1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
20 #include "btrfs_inode.h"
22 #include "check-integrity.h"
24 #include "rcu-string.h"
28 static struct kmem_cache
*extent_state_cache
;
29 static struct kmem_cache
*extent_buffer_cache
;
30 static struct bio_set btrfs_bioset
;
32 static inline bool extent_state_in_tree(const struct extent_state
*state
)
34 return !RB_EMPTY_NODE(&state
->rb_node
);
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(buffers
);
39 static LIST_HEAD(states
);
41 static DEFINE_SPINLOCK(leak_lock
);
44 void btrfs_leak_debug_add(struct list_head
*new, struct list_head
*head
)
48 spin_lock_irqsave(&leak_lock
, flags
);
50 spin_unlock_irqrestore(&leak_lock
, flags
);
54 void btrfs_leak_debug_del(struct list_head
*entry
)
58 spin_lock_irqsave(&leak_lock
, flags
);
60 spin_unlock_irqrestore(&leak_lock
, flags
);
63 static inline void btrfs_extent_buffer_leak_debug_check(void)
65 struct extent_buffer
*eb
;
67 while (!list_empty(&buffers
)) {
68 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
69 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
70 eb
->start
, eb
->len
, atomic_read(&eb
->refs
), eb
->bflags
);
71 list_del(&eb
->leak_list
);
72 kmem_cache_free(extent_buffer_cache
, eb
);
76 static inline void btrfs_extent_state_leak_debug_check(void)
78 struct extent_state
*state
;
80 while (!list_empty(&states
)) {
81 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
82 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
83 state
->start
, state
->end
, state
->state
,
84 extent_state_in_tree(state
),
85 refcount_read(&state
->refs
));
86 list_del(&state
->leak_list
);
87 kmem_cache_free(extent_state_cache
, state
);
91 #define btrfs_debug_check_extent_io_range(tree, start, end) \
92 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
93 static inline void __btrfs_debug_check_extent_io_range(const char *caller
,
94 struct extent_io_tree
*tree
, u64 start
, u64 end
)
96 struct inode
*inode
= tree
->private_data
;
99 if (!inode
|| !is_data_inode(inode
))
102 isize
= i_size_read(inode
);
103 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
104 btrfs_debug_rl(BTRFS_I(inode
)->root
->fs_info
,
105 "%s: ino %llu isize %llu odd range [%llu,%llu]",
106 caller
, btrfs_ino(BTRFS_I(inode
)), isize
, start
, end
);
110 #define btrfs_leak_debug_add(new, head) do {} while (0)
111 #define btrfs_leak_debug_del(entry) do {} while (0)
112 #define btrfs_extent_buffer_leak_debug_check() do {} while (0)
113 #define btrfs_extent_state_leak_debug_check() do {} while (0)
114 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
120 struct rb_node rb_node
;
123 struct extent_page_data
{
125 struct extent_io_tree
*tree
;
126 /* tells writepage not to lock the state bits for this range
127 * it still does the unlocking
129 unsigned int extent_locked
:1;
131 /* tells the submit_bio code to use REQ_SYNC */
132 unsigned int sync_io
:1;
135 static int add_extent_changeset(struct extent_state
*state
, unsigned bits
,
136 struct extent_changeset
*changeset
,
143 if (set
&& (state
->state
& bits
) == bits
)
145 if (!set
&& (state
->state
& bits
) == 0)
147 changeset
->bytes_changed
+= state
->end
- state
->start
+ 1;
148 ret
= ulist_add(&changeset
->range_changed
, state
->start
, state
->end
,
153 static int __must_check
submit_one_bio(struct bio
*bio
, int mirror_num
,
154 unsigned long bio_flags
)
156 blk_status_t ret
= 0;
157 struct extent_io_tree
*tree
= bio
->bi_private
;
159 bio
->bi_private
= NULL
;
162 ret
= tree
->ops
->submit_bio_hook(tree
->private_data
, bio
,
163 mirror_num
, bio_flags
);
165 btrfsic_submit_bio(bio
);
167 return blk_status_to_errno(ret
);
170 /* Cleanup unsubmitted bios */
171 static void end_write_bio(struct extent_page_data
*epd
, int ret
)
174 epd
->bio
->bi_status
= errno_to_blk_status(ret
);
181 * Submit bio from extent page data via submit_one_bio
183 * Return 0 if everything is OK.
