1 // SPDX-License-Identifier: GPL-2.0-only
3 * bpf_jit_comp.c: BPF JIT compiler
5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/text-patching.h>
18 #include <asm/asm-prototypes.h>
20 static u8
*emit_code(u8
*ptr
, u32 bytes
, unsigned int len
)
33 #define EMIT(bytes, len) \
34 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
36 #define EMIT1(b1) EMIT(b1, 1)
37 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
41 #define EMIT1_off32(b1, off) \
42 do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
50 static bool is_imm8(int value
)
52 return value
<= 127 && value
>= -128;
55 static bool is_simm32(s64 value
)
57 return value
== (s64
)(s32
)value
;
60 static bool is_uimm32(u64 value
)
62 return value
== (u64
)(u32
)value
;
66 #define EMIT_mov(DST, SRC) \
69 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
72 static int bpf_size_to_x86_bytes(int bpf_size
)
74 if (bpf_size
== BPF_W
)
76 else if (bpf_size
== BPF_H
)
78 else if (bpf_size
== BPF_B
)
80 else if (bpf_size
== BPF_DW
)
87 * List of x86 cond jumps opcodes (. + s8)
88 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
101 /* Pick a register outside of BPF range for JIT internal work */
102 #define AUX_REG (MAX_BPF_JIT_REG + 1)
103 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
106 * The following table maps BPF registers to x86-64 registers.
108 * x86-64 register R12 is unused, since if used as base address
109 * register in load/store instructions, it always needs an
110 * extra byte of encoding and is callee saved.
112 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
113 * trampoline. x86-64 register R10 is used for blinding (if enabled).
115 static const int reg2hex
[] = {
116 [BPF_REG_0
] = 0, /* RAX */
117 [BPF_REG_1
] = 7, /* RDI */
118 [BPF_REG_2
] = 6, /* RSI */
119 [BPF_REG_3
] = 2, /* RDX */
120 [BPF_REG_4
] = 1, /* RCX */
121 [BPF_REG_5
] = 0, /* R8 */
122 [BPF_REG_6
] = 3, /* RBX callee saved */
123 [BPF_REG_7
] = 5, /* R13 callee saved */
124 [BPF_REG_8
] = 6, /* R14 callee saved */
125 [BPF_REG_9
] = 7, /* R15 callee saved */
126 [BPF_REG_FP
] = 5, /* RBP readonly */
127 [BPF_REG_AX
] = 2, /* R10 temp register */
128 [AUX_REG
] = 3, /* R11 temp register */
129 [X86_REG_R9
] = 1, /* R9 register, 6th function argument */
132 static const int reg2pt_regs
[] = {
133 [BPF_REG_0
] = offsetof(struct pt_regs
, ax
),
134 [BPF_REG_1
] = offsetof(struct pt_regs
, di
),
135 [BPF_REG_2
] = offsetof(struct pt_regs
, si
),
136 [BPF_REG_3
] = offsetof(struct pt_regs
, dx
),
137 [BPF_REG_4
] = offsetof(struct pt_regs
, cx
),
138 [BPF_REG_5
] = offsetof(struct pt_regs
, r8
),
139 [BPF_REG_6
] = offsetof(struct pt_regs
, bx
),
140 [BPF_REG_7
] = offsetof(struct pt_regs
, r13
),
141 [BPF_REG_8
] = offsetof(struct pt_regs
, r14
),
142 [BPF_REG_9
] = offsetof(struct pt_regs
, r15
),
146 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
147 * which need extra byte of encoding.
148 * rax,rcx,...,rbp have simpler encoding
150 static bool is_ereg(u32 reg
)
152 return (1 << reg
) & (BIT(BPF_REG_5
) |
161 static bool is_axreg(u32 reg
)
163 return reg
== BPF_REG_0
;
166 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
167 static u8
add_1mod(u8 byte
, u32 reg
)
174 static u8
add_2mod(u8 byte
, u32 r1
, u32 r2
)
183 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
184 static u8
add_1reg(u8 byte
, u32 dst_reg
)
186 return byte
+ reg2hex
[dst_reg
];
189 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
190 static u8
add_2reg(u8 byte
, u32 dst_reg
, u32 src_reg
)
192 return byte
+ reg2hex
[dst_reg
] + (reg2hex
[src_reg
] << 3);
195 static void jit_fill_hole(void *area
, unsigned int size
)
197 /* Fill whole space with INT3 instructions */
198 memset(area
, 0xcc, size
);
202 int cleanup_addr
; /* Epilogue code offset */
205 /* Maximum number of bytes emitted while JITing one eBPF insn */
206 #define BPF_MAX_INSN_SIZE 128
207 #define BPF_INSN_SAFETY 64
209 /* Number of bytes emit_patch() needs to generate instructions */
210 #define X86_PATCH_SIZE 5
212 #define PROLOGUE_SIZE 25
215 * Emit x86-64 prologue code for BPF program and check its size.
216 * bpf_tail_call helper will skip it while jumping into another program
218 static void emit_prologue(u8
**pprog
, u32 stack_depth
, bool ebpf_from_cbpf
)
221 int cnt
= X86_PATCH_SIZE
;
223 /* BPF trampoline can be made to work without these nops,
224 * but let's waste 5 bytes for now and optimize later
226 memcpy(prog
, ideal_nops
[NOP_ATOMIC5
], cnt
);
228 EMIT1(0x55); /* push rbp */
229 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
230 /* sub rsp, rounded_stack_depth */
231 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth
, 8));
232 EMIT1(0x53); /* push rbx */
233 EMIT2(0x41, 0x55); /* push r13 */
234 EMIT2(0x41, 0x56); /* push r14 */
235 EMIT2(0x41, 0x57); /* push r15 */
236 if (!ebpf_from_cbpf
) {
237 /* zero init tail_call_cnt */
239 BUILD_BUG_ON(cnt
!= PROLOGUE_SIZE
);
244 static int emit_patch(u8
**pprog
, void *func
, void *ip
, u8 opcode
)
250 offset
= func
- (ip
+ X86_PATCH_SIZE
);
251 if (!is_simm32(offset
)) {
252 pr_err("Target call %p is out of range\n", func
);
255 EMIT1_off32(opcode
, offset
);
260 static int emit_call(u8
**pprog
, void *func
, void *ip
)
262 return emit_patch(pprog
, func
, ip
, 0xE8);
265 static int emit_jump(u8
**pprog
, void *func
, void *ip
)
267 return emit_patch(pprog
, func
, ip
, 0xE9);
270 static int __bpf_arch_text_poke(void *ip
, enum bpf_text_poke_type t
,
271 void *old_addr
, void *new_addr
,
272 const bool text_live
)
274 const u8
*nop_insn
= ideal_nops
[NOP_ATOMIC5
];
275 u8 old_insn
[X86_PATCH_SIZE
];
276 u8 new_insn
[X86_PATCH_SIZE
];
280 memcpy(old_insn
, nop_insn
, X86_PATCH_SIZE
);
283 ret
= t
== BPF_MOD_CALL
?
284 emit_call(&prog
, old_addr
, ip
) :
285 emit_jump(&prog
, old_addr
, ip
);
290 memcpy(new_insn
, nop_insn
, X86_PATCH_SIZE
);
293 ret
= t
== BPF_MOD_CALL
?
