arm64: dts: Revert "specify console via command line"
[linux/fpc-iii.git] / fs / btrfs / extent_io.c
blobc0f202741e092cfdd126ee001f4dfe93dc322030
1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
32 static inline bool extent_state_in_tree(const struct extent_state *state)
34 return !RB_EMPTY_NODE(&state->rb_node);
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(buffers);
39 static LIST_HEAD(states);
41 static DEFINE_SPINLOCK(leak_lock);
43 static inline
44 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
46 unsigned long flags;
48 spin_lock_irqsave(&leak_lock, flags);
49 list_add(new, head);
50 spin_unlock_irqrestore(&leak_lock, flags);
53 static inline
54 void btrfs_leak_debug_del(struct list_head *entry)
56 unsigned long flags;
58 spin_lock_irqsave(&leak_lock, flags);
59 list_del(entry);
60 spin_unlock_irqrestore(&leak_lock, flags);
63 static inline void btrfs_extent_buffer_leak_debug_check(void)
65 struct extent_buffer *eb;
67 while (!list_empty(&buffers)) {
68 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
69 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
70 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
71 list_del(&eb->leak_list);
72 kmem_cache_free(extent_buffer_cache, eb);
76 static inline void btrfs_extent_state_leak_debug_check(void)
78 struct extent_state *state;
80 while (!list_empty(&states)) {
81 state = list_entry(states.next, struct extent_state, leak_list);
82 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
83 state->start, state->end, state->state,
84 extent_state_in_tree(state),
85 refcount_read(&state->refs));
86 list_del(&state->leak_list);
87 kmem_cache_free(extent_state_cache, state);
91 #define btrfs_debug_check_extent_io_range(tree, start, end) \
92 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
93 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
94 struct extent_io_tree *tree, u64 start, u64 end)
96 struct inode *inode = tree->private_data;
97 u64 isize;
99 if (!inode || !is_data_inode(inode))
100 return;
102 isize = i_size_read(inode);
103 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
104 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
105 "%s: ino %llu isize %llu odd range [%llu,%llu]",
106 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
109 #else
110 #define btrfs_leak_debug_add(new, head) do {} while (0)
111 #define btrfs_leak_debug_del(entry) do {} while (0)
112 #define btrfs_extent_buffer_leak_debug_check() do {} while (0)
113 #define btrfs_extent_state_leak_debug_check() do {} while (0)
114 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
115 #endif
117 struct tree_entry {
118 u64 start;
119 u64 end;
120 struct rb_node rb_node;
123 struct extent_page_data {
124 struct bio *bio;
125 struct extent_io_tree *tree;
126 /* tells writepage not to lock the state bits for this range
127 * it still does the unlocking
129 unsigned int extent_locked:1;
131 /* tells the submit_bio code to use REQ_SYNC */
132 unsigned int sync_io:1;
135 static int add_extent_changeset(struct extent_state *state, unsigned bits,
136 struct extent_changeset *changeset,
137 int set)
139 int ret;
141 if (!changeset)
142 return 0;
143 if (set && (state->state & bits) == bits)
144 return 0;
145 if (!set && (state->state & bits) == 0)
146 return 0;
147 changeset->bytes_changed += state->end - state->start + 1;
148 ret = ulist_add(&changeset->range_changed, state->start, state->end,
149 GFP_ATOMIC);
150 return ret;
153 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
154 unsigned long bio_flags)
156 blk_status_t ret = 0;
157 struct extent_io_tree *tree = bio->bi_private;
159 bio->bi_private = NULL;
161 if (tree->ops)
162 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
163 mirror_num, bio_flags);
164 else
165 btrfsic_submit_bio(bio);
167 return blk_status_to_errno(ret);
170 /* Cleanup unsubmitted bios */
171 static void end_write_bio(struct extent_page_data *epd, int ret)
173 if (epd->bio) {
174 epd->bio->bi_status = errno_to_blk_status(ret);
175 bio_endio(epd->bio);
176 epd->bio = NULL;
181 * Submit bio from extent page data via submit_one_bio
183 * Return 0 if everything is OK.
184 * Return <0 for error.
186 static int __must_check flush_write_bio(struct extent_page_data *epd)
188 int ret = 0;
190 if (epd->bio) {
191 ret = submit_one_bio(epd->bio, 0, 0);
193 * Clean up of epd->bio is handled by its endio function.
194 * And endio is either triggered by successful bio execution
195 * or the error handler of submit bio hook.
196 * So at this point, no matter what happened, we don't need
197 * to clean up epd->bio.
199 epd->bio = NULL;
201 return ret;
204 int __init extent_state_cache_init(void)
206 extent_state_cache = kmem_cache_create("btrfs_extent_state",
207 sizeof(struct extent_state), 0,
208 SLAB_MEM_SPREAD, NULL);
209 if (!extent_state_cache)
210 return -ENOMEM;
211 return 0;
214 int __init extent_io_init(void)
216 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
217 sizeof(struct extent_buffer), 0,
218 SLAB_MEM_SPREAD, NULL);
219 if (!extent_buffer_cache)
220 return -ENOMEM;
222 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
223 offsetof(struct btrfs_io_bio, bio),
224 BIOSET_NEED_BVECS))
225 goto free_buffer_cache;
227 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
228 goto free_bioset;
230 return 0;
232 free_bioset:
233 bioset_exit(&btrfs_bioset);
235 free_buffer_cache:
236 kmem_cache_destroy(extent_buffer_cache);
237 extent_buffer_cache = NULL;
238 return -ENOMEM;
241 void __cold extent_state_cache_exit(void)
243 btrfs_extent_state_leak_debug_check();
244 kmem_cache_destroy(extent_state_cache);
247 void __cold extent_io_exit(void)
249 btrfs_extent_buffer_leak_debug_check();
252 * Make sure all delayed rcu free are flushed before we
253 * destroy caches.
255 rcu_barrier();
256 kmem_cache_destroy(extent_buffer_cache);
257 bioset_exit(&btrfs_bioset);
260 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
261 struct extent_io_tree *tree, unsigned int owner,
262 void *private_data)
264 tree->fs_info = fs_info;
265 tree->state = RB_ROOT;
266 tree->ops = NULL;
267 tree->dirty_bytes = 0;
268 spin_lock_init(&tree->lock);
269 tree->private_data = private_data;
270 tree->owner = owner;
273 void extent_io_tree_release(struct extent_io_tree *tree)
275 spin_lock(&tree->lock);
277 * Do a single barrier for the waitqueue_active check here, the state
278 * of the waitqueue should not change once extent_io_tree_release is
279 * called.
281 smp_mb();
282 while (!RB_EMPTY_ROOT(&tree->state)) {
283 struct rb_node *node;
284 struct extent_state *state;
286 node = rb_first(&tree->state);
287 state = rb_entry(node, struct extent_state, rb_node);
288 rb_erase(&state->rb_node, &tree->state);
289 RB_CLEAR_NODE(&state->rb_node);
291 * btree io trees aren't supposed to have tasks waiting for
292 * changes in the flags of extent states ever.
294 ASSERT(!waitqueue_active(&state->wq));
295 free_extent_state(state);
297 cond_resched_lock(&tree->lock);
299 spin_unlock(&tree->lock);
302 static struct extent_state *alloc_extent_state(gfp_t mask)
304 struct extent_state *state;
307 * The given mask might be not appropriate for the slab allocator,
308 * drop the unsupported bits
310 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
311 state = kmem_cache_alloc(extent_state_cache, mask);
312 if (!state)
313 return state;
314 state->state = 0;
315 state->failrec = NULL;
316 RB_CLEAR_NODE(&state->rb_node);
317 btrfs_leak_debug_add(&state->leak_list, &states);
318 refcount_set(&state->refs, 1);
319 init_waitqueue_head(&state->wq);
320 trace_alloc_extent_state(state, mask, _RET_IP_);
321 return state;
324 void free_extent_state(struct extent_state *state)
326 if (!state)
327 return;
328 if (refcount_dec_and_test(&state->refs)) {
329 WARN_ON(extent_state_in_tree(state));
330 btrfs_leak_debug_del(&state->leak_list);
331 trace_free_extent_state(state, _RET_IP_);
332 kmem_cache_free(extent_state_cache, state);
336 static struct rb_node *tree_insert(struct rb_root *root,
337 struct rb_node *search_start,
338 u64 offset,
339 struct rb_node *node,
340 struct rb_node ***p_in,
341 struct rb_node **parent_in)
343 struct rb_node **p;
344 struct rb_node *parent = NULL;
345 struct tree_entry *entry;
347 if (p_in && parent_in) {
348 p = *p_in;
349 parent = *parent_in;
350 goto do_insert;
353 p = search_start ? &search_start : &root->rb_node;
354 while (*p) {
355 parent = *p;
356 entry = rb_entry(parent, struct tree_entry, rb_node);
358 if (offset < entry->start)
359 p = &(*p)->rb_left;
360 else if (offset > entry->end)
361 p = &(*p)->rb_right;
362 else
363 return parent;
366 do_insert:
367 rb_link_node(node, parent, p);
368 rb_insert_color(node, root);
369 return NULL;
373 * __etree_search - searche @tree for an entry that contains @offset. Such
374 * entry would have entry->start <= offset && entry->end >= offset.
376 * @tree - the tree to search
377 * @offset - offset that should fall within an entry in @tree
378 * @next_ret - pointer to the first entry whose range ends after @offset
379 * @prev - pointer to the first entry whose range begins before @offset
380 * @p_ret - pointer where new node should be anchored (used when inserting an
381 * entry in the tree)
382 * @parent_ret - points to entry which would have been the parent of the entry,
383 * containing @offset
385 * This function returns a pointer to the entry that contains @offset byte
386 * address. If no such entry exists, then NULL is returned and the other
387 * pointer arguments to the function are filled, otherwise the found entry is
388 * returned and other pointers are left untouched.
390 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
391 struct rb_node **next_ret,
392 struct rb_node **prev_ret,
393 struct rb_node ***p_ret,
394 struct rb_node **parent_ret)
396 struct rb_root *root = &tree->state;
397 struct rb_node **n = &root->rb_node;
398 struct rb_node *prev = NULL;
399 struct rb_node *orig_prev = NULL;
400 struct tree_entry *entry;
401 struct tree_entry *prev_entry = NULL;
403 while (*n) {
404 prev = *n;
405 entry = rb_entry(prev, struct tree_entry, rb_node);
406 prev_entry = entry;
408 if (offset < entry->start)
409 n = &(*n)->rb_left;
410 else if (offset > entry->end)
411 n = &(*n)->rb_right;
412 else
413 return *n;
416 if (p_ret)
417 *p_ret = n;
418 if (parent_ret)
419 *parent_ret = prev;
421 if (next_ret) {
422 orig_prev = prev;
423 while (prev && offset > prev_entry->end) {
424 prev = rb_next(prev);
425 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
427 *next_ret = prev;
428 prev = orig_prev;
431 if (prev_ret) {
432 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
433 while (prev && offset < prev_entry->start) {
434 prev = rb_prev(prev);
435 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
437 *prev_ret = prev;
439 return NULL;
442 static inline struct rb_node *
443 tree_search_for_insert(struct extent_io_tree *tree,
444 u64 offset,
445 struct rb_node ***p_ret,
446 struct rb_node **parent_ret)
448 struct rb_node *next= NULL;
449 struct rb_node *ret;
451 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
452 if (!ret)
453 return next;
454 return ret;
457 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
458 u64 offset)
460 return tree_search_for_insert(tree, offset, NULL, NULL);
464 * utility function to look for merge candidates inside a given range.
465 * Any extents with matching state are merged together into a single
466 * extent in the tree. Extents with EXTENT_IO in their state field
467 * are not merged because the end_io handlers need to be able to do
468 * operations on them without sleeping (or doing allocations/splits).
470 * This should be called with the tree lock held.
472 static void merge_state(struct extent_io_tree *tree,
473 struct extent_state *state)
475 struct extent_state *other;
476 struct rb_node *other_node;
478 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
479 return;
481 other_node = rb_prev(&state->rb_node);
482 if (other_node) {
483 other = rb_entry(other_node, struct extent_state, rb_node);
484 if (other->end == state->start - 1 &&
485 other->state == state->state) {
486 if (tree->private_data &&
487 is_data_inode(tree->private_data))
488 btrfs_merge_delalloc_extent(tree->private_data,
489 state, other);
490 state->start = other->start;
491 rb_erase(&other->rb_node, &tree->state);
492 RB_CLEAR_NODE(&other->rb_node);
493 free_extent_state(other);
496 other_node = rb_next(&state->rb_node);
497 if (other_node) {
498 other = rb_entry(other_node, struct extent_state, rb_node);
499 if (other->start == state->end + 1 &&
500 other->state == state->state) {
501 if (tree->private_data &&
502 is_data_inode(tree->private_data))
503 btrfs_merge_delalloc_extent(tree->private_data,
504 state, other);
505 state->end = other->end;
506 rb_erase(&other->rb_node, &tree->state);
507 RB_CLEAR_NODE(&other->rb_node);
508 free_extent_state(other);
513 static void set_state_bits(struct extent_io_tree *tree,
514 struct extent_state *state, unsigned *bits,
515 struct extent_changeset *changeset);
518 * insert an extent_state struct into the tree. 'bits' are set on the
519 * struct before it is inserted.
521 * This may return -EEXIST if the extent is already there, in which case the
522 * state struct is freed.
524 * The tree lock is not taken internally. This is a utility function and
525 * probably isn't what you want to call (see set/clear_extent_bit).
527 static int insert_state(struct extent_io_tree *tree,
528 struct extent_state *state, u64 start, u64 end,
529 struct rb_node ***p,
530 struct rb_node **parent,
531 unsigned *bits, struct extent_changeset *changeset)
533 struct rb_node *node;
535 if (end < start) {
536 btrfs_err(tree->fs_info,
537 "insert state: end < start %llu %llu", end, start);
538 WARN_ON(1);
540 state->start = start;
541 state->end = end;
543 set_state_bits(tree, state, bits, changeset);
545 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
546 if (node) {
547 struct extent_state *found;
548 found = rb_entry(node, struct extent_state, rb_node);
549 btrfs_err(tree->fs_info,
550 "found node %llu %llu on insert of %llu %llu",
551 found->start, found->end, start, end);
552 return -EEXIST;
554 merge_state(tree, state);
555 return 0;
559 * split a given extent state struct in two, inserting the preallocated
560 * struct 'prealloc' as the newly created second half. 'split' indicates an
561 * offset inside 'orig' where it should be split.
563 * Before calling,
564 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
565 * are two extent state structs in the tree:
566 * prealloc: [orig->start, split - 1]
567 * orig: [ split, orig->end ]
569 * The tree locks are not taken by this function. They need to be held
570 * by the caller.
572 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
573 struct extent_state *prealloc, u64 split)
575 struct rb_node *node;
577 if (tree->private_data && is_data_inode(tree->private_data))
578 btrfs_split_delalloc_extent(tree->private_data, orig, split);
580 prealloc->start = orig->start;
581 prealloc->end = split - 1;
582 prealloc->state = orig->state;
583 orig->start = split;
585 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
586 &prealloc->rb_node, NULL, NULL);
587 if (node) {
588 free_extent_state(prealloc);
589 return -EEXIST;
591 return 0;
594 static struct extent_state *next_state(struct extent_state *state)
596 struct rb_node *next = rb_next(&state->rb_node);
597 if (next)
598 return rb_entry(next, struct extent_state, rb_node);
599 else
600 return NULL;
604 * utility function to clear some bits in an extent state struct.
605 * it will optionally wake up anyone waiting on this state (wake == 1).
607 * If no bits are set on the state struct after clearing things, the
608 * struct is freed and removed from the tree
610 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
611 struct extent_state *state,
612 unsigned *bits, int wake,
613 struct extent_changeset *changeset)
615 struct extent_state *next;
616 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
617 int ret;
619 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
620 u64 range = state->end - state->start + 1;
621 WARN_ON(range > tree->dirty_bytes);
622 tree->dirty_bytes -= range;
625 if (tree->private_data && is_data_inode(tree->private_data))
626 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
628 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
629 BUG_ON(ret < 0);
630 state->state &= ~bits_to_clear;
631 if (wake)
632 wake_up(&state->wq);
633 if (state->state == 0) {
634 next = next_state(state);
635 if (extent_state_in_tree(state)) {
636 rb_erase(&state->rb_node, &tree->state);
637 RB_CLEAR_NODE(&state->rb_node);
638 free_extent_state(state);
639 } else {
640 WARN_ON(1);
642 } else {
643 merge_state(tree, state);
644 next = next_state(state);
646 return next;
649 static struct extent_state *
650 alloc_extent_state_atomic(struct extent_state *prealloc)
652 if (!prealloc)
653 prealloc = alloc_extent_state(GFP_ATOMIC);
655 return prealloc;
658 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
660 struct inode *inode = tree->private_data;
662 btrfs_panic(btrfs_sb(inode->i_sb), err,
663 "locking error: extent tree was modified by another thread while locked");
667 * clear some bits on a range in the tree. This may require splitting
668 * or inserting elements in the tree, so the gfp mask is used to
669 * indicate which allocations or sleeping are allowed.
671 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
672 * the given range from the tree regardless of state (ie for truncate).
674 * the range [start, end] is inclusive.
676 * This takes the tree lock, and returns 0 on success and < 0 on error.
678 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
679 unsigned bits, int wake, int delete,
680 struct extent_state **cached_state,
681 gfp_t mask, struct extent_changeset *changeset)
683 struct extent_state *state;
684 struct extent_state *cached;
685 struct extent_state *prealloc = NULL;
686 struct rb_node *node;
687 u64 last_end;
688 int err;
689 int clear = 0;
691 btrfs_debug_check_extent_io_range(tree, start, end);
692 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
694 if (bits & EXTENT_DELALLOC)
695 bits |= EXTENT_NORESERVE;
697 if (delete)
698 bits |= ~EXTENT_CTLBITS;
700 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
701 clear = 1;
702 again:
703 if (!prealloc && gfpflags_allow_blocking(mask)) {
705 * Don't care for allocation failure here because we might end
706 * up not needing the pre-allocated extent state at all, which
707 * is the case if we only have in the tree extent states that
708 * cover our input range and don't cover too any other range.
709 * If we end up needing a new extent state we allocate it later.
711 prealloc = alloc_extent_state(mask);
714 spin_lock(&tree->lock);
715 if (cached_state) {
716 cached = *cached_state;
718 if (clear) {
719 *cached_state = NULL;
720 cached_state = NULL;
723 if (cached && extent_state_in_tree(cached) &&
724 cached->start <= start && cached->end > start) {
725 if (clear)
726 refcount_dec(&cached->refs);
727 state = cached;
728 goto hit_next;
730 if (clear)
731 free_extent_state(cached);
734 * this search will find the extents that end after
735 * our range starts
737 node = tree_search(tree, start);
738 if (!node)
739 goto out;
740 state = rb_entry(node, struct extent_state, rb_node);
741 hit_next:
742 if (state->start > end)
743 goto out;
744 WARN_ON(state->end < start);
745 last_end = state->end;
747 /* the state doesn't have the wanted bits, go ahead */
748 if (!(state->state & bits)) {
749 state = next_state(state);
750 goto next;
754 * | ---- desired range ---- |
755 * | state | or
756 * | ------------- state -------------- |
758 * We need to split the extent we found, and may flip
759 * bits on second half.
761 * If the extent we found extends past our range, we
762 * just split and search again. It'll get split again
763 * the next time though.
765 * If the extent we found is inside our range, we clear
766 * the desired bit on it.