184 * Return <0 for error.
186 static int __must_check
flush_write_bio(struct extent_page_data
*epd
)
191 ret
= submit_one_bio(epd
->bio
, 0, 0);
193 * Clean up of epd->bio is handled by its endio function.
194 * And endio is either triggered by successful bio execution
195 * or the error handler of submit bio hook.
196 * So at this point, no matter what happened, we don't need
197 * to clean up epd->bio.
204 int __init
extent_state_cache_init(void)
206 extent_state_cache
= kmem_cache_create("btrfs_extent_state",
207 sizeof(struct extent_state
), 0,
208 SLAB_MEM_SPREAD
, NULL
);
209 if (!extent_state_cache
)
214 int __init
extent_io_init(void)
216 extent_buffer_cache
= kmem_cache_create("btrfs_extent_buffer",
217 sizeof(struct extent_buffer
), 0,
218 SLAB_MEM_SPREAD
, NULL
);
219 if (!extent_buffer_cache
)
222 if (bioset_init(&btrfs_bioset
, BIO_POOL_SIZE
,
223 offsetof(struct btrfs_io_bio
, bio
),
225 goto free_buffer_cache
;
227 if (bioset_integrity_create(&btrfs_bioset
, BIO_POOL_SIZE
))
233 bioset_exit(&btrfs_bioset
);
236 kmem_cache_destroy(extent_buffer_cache
);
237 extent_buffer_cache
= NULL
;
241 void __cold
extent_state_cache_exit(void)
243 btrfs_extent_state_leak_debug_check();
244 kmem_cache_destroy(extent_state_cache
);
247 void __cold
extent_io_exit(void)
249 btrfs_extent_buffer_leak_debug_check();
252 * Make sure all delayed rcu free are flushed before we
256 kmem_cache_destroy(extent_buffer_cache
);
257 bioset_exit(&btrfs_bioset
);
260 void extent_io_tree_init(struct btrfs_fs_info
*fs_info
,
261 struct extent_io_tree
*tree
, unsigned int owner
,
264 tree
->fs_info
= fs_info
;
265 tree
->state
= RB_ROOT
;
267 tree
->dirty_bytes
= 0;
268 spin_lock_init(&tree
->lock
);
269 tree
->private_data
= private_data
;
273 void extent_io_tree_release(struct extent_io_tree
*tree
)
275 spin_lock(&tree
->lock
);
277 * Do a single barrier for the waitqueue_active check here, the state
278 * of the waitqueue should not change once extent_io_tree_release is
282 while (!RB_EMPTY_ROOT(&tree
->state
)) {
283 struct rb_node
*node
;
284 struct extent_state
*state
;
286 node
= rb_first(&tree
->state
);
287 state
= rb_entry(node
, struct extent_state
, rb_node
);
288 rb_erase(&state
->rb_node
, &tree
->state
);
289 RB_CLEAR_NODE(&state
->rb_node
);
291 * btree io trees aren't supposed to have tasks waiting for
292 * changes in the flags of extent states ever.