294 emit_call(&prog
, new_addr
, ip
) :
295 emit_jump(&prog
, new_addr
, ip
);
301 mutex_lock(&text_mutex
);
302 if (memcmp(ip
, old_insn
, X86_PATCH_SIZE
))
304 if (memcmp(ip
, new_insn
, X86_PATCH_SIZE
)) {
306 text_poke_bp(ip
, new_insn
, X86_PATCH_SIZE
, NULL
);
308 memcpy(ip
, new_insn
, X86_PATCH_SIZE
);
312 mutex_unlock(&text_mutex
);
316 int bpf_arch_text_poke(void *ip
, enum bpf_text_poke_type t
,
317 void *old_addr
, void *new_addr
)
319 if (!is_kernel_text((long)ip
) &&
320 !is_bpf_text_address((long)ip
))
321 /* BPF poking in modules is not supported */
324 return __bpf_arch_text_poke(ip
, t
, old_addr
, new_addr
, true);
328 * Generate the following code:
330 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
331 * if (index >= array->map.max_entries)
333 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
335 * prog = array->ptrs[index];
338 * goto *(prog->bpf_func + prologue_size);
341 static void emit_bpf_tail_call_indirect(u8
**pprog
)
344 int label1
, label2
, label3
;
348 * rdi - pointer to ctx
349 * rsi - pointer to bpf_array
350 * rdx - index in bpf_array
354 * if (index >= array->map.max_entries)
357 EMIT2(0x89, 0xD2); /* mov edx, edx */
358 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
359 offsetof(struct bpf_array
, map
.max_entries
));
360 #define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
361 EMIT2(X86_JBE
, OFFSET1
); /* jbe out */
365 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
368 EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK
); /* mov eax, dword ptr [rbp - 548] */
369 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT
); /* cmp eax, MAX_TAIL_CALL_CNT */
370 #define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
371 EMIT2(X86_JA
, OFFSET2
); /* ja out */
373 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
374 EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK
); /* mov dword ptr [rbp -548], eax */
376 /* prog = array->ptrs[index]; */
377 EMIT4_off32(0x48, 0x8B, 0x84, 0xD6, /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
378 offsetof(struct bpf_array
, ptrs
));
384 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
385 #define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
386 EMIT2(X86_JE
, OFFSET3
); /* je out */
389 /* goto *(prog->bpf_func + prologue_size); */
390 EMIT4(0x48, 0x8B, 0x40, /* mov rax, qword ptr [rax + 32] */
391 offsetof(struct bpf_prog
, bpf_func
));
392 EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE
); /* add rax, prologue_size */
395 * Wow we're ready to jump into next BPF program
396 * rdi == ctx (1st arg)
397 * rax == prog->bpf_func + prologue_size
399 RETPOLINE_RAX_BPF_JIT();
402 BUILD_BUG_ON(cnt
- label1
!= OFFSET1
);
403 BUILD_BUG_ON(cnt
- label2
!= OFFSET2
);
404 BUILD_BUG_ON(cnt
- label3
!= OFFSET3
);
408 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor
*poke
,
409 u8
**pprog
, int addr
, u8
*image
)
415 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
418 EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK
); /* mov eax, dword ptr [rbp - 548] */
419 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT
); /* cmp eax, MAX_TAIL_CALL_CNT */
420 EMIT2(X86_JA
, 14); /* ja out */
421 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
422 EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK
); /* mov dword ptr [rbp -548], eax */
424 poke
->ip
= image
+ (addr
- X86_PATCH_SIZE
);
425 poke
->adj_off
= PROLOGUE_SIZE
;
427 memcpy(prog
, ideal_nops
[NOP_ATOMIC5
], X86_PATCH_SIZE
);
428 prog
+= X86_PATCH_SIZE
;
434 static void bpf_tail_call_direct_fixup(struct bpf_prog
*prog
)
436 struct bpf_jit_poke_descriptor
*poke
;
437 struct bpf_array
*array
;
438 struct bpf_prog
*target
;
441 for (i
= 0; i
< prog
->aux
->size_poke_tab
; i
++) {
442 poke
= &prog
->aux
->poke_tab
[i
];
443 WARN_ON_ONCE(READ_ONCE(poke
->ip_stable
));
445 if (poke
->reason
!= BPF_POKE_REASON_TAIL_CALL
)
448 array
= container_of(poke
->tail_call
.map
, struct bpf_array
, map
);
449 mutex_lock(&array
->aux
->poke_mutex
);
450 target
= array
->ptrs
[poke
->tail_call
.key
];
452 /* Plain memcpy is used when image is not live yet
453 * and still not locked as read-only. Once poke
454 * location is active (poke->ip_stable), any parallel
455 * bpf_arch_text_poke() might occur still on the
456 * read-write image until we finally locked it as
457 * read-only. Both modifications on the given image
458 * are under text_mutex to avoid interference.
460 ret
= __bpf_arch_text_poke(poke
->ip
, BPF_MOD_JUMP
, NULL
,
461 (u8
*)target
->bpf_func
+
462 poke
->adj_off
, false);
465 WRITE_ONCE(poke
->ip_stable
, true);
466 mutex_unlock(&array
->aux
->poke_mutex
);
470 static void emit_mov_imm32(u8
**pprog
, bool sign_propagate
,
471 u32 dst_reg
, const u32 imm32
)
478 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
479 * (which zero-extends imm32) to save 2 bytes.
481 if (sign_propagate
&& (s32
)imm32
< 0) {
482 /* 'mov %rax, imm32' sign extends imm32 */
483 b1
= add_1mod(0x48, dst_reg
);
486 EMIT3_off32(b1
, b2
, add_1reg(b3
, dst_reg
), imm32
);
491 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
495 if (is_ereg(dst_reg
))
496 EMIT1(add_2mod(0x40, dst_reg
, dst_reg
));
499 EMIT2(b2
, add_2reg(b3
, dst_reg
, dst_reg
));
503 /* mov %eax, imm32 */
504 if (is_ereg(dst_reg
))
505 EMIT1(add_1mod(0x40, dst_reg
));
506 EMIT1_off32(add_1reg(0xB8, dst_reg
), imm32
);
511 static void emit_mov_imm64(u8
**pprog
, u32 dst_reg
,
512 const u32 imm32_hi
, const u32 imm32_lo
)
517 if (is_uimm32(((u64
)imm32_hi
<< 32) | (u32
)imm32_lo
)) {
519 * For emitting plain u32, where sign bit must not be
520 * propagated LLVM tends to load imm64 over mov32
521 * directly, so save couple of bytes by just doing
522 * 'mov %eax, imm32' instead.