769 if (state->start < start) {
770 prealloc = alloc_extent_state_atomic(prealloc);
771 BUG_ON(!prealloc);
772 err = split_state(tree, state, prealloc, start);
773 if (err)
774 extent_io_tree_panic(tree, err);
776 prealloc = NULL;
777 if (err)
778 goto out;
779 if (state->end <= end) {
780 state = clear_state_bit(tree, state, &bits, wake,
781 changeset);
782 goto next;
784 goto search_again;
787 * | ---- desired range ---- |
788 * | state |
789 * We need to split the extent, and clear the bit
790 * on the first half
792 if (state->start <= end && state->end > end) {
793 prealloc = alloc_extent_state_atomic(prealloc);
794 BUG_ON(!prealloc);
795 err = split_state(tree, state, prealloc, end + 1);
796 if (err)
797 extent_io_tree_panic(tree, err);
799 if (wake)
800 wake_up(&state->wq);
802 clear_state_bit(tree, prealloc, &bits, wake, changeset);
804 prealloc = NULL;
805 goto out;
808 state = clear_state_bit(tree, state, &bits, wake, changeset);
809 next:
810 if (last_end == (u64)-1)
811 goto out;
812 start = last_end + 1;
813 if (start <= end && state && !need_resched())
814 goto hit_next;
816 search_again:
817 if (start > end)
818 goto out;
819 spin_unlock(&tree->lock);
820 if (gfpflags_allow_blocking(mask))
821 cond_resched();
822 goto again;
824 out:
825 spin_unlock(&tree->lock);
826 if (prealloc)
827 free_extent_state(prealloc);
829 return 0;
833 static void wait_on_state(struct extent_io_tree *tree,
834 struct extent_state *state)
835 __releases(tree->lock)
836 __acquires(tree->lock)
838 DEFINE_WAIT(wait);
839 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
840 spin_unlock(&tree->lock);
841 schedule();
842 spin_lock(&tree->lock);
843 finish_wait(&state->wq, &wait);
847 * waits for one or more bits to clear on a range in the state tree.
848 * The range [start, end] is inclusive.
849 * The tree lock is taken by this function
851 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
852 unsigned long bits)
854 struct extent_state *state;
855 struct rb_node *node;
857 btrfs_debug_check_extent_io_range(tree, start, end);
859 spin_lock(&tree->lock);
860 again:
861 while (1) {
863 * this search will find all the extents that end after
864 * our range starts
866 node = tree_search(tree, start);
867 process_node:
868 if (!node)
869 break;
871 state = rb_entry(node, struct extent_state, rb_node);
873 if (state->start > end)
874 goto out;
876 if (state->state & bits) {
877 start = state->start;
878 refcount_inc(&state->refs);
879 wait_on_state(tree, state);
880 free_extent_state(state);
881 goto again;
883 start = state->end + 1;
885 if (start > end)
886 break;
888 if (!cond_resched_lock(&tree->lock)) {
889 node = rb_next(node);
890 goto process_node;
893 out:
894 spin_unlock(&tree->lock);
897 static void set_state_bits(struct extent_io_tree *tree,
898 struct extent_state *state,
899 unsigned *bits, struct extent_changeset *changeset)
901 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
902 int ret;
904 if (tree->private_data && is_data_inode(tree->private_data))
905 btrfs_set_delalloc_extent(tree->private_data, state, bits);
907 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
908 u64 range = state->end - state->start + 1;
909 tree->dirty_bytes += range;
911 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
912 BUG_ON(ret < 0);
913 state->state |= bits_to_set;
916 static void cache_state_if_flags(struct extent_state *state,
917 struct extent_state **cached_ptr,
918 unsigned flags)
920 if (cached_ptr && !(*cached_ptr)) {
921 if (!flags || (state->state & flags)) {
922 *cached_ptr = state;
923 refcount_inc(&state->refs);
928 static void cache_state(struct extent_state *state,
929 struct extent_state **cached_ptr)
931 return cache_state_if_flags(state, cached_ptr,
932 EXTENT_LOCKED | EXTENT_BOUNDARY);
936 * set some bits on a range in the tree. This may require allocations or
937 * sleeping, so the gfp mask is used to indicate what is allowed.
939 * If any of the exclusive bits are set, this will fail with -EEXIST if some
940 * part of the range already has the desired bits set. The start of the
941 * existing range is returned in failed_start in this case.
943 * [start, end] is inclusive This takes the tree lock.
946 static int __must_check
947 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
948 unsigned bits, unsigned exclusive_bits,
949 u64 *failed_start, struct extent_state **cached_state,
950 gfp_t mask, struct extent_changeset *changeset)
952 struct extent_state *state;
953 struct extent_state *prealloc = NULL;
954 struct rb_node *node;
955 struct rb_node **p;
956 struct rb_node *parent;
957 int err = 0;
958 u64 last_start;
959 u64 last_end;
961 btrfs_debug_check_extent_io_range(tree, start, end);
962 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
964 again:
965 if (!prealloc && gfpflags_allow_blocking(mask)) {
967 * Don't care for allocation failure here because we might end
968 * up not needing the pre-allocated extent state at all, which
969 * is the case if we only have in the tree extent states that
970 * cover our input range and don't cover too any other range.
971 * If we end up needing a new extent state we allocate it later.
973 prealloc = alloc_extent_state(mask);
976 spin_lock(&tree->lock);
977 if (cached_state && *cached_state) {
978 state = *cached_state;
979 if (state->start <= start && state->end > start &&
980 extent_state_in_tree(state)) {
981 node = &state->rb_node;
982 goto hit_next;
986 * this search will find all the extents that end after
987 * our range starts.
989 node = tree_search_for_insert(tree, start, &p, &parent);
990 if (!node) {
991 prealloc = alloc_extent_state_atomic(prealloc);
992 BUG_ON(!prealloc);
993 err = insert_state(tree, prealloc, start, end,
994 &p, &parent, &bits, changeset);
995 if (err)
996 extent_io_tree_panic(tree, err);
998 cache_state(prealloc, cached_state);
999 prealloc = NULL;
1000 goto out;
1002 state = rb_entry(node, struct extent_state, rb_node);
1003 hit_next:
1004 last_start = state->start;
1005 last_end = state->end;
1008 * | ---- desired range ---- |
1009 * | state |
1011 * Just lock what we found and keep going
1013 if (state->start == start && state->end <= end) {
1014 if (state->state & exclusive_bits) {
1015 *failed_start = state->start;
1016 err = -EEXIST;
1017 goto out;
1020 set_state_bits(tree, state, &bits, changeset);
1021 cache_state(state, cached_state);
1022 merge_state(tree, state);
1023 if (last_end == (u64)-1)
1024 goto out;
1025 start = last_end + 1;
1026 state = next_state(state);
1027 if (start < end && state && state->start == start &&
1028 !need_resched())
1029 goto hit_next;
1030 goto search_again;
1034 * | ---- desired range ---- |
1035 * | state |
1036 * or
1037 * | ------------- state -------------- |
1039 * We need to split the extent we found, and may flip bits on
1040 * second half.
1042 * If the extent we found extends past our
1043 * range, we just split and search again. It'll get split
1044 * again the next time though.
1046 * If the extent we found is inside our range, we set the
1047 * desired bit on it.
1049 if (state->start < start) {
1050 if (state->state & exclusive_bits) {
1051 *failed_start = start;
1052 err = -EEXIST;
1053 goto out;
1056 prealloc = alloc_extent_state_atomic(prealloc);
1057 BUG_ON(!prealloc);
1058 err = split_state(tree, state, prealloc, start);
1059 if (err)
1060 extent_io_tree_panic(tree, err);
1062 prealloc = NULL;
1063 if (err)
1064 goto out;
1065 if (state->end <= end) {
1066 set_state_bits(tree, state, &bits, changeset);
1067 cache_state(state, cached_state);
1068 merge_state(tree, state);
1069 if (last_end == (u64)-1)
1070 goto out;
1071 start = last_end + 1;
1072 state = next_state(state);
1073 if (start < end && state && state->start == start &&
1074 !need_resched())
1075 goto hit_next;
1077 goto search_again;
1080 * | ---- desired range ---- |
1081 * | state | or | state |
1083 * There's a hole, we need to insert something in it and
1084 * ignore the extent we found.
1086 if (state->start > start) {
1087 u64 this_end;
1088 if (end < last_start)
1089 this_end = end;
1090 else
1091 this_end = last_start - 1;
1093 prealloc = alloc_extent_state_atomic(prealloc);
1094 BUG_ON(!prealloc);
1097 * Avoid to free 'prealloc' if it can be merged with
1098 * the later extent.
1100 err = insert_state(tree, prealloc, start, this_end,
1101 NULL, NULL, &bits, changeset);
1102 if (err)
1103 extent_io_tree_panic(tree, err);
1105 cache_state(prealloc, cached_state);
1106 prealloc = NULL;
1107 start = this_end + 1;
1108 goto search_again;
1111 * | ---- desired range ---- |
1112 * | state |
1113 * We need to split the extent, and set the bit
1114 * on the first half
1116 if (state->start <= end && state->end > end) {
1117 if (state->state & exclusive_bits) {
1118 *failed_start = start;
1119 err = -EEXIST;
1120 goto out;
1123 prealloc = alloc_extent_state_atomic(prealloc);
1124 BUG_ON(!prealloc);
1125 err = split_state(tree, state, prealloc, end + 1);
1126 if (err)
1127 extent_io_tree_panic(tree, err);
1129 set_state_bits(tree, prealloc, &bits, changeset);
1130 cache_state(prealloc, cached_state);
1131 merge_state(tree, prealloc);
1132 prealloc = NULL;
1133 goto out;
1136 search_again:
1137 if (start > end)
1138 goto out;
1139 spin_unlock(&tree->lock);
1140 if (gfpflags_allow_blocking(mask))
1141 cond_resched();
1142 goto again;
1144 out:
1145 spin_unlock(&tree->lock);
1146 if (prealloc)
1147 free_extent_state(prealloc);
1149 return err;
1153 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1154 unsigned bits, u64 * failed_start,
1155 struct extent_state **cached_state, gfp_t mask)
1157 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1158 cached_state, mask, NULL);
1163 * convert_extent_bit - convert all bits in a given range from one bit to
1164 * another
1165 * @tree: the io tree to search
1166 * @start: the start offset in bytes
1167 * @end: the end offset in bytes (inclusive)
1168 * @bits: the bits to set in this range
1169 * @clear_bits: the bits to clear in this range
1170 * @cached_state: state that we're going to cache
1172 * This will go through and set bits for the given range. If any states exist
1173 * already in this range they are set with the given bit and cleared of the
1174 * clear_bits. This is only meant to be used by things that are mergeable, ie
1175 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1176 * boundary bits like LOCK.
1178 * All allocations are done with GFP_NOFS.
1180 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1181 unsigned bits, unsigned clear_bits,
1182 struct extent_state **cached_state)
1184 struct extent_state *state;
1185 struct extent_state *prealloc = NULL;
1186 struct rb_node *node;
1187 struct rb_node **p;
1188 struct rb_node *parent;
1189 int err = 0;
1190 u64 last_start;
1191 u64 last_end;
1192 bool first_iteration = true;
1194 btrfs_debug_check_extent_io_range(tree, start, end);
1195 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1196 clear_bits);
1198 again:
1199 if (!prealloc) {
1201 * Best effort, don't worry if extent state allocation fails
1202 * here for the first iteration. We might have a cached state
1203 * that matches exactly the target range, in which case no
1204 * extent state allocations are needed. We'll only know this
1205 * after locking the tree.
1207 prealloc = alloc_extent_state(GFP_NOFS);
1208 if (!prealloc && !first_iteration)
1209 return -ENOMEM;
1212 spin_lock(&tree->lock);
1213 if (cached_state && *cached_state) {
1214 state = *cached_state;
1215 if (state->start <= start && state->end > start &&
1216 extent_state_in_tree(state)) {
1217 node = &state->rb_node;
1218 goto hit_next;
1223 * this search will find all the extents that end after
1224 * our range starts.
1226 node = tree_search_for_insert(tree, start, &p, &parent);
1227 if (!node) {
1228 prealloc = alloc_extent_state_atomic(prealloc);
1229 if (!prealloc) {
1230 err = -ENOMEM;
1231 goto out;
1233 err = insert_state(tree, prealloc, start, end,
1234 &p, &parent, &bits, NULL);
1235 if (err)
1236 extent_io_tree_panic(tree, err);
1237 cache_state(prealloc, cached_state);
1238 prealloc = NULL;
1239 goto out;
1241 state = rb_entry(node, struct extent_state, rb_node);
1242 hit_next:
1243 last_start = state->start;
1244 last_end = state->end;
1247 * | ---- desired range ---- |
1248 * | state |
1250 * Just lock what we found and keep going
1252 if (state->start == start && state->end <= end) {
1253 set_state_bits(tree, state, &bits, NULL);
1254 cache_state(state, cached_state);
1255 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1256 if (last_end == (u64)-1)
1257 goto out;
1258 start = last_end + 1;
1259 if (start < end && state && state->start == start &&
1260 !need_resched())
1261 goto hit_next;
1262 goto search_again;
1266 * | ---- desired range ---- |
1267 * | state |
1268 * or
1269 * | ------------- state -------------- |
1271 * We need to split the extent we found, and may flip bits on
1272 * second half.
1274 * If the extent we found extends past our
1275 * range, we just split and search again. It'll get split
1276 * again the next time though.
1278 * If the extent we found is inside our range, we set the
1279 * desired bit on it.
1281 if (state->start < start) {
1282 prealloc = alloc_extent_state_atomic(prealloc);
1283 if (!prealloc) {
1284 err = -ENOMEM;
1285 goto out;
1287 err = split_state(tree, state, prealloc, start);
1288 if (err)
1289 extent_io_tree_panic(tree, err);
1290 prealloc = NULL;
1291 if (err)
1292 goto out;
1293 if (state->end <= end) {
1294 set_state_bits(tree, state, &bits, NULL);
1295 cache_state(state, cached_state);
1296 state = clear_state_bit(tree, state, &clear_bits, 0,
1297 NULL);
1298 if (last_end == (u64)-1)
1299 goto out;
1300 start = last_end + 1;
1301 if (start < end && state && state->start == start &&
1302 !need_resched())
1303 goto hit_next;
1305 goto search_again;
1308 * | ---- desired range ---- |
1309 * | state | or | state |
1311 * There's a hole, we need to insert something in it and
1312 * ignore the extent we found.
1314 if (state->start > start) {
1315 u64 this_end;
1316 if (end < last_start)
1317 this_end = end;
1318 else
1319 this_end = last_start - 1;
1321 prealloc = alloc_extent_state_atomic(prealloc);
1322 if (!prealloc) {
1323 err = -ENOMEM;
1324 goto out;
1328 * Avoid to free 'prealloc' if it can be merged with
1329 * the later extent.
1331 err = insert_state(tree, prealloc, start, this_end,
1332 NULL, NULL, &bits, NULL);
1333 if (err)
1334 extent_io_tree_panic(tree, err);
1335 cache_state(prealloc, cached_state);
1336 prealloc = NULL;
1337 start = this_end + 1;
1338 goto search_again;
1341 * | ---- desired range ---- |
1342 * | state |
1343 * We need to split the extent, and set the bit
1344 * on the first half
1346 if (state->start <= end && state->end > end) {
1347 prealloc = alloc_extent_state_atomic(prealloc);
1348 if (!prealloc) {
1349 err = -ENOMEM;
1350 goto out;
1353 err = split_state(tree, state, prealloc, end + 1);
1354 if (err)
1355 extent_io_tree_panic(tree, err);
1357 set_state_bits(tree, prealloc, &bits, NULL);
1358 cache_state(prealloc, cached_state);
1359 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1360 prealloc = NULL;
1361 goto out;
1364 search_again:
1365 if (start > end)
1366 goto out;
1367 spin_unlock(&tree->lock);
1368 cond_resched();
1369 first_iteration = false;
1370 goto again;
1372 out:
1373 spin_unlock(&tree->lock);
1374 if (prealloc)
1375 free_extent_state(prealloc);
1377 return err;
1380 /* wrappers around set/clear extent bit */
1381 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1382 unsigned bits, struct extent_changeset *changeset)
1385 * We don't support EXTENT_LOCKED yet, as current changeset will
1386 * record any bits changed, so for EXTENT_LOCKED case, it will
1387 * either fail with -EEXIST or changeset will record the whole
1388 * range.
1390 BUG_ON(bits & EXTENT_LOCKED);
1392 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1393 changeset);
1396 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1397 unsigned bits)
1399 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1400 GFP_NOWAIT, NULL);
1403 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1404 unsigned bits, int wake, int delete,
1405 struct extent_state **cached)
1407 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1408 cached, GFP_NOFS, NULL);
1411 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1412 unsigned bits, struct extent_changeset *changeset)
1415 * Don't support EXTENT_LOCKED case, same reason as
1416 * set_record_extent_bits().
1418 BUG_ON(bits & EXTENT_LOCKED);
1420 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1421 changeset);
1425 * either insert or lock state struct between start and end use mask to tell
1426 * us if waiting is desired.
1428 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1429 struct extent_state **cached_state)
1431 int err;
1432 u64 failed_start;
1434 while (1) {
1435 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1436 EXTENT_LOCKED, &failed_start,
1437 cached_state, GFP_NOFS, NULL);
1438 if (err == -EEXIST) {
1439 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1440 start = failed_start;
1441 } else
1442 break;
1443 WARN_ON(start > end);
1445 return err;
1448 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1450 int err;
1451 u64 failed_start;
1453 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1454 &failed_start, NULL, GFP_NOFS, NULL);
1455 if (err == -EEXIST) {
1456 if (failed_start > start)
1457 clear_extent_bit(tree, start, failed_start - 1,
1458 EXTENT_LOCKED, 1, 0, NULL);
1459 return 0;
1461 return 1;
1464 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1466 unsigned long index = start >> PAGE_SHIFT;
1467 unsigned long end_index = end >> PAGE_SHIFT;
1468 struct page *page;
1470 while (index <= end_index) {
1471 page = find_get_page(inode->i_mapping, index);
1472 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1473 clear_page_dirty_for_io(page);
1474 put_page(page);
1475 index++;
1479 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1481 unsigned long index = start >> PAGE_SHIFT;
1482 unsigned long end_index = end >> PAGE_SHIFT;
1483 struct page *page;
1485 while (index <= end_index) {
1486 page = find_get_page(inode->i_mapping, index);
1487 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1488 __set_page_dirty_nobuffers(page);
1489 account_page_redirty(page);
1490 put_page(page);
1491 index++;
1495 /* find the first state struct with 'bits' set after 'start', and
1496 * return it. tree->lock must be held. NULL will returned if
1497 * nothing was found after 'start'
1499 static struct extent_state *
1500 find_first_extent_bit_state(struct extent_io_tree *tree,
1501 u64 start, unsigned bits)
1503 struct rb_node *node;
1504 struct extent_state *state;
1507 * this search will find all the extents that end after
1508 * our range starts.
1510 node = tree_search(tree, start);
1511 if (!node)
1512 goto out;
1514 while (1) {
1515 state = rb_entry(node, struct extent_state, rb_node);
1516 if (state->end >= start && (state->state & bits))
1517 return state;
1519 node = rb_next(node);
1520 if (!node)
1521 break;
1523 out:
1524 return NULL;
1528 * find the first offset in the io tree with 'bits' set. zero is
1529 * returned if we find something, and *start_ret and *end_ret are
1530 * set to reflect the state struct that was found.
1532 * If nothing was found, 1 is returned. If found something, return 0.
1534 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1535 u64 *start_ret, u64 *end_ret, unsigned bits,
1536 struct extent_state **cached_state)
1538 struct extent_state *state;
1539 int ret = 1;
1541 spin_lock(&tree->lock);
1542 if (cached_state && *cached_state) {
1543 state = *cached_state;
1544 if (state->end == start - 1 && extent_state_in_tree(state)) {
1545 while ((state = next_state(state)) != NULL) {
1546 if (state->state & bits)
1547 goto got_it;
1549 free_extent_state(*cached_state);
1550 *cached_state = NULL;
1551 goto out;
1553 free_extent_state(*cached_state);
1554 *cached_state = NULL;
1557 state = find_first_extent_bit_state(tree, start, bits);
1558 got_it:
1559 if (state) {
1560 cache_state_if_flags(state, cached_state, 0);
1561 *start_ret = state->start;
1562 *end_ret = state->end;
1563 ret = 0;
1565 out:
1566 spin_unlock(&tree->lock);
1567 return ret;
1571 * find_first_clear_extent_bit - find the first range that has @bits not set.
1572 * This range could start before @start.
1574 * @tree - the tree to search
1575 * @start - the offset at/after which the found extent should start
1576 * @start_ret - records the beginning of the range
1577 * @end_ret - records the end of the range (inclusive)
1578 * @bits - the set of bits which must be unset
1580 * Since unallocated range is also considered one which doesn't have the bits
1581 * set it's possible that @end_ret contains -1, this happens in case the range
1582 * spans (last_range_end, end of device]. In this case it's up to the caller to
1583 * trim @end_ret to the appropriate size.