294 ASSERT(!waitqueue_active(&state
->wq
));
295 free_extent_state(state
);
297 cond_resched_lock(&tree
->lock
);
299 spin_unlock(&tree
->lock
);
302 static struct extent_state
*alloc_extent_state(gfp_t mask
)
304 struct extent_state
*state
;
307 * The given mask might be not appropriate for the slab allocator,
308 * drop the unsupported bits
310 mask
&= ~(__GFP_DMA32
|__GFP_HIGHMEM
);
311 state
= kmem_cache_alloc(extent_state_cache
, mask
);
315 state
->failrec
= NULL
;
316 RB_CLEAR_NODE(&state
->rb_node
);
317 btrfs_leak_debug_add(&state
->leak_list
, &states
);
318 refcount_set(&state
->refs
, 1);
319 init_waitqueue_head(&state
->wq
);
320 trace_alloc_extent_state(state
, mask
, _RET_IP_
);
324 void free_extent_state(struct extent_state
*state
)
328 if (refcount_dec_and_test(&state
->refs
)) {
329 WARN_ON(extent_state_in_tree(state
));
330 btrfs_leak_debug_del(&state
->leak_list
);
331 trace_free_extent_state(state
, _RET_IP_
);
332 kmem_cache_free(extent_state_cache
, state
);
336 static struct rb_node
*tree_insert(struct rb_root
*root
,
337 struct rb_node
*search_start
,
339 struct rb_node
*node
,
340 struct rb_node
***p_in
,
341 struct rb_node
**parent_in
)
344 struct rb_node
*parent
= NULL
;
345 struct tree_entry
*entry
;
347 if (p_in
&& parent_in
) {
353 p
= search_start
? &search_start
: &root
->rb_node
;
356 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
358 if (offset
< entry
->start
)
360 else if (offset
> entry
->end
)
367 rb_link_node(node
, parent
, p
);
368 rb_insert_color(node
, root
);
373 * __etree_search - searche @tree for an entry that contains @offset. Such
374 * entry would have entry->start <= offset && entry->end >= offset.
376 * @tree - the tree to search
377 * @offset - offset that should fall within an entry in @tree
378 * @next_ret - pointer to the first entry whose range ends after @offset
379 * @prev - pointer to the first entry whose range begins before @offset
380 * @p_ret - pointer where new node should be anchored (used when inserting an
382 * @parent_ret - points to entry which would have been the parent of the entry,
385 * This function returns a pointer to the entry that contains @offset byte
386 * address. If no such entry exists, then NULL is returned and the other
387 * pointer arguments to the function are filled, otherwise the found entry is
388 * returned and other pointers are left untouched.
390 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
391 struct rb_node
**next_ret
,
392 struct rb_node
**prev_ret
,
393 struct rb_node
***p_ret
,
394 struct rb_node
**parent_ret
)
396 struct rb_root
*root
= &tree
->state
;
397 struct rb_node
**n
= &root
->rb_node
;
398 struct rb_node
*prev
= NULL
;
399 struct rb_node
*orig_prev
= NULL
;
400 struct tree_entry
*entry
;
401 struct tree_entry
*prev_entry
= NULL
;
405 entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
408 if (offset
< entry
->start
)
410 else if (offset
> entry
->end
)
423 while (prev
&& offset
> prev_entry
->end
) {
424 prev
= rb_next(prev
);
425 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
432 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
433 while (prev
&& offset
< prev_entry
->start
) {
434 prev
= rb_prev(prev
);
435 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
442 static inline struct rb_node
*
443 tree_search_for_insert(struct extent_io_tree
*tree
,
445 struct rb_node
***p_ret
,
446 struct rb_node
**parent_ret
)
448 struct rb_node
*next
= NULL
;
451 ret
= __etree_search(tree
, offset
, &next
, NULL
, p_ret
, parent_ret
);
457 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
460 return tree_search_for_insert(tree
, offset
, NULL
, NULL
);
464 * utility function to look for merge candidates inside a given range.
465 * Any extents with matching state are merged together into a single
466 * extent in the tree. Extents with EXTENT_IO in their state field
467 * are not merged because the end_io handlers need to be able to do
468 * operations on them without sleeping (or doing allocations/splits).
470 * This should be called with the tree lock held.