524 emit_mov_imm32(&prog
, false, dst_reg
, imm32_lo
);
526 /* movabsq %rax, imm64 */
527 EMIT2(add_1mod(0x48, dst_reg
), add_1reg(0xB8, dst_reg
));
535 static void emit_mov_reg(u8
**pprog
, bool is64
, u32 dst_reg
, u32 src_reg
)
542 EMIT_mov(dst_reg
, src_reg
);
545 if (is_ereg(dst_reg
) || is_ereg(src_reg
))
546 EMIT1(add_2mod(0x40, dst_reg
, src_reg
));
547 EMIT2(0x89, add_2reg(0xC0, dst_reg
, src_reg
));
553 /* LDX: dst_reg = *(u8*)(src_reg + off) */
554 static void emit_ldx(u8
**pprog
, u32 size
, u32 dst_reg
, u32 src_reg
, int off
)
561 /* Emit 'movzx rax, byte ptr [rax + off]' */
562 EMIT3(add_2mod(0x48, src_reg
, dst_reg
), 0x0F, 0xB6);
565 /* Emit 'movzx rax, word ptr [rax + off]' */
566 EMIT3(add_2mod(0x48, src_reg
, dst_reg
), 0x0F, 0xB7);
569 /* Emit 'mov eax, dword ptr [rax+0x14]' */
570 if (is_ereg(dst_reg
) || is_ereg(src_reg
))
571 EMIT2(add_2mod(0x40, src_reg
, dst_reg
), 0x8B);
576 /* Emit 'mov rax, qword ptr [rax+0x14]' */
577 EMIT2(add_2mod(0x48, src_reg
, dst_reg
), 0x8B);
581 * If insn->off == 0 we can save one extra byte, but
582 * special case of x86 R13 which always needs an offset
583 * is not worth the hassle
586 EMIT2(add_2reg(0x40, src_reg
, dst_reg
), off
);
588 EMIT1_off32(add_2reg(0x80, src_reg
, dst_reg
), off
);
592 /* STX: *(u8*)(dst_reg + off) = src_reg */
593 static void emit_stx(u8
**pprog
, u32 size
, u32 dst_reg
, u32 src_reg
, int off
)
600 /* Emit 'mov byte ptr [rax + off], al' */
601 if (is_ereg(dst_reg
) || is_ereg(src_reg
) ||
602 /* We have to add extra byte for x86 SIL, DIL regs */
603 src_reg
== BPF_REG_1
|| src_reg
== BPF_REG_2
)
604 EMIT2(add_2mod(0x40, dst_reg
, src_reg
), 0x88);
609 if (is_ereg(dst_reg
) || is_ereg(src_reg
))
610 EMIT3(0x66, add_2mod(0x40, dst_reg
, src_reg
), 0x89);
615 if (is_ereg(dst_reg
) || is_ereg(src_reg
))
616 EMIT2(add_2mod(0x40, dst_reg
, src_reg
), 0x89);
621 EMIT2(add_2mod(0x48, dst_reg
, src_reg
), 0x89);
625 EMIT2(add_2reg(0x40, dst_reg
, src_reg
), off
);
627 EMIT1_off32(add_2reg(0x80, dst_reg
, src_reg
), off
);
631 static bool ex_handler_bpf(const struct exception_table_entry
*x
,
632 struct pt_regs
*regs
, int trapnr
,
633 unsigned long error_code
, unsigned long fault_addr
)
635 u32 reg
= x
->fixup
>> 8;
637 /* jump over faulting load and clear dest register */
638 *(unsigned long *)((void *)regs
+ reg
) = 0;
639 regs
->ip
+= x
->fixup
& 0xff;
643 static int do_jit(struct bpf_prog
*bpf_prog
, int *addrs
, u8
*image
,
644 int oldproglen
, struct jit_context
*ctx
)
646 struct bpf_insn
*insn
= bpf_prog
->insnsi
;
647 int insn_cnt
= bpf_prog
->len
;
648 bool seen_exit
= false;
649 u8 temp
[BPF_MAX_INSN_SIZE
+ BPF_INSN_SAFETY
];
650 int i
, cnt
= 0, excnt
= 0;
654 emit_prologue(&prog
, bpf_prog
->aux
->stack_depth
,
655 bpf_prog_was_classic(bpf_prog
));
656 addrs
[0] = prog
- temp
;
658 for (i
= 1; i
<= insn_cnt
; i
++, insn
++) {
659 const s32 imm32
= insn
->imm
;
660 u32 dst_reg
= insn
->dst_reg
;
661 u32 src_reg
= insn
->src_reg
;
668 switch (insn
->code
) {
670 case BPF_ALU
| BPF_ADD
| BPF_X
:
671 case BPF_ALU
| BPF_SUB
| BPF_X
:
672 case BPF_ALU
| BPF_AND
| BPF_X
:
673 case BPF_ALU
| BPF_OR
| BPF_X
:
674 case BPF_ALU
| BPF_XOR
| BPF_X
:
675 case BPF_ALU64
| BPF_ADD
| BPF_X
:
676 case BPF_ALU64
| BPF_SUB
| BPF_X
:
677 case BPF_ALU64
| BPF_AND
| BPF_X
:
678 case BPF_ALU64
| BPF_OR
| BPF_X
:
679 case BPF_ALU64
| BPF_XOR
| BPF_X
:
680 switch (BPF_OP(insn
->code
)) {
681 case BPF_ADD
: b2
= 0x01; break;
682 case BPF_SUB
: b2
= 0x29; break;
683 case BPF_AND
: b2
= 0x21; break;
684 case BPF_OR
: b2
= 0x09; break;
685 case BPF_XOR
: b2
= 0x31; break;
687 if (BPF_CLASS(insn
->code
) == BPF_ALU64
)
688 EMIT1(add_2mod(0x48, dst_reg
, src_reg
));
689 else if (is_ereg(dst_reg
) || is_ereg(src_reg
))
690 EMIT1(add_2mod(0x40, dst_reg
, src_reg
));
691 EMIT2(b2
, add_2reg(0xC0, dst_reg
, src_reg
));
694 case BPF_ALU64
| BPF_MOV
| BPF_X
:
695 case BPF_ALU
| BPF_MOV
| BPF_X
:
697 BPF_CLASS(insn
->code
) == BPF_ALU64
,
702 case BPF_ALU
| BPF_NEG
:
703 case BPF_ALU64
| BPF_NEG
:
704 if (BPF_CLASS(insn
->code
) == BPF_ALU64
)
705 EMIT1(add_1mod(0x48, dst_reg
));
706 else if (is_ereg(dst_reg
))
707 EMIT1(add_1mod(0x40, dst_reg
));
708 EMIT2(0xF7, add_1reg(0xD8, dst_reg
));
711 case BPF_ALU
| BPF_ADD
| BPF_K
:
712 case BPF_ALU
| BPF_SUB
| BPF_K
:
713 case BPF_ALU
| BPF_AND
| BPF_K
:
714 case BPF_ALU
| BPF_OR
| BPF_K
:
715 case BPF_ALU
| BPF_XOR
| BPF_K
:
716 case BPF_ALU64
| BPF_ADD
| BPF_K
:
717 case BPF_ALU64
| BPF_SUB
| BPF_K
:
718 case BPF_ALU64
| BPF_AND
| BPF_K
:
719 case BPF_ALU64
| BPF_OR
| BPF_K
:
720 case BPF_ALU64
| BPF_XOR
| BPF_K
:
721 if (BPF_CLASS(insn
->code
) == BPF_ALU64
)
722 EMIT1(add_1mod(0x48, dst_reg
));
723 else if (is_ereg(dst_reg
))
724 EMIT1(add_1mod(0x40, dst_reg
));
727 * b3 holds 'normal' opcode, b2 short form only valid
728 * in case dst is eax/rax.