1585 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1586 u64 *start_ret, u64 *end_ret, unsigned bits)
1588 struct extent_state *state;
1589 struct rb_node *node, *prev = NULL, *next;
1591 spin_lock(&tree->lock);
1593 /* Find first extent with bits cleared */
1594 while (1) {
1595 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1596 if (!node && !next && !prev) {
1598 * Tree is completely empty, send full range and let
1599 * caller deal with it
1601 *start_ret = 0;
1602 *end_ret = -1;
1603 goto out;
1604 } else if (!node && !next) {
1606 * We are past the last allocated chunk, set start at
1607 * the end of the last extent.
1609 state = rb_entry(prev, struct extent_state, rb_node);
1610 *start_ret = state->end + 1;
1611 *end_ret = -1;
1612 goto out;
1613 } else if (!node) {
1614 node = next;
1617 * At this point 'node' either contains 'start' or start is
1618 * before 'node'
1620 state = rb_entry(node, struct extent_state, rb_node);
1622 if (in_range(start, state->start, state->end - state->start + 1)) {
1623 if (state->state & bits) {
1625 * |--range with bits sets--|
1627 * start
1629 start = state->end + 1;
1630 } else {
1632 * 'start' falls within a range that doesn't
1633 * have the bits set, so take its start as
1634 * the beginning of the desired range
1636 * |--range with bits cleared----|
1638 * start
1640 *start_ret = state->start;
1641 break;
1643 } else {
1645 * |---prev range---|---hole/unset---|---node range---|
1647 * start
1649 * or
1651 * |---hole/unset--||--first node--|
1652 * 0 |
1653 * start
1655 if (prev) {
1656 state = rb_entry(prev, struct extent_state,
1657 rb_node);
1658 *start_ret = state->end + 1;
1659 } else {
1660 *start_ret = 0;
1662 break;
1667 * Find the longest stretch from start until an entry which has the
1668 * bits set
1670 while (1) {
1671 state = rb_entry(node, struct extent_state, rb_node);
1672 if (state->end >= start && !(state->state & bits)) {
1673 *end_ret = state->end;
1674 } else {
1675 *end_ret = state->start - 1;
1676 break;
1679 node = rb_next(node);
1680 if (!node)
1681 break;
1683 out:
1684 spin_unlock(&tree->lock);
1688 * find a contiguous range of bytes in the file marked as delalloc, not
1689 * more than 'max_bytes'. start and end are used to return the range,
1691 * true is returned if we find something, false if nothing was in the tree
1693 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1694 u64 *end, u64 max_bytes,
1695 struct extent_state **cached_state)
1697 struct rb_node *node;
1698 struct extent_state *state;
1699 u64 cur_start = *start;
1700 bool found = false;
1701 u64 total_bytes = 0;
1703 spin_lock(&tree->lock);
1706 * this search will find all the extents that end after
1707 * our range starts.
1709 node = tree_search(tree, cur_start);
1710 if (!node) {
1711 *end = (u64)-1;
1712 goto out;
1715 while (1) {
1716 state = rb_entry(node, struct extent_state, rb_node);
1717 if (found && (state->start != cur_start ||
1718 (state->state & EXTENT_BOUNDARY))) {
1719 goto out;
1721 if (!(state->state & EXTENT_DELALLOC)) {
1722 if (!found)
1723 *end = state->end;
1724 goto out;
1726 if (!found) {
1727 *start = state->start;
1728 *cached_state = state;
1729 refcount_inc(&state->refs);
1731 found = true;
1732 *end = state->end;
1733 cur_start = state->end + 1;
1734 node = rb_next(node);
1735 total_bytes += state->end - state->start + 1;
1736 if (total_bytes >= max_bytes)
1737 break;
1738 if (!node)
1739 break;
1741 out:
1742 spin_unlock(&tree->lock);
1743 return found;
1746 static int __process_pages_contig(struct address_space *mapping,
1747 struct page *locked_page,
1748 pgoff_t start_index, pgoff_t end_index,
1749 unsigned long page_ops, pgoff_t *index_ret);
1751 static noinline void __unlock_for_delalloc(struct inode *inode,
1752 struct page *locked_page,
1753 u64 start, u64 end)
1755 unsigned long index = start >> PAGE_SHIFT;
1756 unsigned long end_index = end >> PAGE_SHIFT;
1758 ASSERT(locked_page);
1759 if (index == locked_page->index && end_index == index)
1760 return;
1762 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1763 PAGE_UNLOCK, NULL);
1766 static noinline int lock_delalloc_pages(struct inode *inode,
1767 struct page *locked_page,
1768 u64 delalloc_start,
1769 u64 delalloc_end)
1771 unsigned long index = delalloc_start >> PAGE_SHIFT;
1772 unsigned long index_ret = index;
1773 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1774 int ret;
1776 ASSERT(locked_page);
1777 if (index == locked_page->index && index == end_index)
1778 return 0;
1780 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1781 end_index, PAGE_LOCK, &index_ret);
1782 if (ret == -EAGAIN)
1783 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1784 (u64)index_ret << PAGE_SHIFT);
1785 return ret;
1789 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1790 * more than @max_bytes. @Start and @end are used to return the range,
1792 * Return: true if we find something
1793 * false if nothing was in the tree
1795 EXPORT_FOR_TESTS
1796 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1797 struct page *locked_page, u64 *start,
1798 u64 *end)
1800 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1801 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1802 u64 delalloc_start;
1803 u64 delalloc_end;
1804 bool found;
1805 struct extent_state *cached_state = NULL;
1806 int ret;
1807 int loops = 0;
1809 again:
1810 /* step one, find a bunch of delalloc bytes starting at start */
1811 delalloc_start = *start;
1812 delalloc_end = 0;
1813 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1814 max_bytes, &cached_state);
1815 if (!found || delalloc_end <= *start) {
1816 *start = delalloc_start;
1817 *end = delalloc_end;
1818 free_extent_state(cached_state);
1819 return false;
1823 * start comes from the offset of locked_page. We have to lock
1824 * pages in order, so we can't process delalloc bytes before
1825 * locked_page
1827 if (delalloc_start < *start)
1828 delalloc_start = *start;
1831 * make sure to limit the number of pages we try to lock down
1833 if (delalloc_end + 1 - delalloc_start > max_bytes)
1834 delalloc_end = delalloc_start + max_bytes - 1;
1836 /* step two, lock all the pages after the page that has start */
1837 ret = lock_delalloc_pages(inode, locked_page,
1838 delalloc_start, delalloc_end);
1839 ASSERT(!ret || ret == -EAGAIN);
1840 if (ret == -EAGAIN) {
1841 /* some of the pages are gone, lets avoid looping by
1842 * shortening the size of the delalloc range we're searching
1844 free_extent_state(cached_state);
1845 cached_state = NULL;
1846 if (!loops) {
1847 max_bytes = PAGE_SIZE;
1848 loops = 1;
1849 goto again;
1850 } else {
1851 found = false;
1852 goto out_failed;
1856 /* step three, lock the state bits for the whole range */
1857 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1859 /* then test to make sure it is all still delalloc */
1860 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1861 EXTENT_DELALLOC, 1, cached_state);
1862 if (!ret) {
1863 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1864 &cached_state);
1865 __unlock_for_delalloc(inode, locked_page,
1866 delalloc_start, delalloc_end);
1867 cond_resched();
1868 goto again;
1870 free_extent_state(cached_state);
1871 *start = delalloc_start;
1872 *end = delalloc_end;
1873 out_failed:
1874 return found;
1877 static int __process_pages_contig(struct address_space *mapping,
1878 struct page *locked_page,
1879 pgoff_t start_index, pgoff_t end_index,
1880 unsigned long page_ops, pgoff_t *index_ret)
1882 unsigned long nr_pages = end_index - start_index + 1;
1883 unsigned long pages_locked = 0;
1884 pgoff_t index = start_index;
1885 struct page *pages[16];
1886 unsigned ret;
1887 int err = 0;
1888 int i;
1890 if (page_ops & PAGE_LOCK) {
1891 ASSERT(page_ops == PAGE_LOCK);
1892 ASSERT(index_ret && *index_ret == start_index);
1895 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1896 mapping_set_error(mapping, -EIO);
1898 while (nr_pages > 0) {
1899 ret = find_get_pages_contig(mapping, index,
1900 min_t(unsigned long,
1901 nr_pages, ARRAY_SIZE(pages)), pages);
1902 if (ret == 0) {
1904 * Only if we're going to lock these pages,
1905 * can we find nothing at @index.
1907 ASSERT(page_ops & PAGE_LOCK);
1908 err = -EAGAIN;
1909 goto out;
1912 for (i = 0; i < ret; i++) {
1913 if (page_ops & PAGE_SET_PRIVATE2)
1914 SetPagePrivate2(pages[i]);
1916 if (locked_page && pages[i] == locked_page) {
1917 put_page(pages[i]);
1918 pages_locked++;
1919 continue;
1921 if (page_ops & PAGE_CLEAR_DIRTY)
1922 clear_page_dirty_for_io(pages[i]);
1923 if (page_ops & PAGE_SET_WRITEBACK)
1924 set_page_writeback(pages[i]);
1925 if (page_ops & PAGE_SET_ERROR)
1926 SetPageError(pages[i]);
1927 if (page_ops & PAGE_END_WRITEBACK)
1928 end_page_writeback(pages[i]);
1929 if (page_ops & PAGE_UNLOCK)
1930 unlock_page(pages[i]);
1931 if (page_ops & PAGE_LOCK) {
1932 lock_page(pages[i]);
1933 if (!PageDirty(pages[i]) ||
1934 pages[i]->mapping != mapping) {
1935 unlock_page(pages[i]);
1936 put_page(pages[i]);
1937 err = -EAGAIN;
1938 goto out;
1941 put_page(pages[i]);
1942 pages_locked++;
1944 nr_pages -= ret;
1945 index += ret;
1946 cond_resched();
1948 out:
1949 if (err && index_ret)
1950 *index_ret = start_index + pages_locked - 1;
1951 return err;
1954 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1955 struct page *locked_page,
1956 unsigned clear_bits,
1957 unsigned long page_ops)
1959 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1960 NULL);
1962 __process_pages_contig(inode->i_mapping, locked_page,
1963 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1964 page_ops, NULL);
1968 * count the number of bytes in the tree that have a given bit(s)
1969 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1970 * cached. The total number found is returned.
1972 u64 count_range_bits(struct extent_io_tree *tree,
1973 u64 *start, u64 search_end, u64 max_bytes,
1974 unsigned bits, int contig)
1976 struct rb_node *node;
1977 struct extent_state *state;
1978 u64 cur_start = *start;
1979 u64 total_bytes = 0;
1980 u64 last = 0;
1981 int found = 0;
1983 if (WARN_ON(search_end <= cur_start))
1984 return 0;
1986 spin_lock(&tree->lock);
1987 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1988 total_bytes = tree->dirty_bytes;
1989 goto out;
1992 * this search will find all the extents that end after
1993 * our range starts.
1995 node = tree_search(tree, cur_start);
1996 if (!node)
1997 goto out;
1999 while (1) {
2000 state = rb_entry(node, struct extent_state, rb_node);
2001 if (state->start > search_end)
2002 break;
2003 if (contig && found && state->start > last + 1)
2004 break;
2005 if (state->end >= cur_start && (state->state & bits) == bits) {
2006 total_bytes += min(search_end, state->end) + 1 -
2007 max(cur_start, state->start);
2008 if (total_bytes >= max_bytes)
2009 break;
2010 if (!found) {
2011 *start = max(cur_start, state->start);
2012 found = 1;
2014 last = state->end;
2015 } else if (contig && found) {
2016 break;
2018 node = rb_next(node);
2019 if (!node)
2020 break;
2022 out:
2023 spin_unlock(&tree->lock);
2024 return total_bytes;
2028 * set the private field for a given byte offset in the tree. If there isn't
2029 * an extent_state there already, this does nothing.
2031 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2032 struct io_failure_record *failrec)
2034 struct rb_node *node;
2035 struct extent_state *state;
2036 int ret = 0;
2038 spin_lock(&tree->lock);
2040 * this search will find all the extents that end after
2041 * our range starts.
2043 node = tree_search(tree, start);
2044 if (!node) {
2045 ret = -ENOENT;
2046 goto out;
2048 state = rb_entry(node, struct extent_state, rb_node);
2049 if (state->start != start) {
2050 ret = -ENOENT;
2051 goto out;
2053 state->failrec = failrec;
2054 out:
2055 spin_unlock(&tree->lock);
2056 return ret;
2059 int get_state_failrec(struct extent_io_tree *tree, u64 start,
2060 struct io_failure_record **failrec)
2062 struct rb_node *node;
2063 struct extent_state *state;
2064 int ret = 0;
2066 spin_lock(&tree->lock);
2068 * this search will find all the extents that end after
2069 * our range starts.
2071 node = tree_search(tree, start);
2072 if (!node) {
2073 ret = -ENOENT;
2074 goto out;
2076 state = rb_entry(node, struct extent_state, rb_node);
2077 if (state->start != start) {
2078 ret = -ENOENT;
2079 goto out;
2081 *failrec = state->failrec;
2082 out:
2083 spin_unlock(&tree->lock);
2084 return ret;
2088 * searches a range in the state tree for a given mask.
2089 * If 'filled' == 1, this returns 1 only if every extent in the tree
2090 * has the bits set. Otherwise, 1 is returned if any bit in the
2091 * range is found set.
2093 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2094 unsigned bits, int filled, struct extent_state *cached)
2096 struct extent_state *state = NULL;
2097 struct rb_node *node;
2098 int bitset = 0;
2100 spin_lock(&tree->lock);
2101 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2102 cached->end > start)
2103 node = &cached->rb_node;
2104 else
2105 node = tree_search(tree, start);
2106 while (node && start <= end) {
2107 state = rb_entry(node, struct extent_state, rb_node);
2109 if (filled && state->start > start) {
2110 bitset = 0;
2111 break;
2114 if (state->start > end)
2115 break;
2117 if (state->state & bits) {
2118 bitset = 1;
2119 if (!filled)
2120 break;
2121 } else if (filled) {
2122 bitset = 0;
2123 break;
2126 if (state->end == (u64)-1)
2127 break;
2129 start = state->end + 1;
2130 if (start > end)
2131 break;
2132 node = rb_next(node);
2133 if (!node) {
2134 if (filled)
2135 bitset = 0;
2136 break;
2139 spin_unlock(&tree->lock);
2140 return bitset;
2144 * helper function to set a given page up to date if all the
2145 * extents in the tree for that page are up to date
2147 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2149 u64 start = page_offset(page);
2150 u64 end = start + PAGE_SIZE - 1;
2151 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2152 SetPageUptodate(page);
2155 int free_io_failure(struct extent_io_tree *failure_tree,
2156 struct extent_io_tree *io_tree,
2157 struct io_failure_record *rec)
2159 int ret;
2160 int err = 0;
2162 set_state_failrec(failure_tree, rec->start, NULL);
2163 ret = clear_extent_bits(failure_tree, rec->start,
2164 rec->start + rec->len - 1,
2165 EXTENT_LOCKED | EXTENT_DIRTY);
2166 if (ret)
2167 err = ret;
2169 ret = clear_extent_bits(io_tree, rec->start,
2170 rec->start + rec->len - 1,
2171 EXTENT_DAMAGED);
2172 if (ret && !err)
2173 err = ret;
2175 kfree(rec);
2176 return err;
2180 * this bypasses the standard btrfs submit functions deliberately, as
2181 * the standard behavior is to write all copies in a raid setup. here we only
2182 * want to write the one bad copy. so we do the mapping for ourselves and issue
2183 * submit_bio directly.
2184 * to avoid any synchronization issues, wait for the data after writing, which
2185 * actually prevents the read that triggered the error from finishing.
2186 * currently, there can be no more than two copies of every data bit. thus,
2187 * exactly one rewrite is required.
2189 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2190 u64 length, u64 logical, struct page *page,
2191 unsigned int pg_offset, int mirror_num)
2193 struct bio *bio;
2194 struct btrfs_device *dev;
2195 u64 map_length = 0;
2196 u64 sector;
2197 struct btrfs_bio *bbio = NULL;
2198 int ret;
2200 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2201 BUG_ON(!mirror_num);
2203 bio = btrfs_io_bio_alloc(1);
2204 bio->bi_iter.bi_size = 0;
2205 map_length = length;
2208 * Avoid races with device replace and make sure our bbio has devices
2209 * associated to its stripes that don't go away while we are doing the
2210 * read repair operation.
2212 btrfs_bio_counter_inc_blocked(fs_info);
2213 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2215 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2216 * to update all raid stripes, but here we just want to correct
2217 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2218 * stripe's dev and sector.
2220 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2221 &map_length, &bbio, 0);
2222 if (ret) {
2223 btrfs_bio_counter_dec(fs_info);
2224 bio_put(bio);
2225 return -EIO;
2227 ASSERT(bbio->mirror_num == 1);
2228 } else {
2229 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2230 &map_length, &bbio, mirror_num);
2231 if (ret) {
2232 btrfs_bio_counter_dec(fs_info);
2233 bio_put(bio);
2234 return -EIO;
2236 BUG_ON(mirror_num != bbio->mirror_num);
2239 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2240 bio->bi_iter.bi_sector = sector;
2241 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2242 btrfs_put_bbio(bbio);
2243 if (!dev || !dev->bdev ||
2244 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2245 btrfs_bio_counter_dec(fs_info);
2246 bio_put(bio);
2247 return -EIO;
2249 bio_set_dev(bio, dev->bdev);
2250 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2251 bio_add_page(bio, page, length, pg_offset);
2253 if (btrfsic_submit_bio_wait(bio)) {
2254 /* try to remap that extent elsewhere? */
2255 btrfs_bio_counter_dec(fs_info);
2256 bio_put(bio);
2257 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2258 return -EIO;
2261 btrfs_info_rl_in_rcu(fs_info,
2262 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2263 ino, start,
2264 rcu_str_deref(dev->name), sector);
2265 btrfs_bio_counter_dec(fs_info);
2266 bio_put(bio);
2267 return 0;
2270 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2272 struct btrfs_fs_info *fs_info = eb->fs_info;
2273 u64 start = eb->start;
2274 int i, num_pages = num_extent_pages(eb);
2275 int ret = 0;
2277 if (sb_rdonly(fs_info->sb))
2278 return -EROFS;
2280 for (i = 0; i < num_pages; i++) {
2281 struct page *p = eb->pages[i];
2283 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2284 start - page_offset(p), mirror_num);
2285 if (ret)
2286 break;
2287 start += PAGE_SIZE;
2290 return ret;
2294 * each time an IO finishes, we do a fast check in the IO failure tree
2295 * to see if we need to process or clean up an io_failure_record
2297 int clean_io_failure(struct btrfs_fs_info *fs_info,
2298 struct extent_io_tree *failure_tree,
2299 struct extent_io_tree *io_tree, u64 start,
2300 struct page *page, u64 ino, unsigned int pg_offset)
2302 u64 private;
2303 struct io_failure_record *failrec;
2304 struct extent_state *state;
2305 int num_copies;
2306 int ret;
2308 private = 0;
2309 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2310 EXTENT_DIRTY, 0);
2311 if (!ret)
2312 return 0;
2314 ret = get_state_failrec(failure_tree, start, &failrec);
2315 if (ret)
2316 return 0;
2318 BUG_ON(!failrec->this_mirror);
2320 if (failrec->in_validation) {
2321 /* there was no real error, just free the record */
2322 btrfs_debug(fs_info,
2323 "clean_io_failure: freeing dummy error at %llu",
2324 failrec->start);
2325 goto out;
2327 if (sb_rdonly(fs_info->sb))
2328 goto out;
2330 spin_lock(&io_tree->lock);
2331 state = find_first_extent_bit_state(io_tree,
2332 failrec->start,
2333 EXTENT_LOCKED);
2334 spin_unlock(&io_tree->lock);
2336 if (state && state->start <= failrec->start &&
2337 state->end >= failrec->start + failrec->len - 1) {
2338 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2339 failrec->len);
2340 if (num_copies > 1) {
2341 repair_io_failure(fs_info, ino, start, failrec->len,
2342 failrec->logical, page, pg_offset,
2343 failrec->failed_mirror);
2347 out:
2348 free_io_failure(failure_tree, io_tree, failrec);
2350 return 0;
2354 * Can be called when
2355 * - hold extent lock
2356 * - under ordered extent
2357 * - the inode is freeing
2359 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2361 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2362 struct io_failure_record *failrec;
2363 struct extent_state *state, *next;
2365 if (RB_EMPTY_ROOT(&failure_tree->state))
2366 return;
2368 spin_lock(&failure_tree->lock);
2369 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2370 while (state) {
2371 if (state->start > end)
2372 break;
2374 ASSERT(state->end <= end);
2376 next = next_state(state);
2378 failrec = state->failrec;
2379 free_extent_state(state);
2380 kfree(failrec);
2382 state = next;
2384 spin_unlock(&failure_tree->lock);
2387 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2388 struct io_failure_record **failrec_ret)
2390 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2391 struct io_failure_record *failrec;
2392 struct extent_map *em;
2393 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2394 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2395 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2396 int ret;
2397 u64 logical;
2399 ret = get_state_failrec(failure_tree, start, &failrec);
2400 if (ret) {
2401 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2402 if (!failrec)
2403 return -ENOMEM;
2405 failrec->start = start;
2406 failrec->len = end - start + 1;
2407 failrec->this_mirror = 0;
2408 failrec->bio_flags = 0;
2409 failrec->in_validation = 0;
2411 read_lock(&em_tree->lock);
2412 em = lookup_extent_mapping(em_tree, start, failrec->len);
2413 if (!em) {
2414 read_unlock(&em_tree->lock);
2415 kfree(failrec);
2416 return -EIO;
2419 if (em->start > start || em->start + em->len <= start) {
2420 free_extent_map(em);
2421 em = NULL;
2423 read_unlock(&em_tree->lock);
2424 if (!em) {
2425 kfree(failrec);
2426 return -EIO;
2429 logical = start - em->start;
2430 logical = em->block_start + logical;
2431 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2432 logical = em->block_start;
2433 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2434 extent_set_compress_type(&failrec->bio_flags,
2435 em->compress_type);
2438 btrfs_debug(fs_info,
2439 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2440 logical, start, failrec->len);
2442 failrec->logical = logical;
2443 free_extent_map(em);
2445 /* set the bits in the private failure tree */
2446 ret = set_extent_bits(failure_tree, start, end,
2447 EXTENT_LOCKED | EXTENT_DIRTY);
2448 if (ret >= 0)
2449 ret = set_state_failrec(failure_tree, start, failrec);
2450 /* set the bits in the inode's tree */
2451 if (ret >= 0)
2452 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2453 if (ret < 0) {
2454 kfree(failrec);
2455 return ret;
2457 } else {
2458 btrfs_debug(fs_info,
2459 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2460 failrec->logical, failrec->start, failrec->len,
2461 failrec->in_validation);
2463 * when data can be on disk more than twice, add to failrec here
2464 * (e.g. with a list for failed_mirror) to make
2465 * clean_io_failure() clean all those errors at once.