472 static void merge_state(struct extent_io_tree
*tree
,
473 struct extent_state
*state
)
475 struct extent_state
*other
;
476 struct rb_node
*other_node
;
478 if (state
->state
& (EXTENT_LOCKED
| EXTENT_BOUNDARY
))
481 other_node
= rb_prev(&state
->rb_node
);
483 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
484 if (other
->end
== state
->start
- 1 &&
485 other
->state
== state
->state
) {
486 if (tree
->private_data
&&
487 is_data_inode(tree
->private_data
))
488 btrfs_merge_delalloc_extent(tree
->private_data
,
490 state
->start
= other
->start
;
491 rb_erase(&other
->rb_node
, &tree
->state
);
492 RB_CLEAR_NODE(&other
->rb_node
);
493 free_extent_state(other
);
496 other_node
= rb_next(&state
->rb_node
);
498 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
499 if (other
->start
== state
->end
+ 1 &&
500 other
->state
== state
->state
) {
501 if (tree
->private_data
&&
502 is_data_inode(tree
->private_data
))
503 btrfs_merge_delalloc_extent(tree
->private_data
,
505 state
->end
= other
->end
;
506 rb_erase(&other
->rb_node
, &tree
->state
);
507 RB_CLEAR_NODE(&other
->rb_node
);
508 free_extent_state(other
);
513 static void set_state_bits(struct extent_io_tree
*tree
,
514 struct extent_state
*state
, unsigned *bits
,
515 struct extent_changeset
*changeset
);
518 * insert an extent_state struct into the tree. 'bits' are set on the
519 * struct before it is inserted.
521 * This may return -EEXIST if the extent is already there, in which case the
522 * state struct is freed.
524 * The tree lock is not taken internally. This is a utility function and
525 * probably isn't what you want to call (see set/clear_extent_bit).
527 static int insert_state(struct extent_io_tree
*tree
,
528 struct extent_state
*state
, u64 start
, u64 end
,
530 struct rb_node
**parent
,
531 unsigned *bits
, struct extent_changeset
*changeset
)
533 struct rb_node
*node
;
536 btrfs_err(tree
->fs_info
,
537 "insert state: end < start %llu %llu", end
, start
);
540 state
->start
= start
;
543 set_state_bits(tree
, state
, bits
, changeset
);
545 node
= tree_insert(&tree
->state
, NULL
, end
, &state
->rb_node
, p
, parent
);
547 struct extent_state
*found
;
548 found
= rb_entry(node
, struct extent_state
, rb_node
);
549 btrfs_err(tree
->fs_info
,
550 "found node %llu %llu on insert of %llu %llu",
551 found
->start
, found
->end
, start
, end
);
554 merge_state(tree
, state
);
559 * split a given extent state struct in two, inserting the preallocated
560 * struct 'prealloc' as the newly created second half. 'split' indicates an
561 * offset inside 'orig' where it should be split.
564 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
565 * are two extent state structs in the tree:
566 * prealloc: [orig->start, split - 1]
567 * orig: [ split, orig->end ]
569 * The tree locks are not taken by this function. They need to be held
572 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
573 struct extent_state
*prealloc
, u64 split
)
575 struct rb_node
*node
;
577 if (tree
->private_data
&& is_data_inode(tree
->private_data
))
578 btrfs_split_delalloc_extent(tree
->private_data
, orig
, split
);
580 prealloc
->start
= orig
->start
;
581 prealloc
->end
= split
- 1;
582 prealloc
->state
= orig
->state
;
585 node
= tree_insert(&tree
->state
, &orig
->rb_node
, prealloc
->end
,
586 &prealloc
->rb_node
, NULL
, NULL
);
588 free_extent_state(prealloc
);
594 static struct extent_state
*next_state(struct extent_state
*state
)
596 struct rb_node
*next
= rb_next(&state
->rb_node
);
598 return rb_entry(next
, struct extent_state
, rb_node
);
604 * utility function to clear some bits in an extent state struct.
605 * it will optionally wake up anyone waiting on this state (wake == 1).