730 switch (BPF_OP(insn
->code
)) {
754 EMIT3(0x83, add_1reg(b3
, dst_reg
), imm32
);
755 else if (is_axreg(dst_reg
))
756 EMIT1_off32(b2
, imm32
);
758 EMIT2_off32(0x81, add_1reg(b3
, dst_reg
), imm32
);
761 case BPF_ALU64
| BPF_MOV
| BPF_K
:
762 case BPF_ALU
| BPF_MOV
| BPF_K
:
763 emit_mov_imm32(&prog
, BPF_CLASS(insn
->code
) == BPF_ALU64
,
767 case BPF_LD
| BPF_IMM
| BPF_DW
:
768 emit_mov_imm64(&prog
, dst_reg
, insn
[1].imm
, insn
[0].imm
);
773 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
774 case BPF_ALU
| BPF_MOD
| BPF_X
:
775 case BPF_ALU
| BPF_DIV
| BPF_X
:
776 case BPF_ALU
| BPF_MOD
| BPF_K
:
777 case BPF_ALU
| BPF_DIV
| BPF_K
:
778 case BPF_ALU64
| BPF_MOD
| BPF_X
:
779 case BPF_ALU64
| BPF_DIV
| BPF_X
:
780 case BPF_ALU64
| BPF_MOD
| BPF_K
:
781 case BPF_ALU64
| BPF_DIV
| BPF_K
:
782 EMIT1(0x50); /* push rax */
783 EMIT1(0x52); /* push rdx */
785 if (BPF_SRC(insn
->code
) == BPF_X
)
786 /* mov r11, src_reg */
787 EMIT_mov(AUX_REG
, src_reg
);
790 EMIT3_off32(0x49, 0xC7, 0xC3, imm32
);
792 /* mov rax, dst_reg */
793 EMIT_mov(BPF_REG_0
, dst_reg
);
797 * equivalent to 'xor rdx, rdx', but one byte less
801 if (BPF_CLASS(insn
->code
) == BPF_ALU64
)
803 EMIT3(0x49, 0xF7, 0xF3);
806 EMIT3(0x41, 0xF7, 0xF3);
808 if (BPF_OP(insn
->code
) == BPF_MOD
)
810 EMIT3(0x49, 0x89, 0xD3);
813 EMIT3(0x49, 0x89, 0xC3);
815 EMIT1(0x5A); /* pop rdx */
816 EMIT1(0x58); /* pop rax */
818 /* mov dst_reg, r11 */
819 EMIT_mov(dst_reg
, AUX_REG
);
822 case BPF_ALU
| BPF_MUL
| BPF_K
:
823 case BPF_ALU
| BPF_MUL
| BPF_X
:
824 case BPF_ALU64
| BPF_MUL
| BPF_K
:
825 case BPF_ALU64
| BPF_MUL
| BPF_X
:
827 bool is64
= BPF_CLASS(insn
->code
) == BPF_ALU64
;
829 if (dst_reg
!= BPF_REG_0
)
830 EMIT1(0x50); /* push rax */
831 if (dst_reg
!= BPF_REG_3
)
832 EMIT1(0x52); /* push rdx */
834 /* mov r11, dst_reg */
835 EMIT_mov(AUX_REG
, dst_reg
);
837 if (BPF_SRC(insn
->code
) == BPF_X
)
838 emit_mov_reg(&prog
, is64
, BPF_REG_0
, src_reg
);
840 emit_mov_imm32(&prog
, is64
, BPF_REG_0
, imm32
);
843 EMIT1(add_1mod(0x48, AUX_REG
));
844 else if (is_ereg(AUX_REG
))
845 EMIT1(add_1mod(0x40, AUX_REG
));
847 EMIT2(0xF7, add_1reg(0xE0, AUX_REG
));
849 if (dst_reg
!= BPF_REG_3
)
850 EMIT1(0x5A); /* pop rdx */
851 if (dst_reg
!= BPF_REG_0
) {
852 /* mov dst_reg, rax */
853 EMIT_mov(dst_reg
, BPF_REG_0
);
854 EMIT1(0x58); /* pop rax */
859 case BPF_ALU
| BPF_LSH
| BPF_K
:
860 case BPF_ALU
| BPF_RSH
| BPF_K
:
861 case BPF_ALU
| BPF_ARSH
| BPF_K
:
862 case BPF_ALU64
| BPF_LSH
| BPF_K
:
863 case BPF_ALU64
| BPF_RSH
| BPF_K
:
864 case BPF_ALU64
| BPF_ARSH
| BPF_K
:
865 if (BPF_CLASS(insn
->code
) == BPF_ALU64
)
866 EMIT1(add_1mod(0x48, dst_reg
));
867 else if (is_ereg(dst_reg
))
868 EMIT1(add_1mod(0x40, dst_reg
));
870 switch (BPF_OP(insn
->code
)) {
871 case BPF_LSH
: b3
= 0xE0; break;
872 case BPF_RSH
: b3
= 0xE8; break;
873 case BPF_ARSH
: b3
= 0xF8; break;
877 EMIT2(0xD1, add_1reg(b3
, dst_reg
));
879 EMIT3(0xC1, add_1reg(b3
, dst_reg
), imm32
);
882 case BPF_ALU
| BPF_LSH
| BPF_X
:
883 case BPF_ALU
| BPF_RSH
| BPF_X
:
884 case BPF_ALU
| BPF_ARSH
| BPF_X
:
885 case BPF_ALU64
| BPF_LSH
| BPF_X
:
886 case BPF_ALU64
| BPF_RSH
| BPF_X
:
887 case BPF_ALU64
| BPF_ARSH
| BPF_X
:
889 /* Check for bad case when dst_reg == rcx */
890 if (dst_reg
== BPF_REG_4
) {
891 /* mov r11, dst_reg */
892 EMIT_mov(AUX_REG
, dst_reg
);
896 if (src_reg
!= BPF_REG_4
) { /* common case */
897 EMIT1(0x51); /* push rcx */
899 /* mov rcx, src_reg */
900 EMIT_mov(BPF_REG_4
, src_reg
);
903 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
904 if (BPF_CLASS(insn
->code
) == BPF_ALU64
)
905 EMIT1(add_1mod(0x48, dst_reg
));
906 else if (is_ereg(dst_reg
))
907 EMIT1(add_1mod(0x40, dst_reg
));
909 switch (BPF_OP(insn
->code
)) {
910 case BPF_LSH
: b3
= 0xE0; break;
911 case BPF_RSH
: b3
= 0xE8; break;
912 case BPF_ARSH
: b3
= 0xF8; break;
914 EMIT2(0xD3, add_1reg(b3
, dst_reg
));
916 if (src_reg
!= BPF_REG_4
)
917 EMIT1(0x59); /* pop rcx */
919 if (insn
->dst_reg
== BPF_REG_4
)
920 /* mov dst_reg, r11 */
921 EMIT_mov(insn
->dst_reg
, AUX_REG
);
924 case BPF_ALU
| BPF_END
| BPF_FROM_BE
:
927 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
929 if (is_ereg(dst_reg
))
931 EMIT3(0xC1, add_1reg(0xC8, dst_reg
), 8);
933 /* Emit 'movzwl eax, ax' */
934 if (is_ereg(dst_reg
))
935 EMIT3(0x45, 0x0F, 0xB7);
938 EMIT1(add_2reg(0xC0, dst_reg
, dst_reg
));
941 /* Emit 'bswap eax' to swap lower 4 bytes */
942 if (is_ereg(dst_reg
))
946 EMIT1(add_1reg(0xC8, dst_reg
));
949 /* Emit 'bswap rax' to swap 8 bytes */
950 EMIT3(add_1mod(0x48, dst_reg
), 0x0F,