2469 *failrec_ret = failrec;
2471 return 0;
2474 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2475 struct io_failure_record *failrec, int failed_mirror)
2477 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2478 int num_copies;
2480 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2481 if (num_copies == 1) {
2483 * we only have a single copy of the data, so don't bother with
2484 * all the retry and error correction code that follows. no
2485 * matter what the error is, it is very likely to persist.
2487 btrfs_debug(fs_info,
2488 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2489 num_copies, failrec->this_mirror, failed_mirror);
2490 return false;
2494 * there are two premises:
2495 * a) deliver good data to the caller
2496 * b) correct the bad sectors on disk
2498 if (failed_bio_pages > 1) {
2500 * to fulfill b), we need to know the exact failing sectors, as
2501 * we don't want to rewrite any more than the failed ones. thus,
2502 * we need separate read requests for the failed bio
2504 * if the following BUG_ON triggers, our validation request got
2505 * merged. we need separate requests for our algorithm to work.
2507 BUG_ON(failrec->in_validation);
2508 failrec->in_validation = 1;
2509 failrec->this_mirror = failed_mirror;
2510 } else {
2512 * we're ready to fulfill a) and b) alongside. get a good copy
2513 * of the failed sector and if we succeed, we have setup
2514 * everything for repair_io_failure to do the rest for us.
2516 if (failrec->in_validation) {
2517 BUG_ON(failrec->this_mirror != failed_mirror);
2518 failrec->in_validation = 0;
2519 failrec->this_mirror = 0;
2521 failrec->failed_mirror = failed_mirror;
2522 failrec->this_mirror++;
2523 if (failrec->this_mirror == failed_mirror)
2524 failrec->this_mirror++;
2527 if (failrec->this_mirror > num_copies) {
2528 btrfs_debug(fs_info,
2529 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2530 num_copies, failrec->this_mirror, failed_mirror);
2531 return false;
2534 return true;
2538 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2539 struct io_failure_record *failrec,
2540 struct page *page, int pg_offset, int icsum,
2541 bio_end_io_t *endio_func, void *data)
2543 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2544 struct bio *bio;
2545 struct btrfs_io_bio *btrfs_failed_bio;
2546 struct btrfs_io_bio *btrfs_bio;
2548 bio = btrfs_io_bio_alloc(1);
2549 bio->bi_end_io = endio_func;
2550 bio->bi_iter.bi_sector = failrec->logical >> 9;
2551 bio->bi_iter.bi_size = 0;
2552 bio->bi_private = data;
2554 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2555 if (btrfs_failed_bio->csum) {
2556 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2558 btrfs_bio = btrfs_io_bio(bio);
2559 btrfs_bio->csum = btrfs_bio->csum_inline;
2560 icsum *= csum_size;
2561 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2562 csum_size);
2565 bio_add_page(bio, page, failrec->len, pg_offset);
2567 return bio;
2571 * This is a generic handler for readpage errors. If other copies exist, read
2572 * those and write back good data to the failed position. Does not investigate
2573 * in remapping the failed extent elsewhere, hoping the device will be smart
2574 * enough to do this as needed
2576 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2577 struct page *page, u64 start, u64 end,
2578 int failed_mirror)
2580 struct io_failure_record *failrec;
2581 struct inode *inode = page->mapping->host;
2582 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2583 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2584 struct bio *bio;
2585 int read_mode = 0;
2586 blk_status_t status;
2587 int ret;
2588 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2590 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2592 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2593 if (ret)
2594 return ret;
2596 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2597 failed_mirror)) {
2598 free_io_failure(failure_tree, tree, failrec);
2599 return -EIO;
2602 if (failed_bio_pages > 1)
2603 read_mode |= REQ_FAILFAST_DEV;
2605 phy_offset >>= inode->i_sb->s_blocksize_bits;
2606 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2607 start - page_offset(page),
2608 (int)phy_offset, failed_bio->bi_end_io,
2609 NULL);
2610 bio->bi_opf = REQ_OP_READ | read_mode;
2612 btrfs_debug(btrfs_sb(inode->i_sb),
2613 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2614 read_mode, failrec->this_mirror, failrec->in_validation);
2616 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2617 failrec->bio_flags);
2618 if (status) {
2619 free_io_failure(failure_tree, tree, failrec);
2620 bio_put(bio);
2621 ret = blk_status_to_errno(status);
2624 return ret;
2627 /* lots and lots of room for performance fixes in the end_bio funcs */
2629 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2631 int uptodate = (err == 0);
2632 int ret = 0;
2634 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2636 if (!uptodate) {
2637 ClearPageUptodate(page);
2638 SetPageError(page);
2639 ret = err < 0 ? err : -EIO;
2640 mapping_set_error(page->mapping, ret);
2645 * after a writepage IO is done, we need to:
2646 * clear the uptodate bits on error
2647 * clear the writeback bits in the extent tree for this IO
2648 * end_page_writeback if the page has no more pending IO
2650 * Scheduling is not allowed, so the extent state tree is expected
2651 * to have one and only one object corresponding to this IO.
2653 static void end_bio_extent_writepage(struct bio *bio)
2655 int error = blk_status_to_errno(bio->bi_status);
2656 struct bio_vec *bvec;
2657 u64 start;
2658 u64 end;
2659 struct bvec_iter_all iter_all;
2661 ASSERT(!bio_flagged(bio, BIO_CLONED));
2662 bio_for_each_segment_all(bvec, bio, iter_all) {
2663 struct page *page = bvec->bv_page;
2664 struct inode *inode = page->mapping->host;
2665 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2667 /* We always issue full-page reads, but if some block
2668 * in a page fails to read, blk_update_request() will
2669 * advance bv_offset and adjust bv_len to compensate.
2670 * Print a warning for nonzero offsets, and an error
2671 * if they don't add up to a full page. */
2672 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2673 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2674 btrfs_err(fs_info,
2675 "partial page write in btrfs with offset %u and length %u",
2676 bvec->bv_offset, bvec->bv_len);
2677 else
2678 btrfs_info(fs_info,
2679 "incomplete page write in btrfs with offset %u and length %u",
2680 bvec->bv_offset, bvec->bv_len);
2683 start = page_offset(page);
2684 end = start + bvec->bv_offset + bvec->bv_len - 1;
2686 end_extent_writepage(page, error, start, end);
2687 end_page_writeback(page);
2690 bio_put(bio);
2693 static void
2694 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2695 int uptodate)
2697 struct extent_state *cached = NULL;
2698 u64 end = start + len - 1;
2700 if (uptodate && tree->track_uptodate)
2701 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2702 unlock_extent_cached_atomic(tree, start, end, &cached);
2706 * after a readpage IO is done, we need to:
2707 * clear the uptodate bits on error
2708 * set the uptodate bits if things worked
2709 * set the page up to date if all extents in the tree are uptodate
2710 * clear the lock bit in the extent tree
2711 * unlock the page if there are no other extents locked for it
2713 * Scheduling is not allowed, so the extent state tree is expected
2714 * to have one and only one object corresponding to this IO.
2716 static void end_bio_extent_readpage(struct bio *bio)
2718 struct bio_vec *bvec;
2719 int uptodate = !bio->bi_status;
2720 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2721 struct extent_io_tree *tree, *failure_tree;
2722 u64 offset = 0;
2723 u64 start;
2724 u64 end;
2725 u64 len;
2726 u64 extent_start = 0;
2727 u64 extent_len = 0;
2728 int mirror;
2729 int ret;
2730 struct bvec_iter_all iter_all;
2732 ASSERT(!bio_flagged(bio, BIO_CLONED));
2733 bio_for_each_segment_all(bvec, bio, iter_all) {
2734 struct page *page = bvec->bv_page;
2735 struct inode *inode = page->mapping->host;
2736 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2737 bool data_inode = btrfs_ino(BTRFS_I(inode))
2738 != BTRFS_BTREE_INODE_OBJECTID;
2740 btrfs_debug(fs_info,
2741 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2742 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2743 io_bio->mirror_num);
2744 tree = &BTRFS_I(inode)->io_tree;
2745 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2747 /* We always issue full-page reads, but if some block
2748 * in a page fails to read, blk_update_request() will
2749 * advance bv_offset and adjust bv_len to compensate.
2750 * Print a warning for nonzero offsets, and an error
2751 * if they don't add up to a full page. */
2752 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2753 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2754 btrfs_err(fs_info,
2755 "partial page read in btrfs with offset %u and length %u",
2756 bvec->bv_offset, bvec->bv_len);
2757 else
2758 btrfs_info(fs_info,
2759 "incomplete page read in btrfs with offset %u and length %u",
2760 bvec->bv_offset, bvec->bv_len);
2763 start = page_offset(page);
2764 end = start + bvec->bv_offset + bvec->bv_len - 1;
2765 len = bvec->bv_len;
2767 mirror = io_bio->mirror_num;
2768 if (likely(uptodate)) {
2769 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2770 page, start, end,
2771 mirror);
2772 if (ret)
2773 uptodate = 0;
2774 else
2775 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2776 failure_tree, tree, start,
2777 page,
2778 btrfs_ino(BTRFS_I(inode)), 0);
2781 if (likely(uptodate))
2782 goto readpage_ok;
2784 if (data_inode) {
2787 * The generic bio_readpage_error handles errors the
2788 * following way: If possible, new read requests are
2789 * created and submitted and will end up in
2790 * end_bio_extent_readpage as well (if we're lucky,
2791 * not in the !uptodate case). In that case it returns
2792 * 0 and we just go on with the next page in our bio.
2793 * If it can't handle the error it will return -EIO and
2794 * we remain responsible for that page.
2796 ret = bio_readpage_error(bio, offset, page, start, end,
2797 mirror);
2798 if (ret == 0) {
2799 uptodate = !bio->bi_status;
2800 offset += len;
2801 continue;
2803 } else {
2804 struct extent_buffer *eb;
2806 eb = (struct extent_buffer *)page->private;
2807 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2808 eb->read_mirror = mirror;
2809 atomic_dec(&eb->io_pages);
2810 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2811 &eb->bflags))
2812 btree_readahead_hook(eb, -EIO);
2814 readpage_ok:
2815 if (likely(uptodate)) {
2816 loff_t i_size = i_size_read(inode);
2817 pgoff_t end_index = i_size >> PAGE_SHIFT;
2818 unsigned off;
2820 /* Zero out the end if this page straddles i_size */
2821 off = offset_in_page(i_size);
2822 if (page->index == end_index && off)
2823 zero_user_segment(page, off, PAGE_SIZE);
2824 SetPageUptodate(page);
2825 } else {
2826 ClearPageUptodate(page);
2827 SetPageError(page);
2829 unlock_page(page);
2830 offset += len;
2832 if (unlikely(!uptodate)) {
2833 if (extent_len) {
2834 endio_readpage_release_extent(tree,
2835 extent_start,
2836 extent_len, 1);
2837 extent_start = 0;
2838 extent_len = 0;
2840 endio_readpage_release_extent(tree, start,
2841 end - start + 1, 0);
2842 } else if (!extent_len) {
2843 extent_start = start;
2844 extent_len = end + 1 - start;
2845 } else if (extent_start + extent_len == start) {
2846 extent_len += end + 1 - start;
2847 } else {
2848 endio_readpage_release_extent(tree, extent_start,
2849 extent_len, uptodate);
2850 extent_start = start;
2851 extent_len = end + 1 - start;
2855 if (extent_len)
2856 endio_readpage_release_extent(tree, extent_start, extent_len,
2857 uptodate);
2858 btrfs_io_bio_free_csum(io_bio);
2859 bio_put(bio);
2863 * Initialize the members up to but not including 'bio'. Use after allocating a
2864 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2865 * 'bio' because use of __GFP_ZERO is not supported.
2867 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2869 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2873 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2874 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2875 * for the appropriate container_of magic
2877 struct bio *btrfs_bio_alloc(u64 first_byte)
2879 struct bio *bio;
2881 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2882 bio->bi_iter.bi_sector = first_byte >> 9;
2883 btrfs_io_bio_init(btrfs_io_bio(bio));
2884 return bio;
2887 struct bio *btrfs_bio_clone(struct bio *bio)
2889 struct btrfs_io_bio *btrfs_bio;
2890 struct bio *new;
2892 /* Bio allocation backed by a bioset does not fail */
2893 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2894 btrfs_bio = btrfs_io_bio(new);
2895 btrfs_io_bio_init(btrfs_bio);
2896 btrfs_bio->iter = bio->bi_iter;
2897 return new;
2900 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2902 struct bio *bio;
2904 /* Bio allocation backed by a bioset does not fail */
2905 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2906 btrfs_io_bio_init(btrfs_io_bio(bio));
2907 return bio;
2910 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2912 struct bio *bio;
2913 struct btrfs_io_bio *btrfs_bio;
2915 /* this will never fail when it's backed by a bioset */
2916 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2917 ASSERT(bio);
2919 btrfs_bio = btrfs_io_bio(bio);
2920 btrfs_io_bio_init(btrfs_bio);
2922 bio_trim(bio, offset >> 9, size >> 9);
2923 btrfs_bio->iter = bio->bi_iter;
2924 return bio;
2928 * @opf: bio REQ_OP_* and REQ_* flags as one value
2929 * @tree: tree so we can call our merge_bio hook
2930 * @wbc: optional writeback control for io accounting
2931 * @page: page to add to the bio
2932 * @pg_offset: offset of the new bio or to check whether we are adding
2933 * a contiguous page to the previous one
2934 * @size: portion of page that we want to write
2935 * @offset: starting offset in the page
2936 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2937 * @end_io_func: end_io callback for new bio
2938 * @mirror_num: desired mirror to read/write
2939 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2940 * @bio_flags: flags of the current bio to see if we can merge them
2942 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2943 struct writeback_control *wbc,
2944 struct page *page, u64 offset,
2945 size_t size, unsigned long pg_offset,
2946 struct bio **bio_ret,
2947 bio_end_io_t end_io_func,
2948 int mirror_num,
2949 unsigned long prev_bio_flags,
2950 unsigned long bio_flags,
2951 bool force_bio_submit)
2953 int ret = 0;
2954 struct bio *bio;
2955 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2956 sector_t sector = offset >> 9;
2958 ASSERT(bio_ret);
2960 if (*bio_ret) {
2961 bool contig;
2962 bool can_merge = true;
2964 bio = *bio_ret;
2965 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2966 contig = bio->bi_iter.bi_sector == sector;
2967 else
2968 contig = bio_end_sector(bio) == sector;
2970 ASSERT(tree->ops);
2971 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2972 can_merge = false;
2974 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2975 force_bio_submit ||
2976 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2977 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2978 if (ret < 0) {
2979 *bio_ret = NULL;
2980 return ret;
2982 bio = NULL;
2983 } else {
2984 if (wbc)
2985 wbc_account_cgroup_owner(wbc, page, page_size);
2986 return 0;
2990 bio = btrfs_bio_alloc(offset);
2991 bio_add_page(bio, page, page_size, pg_offset);
2992 bio->bi_end_io = end_io_func;
2993 bio->bi_private = tree;
2994 bio->bi_write_hint = page->mapping->host->i_write_hint;
2995 bio->bi_opf = opf;
2996 if (wbc) {
2997 struct block_device *bdev;
2999 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3000 bio_set_dev(bio, bdev);
3001 wbc_init_bio(wbc, bio);
3002 wbc_account_cgroup_owner(wbc, page, page_size);
3005 *bio_ret = bio;
3007 return ret;
3010 static void attach_extent_buffer_page(struct extent_buffer *eb,
3011 struct page *page)
3013 if (!PagePrivate(page)) {
3014 SetPagePrivate(page);
3015 get_page(page);
3016 set_page_private(page, (unsigned long)eb);
3017 } else {
3018 WARN_ON(page->private != (unsigned long)eb);
3022 void set_page_extent_mapped(struct page *page)
3024 if (!PagePrivate(page)) {
3025 SetPagePrivate(page);
3026 get_page(page);
3027 set_page_private(page, EXTENT_PAGE_PRIVATE);
3031 static struct extent_map *
3032 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3033 u64 start, u64 len, get_extent_t *get_extent,
3034 struct extent_map **em_cached)
3036 struct extent_map *em;
3038 if (em_cached && *em_cached) {
3039 em = *em_cached;
3040 if (extent_map_in_tree(em) && start >= em->start &&
3041 start < extent_map_end(em)) {
3042 refcount_inc(&em->refs);
3043 return em;
3046 free_extent_map(em);
3047 *em_cached = NULL;
3050 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3051 if (em_cached && !IS_ERR_OR_NULL(em)) {
3052 BUG_ON(*em_cached);
3053 refcount_inc(&em->refs);
3054 *em_cached = em;
3056 return em;
3059 * basic readpage implementation. Locked extent state structs are inserted
3060 * into the tree that are removed when the IO is done (by the end_io
3061 * handlers)
3062 * XXX JDM: This needs looking at to ensure proper page locking
3063 * return 0 on success, otherwise return error
3065 static int __do_readpage(struct extent_io_tree *tree,
3066 struct page *page,
3067 get_extent_t *get_extent,
3068 struct extent_map **em_cached,
3069 struct bio **bio, int mirror_num,
3070 unsigned long *bio_flags, unsigned int read_flags,
3071 u64 *prev_em_start)
3073 struct inode *inode = page->mapping->host;
3074 u64 start = page_offset(page);
3075 const u64 end = start + PAGE_SIZE - 1;
3076 u64 cur = start;
3077 u64 extent_offset;
3078 u64 last_byte = i_size_read(inode);
3079 u64 block_start;
3080 u64 cur_end;
3081 struct extent_map *em;
3082 int ret = 0;
3083 int nr = 0;
3084 size_t pg_offset = 0;
3085 size_t iosize;
3086 size_t disk_io_size;
3087 size_t blocksize = inode->i_sb->s_blocksize;
3088 unsigned long this_bio_flag = 0;
3090 set_page_extent_mapped(page);
3092 if (!PageUptodate(page)) {
3093 if (cleancache_get_page(page) == 0) {
3094 BUG_ON(blocksize != PAGE_SIZE);
3095 unlock_extent(tree, start, end);
3096 goto out;
3100 if (page->index == last_byte >> PAGE_SHIFT) {
3101 char *userpage;
3102 size_t zero_offset = offset_in_page(last_byte);
3104 if (zero_offset) {
3105 iosize = PAGE_SIZE - zero_offset;
3106 userpage = kmap_atomic(page);
3107 memset(userpage + zero_offset, 0, iosize);
3108 flush_dcache_page(page);
3109 kunmap_atomic(userpage);
3112 while (cur <= end) {
3113 bool force_bio_submit = false;
3114 u64 offset;
3116 if (cur >= last_byte) {
3117 char *userpage;
3118 struct extent_state *cached = NULL;
3120 iosize = PAGE_SIZE - pg_offset;
3121 userpage = kmap_atomic(page);
3122 memset(userpage + pg_offset, 0, iosize);
3123 flush_dcache_page(page);
3124 kunmap_atomic(userpage);
3125 set_extent_uptodate(tree, cur, cur + iosize - 1,
3126 &cached, GFP_NOFS);
3127 unlock_extent_cached(tree, cur,
3128 cur + iosize - 1, &cached);
3129 break;
3131 em = __get_extent_map(inode, page, pg_offset, cur,
3132 end - cur + 1, get_extent, em_cached);
3133 if (IS_ERR_OR_NULL(em)) {
3134 SetPageError(page);
3135 unlock_extent(tree, cur, end);
3136 break;
3138 extent_offset = cur - em->start;
3139 BUG_ON(extent_map_end(em) <= cur);
3140 BUG_ON(end < cur);
3142 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3143 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3144 extent_set_compress_type(&this_bio_flag,
3145 em->compress_type);
3148 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3149 cur_end = min(extent_map_end(em) - 1, end);
3150 iosize = ALIGN(iosize, blocksize);
3151 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3152 disk_io_size = em->block_len;
3153 offset = em->block_start;
3154 } else {
3155 offset = em->block_start + extent_offset;
3156 disk_io_size = iosize;
3158 block_start = em->block_start;
3159 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3160 block_start = EXTENT_MAP_HOLE;
3163 * If we have a file range that points to a compressed extent
3164 * and it's followed by a consecutive file range that points to
3165 * to the same compressed extent (possibly with a different
3166 * offset and/or length, so it either points to the whole extent
3167 * or only part of it), we must make sure we do not submit a
3168 * single bio to populate the pages for the 2 ranges because
3169 * this makes the compressed extent read zero out the pages
3170 * belonging to the 2nd range. Imagine the following scenario:
3172 * File layout
3173 * [0 - 8K] [8K - 24K]
3174 * | |
3175 * | |
3176 * points to extent X, points to extent X,
3177 * offset 4K, length of 8K offset 0, length 16K
3179 * [extent X, compressed length = 4K uncompressed length = 16K]
3181 * If the bio to read the compressed extent covers both ranges,
3182 * it will decompress extent X into the pages belonging to the
3183 * first range and then it will stop, zeroing out the remaining
3184 * pages that belong to the other range that points to extent X.
