arm64: dts: Revert "specify console via command line"
[linux/fpc-iii.git] / arch / x86 / kvm / mmu.h
bloba647601c9e1c1ddc06dfb030b81cf74d61b97db6
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_H
3 #define __KVM_X86_MMU_H
5 #include <linux/kvm_host.h>
6 #include "kvm_cache_regs.h"
8 #define PT64_PT_BITS 9
9 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
10 #define PT32_PT_BITS 10
11 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
13 #define PT_WRITABLE_SHIFT 1
14 #define PT_USER_SHIFT 2
16 #define PT_PRESENT_MASK (1ULL << 0)
17 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
18 #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
19 #define PT_PWT_MASK (1ULL << 3)
20 #define PT_PCD_MASK (1ULL << 4)
21 #define PT_ACCESSED_SHIFT 5
22 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
23 #define PT_DIRTY_SHIFT 6
24 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
25 #define PT_PAGE_SIZE_SHIFT 7
26 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
27 #define PT_PAT_MASK (1ULL << 7)
28 #define PT_GLOBAL_MASK (1ULL << 8)
29 #define PT64_NX_SHIFT 63
30 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
32 #define PT_PAT_SHIFT 7
33 #define PT_DIR_PAT_SHIFT 12
34 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
36 #define PT32_DIR_PSE36_SIZE 4
37 #define PT32_DIR_PSE36_SHIFT 13
38 #define PT32_DIR_PSE36_MASK \
39 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
41 #define PT64_ROOT_5LEVEL 5
42 #define PT64_ROOT_4LEVEL 4
43 #define PT32_ROOT_LEVEL 2
44 #define PT32E_ROOT_LEVEL 3
46 static inline u64 rsvd_bits(int s, int e)
48 if (e < s)
49 return 0;
51 return ((1ULL << (e - s + 1)) - 1) << s;
54 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask);
56 void
57 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
59 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots);
60 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
61 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
62 bool accessed_dirty, gpa_t new_eptp);
63 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
64 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
65 u64 fault_address, char *insn, int insn_len);
67 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
69 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
70 return kvm->arch.n_max_mmu_pages -
71 kvm->arch.n_used_mmu_pages;
73 return 0;
76 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
78 if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
79 return 0;
81 return kvm_mmu_load(vcpu);
84 static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
86 BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
88 return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
89 ? cr3 & X86_CR3_PCID_MASK
90 : 0;
93 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
95 return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
98 static inline void kvm_mmu_load_cr3(struct kvm_vcpu *vcpu)
100 if (VALID_PAGE(vcpu->arch.mmu->root_hpa))
101 vcpu->arch.mmu->set_cr3(vcpu, vcpu->arch.mmu->root_hpa |
102 kvm_get_active_pcid(vcpu));
105 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
106 bool prefault);
108 static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
109 u32 err, bool prefault)
111 #ifdef CONFIG_RETPOLINE
112 if (likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault))
113 return kvm_tdp_page_fault(vcpu, cr2_or_gpa, err, prefault);
114 #endif
115 return vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa, err, prefault);
119 * Currently, we have two sorts of write-protection, a) the first one
120 * write-protects guest page to sync the guest modification, b) another one is
121 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
122 * between these two sorts are:
123 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
124 * 2) the first case requires flushing tlb immediately avoiding corrupting
125 * shadow page table between all vcpus so it should be in the protection of
126 * mmu-lock. And the another case does not need to flush tlb until returning
127 * the dirty bitmap to userspace since it only write-protects the page
128 * logged in the bitmap, that means the page in the dirty bitmap is not
129 * missed, so it can flush tlb out of mmu-lock.
131 * So, there is the problem: the first case can meet the corrupted tlb caused
132 * by another case which write-protects pages but without flush tlb
133 * immediately. In order to making the first case be aware this problem we let
134 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
135 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
137 * Anyway, whenever a spte is updated (only permission and status bits are
138 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
139 * readonly, if that happens, we need to flush tlb. Fortunately,
140 * mmu_spte_update() has already handled it perfectly.
142 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
143 * - if we want to see if it has writable tlb entry or if the spte can be
144 * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
145 * case, otherwise
146 * - if we fix page fault on the spte or do write-protection by dirty logging,
147 * check PT_WRITABLE_MASK.
149 * TODO: introduce APIs to split these two cases.
151 static inline int is_writable_pte(unsigned long pte)
153 return pte & PT_WRITABLE_MASK;
156 static inline bool is_write_protection(struct kvm_vcpu *vcpu)
158 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
162 * Check if a given access (described through the I/D, W/R and U/S bits of a
163 * page fault error code pfec) causes a permission fault with the given PTE
164 * access rights (in ACC_* format).
166 * Return zero if the access does not fault; return the page fault error code
167 * if the access faults.
169 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
170 unsigned pte_access, unsigned pte_pkey,
171 unsigned pfec)
173 int cpl = kvm_x86_ops->get_cpl(vcpu);
174 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
177 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
179 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
180 * (these are implicit supervisor accesses) regardless of the value
181 * of EFLAGS.AC.
183 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
184 * the result in X86_EFLAGS_AC. We then insert it in place of
185 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
186 * but it will be one in index if SMAP checks are being overridden.
187 * It is important to keep this branchless.
189 unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
190 int index = (pfec >> 1) +
191 (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
192 bool fault = (mmu->permissions[index] >> pte_access) & 1;
193 u32 errcode = PFERR_PRESENT_MASK;
195 WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
196 if (unlikely(mmu->pkru_mask)) {
197 u32 pkru_bits, offset;
200 * PKRU defines 32 bits, there are 16 domains and 2
201 * attribute bits per domain in pkru. pte_pkey is the
202 * index of the protection domain, so pte_pkey * 2 is
203 * is the index of the first bit for the domain.
205 pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
207 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
208 offset = (pfec & ~1) +
209 ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
211 pkru_bits &= mmu->pkru_mask >> offset;
212 errcode |= -pkru_bits & PFERR_PK_MASK;
213 fault |= (pkru_bits != 0);
216 return -(u32)fault & errcode;
219 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
221 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
222 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
223 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
224 struct kvm_memory_slot *slot, u64 gfn);
225 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
227 int kvm_mmu_post_init_vm(struct kvm *kvm);
228 void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
230 #endif