951 add_1reg(0xC8, dst_reg
));
956 case BPF_ALU
| BPF_END
| BPF_FROM_LE
:
960 * Emit 'movzwl eax, ax' to zero extend 16-bit
963 if (is_ereg(dst_reg
))
964 EMIT3(0x45, 0x0F, 0xB7);
967 EMIT1(add_2reg(0xC0, dst_reg
, dst_reg
));
970 /* Emit 'mov eax, eax' to clear upper 32-bits */
971 if (is_ereg(dst_reg
))
973 EMIT2(0x89, add_2reg(0xC0, dst_reg
, dst_reg
));
981 /* ST: *(u8*)(dst_reg + off) = imm */
982 case BPF_ST
| BPF_MEM
| BPF_B
:
983 if (is_ereg(dst_reg
))
988 case BPF_ST
| BPF_MEM
| BPF_H
:
989 if (is_ereg(dst_reg
))
990 EMIT3(0x66, 0x41, 0xC7);
994 case BPF_ST
| BPF_MEM
| BPF_W
:
995 if (is_ereg(dst_reg
))
1000 case BPF_ST
| BPF_MEM
| BPF_DW
:
1001 EMIT2(add_1mod(0x48, dst_reg
), 0xC7);
1003 st
: if (is_imm8(insn
->off
))
1004 EMIT2(add_1reg(0x40, dst_reg
), insn
->off
);
1006 EMIT1_off32(add_1reg(0x80, dst_reg
), insn
->off
);
1008 EMIT(imm32
, bpf_size_to_x86_bytes(BPF_SIZE(insn
->code
)));
1011 /* STX: *(u8*)(dst_reg + off) = src_reg */
1012 case BPF_STX
| BPF_MEM
| BPF_B
:
1013 case BPF_STX
| BPF_MEM
| BPF_H
:
1014 case BPF_STX
| BPF_MEM
| BPF_W
:
1015 case BPF_STX
| BPF_MEM
| BPF_DW
:
1016 emit_stx(&prog
, BPF_SIZE(insn
->code
), dst_reg
, src_reg
, insn
->off
);
1019 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1020 case BPF_LDX
| BPF_MEM
| BPF_B
:
1021 case BPF_LDX
| BPF_PROBE_MEM
| BPF_B
:
1022 case BPF_LDX
| BPF_MEM
| BPF_H
:
1023 case BPF_LDX
| BPF_PROBE_MEM
| BPF_H
:
1024 case BPF_LDX
| BPF_MEM
| BPF_W
:
1025 case BPF_LDX
| BPF_PROBE_MEM
| BPF_W
:
1026 case BPF_LDX
| BPF_MEM
| BPF_DW
:
1027 case BPF_LDX
| BPF_PROBE_MEM
| BPF_DW
:
1028 emit_ldx(&prog
, BPF_SIZE(insn
->code
), dst_reg
, src_reg
, insn
->off
);
1029 if (BPF_MODE(insn
->code
) == BPF_PROBE_MEM
) {
1030 struct exception_table_entry
*ex
;
1031 u8
*_insn
= image
+ proglen
;
1034 if (!bpf_prog
->aux
->extable
)
1037 if (excnt
>= bpf_prog
->aux
->num_exentries
) {
1038 pr_err("ex gen bug\n");
1041 ex
= &bpf_prog
->aux
->extable
[excnt
++];
1043 delta
= _insn
- (u8
*)&ex
->insn
;
1044 if (!is_simm32(delta
)) {
1045 pr_err("extable->insn doesn't fit into 32-bit\n");
1050 delta
= (u8
*)ex_handler_bpf
- (u8
*)&ex
->handler
;
1051 if (!is_simm32(delta
)) {
1052 pr_err("extable->handler doesn't fit into 32-bit\n");
1055 ex
->handler
= delta
;
1057 if (dst_reg
> BPF_REG_9
) {
1058 pr_err("verifier error\n");
1062 * Compute size of x86 insn and its target dest x86 register.
1063 * ex_handler_bpf() will use lower 8 bits to adjust
1064 * pt_regs->ip to jump over this x86 instruction
1065 * and upper bits to figure out which pt_regs to zero out.
1066 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1067 * of 4 bytes will be ignored and rbx will be zero inited.
1069 ex
->fixup
= (prog
- temp
) | (reg2pt_regs
[dst_reg
] << 8);
1073 /* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
1074 case BPF_STX
| BPF_XADD
| BPF_W
:
1075 /* Emit 'lock add dword ptr [rax + off], eax' */
1076 if (is_ereg(dst_reg
) || is_ereg(src_reg
))
1077 EMIT3(0xF0, add_2mod(0x40, dst_reg
, src_reg
), 0x01);
1081 case BPF_STX
| BPF_XADD
| BPF_DW
:
1082 EMIT3(0xF0, add_2mod(0x48, dst_reg
, src_reg
), 0x01);
1083 xadd
: if (is_imm8(insn
->off
))
1084 EMIT2(add_2reg(0x40, dst_reg
, src_reg
), insn
->off
);
1086 EMIT1_off32(add_2reg(0x80, dst_reg
, src_reg
),
1091 case BPF_JMP
| BPF_CALL
:
1092 func
= (u8
*) __bpf_call_base
+ imm32
;
1093 if (!imm32
|| emit_call(&prog
, func
, image
+ addrs
[i
- 1]))
1097 case BPF_JMP
| BPF_TAIL_CALL
:
1099 emit_bpf_tail_call_direct(&bpf_prog
->aux
->poke_tab
[imm32
- 1],
1100 &prog
, addrs
[i
], image
);
1102 emit_bpf_tail_call_indirect(&prog
);
1106 case BPF_JMP
| BPF_JEQ
| BPF_X
:
1107 case BPF_JMP
| BPF_JNE
| BPF_X
:
1108 case BPF_JMP
| BPF_JGT
| BPF_X
:
1109 case BPF_JMP
| BPF_JLT
| BPF_X
:
1110 case BPF_JMP
| BPF_JGE
| BPF_X
:
1111 case BPF_JMP
| BPF_JLE
| BPF_X
:
1112 case BPF_JMP
| BPF_JSGT
| BPF_X
:
1113 case BPF_JMP
| BPF_JSLT
| BPF_X
:
1114 case BPF_JMP
| BPF_JSGE
| BPF_X
:
1115 case BPF_JMP
| BPF_JSLE
| BPF_X
:
1116 case BPF_JMP32
| BPF_JEQ
| BPF_X
:
1117 case BPF_JMP32
| BPF_JNE
| BPF_X
:
1118 case BPF_JMP32
| BPF_JGT
| BPF_X
:
1119 case BPF_JMP32
| BPF_JLT
| BPF_X
:
1120 case BPF_JMP32
| BPF_JGE
| BPF_X
:
1121 case BPF_JMP32
| BPF_JLE
| BPF_X
:
1122 case BPF_JMP32
| BPF_JSGT
| BPF_X
:
1123 case BPF_JMP32
| BPF_JSLT
| BPF_X
:
1124 case BPF_JMP32
| BPF_JSGE
| BPF_X
:
1125 case BPF_JMP32
| BPF_JSLE
| BPF_X
:
1126 /* cmp dst_reg, src_reg */
1127 if (BPF_CLASS(insn
->code
) == BPF_JMP
)
1128 EMIT1(add_2mod(0x48, dst_reg
, src_reg
));
1129 else if (is_ereg(dst_reg
) || is_ereg(src_reg
))