3185 * So here we make sure we submit 2 bios, one for the first
3186 * range and another one for the third range. Both will target
3187 * the same physical extent from disk, but we can't currently
3188 * make the compressed bio endio callback populate the pages
3189 * for both ranges because each compressed bio is tightly
3190 * coupled with a single extent map, and each range can have
3191 * an extent map with a different offset value relative to the
3192 * uncompressed data of our extent and different lengths. This
3193 * is a corner case so we prioritize correctness over
3194 * non-optimal behavior (submitting 2 bios for the same extent).
3196 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3197 prev_em_start && *prev_em_start != (u64)-1 &&
3198 *prev_em_start != em->start)
3199 force_bio_submit = true;
3201 if (prev_em_start)
3202 *prev_em_start = em->start;
3204 free_extent_map(em);
3205 em = NULL;
3207 /* we've found a hole, just zero and go on */
3208 if (block_start == EXTENT_MAP_HOLE) {
3209 char *userpage;
3210 struct extent_state *cached = NULL;
3212 userpage = kmap_atomic(page);
3213 memset(userpage + pg_offset, 0, iosize);
3214 flush_dcache_page(page);
3215 kunmap_atomic(userpage);
3217 set_extent_uptodate(tree, cur, cur + iosize - 1,
3218 &cached, GFP_NOFS);
3219 unlock_extent_cached(tree, cur,
3220 cur + iosize - 1, &cached);
3221 cur = cur + iosize;
3222 pg_offset += iosize;
3223 continue;
3225 /* the get_extent function already copied into the page */
3226 if (test_range_bit(tree, cur, cur_end,
3227 EXTENT_UPTODATE, 1, NULL)) {
3228 check_page_uptodate(tree, page);
3229 unlock_extent(tree, cur, cur + iosize - 1);
3230 cur = cur + iosize;
3231 pg_offset += iosize;
3232 continue;
3234 /* we have an inline extent but it didn't get marked up
3235 * to date. Error out
3237 if (block_start == EXTENT_MAP_INLINE) {
3238 SetPageError(page);
3239 unlock_extent(tree, cur, cur + iosize - 1);
3240 cur = cur + iosize;
3241 pg_offset += iosize;
3242 continue;
3245 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3246 page, offset, disk_io_size,
3247 pg_offset, bio,
3248 end_bio_extent_readpage, mirror_num,
3249 *bio_flags,
3250 this_bio_flag,
3251 force_bio_submit);
3252 if (!ret) {
3253 nr++;
3254 *bio_flags = this_bio_flag;
3255 } else {
3256 SetPageError(page);
3257 unlock_extent(tree, cur, cur + iosize - 1);
3258 goto out;
3260 cur = cur + iosize;
3261 pg_offset += iosize;
3263 out:
3264 if (!nr) {
3265 if (!PageError(page))
3266 SetPageUptodate(page);
3267 unlock_page(page);
3269 return ret;
3272 static inline void contiguous_readpages(struct extent_io_tree *tree,
3273 struct page *pages[], int nr_pages,
3274 u64 start, u64 end,
3275 struct extent_map **em_cached,
3276 struct bio **bio,
3277 unsigned long *bio_flags,
3278 u64 *prev_em_start)
3280 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3281 int index;
3283 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3285 for (index = 0; index < nr_pages; index++) {
3286 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3287 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3288 put_page(pages[index]);
3292 static int __extent_read_full_page(struct extent_io_tree *tree,
3293 struct page *page,
3294 get_extent_t *get_extent,
3295 struct bio **bio, int mirror_num,
3296 unsigned long *bio_flags,
3297 unsigned int read_flags)
3299 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3300 u64 start = page_offset(page);
3301 u64 end = start + PAGE_SIZE - 1;
3302 int ret;
3304 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3306 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3307 bio_flags, read_flags, NULL);
3308 return ret;
3311 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3312 get_extent_t *get_extent, int mirror_num)
3314 struct bio *bio = NULL;
3315 unsigned long bio_flags = 0;
3316 int ret;
3318 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3319 &bio_flags, 0);
3320 if (bio)
3321 ret = submit_one_bio(bio, mirror_num, bio_flags);
3322 return ret;
3325 static void update_nr_written(struct writeback_control *wbc,
3326 unsigned long nr_written)
3328 wbc->nr_to_write -= nr_written;
3332 * helper for __extent_writepage, doing all of the delayed allocation setup.
3334 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3335 * to write the page (copy into inline extent). In this case the IO has
3336 * been started and the page is already unlocked.
3338 * This returns 0 if all went well (page still locked)
3339 * This returns < 0 if there were errors (page still locked)
3341 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3342 struct page *page, struct writeback_control *wbc,
3343 u64 delalloc_start, unsigned long *nr_written)
3345 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3346 bool found;
3347 u64 delalloc_to_write = 0;
3348 u64 delalloc_end = 0;
3349 int ret;
3350 int page_started = 0;
3353 while (delalloc_end < page_end) {
3354 found = find_lock_delalloc_range(inode, page,
3355 &delalloc_start,
3356 &delalloc_end);
3357 if (!found) {
3358 delalloc_start = delalloc_end + 1;
3359 continue;
3361 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3362 delalloc_end, &page_started, nr_written, wbc);
3363 if (ret) {
3364 SetPageError(page);
3366 * btrfs_run_delalloc_range should return < 0 for error
3367 * but just in case, we use > 0 here meaning the IO is
3368 * started, so we don't want to return > 0 unless
3369 * things are going well.
3371 ret = ret < 0 ? ret : -EIO;
3372 goto done;
3375 * delalloc_end is already one less than the total length, so
3376 * we don't subtract one from PAGE_SIZE
3378 delalloc_to_write += (delalloc_end - delalloc_start +
3379 PAGE_SIZE) >> PAGE_SHIFT;
3380 delalloc_start = delalloc_end + 1;
3382 if (wbc->nr_to_write < delalloc_to_write) {
3383 int thresh = 8192;
3385 if (delalloc_to_write < thresh * 2)
3386 thresh = delalloc_to_write;
3387 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3388 thresh);
3391 /* did the fill delalloc function already unlock and start
3392 * the IO?
3394 if (page_started) {
3396 * we've unlocked the page, so we can't update
3397 * the mapping's writeback index, just update
3398 * nr_to_write.
3400 wbc->nr_to_write -= *nr_written;
3401 return 1;
3404 ret = 0;
3406 done:
3407 return ret;
3411 * helper for __extent_writepage. This calls the writepage start hooks,
3412 * and does the loop to map the page into extents and bios.
3414 * We return 1 if the IO is started and the page is unlocked,
3415 * 0 if all went well (page still locked)
3416 * < 0 if there were errors (page still locked)
3418 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3419 struct page *page,
3420 struct writeback_control *wbc,
3421 struct extent_page_data *epd,
3422 loff_t i_size,
3423 unsigned long nr_written,
3424 int *nr_ret)
3426 struct extent_io_tree *tree = epd->tree;
3427 u64 start = page_offset(page);
3428 u64 page_end = start + PAGE_SIZE - 1;
3429 u64 end;
3430 u64 cur = start;
3431 u64 extent_offset;
3432 u64 block_start;
3433 u64 iosize;
3434 struct extent_map *em;
3435 size_t pg_offset = 0;
3436 size_t blocksize;
3437 int ret = 0;
3438 int nr = 0;
3439 const unsigned int write_flags = wbc_to_write_flags(wbc);
3440 bool compressed;
3442 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3443 if (ret) {
3444 /* Fixup worker will requeue */
3445 redirty_page_for_writepage(wbc, page);
3446 update_nr_written(wbc, nr_written);
3447 unlock_page(page);
3448 return 1;
3452 * we don't want to touch the inode after unlocking the page,
3453 * so we update the mapping writeback index now
3455 update_nr_written(wbc, nr_written + 1);
3457 end = page_end;
3458 blocksize = inode->i_sb->s_blocksize;
3460 while (cur <= end) {
3461 u64 em_end;
3462 u64 offset;
3464 if (cur >= i_size) {
3465 btrfs_writepage_endio_finish_ordered(page, cur,
3466 page_end, 1);
3467 break;
3469 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur,
3470 end - cur + 1);
3471 if (IS_ERR_OR_NULL(em)) {
3472 SetPageError(page);
3473 ret = PTR_ERR_OR_ZERO(em);
3474 break;
3477 extent_offset = cur - em->start;
3478 em_end = extent_map_end(em);
3479 BUG_ON(em_end <= cur);
3480 BUG_ON(end < cur);
3481 iosize = min(em_end - cur, end - cur + 1);
3482 iosize = ALIGN(iosize, blocksize);
3483 offset = em->block_start + extent_offset;
3484 block_start = em->block_start;
3485 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3486 free_extent_map(em);
3487 em = NULL;
3490 * compressed and inline extents are written through other
3491 * paths in the FS
3493 if (compressed || block_start == EXTENT_MAP_HOLE ||
3494 block_start == EXTENT_MAP_INLINE) {
3495 if (compressed)
3496 nr++;
3497 else
3498 btrfs_writepage_endio_finish_ordered(page, cur,
3499 cur + iosize - 1, 1);
3500 cur += iosize;
3501 pg_offset += iosize;
3502 continue;
3505 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3506 if (!PageWriteback(page)) {
3507 btrfs_err(BTRFS_I(inode)->root->fs_info,
3508 "page %lu not writeback, cur %llu end %llu",
3509 page->index, cur, end);
3512 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3513 page, offset, iosize, pg_offset,
3514 &epd->bio,
3515 end_bio_extent_writepage,
3516 0, 0, 0, false);
3517 if (ret) {
3518 SetPageError(page);
3519 if (PageWriteback(page))
3520 end_page_writeback(page);
3523 cur = cur + iosize;
3524 pg_offset += iosize;
3525 nr++;
3527 *nr_ret = nr;
3528 return ret;
3532 * the writepage semantics are similar to regular writepage. extent
3533 * records are inserted to lock ranges in the tree, and as dirty areas
3534 * are found, they are marked writeback. Then the lock bits are removed
3535 * and the end_io handler clears the writeback ranges
3537 * Return 0 if everything goes well.
3538 * Return <0 for error.
3540 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3541 struct extent_page_data *epd)
3543 struct inode *inode = page->mapping->host;
3544 u64 start = page_offset(page);
3545 u64 page_end = start + PAGE_SIZE - 1;
3546 int ret;
3547 int nr = 0;
3548 size_t pg_offset;
3549 loff_t i_size = i_size_read(inode);
3550 unsigned long end_index = i_size >> PAGE_SHIFT;
3551 unsigned long nr_written = 0;
3553 trace___extent_writepage(page, inode, wbc);
3555 WARN_ON(!PageLocked(page));
3557 ClearPageError(page);
3559 pg_offset = offset_in_page(i_size);
3560 if (page->index > end_index ||
3561 (page->index == end_index && !pg_offset)) {
3562 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3563 unlock_page(page);
3564 return 0;
3567 if (page->index == end_index) {
3568 char *userpage;
3570 userpage = kmap_atomic(page);
3571 memset(userpage + pg_offset, 0,
3572 PAGE_SIZE - pg_offset);
3573 kunmap_atomic(userpage);
3574 flush_dcache_page(page);
3577 set_page_extent_mapped(page);
3579 if (!epd->extent_locked) {
3580 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3581 if (ret == 1)
3582 return 0;
3583 if (ret)
3584 goto done;
3587 ret = __extent_writepage_io(inode, page, wbc, epd,
3588 i_size, nr_written, &nr);
3589 if (ret == 1)
3590 return 0;
3592 done:
3593 if (nr == 0) {
3594 /* make sure the mapping tag for page dirty gets cleared */
3595 set_page_writeback(page);
3596 end_page_writeback(page);
3598 if (PageError(page)) {
3599 ret = ret < 0 ? ret : -EIO;
3600 end_extent_writepage(page, ret, start, page_end);
3602 unlock_page(page);
3603 ASSERT(ret <= 0);
3604 return ret;
3607 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3609 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3610 TASK_UNINTERRUPTIBLE);
3613 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3615 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3616 smp_mb__after_atomic();
3617 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3621 * Lock eb pages and flush the bio if we can't the locks
3623 * Return 0 if nothing went wrong
3624 * Return >0 is same as 0, except bio is not submitted
3625 * Return <0 if something went wrong, no page is locked
3627 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3628 struct extent_page_data *epd)
3630 struct btrfs_fs_info *fs_info = eb->fs_info;
3631 int i, num_pages, failed_page_nr;
3632 int flush = 0;
3633 int ret = 0;
3635 if (!btrfs_try_tree_write_lock(eb)) {
3636 ret = flush_write_bio(epd);
3637 if (ret < 0)
3638 return ret;
3639 flush = 1;
3640 btrfs_tree_lock(eb);
3643 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3644 btrfs_tree_unlock(eb);
3645 if (!epd->sync_io)
3646 return 0;
3647 if (!flush) {
3648 ret = flush_write_bio(epd);
3649 if (ret < 0)
3650 return ret;
3651 flush = 1;
3653 while (1) {
3654 wait_on_extent_buffer_writeback(eb);
3655 btrfs_tree_lock(eb);
3656 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3657 break;
3658 btrfs_tree_unlock(eb);
3663 * We need to do this to prevent races in people who check if the eb is
3664 * under IO since we can end up having no IO bits set for a short period
3665 * of time.
3667 spin_lock(&eb->refs_lock);
3668 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3669 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3670 spin_unlock(&eb->refs_lock);
3671 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3672 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3673 -eb->len,
3674 fs_info->dirty_metadata_batch);
3675 ret = 1;
3676 } else {
3677 spin_unlock(&eb->refs_lock);
3680 btrfs_tree_unlock(eb);
3682 if (!ret)
3683 return ret;
3685 num_pages = num_extent_pages(eb);
3686 for (i = 0; i < num_pages; i++) {
3687 struct page *p = eb->pages[i];
3689 if (!trylock_page(p)) {
3690 if (!flush) {
3691 int err;
3693 err = flush_write_bio(epd);
3694 if (err < 0) {
3695 ret = err;
3696 failed_page_nr = i;
3697 goto err_unlock;
3699 flush = 1;
3701 lock_page(p);
3705 return ret;
3706 err_unlock:
3707 /* Unlock already locked pages */
3708 for (i = 0; i < failed_page_nr; i++)
3709 unlock_page(eb->pages[i]);
3711 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3712 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3713 * be made and undo everything done before.
3715 btrfs_tree_lock(eb);
3716 spin_lock(&eb->refs_lock);
3717 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3718 end_extent_buffer_writeback(eb);
3719 spin_unlock(&eb->refs_lock);
3720 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3721 fs_info->dirty_metadata_batch);
3722 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3723 btrfs_tree_unlock(eb);
3724 return ret;
3727 static void set_btree_ioerr(struct page *page)
3729 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3730 struct btrfs_fs_info *fs_info;
3732 SetPageError(page);
3733 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3734 return;
3737 * If we error out, we should add back the dirty_metadata_bytes
3738 * to make it consistent.
3740 fs_info = eb->fs_info;
3741 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3742 eb->len, fs_info->dirty_metadata_batch);
3745 * If writeback for a btree extent that doesn't belong to a log tree
3746 * failed, increment the counter transaction->eb_write_errors.
3747 * We do this because while the transaction is running and before it's
3748 * committing (when we call filemap_fdata[write|wait]_range against
3749 * the btree inode), we might have
3750 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3751 * returns an error or an error happens during writeback, when we're
3752 * committing the transaction we wouldn't know about it, since the pages
3753 * can be no longer dirty nor marked anymore for writeback (if a
3754 * subsequent modification to the extent buffer didn't happen before the
3755 * transaction commit), which makes filemap_fdata[write|wait]_range not
3756 * able to find the pages tagged with SetPageError at transaction
3757 * commit time. So if this happens we must abort the transaction,
3758 * otherwise we commit a super block with btree roots that point to
3759 * btree nodes/leafs whose content on disk is invalid - either garbage
3760 * or the content of some node/leaf from a past generation that got
3761 * cowed or deleted and is no longer valid.
3763 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3764 * not be enough - we need to distinguish between log tree extents vs
3765 * non-log tree extents, and the next filemap_fdatawait_range() call
3766 * will catch and clear such errors in the mapping - and that call might
3767 * be from a log sync and not from a transaction commit. Also, checking
3768 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3769 * not done and would not be reliable - the eb might have been released
3770 * from memory and reading it back again means that flag would not be
3771 * set (since it's a runtime flag, not persisted on disk).
