
.banner();
1233 x86_init
.timers
.wallclock_init();
1237 register_refined_jiffies(CLOCK_TICK_RATE
);
1240 if (efi_enabled(EFI_BOOT
))
1241 efi_apply_memmap_quirks();
1247 #ifdef CONFIG_X86_32
1249 static struct resource video_ram_resource
= {
1250 .name
= "Video RAM area",
1253 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
1256 void __init
i386_reserve_resources(void)
1258 request_resource(&iomem_resource
, &video_ram_resource
);
1259 reserve_standard_io_resources();
1262 #endif /* CONFIG_X86_32 */
1264 static struct notifier_block kernel_offset_notifier
= {
1265 .notifier_call
= dump_kernel_offset
1268 static int __init
register_kernel_offset_dumper(void)
1270 atomic_notifier_chain_register(&panic_notifier_list
,
1271 &kernel_offset_notifier
);
1274 __initcall(register_kernel_offset_dumper
);