1130 EMIT1(add_2mod(0x40, dst_reg
, src_reg
));
1131 EMIT2(0x39, add_2reg(0xC0, dst_reg
, src_reg
));
1134 case BPF_JMP
| BPF_JSET
| BPF_X
:
1135 case BPF_JMP32
| BPF_JSET
| BPF_X
:
1136 /* test dst_reg, src_reg */
1137 if (BPF_CLASS(insn
->code
) == BPF_JMP
)
1138 EMIT1(add_2mod(0x48, dst_reg
, src_reg
));
1139 else if (is_ereg(dst_reg
) || is_ereg(src_reg
))
1140 EMIT1(add_2mod(0x40, dst_reg
, src_reg
));
1141 EMIT2(0x85, add_2reg(0xC0, dst_reg
, src_reg
));
1144 case BPF_JMP
| BPF_JSET
| BPF_K
:
1145 case BPF_JMP32
| BPF_JSET
| BPF_K
:
1146 /* test dst_reg, imm32 */
1147 if (BPF_CLASS(insn
->code
) == BPF_JMP
)
1148 EMIT1(add_1mod(0x48, dst_reg
));
1149 else if (is_ereg(dst_reg
))
1150 EMIT1(add_1mod(0x40, dst_reg
));
1151 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg
), imm32
);
1154 case BPF_JMP
| BPF_JEQ
| BPF_K
:
1155 case BPF_JMP
| BPF_JNE
| BPF_K
:
1156 case BPF_JMP
| BPF_JGT
| BPF_K
:
1157 case BPF_JMP
| BPF_JLT
| BPF_K
:
1158 case BPF_JMP
| BPF_JGE
| BPF_K
:
1159 case BPF_JMP
| BPF_JLE
| BPF_K
:
1160 case BPF_JMP
| BPF_JSGT
| BPF_K
:
1161 case BPF_JMP
| BPF_JSLT
| BPF_K
:
1162 case BPF_JMP
| BPF_JSGE
| BPF_K
:
1163 case BPF_JMP
| BPF_JSLE
| BPF_K
:
1164 case BPF_JMP32
| BPF_JEQ
| BPF_K
:
1165 case BPF_JMP32
| BPF_JNE
| BPF_K
:
1166 case BPF_JMP32
| BPF_JGT
| BPF_K
:
1167 case BPF_JMP32
| BPF_JLT
| BPF_K
:
1168 case BPF_JMP32
| BPF_JGE
| BPF_K
:
1169 case BPF_JMP32
| BPF_JLE
| BPF_K
:
1170 case BPF_JMP32
| BPF_JSGT
| BPF_K
:
1171 case BPF_JMP32
| BPF_JSLT
| BPF_K
:
1172 case BPF_JMP32
| BPF_JSGE
| BPF_K
:
1173 case BPF_JMP32
| BPF_JSLE
| BPF_K
:
1174 /* test dst_reg, dst_reg to save one extra byte */
1176 if (BPF_CLASS(insn
->code
) == BPF_JMP
)
1177 EMIT1(add_2mod(0x48, dst_reg
, dst_reg
));
1178 else if (is_ereg(dst_reg
))
1179 EMIT1(add_2mod(0x40, dst_reg
, dst_reg
));
1180 EMIT2(0x85, add_2reg(0xC0, dst_reg
, dst_reg
));
1184 /* cmp dst_reg, imm8/32 */
1185 if (BPF_CLASS(insn
->code
) == BPF_JMP
)
1186 EMIT1(add_1mod(0x48, dst_reg
));
1187 else if (is_ereg(dst_reg
))
1188 EMIT1(add_1mod(0x40, dst_reg
));
1191 EMIT3(0x83, add_1reg(0xF8, dst_reg
), imm32
);
1193 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg
), imm32
);
1195 emit_cond_jmp
: /* Convert BPF opcode to x86 */
1196 switch (BPF_OP(insn
->code
)) {
1205 /* GT is unsigned '>', JA in x86 */
1209 /* LT is unsigned '<', JB in x86 */
1213 /* GE is unsigned '>=', JAE in x86 */
1217 /* LE is unsigned '<=', JBE in x86 */
1221 /* Signed '>', GT in x86 */
1225 /* Signed '<', LT in x86 */
1229 /* Signed '>=', GE in x86 */
1233 /* Signed '<=', LE in x86 */
1236 default: /* to silence GCC warning */
1239 jmp_offset
= addrs
[i
+ insn
->off
] - addrs
[i
];
1240 if (is_imm8(jmp_offset
)) {
1241 EMIT2(jmp_cond
, jmp_offset
);
1242 } else if (is_simm32(jmp_offset
)) {
1243 EMIT2_off32(0x0F, jmp_cond
+ 0x10, jmp_offset
);
1245 pr_err("cond_jmp gen bug %llx\n", jmp_offset
);
1251 case BPF_JMP
| BPF_JA
:
1252 if (insn
->off
== -1)
1253 /* -1 jmp instructions will always jump
1254 * backwards two bytes. Explicitly handling
1255 * this case avoids wasting too many passes
1256 * when there are long sequences of replaced
1261 jmp_offset
= addrs
[i
+ insn
->off
] - addrs
[i
];
1264 /* Optimize out nop jumps */
1267 if (is_imm8(jmp_offset
)) {
1268 EMIT2(0xEB, jmp_offset
);
1269 } else if (is_simm32(jmp_offset
)) {
1270 EMIT1_off32(0xE9, jmp_offset
);
1272 pr_err("jmp gen bug %llx\n", jmp_offset
);
1277 case BPF_JMP
| BPF_EXIT
:
1279 jmp_offset
= ctx
->cleanup_addr
- addrs
[i
];
1283 /* Update cleanup_addr */
1284 ctx
->cleanup_addr
= proglen
;
1285 if (!bpf_prog_was_classic(bpf_prog
))
1286 EMIT1(0x5B); /* get rid of tail_call_cnt */
1287 EMIT2(0x41, 0x5F); /* pop r15 */
1288 EMIT2(0x41, 0x5E); /* pop r14 */
1289 EMIT2(0x41, 0x5D); /* pop r13 */
1290 EMIT1(0x5B); /* pop rbx */
1291 EMIT1(0xC9); /* leave */
1292 EMIT1(0xC3); /* ret */
1297 * By design x86-64 JIT should support all BPF instructions.
1298 * This error will be seen if new instruction was added
1299 * to the interpreter, but not to the JIT, or if there is
1302 pr_err("bpf_jit: unknown opcode %02x\n", insn
->code
);
1307 if (ilen
> BPF_MAX_INSN_SIZE
) {
1308 pr_err("bpf_jit: fatal insn size error\n");
1313 if (unlikely(proglen
+ ilen
> oldproglen
)) {
1314 pr_err("bpf_jit: fatal error\n");
1317 memcpy(image
+ proglen
, temp
, ilen
);
1324 if (image
&& excnt
!= bpf_prog
->aux
->num_exentries
) {
1325 pr_err("extable is not populated\n");
1331 static void save_regs(const struct btf_func_model
*m
, u8
**prog
, int nr_args
,
1335 /* Store function arguments to stack.