3773 * Using the flags below in the btree inode also makes us achieve the
3774 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3775 * writeback for all dirty pages and before filemap_fdatawait_range()
3776 * is called, the writeback for all dirty pages had already finished
3777 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3778 * filemap_fdatawait_range() would return success, as it could not know
3779 * that writeback errors happened (the pages were no longer tagged for
3780 * writeback).
3782 switch (eb->log_index) {
3783 case -1:
3784 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3785 break;
3786 case 0:
3787 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3788 break;
3789 case 1:
3790 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3791 break;
3792 default:
3793 BUG(); /* unexpected, logic error */
3797 static void end_bio_extent_buffer_writepage(struct bio *bio)
3799 struct bio_vec *bvec;
3800 struct extent_buffer *eb;
3801 int done;
3802 struct bvec_iter_all iter_all;
3804 ASSERT(!bio_flagged(bio, BIO_CLONED));
3805 bio_for_each_segment_all(bvec, bio, iter_all) {
3806 struct page *page = bvec->bv_page;
3808 eb = (struct extent_buffer *)page->private;
3809 BUG_ON(!eb);
3810 done = atomic_dec_and_test(&eb->io_pages);
3812 if (bio->bi_status ||
3813 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3814 ClearPageUptodate(page);
3815 set_btree_ioerr(page);
3818 end_page_writeback(page);
3820 if (!done)
3821 continue;
3823 end_extent_buffer_writeback(eb);
3826 bio_put(bio);
3829 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3830 struct writeback_control *wbc,
3831 struct extent_page_data *epd)
3833 struct btrfs_fs_info *fs_info = eb->fs_info;
3834 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3835 u64 offset = eb->start;
3836 u32 nritems;
3837 int i, num_pages;
3838 unsigned long start, end;
3839 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3840 int ret = 0;
3842 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3843 num_pages = num_extent_pages(eb);
3844 atomic_set(&eb->io_pages, num_pages);
3846 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3847 nritems = btrfs_header_nritems(eb);
3848 if (btrfs_header_level(eb) > 0) {
3849 end = btrfs_node_key_ptr_offset(nritems);
3851 memzero_extent_buffer(eb, end, eb->len - end);
3852 } else {
3854 * leaf:
3855 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3857 start = btrfs_item_nr_offset(nritems);
3858 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3859 memzero_extent_buffer(eb, start, end - start);
3862 for (i = 0; i < num_pages; i++) {
3863 struct page *p = eb->pages[i];
3865 clear_page_dirty_for_io(p);
3866 set_page_writeback(p);
3867 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3868 p, offset, PAGE_SIZE, 0,
3869 &epd->bio,
3870 end_bio_extent_buffer_writepage,
3871 0, 0, 0, false);
3872 if (ret) {
3873 set_btree_ioerr(p);
3874 if (PageWriteback(p))
3875 end_page_writeback(p);
3876 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3877 end_extent_buffer_writeback(eb);
3878 ret = -EIO;
3879 break;
3881 offset += PAGE_SIZE;
3882 update_nr_written(wbc, 1);
3883 unlock_page(p);
3886 if (unlikely(ret)) {
3887 for (; i < num_pages; i++) {
3888 struct page *p = eb->pages[i];
3889 clear_page_dirty_for_io(p);
3890 unlock_page(p);
3894 return ret;
3897 int btree_write_cache_pages(struct address_space *mapping,
3898 struct writeback_control *wbc)
3900 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3901 struct extent_buffer *eb, *prev_eb = NULL;
3902 struct extent_page_data epd = {
3903 .bio = NULL,
3904 .tree = tree,
3905 .extent_locked = 0,
3906 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3908 int ret = 0;
3909 int done = 0;
3910 int nr_to_write_done = 0;
3911 struct pagevec pvec;
3912 int nr_pages;
3913 pgoff_t index;
3914 pgoff_t end; /* Inclusive */
3915 int scanned = 0;
3916 xa_mark_t tag;
3918 pagevec_init(&pvec);
3919 if (wbc->range_cyclic) {
3920 index = mapping->writeback_index; /* Start from prev offset */
3921 end = -1;
3923 * Start from the beginning does not need to cycle over the
3924 * range, mark it as scanned.
3926 scanned = (index == 0);
3927 } else {
3928 index = wbc->range_start >> PAGE_SHIFT;
3929 end = wbc->range_end >> PAGE_SHIFT;
3930 scanned = 1;
3932 if (wbc->sync_mode == WB_SYNC_ALL)
3933 tag = PAGECACHE_TAG_TOWRITE;
3934 else
3935 tag = PAGECACHE_TAG_DIRTY;
3936 retry:
3937 if (wbc->sync_mode == WB_SYNC_ALL)
3938 tag_pages_for_writeback(mapping, index, end);
3939 while (!done && !nr_to_write_done && (index <= end) &&
3940 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3941 tag))) {
3942 unsigned i;
3944 for (i = 0; i < nr_pages; i++) {
3945 struct page *page = pvec.pages[i];
3947 if (!PagePrivate(page))
3948 continue;
3950 spin_lock(&mapping->private_lock);
3951 if (!PagePrivate(page)) {
3952 spin_unlock(&mapping->private_lock);
3953 continue;
3956 eb = (struct extent_buffer *)page->private;
3959 * Shouldn't happen and normally this would be a BUG_ON
3960 * but no sense in crashing the users box for something
3961 * we can survive anyway.
3963 if (WARN_ON(!eb)) {
3964 spin_unlock(&mapping->private_lock);
3965 continue;
3968 if (eb == prev_eb) {
3969 spin_unlock(&mapping->private_lock);
3970 continue;
3973 ret = atomic_inc_not_zero(&eb->refs);
3974 spin_unlock(&mapping->private_lock);
3975 if (!ret)
3976 continue;
3978 prev_eb = eb;
3979 ret = lock_extent_buffer_for_io(eb, &epd);
3980 if (!ret) {
3981 free_extent_buffer(eb);
3982 continue;
3983 } else if (ret < 0) {
3984 done = 1;
3985 free_extent_buffer(eb);
3986 break;
3989 ret = write_one_eb(eb, wbc, &epd);
3990 if (ret) {
3991 done = 1;
3992 free_extent_buffer(eb);
3993 break;
3995 free_extent_buffer(eb);
3998 * the filesystem may choose to bump up nr_to_write.
3999 * We have to make sure to honor the new nr_to_write
4000 * at any time
4002 nr_to_write_done = wbc->nr_to_write <= 0;
4004 pagevec_release(&pvec);
4005 cond_resched();
4007 if (!scanned && !done) {
4009 * We hit the last page and there is more work to be done: wrap
4010 * back to the start of the file
4012 scanned = 1;
4013 index = 0;
4014 goto retry;
4016 ASSERT(ret <= 0);
4017 if (ret < 0) {
4018 end_write_bio(&epd, ret);
4019 return ret;
4021 ret = flush_write_bio(&epd);
4022 return ret;
4026 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4027 * @mapping: address space structure to write
4028 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4029 * @data: data passed to __extent_writepage function
4031 * If a page is already under I/O, write_cache_pages() skips it, even
4032 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4033 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4034 * and msync() need to guarantee that all the data which was dirty at the time
4035 * the call was made get new I/O started against them. If wbc->sync_mode is
4036 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4037 * existing IO to complete.
4039 static int extent_write_cache_pages(struct address_space *mapping,
4040 struct writeback_control *wbc,
4041 struct extent_page_data *epd)
4043 struct inode *inode = mapping->host;
4044 int ret = 0;
4045 int done = 0;
4046 int nr_to_write_done = 0;
4047 struct pagevec pvec;
4048 int nr_pages;
4049 pgoff_t index;
4050 pgoff_t end; /* Inclusive */
4051 pgoff_t done_index;
4052 int range_whole = 0;
4053 int scanned = 0;
4054 xa_mark_t tag;
4057 * We have to hold onto the inode so that ordered extents can do their
4058 * work when the IO finishes. The alternative to this is failing to add
4059 * an ordered extent if the igrab() fails there and that is a huge pain
4060 * to deal with, so instead just hold onto the inode throughout the
4061 * writepages operation. If it fails here we are freeing up the inode
4062 * anyway and we'd rather not waste our time writing out stuff that is
4063 * going to be truncated anyway.
4065 if (!igrab(inode))
4066 return 0;
4068 pagevec_init(&pvec);
4069 if (wbc->range_cyclic) {
4070 index = mapping->writeback_index; /* Start from prev offset */
4071 end = -1;
4073 * Start from the beginning does not need to cycle over the
4074 * range, mark it as scanned.
4076 scanned = (index == 0);
4077 } else {
4078 index = wbc->range_start >> PAGE_SHIFT;
4079 end = wbc->range_end >> PAGE_SHIFT;
4080 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4081 range_whole = 1;
4082 scanned = 1;
4086 * We do the tagged writepage as long as the snapshot flush bit is set
4087 * and we are the first one who do the filemap_flush() on this inode.
4089 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4090 * not race in and drop the bit.
4092 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4093 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4094 &BTRFS_I(inode)->runtime_flags))
4095 wbc->tagged_writepages = 1;
4097 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4098 tag = PAGECACHE_TAG_TOWRITE;
4099 else
4100 tag = PAGECACHE_TAG_DIRTY;
4101 retry:
4102 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4103 tag_pages_for_writeback(mapping, index, end);
4104 done_index = index;
4105 while (!done && !nr_to_write_done && (index <= end) &&
4106 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4107 &index, end, tag))) {
4108 unsigned i;
4110 for (i = 0; i < nr_pages; i++) {
4111 struct page *page = pvec.pages[i];
4113 done_index = page->index + 1;
4115 * At this point we hold neither the i_pages lock nor
4116 * the page lock: the page may be truncated or
4117 * invalidated (changing page->mapping to NULL),
4118 * or even swizzled back from swapper_space to
4119 * tmpfs file mapping
4121 if (!trylock_page(page)) {
4122 ret = flush_write_bio(epd);
4123 BUG_ON(ret < 0);
4124 lock_page(page);
4127 if (unlikely(page->mapping != mapping)) {
4128 unlock_page(page);
4129 continue;
4132 if (wbc->sync_mode != WB_SYNC_NONE) {
4133 if (PageWriteback(page)) {
4134 ret = flush_write_bio(epd);
4135 BUG_ON(ret < 0);
4137 wait_on_page_writeback(page);
4140 if (PageWriteback(page) ||
4141 !clear_page_dirty_for_io(page)) {
4142 unlock_page(page);
4143 continue;
4146 ret = __extent_writepage(page, wbc, epd);
4147 if (ret < 0) {
4148 done = 1;
4149 break;
4153 * the filesystem may choose to bump up nr_to_write.
4154 * We have to make sure to honor the new nr_to_write
4155 * at any time
4157 nr_to_write_done = wbc->nr_to_write <= 0;
4159 pagevec_release(&pvec);
4160 cond_resched();
4162 if (!scanned && !done) {
4164 * We hit the last page and there is more work to be done: wrap
4165 * back to the start of the file
4167 scanned = 1;
4168 index = 0;
4171 * If we're looping we could run into a page that is locked by a
4172 * writer and that writer could be waiting on writeback for a
4173 * page in our current bio, and thus deadlock, so flush the
4174 * write bio here.
4176 ret = flush_write_bio(epd);
4177 if (!ret)
4178 goto retry;
4181 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4182 mapping->writeback_index = done_index;
4184 btrfs_add_delayed_iput(inode);
4185 return ret;
4188 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4190 int ret;
4191 struct extent_page_data epd = {
4192 .bio = NULL,
4193 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4194 .extent_locked = 0,
4195 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4198 ret = __extent_writepage(page, wbc, &epd);
4199 ASSERT(ret <= 0);
4200 if (ret < 0) {
4201 end_write_bio(&epd, ret);
4202 return ret;
4205 ret = flush_write_bio(&epd);
4206 ASSERT(ret <= 0);
4207 return ret;
4210 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4211 int mode)
4213 int ret = 0;
4214 struct address_space *mapping = inode->i_mapping;
4215 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4216 struct page *page;
4217 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4218 PAGE_SHIFT;
4220 struct extent_page_data epd = {
4221 .bio = NULL,
4222 .tree = tree,
4223 .extent_locked = 1,
4224 .sync_io = mode == WB_SYNC_ALL,
4226 struct writeback_control wbc_writepages = {
4227 .sync_mode = mode,
4228 .nr_to_write = nr_pages * 2,
4229 .range_start = start,
4230 .range_end = end + 1,
4231 /* We're called from an async helper function */
4232 .punt_to_cgroup = 1,
4233 .no_cgroup_owner = 1,
4236 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4237 while (start <= end) {
4238 page = find_get_page(mapping, start >> PAGE_SHIFT);
4239 if (clear_page_dirty_for_io(page))
4240 ret = __extent_writepage(page, &wbc_writepages, &epd);
4241 else {
4242 btrfs_writepage_endio_finish_ordered(page, start,
4243 start + PAGE_SIZE - 1, 1);
4244 unlock_page(page);
4246 put_page(page);
4247 start += PAGE_SIZE;
4250 ASSERT(ret <= 0);
4251 if (ret == 0)
4252 ret = flush_write_bio(&epd);
4253 else
4254 end_write_bio(&epd, ret);
4256 wbc_detach_inode(&wbc_writepages);
4257 return ret;
4260 int extent_writepages(struct address_space *mapping,
4261 struct writeback_control *wbc)
4263 int ret = 0;
4264 struct extent_page_data epd = {
4265 .bio = NULL,
4266 .tree = &BTRFS_I(mapping->host)->io_tree,
4267 .extent_locked = 0,
4268 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4271 ret = extent_write_cache_pages(mapping, wbc, &epd);
4272 ASSERT(ret <= 0);
4273 if (ret < 0) {
4274 end_write_bio(&epd, ret);
4275 return ret;
4277 ret = flush_write_bio(&epd);
4278 return ret;
4281 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4282 unsigned nr_pages)
4284 struct bio *bio = NULL;
4285 unsigned long bio_flags = 0;
4286 struct page *pagepool[16];
4287 struct extent_map *em_cached = NULL;
4288 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4289 int nr = 0;
4290 u64 prev_em_start = (u64)-1;
4292 while (!list_empty(pages)) {
4293 u64 contig_end = 0;
4295 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4296 struct page *page = lru_to_page(pages);
4298 prefetchw(&page->flags);
4299 list_del(&page->lru);
4300 if (add_to_page_cache_lru(page, mapping, page->index,
4301 readahead_gfp_mask(mapping))) {
4302 put_page(page);
4303 break;
4306 pagepool[nr++] = page;
4307 contig_end = page_offset(page) + PAGE_SIZE - 1;
4310 if (nr) {
4311 u64 contig_start = page_offset(pagepool[0]);
4313 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4315 contiguous_readpages(tree, pagepool, nr, contig_start,
4316 contig_end, &em_cached, &bio, &bio_flags,
4317 &prev_em_start);
4321 if (em_cached)
4322 free_extent_map(em_cached);
4324 if (bio)
4325 return submit_one_bio(bio, 0, bio_flags);
4326 return 0;
4330 * basic invalidatepage code, this waits on any locked or writeback
4331 * ranges corresponding to the page, and then deletes any extent state
4332 * records from the tree
4334 int extent_invalidatepage(struct extent_io_tree *tree,
4335 struct page *page, unsigned long offset)
4337 struct extent_state *cached_state = NULL;
4338 u64 start = page_offset(page);
4339 u64 end = start + PAGE_SIZE - 1;
4340 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4342 start += ALIGN(offset, blocksize);
4343 if (start > end)
4344 return 0;
4346 lock_extent_bits(tree, start, end, &cached_state);
4347 wait_on_page_writeback(page);
4348 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4349 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4350 return 0;
4354 * a helper for releasepage, this tests for areas of the page that
4355 * are locked or under IO and drops the related state bits if it is safe
4356 * to drop the page.
4358 static int try_release_extent_state(struct extent_io_tree *tree,
4359 struct page *page, gfp_t mask)
4361 u64 start = page_offset(page);
4362 u64 end = start + PAGE_SIZE - 1;
4363 int ret = 1;
4365 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4366 ret = 0;
4367 } else {
4369 * at this point we can safely clear everything except the
4370 * locked bit and the nodatasum bit
4372 ret = __clear_extent_bit(tree, start, end,
4373 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4374 0, 0, NULL, mask, NULL);
4376 /* if clear_extent_bit failed for enomem reasons,
4377 * we can't allow the release to continue.
4379 if (ret < 0)
4380 ret = 0;
4381 else
4382 ret = 1;
4384 return ret;
4388 * a helper for releasepage. As long as there are no locked extents
4389 * in the range corresponding to the page, both state records and extent
4390 * map records are removed
4392 int try_release_extent_mapping(struct page *page, gfp_t mask)
4394 struct extent_map *em;
4395 u64 start = page_offset(page);
4396 u64 end = start + PAGE_SIZE - 1;
4397 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4398 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4399 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4401 if (gfpflags_allow_blocking(mask) &&
4402 page->mapping->host->i_size > SZ_16M) {
4403 u64 len;
4404 while (start <= end) {
4405 len = end - start + 1;
4406 write_lock(&map->lock);
4407 em = lookup_extent_mapping(map, start, len);
4408 if (!em) {
4409 write_unlock(&map->lock);
4410 break;
4412 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4413 em->start != start) {
4414 write_unlock(&map->lock);
4415 free_extent_map(em);
4416 break;
4418 if (!test_range_bit(tree, em->start,
4419 extent_map_end(em) - 1,
4420 EXTENT_LOCKED, 0, NULL)) {
4421 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4422 &btrfs_inode->runtime_flags);
4423 remove_extent_mapping(map, em);
4424 /* once for the rb tree */
4425 free_extent_map(em);
4427 start = extent_map_end(em);
4428 write_unlock(&map->lock);
4430 /* once for us */
4431 free_extent_map(em);
4434 return try_release_extent_state(tree, page, mask);
4438 * helper function for fiemap, which doesn't want to see any holes.
4439 * This maps until we find something past 'last'
4441 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4442 u64 offset, u64 last)
4444 u64 sectorsize = btrfs_inode_sectorsize(inode);
4445 struct extent_map *em;
4446 u64 len;
4448 if (offset >= last)
4449 return NULL;
4451 while (1) {
4452 len = last - offset;
4453 if (len == 0)
4454 break;
4455 len = ALIGN(len, sectorsize);
4456 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4457 if (IS_ERR_OR_NULL(em))
4458 return em;
4460 /* if this isn't a hole return it */
4461 if (em->block_start != EXTENT_MAP_HOLE)
4462 return em;
4464 /* this is a hole, advance to the next extent */
4465 offset = extent_map_end(em);
4466 free_extent_map(em);
4467 if (offset >= last)
4468 break;
4470 return NULL;
4474 * To cache previous fiemap extent
4476 * Will be used for merging fiemap extent
4478 struct fiemap_cache {
4479 u64 offset;
4480 u64 phys;
4481 u64 len;
4482 u32 flags;
4483 bool cached;
4487 * Helper to submit fiemap extent.
4489 * Will try to merge current fiemap extent specified by @offset, @phys,
4490 * @len and @flags with cached one.
4491 * And only when we fails to merge, cached one will be submitted as
4492 * fiemap extent.
4494 * Return value is the same as fiemap_fill_next_extent().
4496 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4497 struct fiemap_cache *cache,
4498 u64 offset, u64 phys, u64 len, u32 flags)
4500 int ret = 0;
4502 if (!cache->cached)
4503 goto assign;
4506 * Sanity check, extent_fiemap() should have ensured that new
4507 * fiemap extent won't overlap with cached one.
4508 * Not recoverable.