1336 * For a function that accepts two pointers the sequence will be:
1337 * mov QWORD PTR [rbp-0x10],rdi
1338 * mov QWORD PTR [rbp-0x8],rsi
1340 for (i
= 0; i
< min(nr_args
, 6); i
++)
1341 emit_stx(prog
, bytes_to_bpf_size(m
->arg_size
[i
]),
1343 i
== 5 ? X86_REG_R9
: BPF_REG_1
+ i
,
1344 -(stack_size
- i
* 8));
1347 static void restore_regs(const struct btf_func_model
*m
, u8
**prog
, int nr_args
,
1352 /* Restore function arguments from stack.
1353 * For a function that accepts two pointers the sequence will be:
1354 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1355 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1357 for (i
= 0; i
< min(nr_args
, 6); i
++)
1358 emit_ldx(prog
, bytes_to_bpf_size(m
->arg_size
[i
]),
1359 i
== 5 ? X86_REG_R9
: BPF_REG_1
+ i
,
1361 -(stack_size
- i
* 8));
1364 static int invoke_bpf(const struct btf_func_model
*m
, u8
**pprog
,
1365 struct bpf_prog
**progs
, int prog_cnt
, int stack_size
)
1370 for (i
= 0; i
< prog_cnt
; i
++) {
1371 if (emit_call(&prog
, __bpf_prog_enter
, prog
))
1373 /* remember prog start time returned by __bpf_prog_enter */
1374 emit_mov_reg(&prog
, true, BPF_REG_6
, BPF_REG_0
);
1376 /* arg1: lea rdi, [rbp - stack_size] */
1377 EMIT4(0x48, 0x8D, 0x7D, -stack_size
);
1378 /* arg2: progs[i]->insnsi for interpreter */
1379 if (!progs
[i
]->jited
)
1380 emit_mov_imm64(&prog
, BPF_REG_2
,
1381 (long) progs
[i
]->insnsi
>> 32,
1382 (u32
) (long) progs
[i
]->insnsi
);
1383 /* call JITed bpf program or interpreter */
1384 if (emit_call(&prog
, progs
[i
]->bpf_func
, prog
))
1387 /* arg1: mov rdi, progs[i] */
1388 emit_mov_imm64(&prog
, BPF_REG_1
, (long) progs
[i
] >> 32,
1389 (u32
) (long) progs
[i
]);
1390 /* arg2: mov rsi, rbx <- start time in nsec */
1391 emit_mov_reg(&prog
, true, BPF_REG_2
, BPF_REG_6
);
1392 if (emit_call(&prog
, __bpf_prog_exit
, prog
))
1400 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1401 * its 'struct btf_func_model' will be nr_args=2
1402 * The assembly code when eth_type_trans is executing after trampoline:
1406 * sub rsp, 16 // space for skb and dev
1407 * push rbx // temp regs to pass start time
1408 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack
1409 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack
1410 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
1411 * mov rbx, rax // remember start time in bpf stats are enabled
1412 * lea rdi, [rbp - 16] // R1==ctx of bpf prog
1413 * call addr_of_jited_FENTRY_prog
1414 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
1415 * mov rsi, rbx // prog start time
1416 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
1417 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
1418 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
1423 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
1424 * replaced with 'call generated_bpf_trampoline'. When it returns
1425 * eth_type_trans will continue executing with original skb and dev pointers.
1427 * The assembly code when eth_type_trans is called from trampoline:
1431 * sub rsp, 24 // space for skb, dev, return value
1432 * push rbx // temp regs to pass start time
1433 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack
1434 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack
1435 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
1436 * mov rbx, rax // remember start time if bpf stats are enabled
1437 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
1438 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
1439 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
1440 * mov rsi, rbx // prog start time
1441 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
1442 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
1443 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
1444 * call eth_type_trans+5 // execute body of eth_type_trans
1445 * mov qword ptr [rbp - 8], rax // save return value
1446 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
1447 * mov rbx, rax // remember start time in bpf stats are enabled
1448 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
1449 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
1450 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
1451 * mov rsi, rbx // prog start time
1452 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
1453 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
1456 * add rsp, 8 // skip eth_type_trans's frame
1457 * ret // return to its caller
1459 int arch_prepare_bpf_trampoline(void *image
, void *image_end
,
1460 const struct btf_func_model
*m
, u32 flags
,
1461 struct bpf_prog
**fentry_progs
, int fentry_cnt
,
1462 struct bpf_prog
**fexit_progs
, int fexit_cnt
,
1465 int cnt
= 0, nr_args
= m
->nr_args
;
1466 int stack_size
= nr_args
* 8;
1469 /* x86-64 supports up to 6 arguments. 7+ can be added in the future */
1473 if ((flags
& BPF_TRAMP_F_RESTORE_REGS
) &&
1474 (flags
& BPF_TRAMP_F_SKIP_FRAME
))
1477 if (flags
& BPF_TRAMP_F_CALL_ORIG
)
1478 stack_size
+= 8; /* room for return value of orig_call */
1480 if (flags
& BPF_TRAMP_F_SKIP_FRAME
)
1481 /* skip patched call instruction and point orig_call to actual
1482 * body of the kernel function.
1484 orig_call
+= X86_PATCH_SIZE
;
1488 EMIT1(0x55); /* push rbp */
1489 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
1490 EMIT4(0x48, 0x83, 0xEC, stack_size
); /* sub rsp, stack_size */
1491 EMIT1(0x53); /* push rbx */
1493 save_regs(m
, &prog
, nr_args
, stack_size
);
1496 if (invoke_bpf(m
, &prog
, fentry_progs
, fentry_cnt
, stack_size
))
1499 if (flags
& BPF_TRAMP_F_CALL_ORIG
) {
1501 restore_regs(m
, &prog
, nr_args
, stack_size
);
1503 /* call original function */
1504 if (emit_call(&prog
, orig_call
, prog
))
1506 /* remember return value in a stack for bpf prog to access */
1507 emit_stx(&prog
, BPF_DW
, BPF_REG_FP
, BPF_REG_0
, -8);
1511 if (invoke_bpf(m
, &prog
, fexit_progs
, fexit_cnt
, stack_size
))
1514 if (flags
& BPF_TRAMP_F_RESTORE_REGS
)
1515 restore_regs(m
, &prog
, nr_args
, stack_size
);
1517 if (flags
& BPF_TRAMP_F_CALL_ORIG
)
1518 /* restore original return value back into RAX */
1519 emit_ldx(&prog
, BPF_DW
, BPF_REG_0
, BPF_REG_FP
, -8);
1521 EMIT1(0x5B); /* pop rbx */
1522 EMIT1(0xC9); /* leave */
1523 if (flags
& BPF_TRAMP_F_SKIP_FRAME
)
1524 /* skip our return address and return to parent */
1525 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
1526 EMIT1(0xC3); /* ret */
1527 /* Make sure the trampoline generation logic doesn't overflow */
1528 if (WARN_ON_ONCE(prog
> (u8
*)image_end
- BPF_INSN_SAFETY
))
1530 return prog
- (u8
*)image
;
1533 static int emit_cond_near_jump(u8
**pprog
, void *func
, void *ip
, u8 jmp_cond
)
1539 offset
= func
- (ip
+ 2 + 4);
1540 if (!is_simm32(offset
)) {
1541 pr_err("Target %p is out of range\n", func
);
1544 EMIT2_off32(0x0F, jmp_cond
+ 0x10, offset
);
1549 static void emit_nops(u8
**pprog
, unsigned int len
)
1551 unsigned int i
, noplen
;
1558 if (noplen
> ASM_NOP_MAX
)
1559 noplen
= ASM_NOP_MAX
;
1561 for (i
= 0; i
< noplen
; i
++)
1562 EMIT1(ideal_nops
[noplen
][i
]);
1569 static int emit_fallback_jump(u8
**pprog
)
1574 #ifdef CONFIG_RETPOLINE
1575 /* Note that this assumes the the compiler uses external
1576 * thunks for indirect calls. Both clang and GCC use the same
1577 * naming convention for external thunks.
1579 err
= emit_jump(&prog
, __x86_indirect_thunk_rdx
, prog
);
1583 EMIT2(0xFF, 0xE2); /* jmp rdx */
1589 static int emit_bpf_dispatcher(u8
**pprog
, int a
, int b
, s64
*progs
)
1591 u8
*jg_reloc
, *jg_target
, *prog
= *pprog
;
1592 int pivot
, err
, jg_bytes
= 1, cnt
= 0;
1596 /* Leaf node of recursion, i.e. not a range of indices
1599 EMIT1(add_1mod(0x48, BPF_REG_3
)); /* cmp rdx,func */
1600 if (!is_simm32(progs
[a
]))
1602 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3
),
1604 err
= emit_cond_near_jump(&prog
, /* je func */
1605 (void *)progs
[a
], prog
,
1610 err
= emit_fallback_jump(&prog
); /* jmp thunk/indirect */
1618 /* Not a leaf node, so we pivot, and recursively descend into
1619 * the lower and upper ranges.
1621 pivot
= (b
- a
) / 2;
1622 EMIT1(add_1mod(0x48, BPF_REG_3
)); /* cmp rdx,func */
1623 if (!is_simm32(progs
[a
+ pivot
]))
1625 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3
), progs
[a
+ pivot
]);
1627 if (pivot
> 2) { /* jg upper_part */
1628 /* Require near jump. */
1630 EMIT2_off32(0x0F, X86_JG
+ 0x10, 0);
1636 err
= emit_bpf_dispatcher(&prog
, a
, a
+ pivot
, /* emit lower_part */
1641 /* From Intel 64 and IA-32 Architectures Optimization
1642 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
1643 * Coding Rule 11: All branch targets should be 16-byte
1646 jg_target
= PTR_ALIGN(prog
, 16);
1647 if (jg_target
!= prog
)
1648 emit_nops(&prog
, jg_target
- prog
);
1649 jg_offset
= prog
- jg_reloc
;
1650 emit_code(jg_reloc
- jg_bytes
, jg_offset
, jg_bytes
);
1652 err
= emit_bpf_dispatcher(&prog
, a
+ pivot
+ 1, /* emit upper_part */
1661 static int cmp_ips(const void *a
, const void *b
)
1673 int arch_prepare_bpf_dispatcher(void *image
, s64
*funcs
, int num_funcs
)
1677 sort(funcs
, num_funcs
, sizeof(funcs
[0]), cmp_ips
, NULL
);
1678 return emit_bpf_dispatcher(&prog
, 0, num_funcs
- 1, funcs
);
1681 struct x64_jit_data
{
1682 struct bpf_binary_header
*header
;
1686 struct jit_context ctx
;
1689 struct bpf_prog
*bpf_int_jit_compile(struct bpf_prog
*prog
)
1691 struct bpf_binary_header
*header
= NULL
;
1692 struct bpf_prog
*tmp
, *orig_prog
= prog
;
1693 struct x64_jit_data
*jit_data
;
1694 int proglen
, oldproglen
= 0;
1695 struct jit_context ctx
= {};
1696 bool tmp_blinded
= false;
1697 bool extra_pass
= false;
1703 if (!prog
->jit_requested
)
1706 tmp
= bpf_jit_blind_constants(prog
);
1708 * If blinding was requested and we failed during blinding,
1709 * we must fall back to the interpreter.
1718 jit_data
= prog
->aux
->jit_data
;
1720 jit_data
= kzalloc(sizeof(*jit_data
), GFP_KERNEL
);
1725 prog
->aux
->jit_data
= jit_data
;
1727 addrs
= jit_data
->addrs
;
1729 ctx
= jit_data
->ctx
;
1730 oldproglen
= jit_data
->proglen
;
1731 image
= jit_data
->image
;
1732 header
= jit_data
->header
;
1734 goto skip_init_addrs
;
1736 addrs
= kmalloc_array(prog
->len
+ 1, sizeof(*addrs
), GFP_KERNEL
);
1743 * Before first pass, make a rough estimation of addrs[]
1744 * each BPF instruction is translated to less than 64 bytes
1746 for (proglen
= 0, i
= 0; i
<= prog
->len
; i
++) {
1750 ctx
.cleanup_addr
= proglen
;
1754 * JITed image shrinks with every pass and the loop iterates
1755 * until the image stops shrinking. Very large BPF programs
1756 * may converge on the last pass. In such case do one more
1757 * pass to emit the final image.
1759 for (pass
= 0; pass
< 20 || image
; pass
++) {
1760 proglen
= do_jit(prog
, addrs
, image
, oldproglen
, &ctx
);
1765 bpf_jit_binary_free(header
);
1770 if (proglen
!= oldproglen
) {
1771 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1772 proglen
, oldproglen
);
1777 if (proglen
== oldproglen
) {
1779 * The number of entries in extable is the number of BPF_LDX
1780 * insns that access kernel memory via "pointer to BTF type".
1781 * The verifier changed their opcode from LDX|MEM|size
1782 * to LDX|PROBE_MEM|size to make JITing easier.
1784 u32 align
= __alignof__(struct exception_table_entry
);
1785 u32 extable_size
= prog
->aux
->num_exentries
*
1786 sizeof(struct exception_table_entry
);
1788 /* allocate module memory for x86 insns and extable */
1789 header
= bpf_jit_binary_alloc(roundup(proglen
, align
) + extable_size
,
1790 &image
, align
, jit_fill_hole
);
1795 prog
->aux
->extable
= (void *) image
+ roundup(proglen
, align
);
1797 oldproglen
= proglen
;
1801 if (bpf_jit_enable
> 1)
1802 bpf_jit_dump(prog
->len
, proglen
, pass
+ 1, image
);
1805 if (!prog
->is_func
|| extra_pass
) {
1806 bpf_tail_call_direct_fixup(prog
);
1807 bpf_jit_binary_lock_ro(header
);
1809 jit_data
->addrs
= addrs
;
1810 jit_data
->ctx
= ctx
;
1811 jit_data
->proglen
= proglen
;
1812 jit_data
->image
= image
;
1813 jit_data
->header
= header
;
1815 prog
->bpf_func
= (void *)image
;
1817 prog
->jited_len
= proglen
;
1822 if (!image
|| !prog
->is_func
|| extra_pass
) {
1824 bpf_prog_fill_jited_linfo(prog
, addrs
+ 1);
1828 prog
->aux
->jit_data
= NULL
;
1832 bpf_jit_prog_release_other(prog
, prog
== orig_prog
?