4510 * NOTE: Physical address can overlap, due to compression
4512 if (cache->offset + cache->len > offset) {
4513 WARN_ON(1);
4514 return -EINVAL;
4518 * Only merges fiemap extents if
4519 * 1) Their logical addresses are continuous
4521 * 2) Their physical addresses are continuous
4522 * So truly compressed (physical size smaller than logical size)
4523 * extents won't get merged with each other
4525 * 3) Share same flags except FIEMAP_EXTENT_LAST
4526 * So regular extent won't get merged with prealloc extent
4528 if (cache->offset + cache->len == offset &&
4529 cache->phys + cache->len == phys &&
4530 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4531 (flags & ~FIEMAP_EXTENT_LAST)) {
4532 cache->len += len;
4533 cache->flags |= flags;
4534 goto try_submit_last;
4537 /* Not mergeable, need to submit cached one */
4538 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4539 cache->len, cache->flags);
4540 cache->cached = false;
4541 if (ret)
4542 return ret;
4543 assign:
4544 cache->cached = true;
4545 cache->offset = offset;
4546 cache->phys = phys;
4547 cache->len = len;
4548 cache->flags = flags;
4549 try_submit_last:
4550 if (cache->flags & FIEMAP_EXTENT_LAST) {
4551 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4552 cache->phys, cache->len, cache->flags);
4553 cache->cached = false;
4555 return ret;
4559 * Emit last fiemap cache
4561 * The last fiemap cache may still be cached in the following case:
4562 * 0 4k 8k
4563 * |<- Fiemap range ->|
4564 * |<------------ First extent ----------->|
4566 * In this case, the first extent range will be cached but not emitted.
4567 * So we must emit it before ending extent_fiemap().
4569 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4570 struct fiemap_cache *cache)
4572 int ret;
4574 if (!cache->cached)
4575 return 0;
4577 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4578 cache->len, cache->flags);
4579 cache->cached = false;
4580 if (ret > 0)
4581 ret = 0;
4582 return ret;
4585 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4586 __u64 start, __u64 len)
4588 int ret = 0;
4589 u64 off = start;
4590 u64 max = start + len;
4591 u32 flags = 0;
4592 u32 found_type;
4593 u64 last;
4594 u64 last_for_get_extent = 0;
4595 u64 disko = 0;
4596 u64 isize = i_size_read(inode);
4597 struct btrfs_key found_key;
4598 struct extent_map *em = NULL;
4599 struct extent_state *cached_state = NULL;
4600 struct btrfs_path *path;
4601 struct btrfs_root *root = BTRFS_I(inode)->root;
4602 struct fiemap_cache cache = { 0 };
4603 struct ulist *roots;
4604 struct ulist *tmp_ulist;
4605 int end = 0;
4606 u64 em_start = 0;
4607 u64 em_len = 0;
4608 u64 em_end = 0;
4610 if (len == 0)
4611 return -EINVAL;
4613 path = btrfs_alloc_path();
4614 if (!path)
4615 return -ENOMEM;
4616 path->leave_spinning = 1;
4618 roots = ulist_alloc(GFP_KERNEL);
4619 tmp_ulist = ulist_alloc(GFP_KERNEL);
4620 if (!roots || !tmp_ulist) {
4621 ret = -ENOMEM;
4622 goto out_free_ulist;
4625 start = round_down(start, btrfs_inode_sectorsize(inode));
4626 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4629 * lookup the last file extent. We're not using i_size here
4630 * because there might be preallocation past i_size
4632 ret = btrfs_lookup_file_extent(NULL, root, path,
4633 btrfs_ino(BTRFS_I(inode)), -1, 0);
4634 if (ret < 0) {
4635 goto out_free_ulist;
4636 } else {
4637 WARN_ON(!ret);
4638 if (ret == 1)
4639 ret = 0;
4642 path->slots[0]--;
4643 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4644 found_type = found_key.type;
4646 /* No extents, but there might be delalloc bits */
4647 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4648 found_type != BTRFS_EXTENT_DATA_KEY) {
4649 /* have to trust i_size as the end */
4650 last = (u64)-1;
4651 last_for_get_extent = isize;
4652 } else {
4654 * remember the start of the last extent. There are a
4655 * bunch of different factors that go into the length of the
4656 * extent, so its much less complex to remember where it started
4658 last = found_key.offset;
4659 last_for_get_extent = last + 1;
4661 btrfs_release_path(path);
4664 * we might have some extents allocated but more delalloc past those
4665 * extents. so, we trust isize unless the start of the last extent is
4666 * beyond isize
4668 if (last < isize) {
4669 last = (u64)-1;
4670 last_for_get_extent = isize;
4673 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4674 &cached_state);
4676 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4677 if (!em)
4678 goto out;
4679 if (IS_ERR(em)) {
4680 ret = PTR_ERR(em);
4681 goto out;
4684 while (!end) {
4685 u64 offset_in_extent = 0;
4687 /* break if the extent we found is outside the range */
4688 if (em->start >= max || extent_map_end(em) < off)
4689 break;
4692 * get_extent may return an extent that starts before our
4693 * requested range. We have to make sure the ranges
4694 * we return to fiemap always move forward and don't
4695 * overlap, so adjust the offsets here
4697 em_start = max(em->start, off);
4700 * record the offset from the start of the extent
4701 * for adjusting the disk offset below. Only do this if the
4702 * extent isn't compressed since our in ram offset may be past
4703 * what we have actually allocated on disk.
4705 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4706 offset_in_extent = em_start - em->start;
4707 em_end = extent_map_end(em);
4708 em_len = em_end - em_start;
4709 flags = 0;
4710 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4711 disko = em->block_start + offset_in_extent;
4712 else
4713 disko = 0;
4716 * bump off for our next call to get_extent
4718 off = extent_map_end(em);
4719 if (off >= max)
4720 end = 1;
4722 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4723 end = 1;
4724 flags |= FIEMAP_EXTENT_LAST;
4725 } else if (em->block_start == EXTENT_MAP_INLINE) {
4726 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4727 FIEMAP_EXTENT_NOT_ALIGNED);
4728 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4729 flags |= (FIEMAP_EXTENT_DELALLOC |
4730 FIEMAP_EXTENT_UNKNOWN);
4731 } else if (fieinfo->fi_extents_max) {
4732 u64 bytenr = em->block_start -
4733 (em->start - em->orig_start);
4736 * As btrfs supports shared space, this information
4737 * can be exported to userspace tools via
4738 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4739 * then we're just getting a count and we can skip the
4740 * lookup stuff.
4742 ret = btrfs_check_shared(root,
4743 btrfs_ino(BTRFS_I(inode)),
4744 bytenr, roots, tmp_ulist);
4745 if (ret < 0)
4746 goto out_free;
4747 if (ret)
4748 flags |= FIEMAP_EXTENT_SHARED;
4749 ret = 0;
4751 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4752 flags |= FIEMAP_EXTENT_ENCODED;
4753 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4754 flags |= FIEMAP_EXTENT_UNWRITTEN;
4756 free_extent_map(em);
4757 em = NULL;
4758 if ((em_start >= last) || em_len == (u64)-1 ||
4759 (last == (u64)-1 && isize <= em_end)) {
4760 flags |= FIEMAP_EXTENT_LAST;
4761 end = 1;
4764 /* now scan forward to see if this is really the last extent. */
4765 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4766 if (IS_ERR(em)) {
4767 ret = PTR_ERR(em);
4768 goto out;
4770 if (!em) {
4771 flags |= FIEMAP_EXTENT_LAST;
4772 end = 1;
4774 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4775 em_len, flags);
4776 if (ret) {
4777 if (ret == 1)
4778 ret = 0;
4779 goto out_free;
4782 out_free:
4783 if (!ret)
4784 ret = emit_last_fiemap_cache(fieinfo, &cache);
4785 free_extent_map(em);
4786 out:
4787 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4788 &cached_state);
4790 out_free_ulist:
4791 btrfs_free_path(path);
4792 ulist_free(roots);
4793 ulist_free(tmp_ulist);
4794 return ret;
4797 static void __free_extent_buffer(struct extent_buffer *eb)
4799 btrfs_leak_debug_del(&eb->leak_list);
4800 kmem_cache_free(extent_buffer_cache, eb);
4803 int extent_buffer_under_io(struct extent_buffer *eb)
4805 return (atomic_read(&eb->io_pages) ||
4806 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4807 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4811 * Release all pages attached to the extent buffer.
4813 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4815 int i;
4816 int num_pages;
4817 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4819 BUG_ON(extent_buffer_under_io(eb));
4821 num_pages = num_extent_pages(eb);
4822 for (i = 0; i < num_pages; i++) {
4823 struct page *page = eb->pages[i];
4825 if (!page)
4826 continue;
4827 if (mapped)
4828 spin_lock(&page->mapping->private_lock);
4830 * We do this since we'll remove the pages after we've
4831 * removed the eb from the radix tree, so we could race
4832 * and have this page now attached to the new eb. So
4833 * only clear page_private if it's still connected to
4834 * this eb.
4836 if (PagePrivate(page) &&
4837 page->private == (unsigned long)eb) {
4838 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4839 BUG_ON(PageDirty(page));
4840 BUG_ON(PageWriteback(page));
4842 * We need to make sure we haven't be attached
4843 * to a new eb.
4845 ClearPagePrivate(page);
4846 set_page_private(page, 0);
4847 /* One for the page private */
4848 put_page(page);
4851 if (mapped)
4852 spin_unlock(&page->mapping->private_lock);
4854 /* One for when we allocated the page */
4855 put_page(page);
4860 * Helper for releasing the extent buffer.
4862 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4864 btrfs_release_extent_buffer_pages(eb);
4865 __free_extent_buffer(eb);
4868 static struct extent_buffer *
4869 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4870 unsigned long len)
4872 struct extent_buffer *eb = NULL;
4874 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4875 eb->start = start;
4876 eb->len = len;
4877 eb->fs_info = fs_info;
4878 eb->bflags = 0;
4879 rwlock_init(&eb->lock);
4880 atomic_set(&eb->blocking_readers, 0);
4881 eb->blocking_writers = 0;
4882 eb->lock_nested = false;
4883 init_waitqueue_head(&eb->write_lock_wq);
4884 init_waitqueue_head(&eb->read_lock_wq);
4886 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4888 spin_lock_init(&eb->refs_lock);
4889 atomic_set(&eb->refs, 1);
4890 atomic_set(&eb->io_pages, 0);
4893 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4895 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4896 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4897 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4899 #ifdef CONFIG_BTRFS_DEBUG
4900 eb->spinning_writers = 0;
4901 atomic_set(&eb->spinning_readers, 0);
4902 atomic_set(&eb->read_locks, 0);
4903 eb->write_locks = 0;
4904 #endif
4906 return eb;
4909 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4911 int i;
4912 struct page *p;
4913 struct extent_buffer *new;
4914 int num_pages = num_extent_pages(src);
4916 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4917 if (new == NULL)
4918 return NULL;
4920 for (i = 0; i < num_pages; i++) {
4921 p = alloc_page(GFP_NOFS);
4922 if (!p) {
4923 btrfs_release_extent_buffer(new);
4924 return NULL;
4926 attach_extent_buffer_page(new, p);
4927 WARN_ON(PageDirty(p));
4928 SetPageUptodate(p);
4929 new->pages[i] = p;
4930 copy_page(page_address(p), page_address(src->pages[i]));
4933 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4934 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4936 return new;
4939 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4940 u64 start, unsigned long len)
4942 struct extent_buffer *eb;
4943 int num_pages;
4944 int i;
4946 eb = __alloc_extent_buffer(fs_info, start, len);
4947 if (!eb)
4948 return NULL;
4950 num_pages = num_extent_pages(eb);
4951 for (i = 0; i < num_pages; i++) {
4952 eb->pages[i] = alloc_page(GFP_NOFS);
4953 if (!eb->pages[i])
4954 goto err;
4956 set_extent_buffer_uptodate(eb);
4957 btrfs_set_header_nritems(eb, 0);
4958 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4960 return eb;
4961 err:
4962 for (; i > 0; i--)
4963 __free_page(eb->pages[i - 1]);
4964 __free_extent_buffer(eb);
4965 return NULL;
4968 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4969 u64 start)
4971 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4974 static void check_buffer_tree_ref(struct extent_buffer *eb)
4976 int refs;
4977 /* the ref bit is tricky. We have to make sure it is set
4978 * if we have the buffer dirty. Otherwise the
4979 * code to free a buffer can end up dropping a dirty
4980 * page
4982 * Once the ref bit is set, it won't go away while the
4983 * buffer is dirty or in writeback, and it also won't
4984 * go away while we have the reference count on the
4985 * eb bumped.
4987 * We can't just set the ref bit without bumping the
4988 * ref on the eb because free_extent_buffer might
4989 * see the ref bit and try to clear it. If this happens
4990 * free_extent_buffer might end up dropping our original
4991 * ref by mistake and freeing the page before we are able
4992 * to add one more ref.
4994 * So bump the ref count first, then set the bit. If someone
4995 * beat us to it, drop the ref we added.
4997 refs = atomic_read(&eb->refs);
4998 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4999 return;
5001 spin_lock(&eb->refs_lock);
5002 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5003 atomic_inc(&eb->refs);
5004 spin_unlock(&eb->refs_lock);
5007 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5008 struct page *accessed)
5010 int num_pages, i;
5012 check_buffer_tree_ref(eb);
5014 num_pages = num_extent_pages(eb);
5015 for (i = 0; i < num_pages; i++) {
5016 struct page *p = eb->pages[i];
5018 if (p != accessed)
5019 mark_page_accessed(p);
5023 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5024 u64 start)
5026 struct extent_buffer *eb;
5028 rcu_read_lock();
5029 eb = radix_tree_lookup(&fs_info->buffer_radix,
5030 start >> PAGE_SHIFT);
5031 if (eb && atomic_inc_not_zero(&eb->refs)) {
5032 rcu_read_unlock();
5034 * Lock our eb's refs_lock to avoid races with
5035 * free_extent_buffer. When we get our eb it might be flagged
5036 * with EXTENT_BUFFER_STALE and another task running
5037 * free_extent_buffer might have seen that flag set,
5038 * eb->refs == 2, that the buffer isn't under IO (dirty and
5039 * writeback flags not set) and it's still in the tree (flag
5040 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5041 * of decrementing the extent buffer's reference count twice.
5042 * So here we could race and increment the eb's reference count,
5043 * clear its stale flag, mark it as dirty and drop our reference
5044 * before the other task finishes executing free_extent_buffer,
5045 * which would later result in an attempt to free an extent
5046 * buffer that is dirty.
5048 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5049 spin_lock(&eb->refs_lock);
5050 spin_unlock(&eb->refs_lock);
5052 mark_extent_buffer_accessed(eb, NULL);
5053 return eb;
5055 rcu_read_unlock();
5057 return NULL;
5060 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5061 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5062 u64 start)
5064 struct extent_buffer *eb, *exists = NULL;
5065 int ret;
5067 eb = find_extent_buffer(fs_info, start);
5068 if (eb)
5069 return eb;
5070 eb = alloc_dummy_extent_buffer(fs_info, start);
5071 if (!eb)
5072 return ERR_PTR(-ENOMEM);
5073 eb->fs_info = fs_info;
5074 again:
5075 ret = radix_tree_preload(GFP_NOFS);
5076 if (ret) {
5077 exists = ERR_PTR(ret);
5078 goto free_eb;
5080 spin_lock(&fs_info->buffer_lock);
5081 ret = radix_tree_insert(&fs_info->buffer_radix,
5082 start >> PAGE_SHIFT, eb);
5083 spin_unlock(&fs_info->buffer_lock);
5084 radix_tree_preload_end();
5085 if (ret == -EEXIST) {
5086 exists = find_extent_buffer(fs_info, start);
5087 if (exists)
5088 goto free_eb;
5089 else
5090 goto again;
5092 check_buffer_tree_ref(eb);
5093 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5095 return eb;
5096 free_eb:
5097 btrfs_release_extent_buffer(eb);
5098 return exists;
5100 #endif
5102 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5103 u64 start)
5105 unsigned long len = fs_info->nodesize;
5106 int num_pages;
5107 int i;
5108 unsigned long index = start >> PAGE_SHIFT;
5109 struct extent_buffer *eb;
5110 struct extent_buffer *exists = NULL;
5111 struct page *p;
5112 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5113 int uptodate = 1;
5114 int ret;
5116 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5117 btrfs_err(fs_info, "bad tree block start %llu", start);
5118 return ERR_PTR(-EINVAL);
5121 eb = find_extent_buffer(fs_info, start);
5122 if (eb)
5123 return eb;
5125 eb = __alloc_extent_buffer(fs_info, start, len);
5126 if (!eb)
5127 return ERR_PTR(-ENOMEM);
5129 num_pages = num_extent_pages(eb);
5130 for (i = 0; i < num_pages; i++, index++) {
5131 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5132 if (!p) {
5133 exists = ERR_PTR(-ENOMEM);
5134 goto free_eb;
5137 spin_lock(&mapping->private_lock);
5138 if (PagePrivate(p)) {
5140 * We could have already allocated an eb for this page
5141 * and attached one so lets see if we can get a ref on
5142 * the existing eb, and if we can we know it's good and
5143 * we can just return that one, else we know we can just
5144 * overwrite page->private.
5146 exists = (struct extent_buffer *)p->private;
5147 if (atomic_inc_not_zero(&exists->refs)) {
5148 spin_unlock(&mapping->private_lock);
5149 unlock_page(p);
5150 put_page(p);
5151 mark_extent_buffer_accessed(exists, p);
5152 goto free_eb;
5154 exists = NULL;
5157 * Do this so attach doesn't complain and we need to
5158 * drop the ref the old guy had.
5160 ClearPagePrivate(p);
5161 WARN_ON(PageDirty(p));
5162 put_page(p);
5164 attach_extent_buffer_page(eb, p);
5165 spin_unlock(&mapping->private_lock);
5166 WARN_ON(PageDirty(p));
5167 eb->pages[i] = p;
5168 if (!PageUptodate(p))
5169 uptodate = 0;
5172 * We can't unlock the pages just yet since the extent buffer
5173 * hasn't been properly inserted in the radix tree, this
5174 * opens a race with btree_releasepage which can free a page
5175 * while we are still filling in all pages for the buffer and
5176 * we could crash.
5179 if (uptodate)
5180 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5181 again:
5182 ret = radix_tree_preload(GFP_NOFS);
5183 if (ret) {
5184 exists = ERR_PTR(ret);
5185 goto free_eb;
5188 spin_lock(&fs_info->buffer_lock);
5189 ret = radix_tree_insert(&fs_info->buffer_radix,
5190 start >> PAGE_SHIFT, eb);
5191 spin_unlock(&fs_info->buffer_lock);
5192 radix_tree_preload_end();
5193 if (ret == -EEXIST) {
5194 exists = find_extent_buffer(fs_info, start);
5195 if (exists)
5196 goto free_eb;
5197 else
5198 goto again;
5200 /* add one reference for the tree */
5201 check_buffer_tree_ref(eb);
5202 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5205 * Now it's safe to unlock the pages because any calls to
5206 * btree_releasepage will correctly detect that a page belongs to a
5207 * live buffer and won't free them prematurely.
5209 for (i = 0; i < num_pages; i++)
5210 unlock_page(eb->pages[i]);
5211 return eb;
5213 free_eb:
5214 WARN_ON(!atomic_dec_and_test(&eb->refs));
5215 for (i = 0; i < num_pages; i++) {
5216 if (eb->pages[i])
5217 unlock_page(eb->pages[i]);
5220 btrfs_release_extent_buffer(eb);
5221 return exists;
5224 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5226 struct extent_buffer *eb =
5227 container_of(head, struct extent_buffer, rcu_head);
5229 __free_extent_buffer(eb);
5232 static int release_extent_buffer(struct extent_buffer *eb)
5234 lockdep_assert_held(&eb->refs_lock);
5236 WARN_ON(atomic_read(&eb->refs) == 0);
5237 if (atomic_dec_and_test(&eb->refs)) {
5238 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5239 struct btrfs_fs_info *fs_info = eb->fs_info;
5241 spin_unlock(&eb->refs_lock);
5243 spin_lock(&fs_info->buffer_lock);
5244 radix_tree_delete(&fs_info->buffer_radix,
5245 eb->start >> PAGE_SHIFT);
5246 spin_unlock(&fs_info->buffer_lock);
5247 } else {
5248 spin_unlock(&eb->refs_lock);
5251 /* Should be safe to release our pages at this point */
5252 btrfs_release_extent_buffer_pages(eb);
5253 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5254 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5255 __free_extent_buffer(eb);
5256 return 1;
5258 #endif
5259 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5260 return 1;
5262 spin_unlock(&eb->refs_lock);
5264 return 0;
5267 void free_extent_buffer(struct extent_buffer *eb)
5269 int refs;
5270 int old;
5271 if (!eb)
5272 return;
5274 while (1) {
5275 refs = atomic_read(&eb->refs);
5276 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5277 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5278 refs == 1))
5279 break;
5280 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5281 if (old == refs)
5282 return;
5285 spin_lock(&eb->refs_lock);
5286 if (atomic_read(&eb->refs) == 2 &&
5287 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5288 !extent_buffer_under_io(eb) &&
5289 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5290 atomic_dec(&eb->refs);
5293 * I know this is terrible, but it's temporary until we stop tracking
5294 * the uptodate bits and such for the extent buffers.
5296 release_extent_buffer(eb);
5299 void free_extent_buffer_stale(struct extent_buffer *eb)
5301 if (!eb)
5302 return;
5304 spin_lock(&eb->refs_lock);
5305 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5307 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5308 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5309 atomic_dec(&eb->refs);
5310 release_extent_buffer(eb);
5313 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5315 int i;
5316 int num_pages;
5317 struct page *page;
5319 num_pages = num_extent_pages(eb);
5321 for (i = 0; i < num_pages; i++) {
5322 page = eb->pages[i];
5323 if (!PageDirty(page))
5324 continue;
5326 lock_page(page);
5327 WARN_ON(!PagePrivate(page));
5329 clear_page_dirty_for_io(page);
5330 xa_lock_irq(&page->mapping->i_pages);
5331 if (!PageDirty(page))
5332 __xa_clear_mark(&page->mapping->i_pages,
5333 page_index(page), PAGECACHE_TAG_DIRTY);
5334 xa_unlock_irq(&page->mapping->i_pages);
5335 ClearPageError(page);
5336 unlock_page(page);
5338 WARN_ON(atomic_read(&eb->refs) == 0);
5341 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5343 int i;
5344 int num_pages;
5345 bool was_dirty;
5347 check_buffer_tree_ref(eb);
5349 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5351 num_pages = num_extent_pages(eb);
5352 WARN_ON(atomic_read(&eb->refs) == 0);
5353 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5355 if (!was_dirty)
5356 for (i = 0; i < num_pages; i++)
5357 set_page_dirty(eb->pages[i]);
5359 #ifdef CONFIG_BTRFS_DEBUG
5360 for (i = 0; i < num_pages; i++)
5361 ASSERT(PageDirty(eb->pages[i]));
5362 #endif
5364 return was_dirty;
5367 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5369 int i;
5370 struct page *page;
5371 int num_pages;
5373 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5374 num_pages = num_extent_pages(eb);
5375 for (i = 0; i < num_pages; i++) {
5376 page = eb->pages[i];
5377 if (page)
5378 ClearPageUptodate(page);
5382 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5384 int i;
5385 struct page *page;
5386 int num_pages;
5388 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5389 num_pages = num_extent_pages(eb);
5390 for (i = 0; i < num_pages; i++) {
5391 page = eb->pages[i];
5392 SetPageUptodate(page);
5396 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5398 int i;
5399 struct page *page;
5400 int err;
5401 int ret = 0;
5402 int locked_pages = 0;
5403 int all_uptodate = 1;
5404 int num_pages;
5405 unsigned long num_reads = 0;
5406 struct bio *bio = NULL;
5407 unsigned long bio_flags = 0;
5408 struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
5410 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5411 return 0;
5413 num_pages = num_extent_pages(eb);
5414 for (i = 0; i < num_pages; i++) {
5415 page = eb->pages[i];
5416 if (wait == WAIT_NONE) {
5417 if (!trylock_page(page))
5418 goto unlock_exit;
5419 } else {
5420 lock_page(page);
5422 locked_pages++;
5425 * We need to firstly lock all pages to make sure that
5426 * the uptodate bit of our pages won't be affected by
5427 * clear_extent_buffer_uptodate().
5429 for (i = 0; i < num_pages; i++) {
5430 page = eb->pages[i];
5431 if (!PageUptodate(page)) {
5432 num_reads++;
5433 all_uptodate = 0;
5437 if (all_uptodate) {
5438 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5439 goto unlock_exit;
5442 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5443 eb->read_mirror = 0;
5444 atomic_set(&eb->io_pages, num_reads);
5445 for (i = 0; i < num_pages; i++) {
5446 page = eb->pages[i];
5448 if (!PageUptodate(page)) {
5449 if (ret) {
5450 atomic_dec(&eb->io_pages);
5451 unlock_page(page);
5452 continue;
5455 ClearPageError(page);
5456 err = __extent_read_full_page(tree, page,
5457 btree_get_extent, &bio,
5458 mirror_num, &bio_flags,
5459 REQ_META);
5460 if (err) {
5461 ret = err;
5463 * We use &bio in above __extent_read_full_page,
5464 * so we ensure that if it returns error, the
5465 * current page fails to add itself to bio and
5466 * it's been unlocked.
5468 * We must dec io_pages by ourselves.
5470 atomic_dec(&eb->io_pages);
5472 } else {
5473 unlock_page(page);
5477 if (bio) {
5478 err = submit_one_bio(bio, mirror_num, bio_flags);
5479 if (err)
5480 return err;
5483 if (ret || wait != WAIT_COMPLETE)
5484 return ret;
5486 for (i = 0; i < num_pages; i++) {
5487 page = eb->pages[i];
5488 wait_on_page_locked(page);
5489 if (!PageUptodate(page))
5490 ret = -EIO;
5493 return ret;
5495 unlock_exit:
5496 while (locked_pages > 0) {
5497 locked_pages--;
5498 page = eb->pages[locked_pages];
5499 unlock_page(page);
5501 return ret;
5504 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5505 unsigned long start, unsigned long len)
5507 size_t cur;
5508 size_t offset;
5509 struct page *page;
5510 char *kaddr;
5511 char *dst = (char *)dstv;
5512 size_t start_offset = offset_in_page(eb->start);
5513 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5515 if (start + len > eb->len) {
5516 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5517 eb->start, eb->len, start, len);
5518 memset(dst, 0, len);
5519 return;
5522 offset = offset_in_page(start_offset + start);
5524 while (len > 0) {
5525 page = eb->pages[i];
5527 cur = min(len, (PAGE_SIZE - offset));
5528 kaddr = page_address(page);
5529 memcpy(dst, kaddr + offset, cur);
5531 dst += cur;
5532 len -= cur;
5533 offset = 0;
5534 i++;
5538 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5539 void __user *dstv,
5540 unsigned long start, unsigned long len)
5542 size_t cur;
5543 size_t offset;
5544 struct page *page;
5545 char *kaddr;
5546 char __user *dst = (char __user *)dstv;
5547 size_t start_offset = offset_in_page(eb->start);
5548 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5549 int ret = 0;
5551 WARN_ON(start > eb->len);
5552 WARN_ON(start + len > eb->start + eb->len);
5554 offset = offset_in_page(start_offset + start);
5556 while (len > 0) {
5557 page = eb->pages[i];
5559 cur = min(len, (PAGE_SIZE - offset));
5560 kaddr = page_address(page);
5561 if (copy_to_user(dst, kaddr + offset, cur)) {
5562 ret = -EFAULT;
5563 break;
5566 dst += cur;
5567 len -= cur;
5568 offset = 0;
5569 i++;
5572 return ret;
5576 * return 0 if the item is found within a page.
5577 * return 1 if the item spans two pages.
5578 * return -EINVAL otherwise.
5580 int map_private_extent_buffer(const struct extent_buffer *eb,
5581 unsigned long start, unsigned long min_len,
5582 char **map, unsigned long *map_start,
5583 unsigned long *map_len)
5585 size_t offset;
5586 char *kaddr;
5587 struct page *p;
5588 size_t start_offset = offset_in_page(eb->start);
5589 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5590 unsigned long end_i = (start_offset + start + min_len - 1) >>
5591 PAGE_SHIFT;
5593 if (start + min_len > eb->len) {
5594 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5595 eb->start, eb->len, start, min_len);
5596 return -EINVAL;
5599 if (i != end_i)
5600 return 1;
5602 if (i == 0) {
5603 offset = start_offset;
5604 *map_start = 0;
5605 } else {
5606 offset = 0;
5607 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5610 p = eb->pages[i];
5611 kaddr = page_address(p);
5612 *map = kaddr + offset;
5613 *map_len = PAGE_SIZE - offset;
5614 return 0;
5617 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5618 unsigned long start, unsigned long len)
5620 size_t cur;
5621 size_t offset;
5622 struct page *page;
5623 char *kaddr;
5624 char *ptr = (char *)ptrv;
5625 size_t start_offset = offset_in_page(eb->start);
5626 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5627 int ret = 0;
5629 WARN_ON(start > eb->len);
5630 WARN_ON(start + len > eb->start + eb->len);
5632 offset = offset_in_page(start_offset + start);
5634 while (len > 0) {
5635 page = eb->pages[i];
5637 cur = min(len, (PAGE_SIZE - offset));
5639 kaddr = page_address(page);
5640 ret = memcmp(ptr, kaddr + offset, cur);
5641 if (ret)
5642 break;
5644 ptr += cur;
5645 len -= cur;
5646 offset = 0;
5647 i++;
5649 return ret;
5652 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5653 const void *srcv)
5655 char *kaddr;
5657 WARN_ON(!PageUptodate(eb->pages[0]));
5658 kaddr = page_address(eb->pages[0]);
5659 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5660 BTRFS_FSID_SIZE);
5663 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5665 char *kaddr;
5667 WARN_ON(!PageUptodate(eb->pages[0]));
5668 kaddr = page_address(eb->pages[0]);
5669 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5670 BTRFS_FSID_SIZE);
5673 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5674 unsigned long start, unsigned long len)
5676 size_t cur;
5677 size_t offset;
5678 struct page *page;
5679 char *kaddr;
5680 char *src = (char *)srcv;
5681 size_t start_offset = offset_in_page(eb->start);
5682 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5684 WARN_ON(start > eb->len);
5685 WARN_ON(start + len > eb->start + eb->len);
5687 offset = offset_in_page(start_offset + start);
5689 while (len > 0) {
5690 page = eb->pages[i];
5691 WARN_ON(!PageUptodate(page));
5693 cur = min(len, PAGE_SIZE - offset);
5694 kaddr = page_address(page);
5695 memcpy(kaddr + offset, src, cur);
5697 src += cur;
5698 len -= cur;
5699 offset = 0;
5700 i++;
5704 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5705 unsigned long len)
5707 size_t cur;
5708 size_t offset;
5709 struct page *page;
5710 char *kaddr;
5711 size_t start_offset = offset_in_page(eb->start);
5712 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5714 WARN_ON(start > eb->len);
5715 WARN_ON(start + len > eb->start + eb->len);
5717 offset = offset_in_page(start_offset + start);
5719 while (len > 0) {
5720 page = eb->pages[i];
5721 WARN_ON(!PageUptodate(page));
5723 cur = min(len, PAGE_SIZE - offset);
5724 kaddr = page_address(page);
5725 memset(kaddr + offset, 0, cur);
5727 len -= cur;
5728 offset = 0;
5729 i++;
5733 void copy_extent_buffer_full(struct extent_buffer *dst,
5734 struct extent_buffer *src)
5736 int i;
5737 int num_pages;
5739 ASSERT(dst->len == src->len);
5741 num_pages = num_extent_pages(dst);
5742 for (i = 0; i < num_pages; i++)
5743 copy_page(page_address(dst->pages[i]),
5744 page_address(src->pages[i]));
5747 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5748 unsigned long dst_offset, unsigned long src_offset,
5749 unsigned long len)
5751 u64 dst_len = dst->len;
5752 size_t cur;
5753 size_t offset;
5754 struct page *page;
5755 char *kaddr;
5756 size_t start_offset = offset_in_page(dst->start);
5757 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5759 WARN_ON(src->len != dst_len);
5761 offset = offset_in_page(start_offset + dst_offset);
5763 while (len > 0) {
5764 page = dst->pages[i];
5765 WARN_ON(!PageUptodate(page));
5767 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5769 kaddr = page_address(page);
5770 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5772 src_offset += cur;
5773 len -= cur;
5774 offset = 0;
5775 i++;
5780 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5781 * given bit number
5782 * @eb: the extent buffer
5783 * @start: offset of the bitmap item in the extent buffer
5784 * @nr: bit number
5785 * @page_index: return index of the page in the extent buffer that contains the
5786 * given bit number
5787 * @page_offset: return offset into the page given by page_index
5789 * This helper hides the ugliness of finding the byte in an extent buffer which
5790 * contains a given bit.
5792 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5793 unsigned long start, unsigned long nr,
5794 unsigned long *page_index,
5795 size_t *page_offset)
5797 size_t start_offset = offset_in_page(eb->start);
5798 size_t byte_offset = BIT_BYTE(nr);
5799 size_t offset;
5802 * The byte we want is the offset of the extent buffer + the offset of
5803 * the bitmap item in the extent buffer + the offset of the byte in the
5804 * bitmap item.
5806 offset = start_offset + start + byte_offset;
5808 *page_index = offset >> PAGE_SHIFT;
5809 *page_offset = offset_in_page(offset);
5813 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5814 * @eb: the extent buffer
5815 * @start: offset of the bitmap item in the extent buffer
5816 * @nr: bit number to test
5818 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5819 unsigned long nr)
5821 u8 *kaddr;
5822 struct page *page;
5823 unsigned long i;
5824 size_t offset;
5826 eb_bitmap_offset(eb, start, nr, &i, &offset);
5827 page = eb->pages[i];
5828 WARN_ON(!PageUptodate(page));
5829 kaddr = page_address(page);
5830 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5834 * extent_buffer_bitmap_set - set an area of a bitmap
5835 * @eb: the extent buffer
5836 * @start: offset of the bitmap item in the extent buffer
5837 * @pos: bit number of the first bit
5838 * @len: number of bits to set
5840 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5841 unsigned long pos, unsigned long len)
5843 u8 *kaddr;
5844 struct page *page;
5845 unsigned long i;
5846 size_t offset;
5847 const unsigned int size = pos + len;
5848 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5849 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5851 eb_bitmap_offset(eb, start, pos, &i, &offset);
5852 page = eb->pages[i];
5853 WARN_ON(!PageUptodate(page));
5854 kaddr = page_address(page);
5856 while (len >= bits_to_set) {
5857 kaddr[offset] |= mask_to_set;
5858 len -= bits_to_set;
5859 bits_to_set = BITS_PER_BYTE;
5860 mask_to_set = ~0;
5861 if (++offset >= PAGE_SIZE && len > 0) {
5862 offset = 0;
5863 page = eb->pages[++i];
5864 WARN_ON(!PageUptodate(page));
5865 kaddr = page_address(page);
5868 if (len) {
5869 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5870 kaddr[offset] |= mask_to_set;
5876 * extent_buffer_bitmap_clear - clear an area of a bitmap
5877 * @eb: the extent buffer
5878 * @start: offset of the bitmap item in the extent buffer
5879 * @pos: bit number of the first bit
5880 * @len: number of bits to clear
5882 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5883 unsigned long pos, unsigned long len)
5885 u8 *kaddr;
5886 struct page *page;
5887 unsigned long i;
5888 size_t offset;
5889 const unsigned int size = pos + len;
5890 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5891 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5893 eb_bitmap_offset(eb, start, pos, &i, &offset);
5894 page = eb->pages[i];
5895 WARN_ON(!PageUptodate(page));
5896 kaddr = page_address(page);
5898 while (len >= bits_to_clear) {
5899 kaddr[offset] &= ~mask_to_clear;
5900 len -= bits_to_clear;
5901 bits_to_clear = BITS_PER_BYTE;
5902 mask_to_clear = ~0;
5903 if (++offset >= PAGE_SIZE && len > 0) {
5904 offset = 0;
5905 page = eb->pages[++i];
5906 WARN_ON(!PageUptodate(page));
5907 kaddr = page_address(page);
5910 if (len) {
5911 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5912 kaddr[offset] &= ~mask_to_clear;
5916 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5918 unsigned long distance = (src > dst) ? src - dst : dst - src;
5919 return distance < len;
5922 static void copy_pages(struct page *dst_page, struct page *src_page,
5923 unsigned long dst_off, unsigned long src_off,
5924 unsigned long len)
5926 char *dst_kaddr = page_address(dst_page);
5927 char *src_kaddr;
5928 int must_memmove = 0;
5930 if (dst_page != src_page) {
5931 src_kaddr = page_address(src_page);
5932 } else {
5933 src_kaddr = dst_kaddr;
5934 if (areas_overlap(src_off, dst_off, len))
5935 must_memmove = 1;
5938 if (must_memmove)
5939 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5940 else
5941 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5944 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5945 unsigned long src_offset, unsigned long len)
5947 struct btrfs_fs_info *fs_info = dst->fs_info;
5948 size_t cur;
5949 size_t dst_off_in_page;
5950 size_t src_off_in_page;
5951 size_t start_offset = offset_in_page(dst->start);
5952 unsigned long dst_i;
5953 unsigned long src_i;
5955 if (src_offset + len > dst->len) {
5956 btrfs_err(fs_info,
5957 "memmove bogus src_offset %lu move len %lu dst len %lu",
5958 src_offset, len, dst->len);
5959 BUG();
5961 if (dst_offset + len > dst->len) {
5962 btrfs_err(fs_info,
5963 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5964 dst_offset, len, dst->len);
5965 BUG();
5968 while (len > 0) {
5969 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5970 src_off_in_page = offset_in_page(start_offset + src_offset);
5972 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5973 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5975 cur = min(len, (unsigned long)(PAGE_SIZE -
5976 src_off_in_page));
5977 cur = min_t(unsigned long, cur,
5978 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5980 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5981 dst_off_in_page, src_off_in_page, cur);
5983 src_offset += cur;
5984 dst_offset += cur;
5985 len -= cur;
5989 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5990 unsigned long src_offset, unsigned long len)
5992 struct btrfs_fs_info *fs_info = dst->fs_info;
5993 size_t cur;
5994 size_t dst_off_in_page;
5995 size_t src_off_in_page;
5996 unsigned long dst_end = dst_offset + len - 1;
5997 unsigned long src_end = src_offset + len - 1;
5998 size_t start_offset = offset_in_page(dst->start);
5999 unsigned long dst_i;
6000 unsigned long src_i;
6002 if (src_offset + len > dst->len) {
6003 btrfs_err(fs_info,
6004 "memmove bogus src_offset %lu move len %lu len %lu",
6005 src_offset, len, dst->len);
6006 BUG();
6008 if (dst_offset + len > dst->len) {
6009 btrfs_err(fs_info,
6010 "memmove bogus dst_offset %lu move len %lu len %lu",
6011 dst_offset, len, dst->len);
6012 BUG();
6014 if (dst_offset < src_offset) {
6015 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6016 return;
6018 while (len > 0) {
6019 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6020 src_i = (start_offset + src_end) >> PAGE_SHIFT;
6022 dst_off_in_page = offset_in_page(start_offset + dst_end);
6023 src_off_in_page = offset_in_page(start_offset + src_end);
6025 cur = min_t(unsigned long, len, src_off_in_page + 1);
6026 cur = min(cur, dst_off_in_page + 1);
6027 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6028 dst_off_in_page - cur + 1,
6029 src_off_in_page - cur + 1, cur);
6031 dst_end -= cur;
6032 src_end -= cur;
6033 len -= cur;
6037 int try_release_extent_buffer(struct page *page)
6039 struct extent_buffer *eb;
6042 * We need to make sure nobody is attaching this page to an eb right
6043 * now.
6045 spin_lock(&page->mapping->private_lock);
6046 if (!PagePrivate(page)) {
6047 spin_unlock(&page->mapping->private_lock);
6048 return 1;
6051 eb = (struct extent_buffer *)page->private;
6052 BUG_ON(!eb);
6055 * This is a little awful but should be ok, we need to make sure that
6056 * the eb doesn't disappear out from under us while we're looking at
6057 * this page.
6059 spin_lock(&eb->refs_lock);
6060 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6061 spin_unlock(&eb->refs_lock);
6062 spin_unlock(&page->mapping->private_lock);
6063 return 0;
6065 spin_unlock(&page->mapping->private_lock);
6068 * If tree ref isn't set then we know the ref on this eb is a real ref,
6069 * so just return, this page will likely be freed soon anyway.
6071 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6072 spin_unlock(&eb->refs_lock);
6073 return 0;
6076 return release_extent_buffer(eb);