607 * If no bits are set on the state struct after clearing things, the
608 * struct is freed and removed from the tree
610 static struct extent_state
*clear_state_bit(struct extent_io_tree
*tree
,
611 struct extent_state
*state
,
612 unsigned *bits
, int wake
,
613 struct extent_changeset
*changeset
)
615 struct extent_state
*next
;
616 unsigned bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
619 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
620 u64 range
= state
->end
- state
->start
+ 1;
621 WARN_ON(range
> tree
->dirty_bytes
);
622 tree
->dirty_bytes
-= range
;
625 if (tree
->private_data
&& is_data_inode(tree
->private_data
))
626 btrfs_clear_delalloc_extent(tree
->private_data
, state
, bits
);
628 ret
= add_extent_changeset(state
, bits_to_clear
, changeset
, 0);
630 state
->state
&= ~bits_to_clear
;
633 if (state
->state
== 0) {
634 next
= next_state(state
);
635 if (extent_state_in_tree(state
)) {
636 rb_erase(&state
->rb_node
, &tree
->state
);
637 RB_CLEAR_NODE(&state
->rb_node
);
638 free_extent_state(state
);
643 merge_state(tree
, state
);
644 next
= next_state(state
);
649 static struct extent_state
*
650 alloc_extent_state_atomic(struct extent_state
*prealloc
)
653 prealloc
= alloc_extent_state(GFP_ATOMIC
);
658 static void extent_io_tree_panic(struct extent_io_tree
*tree
, int err
)
660 struct inode
*inode
= tree
->private_data
;
662 btrfs_panic(btrfs_sb(inode
->i_sb
), err
,
663 "locking error: extent tree was modified by another thread while locked");
667 * clear some bits on a range in the tree. This may require splitting
668 * or inserting elements in the tree, so the gfp mask is used to
669 * indicate which allocations or sleeping are allowed.
671 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
672 * the given range from the tree regardless of state (ie for truncate).
674 * the range [start, end] is inclusive.
676 * This takes the tree lock, and returns 0 on success and < 0 on error.
678 int __clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
679 unsigned bits
, int wake
, int delete,
680 struct extent_state
**cached_state
,
681 gfp_t mask
, struct extent_changeset
*changeset
)
683 struct extent_state
*state
;
684 struct extent_state
*cached
;
685 struct extent_state
*prealloc
= NULL
;
686 struct rb_node
*node
;
691 btrfs_debug_check_extent_io_range(tree
, start
, end
);
692 trace_btrfs_clear_extent_bit(tree
, start
, end
- start
+ 1, bits
);
694 if (bits
& EXTENT_DELALLOC
)
695 bits
|= EXTENT_NORESERVE
;
698 bits
|= ~EXTENT_CTLBITS
;
700 if (bits
& (EXTENT_LOCKED
| EXTENT_BOUNDARY
))
703 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
705 * Don't care for allocation failure here because we might end
706 * up not needing the pre-allocated extent state at all, which
707 * is the case if we only have in the tree extent states that
708 * cover our input range and don't cover too any other range.
709 * If we end up needing a new extent state we allocate it later.
711 prealloc
= alloc_extent_state(mask
);
714 spin_lock(&tree
->lock
);
716 cached
= *cached_state
;
719 *cached_state
= NULL
;
723 if (cached
&& extent_state_in_tree(cached
) &&
724 cached
->start
<= start
&& cached
->end
> start
) {
726 refcount_dec(&cached
->refs
);
731 free_extent_state(cached
);
734 * this search will find the extents that end after
737 node
= tree_search(tree
, start
);
740 state
= rb_entry(node
, struct extent_state
, rb_node
);
742 if (state
->start
> end
)
744 WARN_ON(state
->end
< start
);
745 last_end
= state
->end
;
747 /* the state doesn't have the wanted bits, go ahead */
748 if (!(state
->state
& bits
)) {
749 state
= next_state(state
);
754 * | ---- desired range ---- |
756 * | ------------- state -------------- |
758 * We need to split the extent we found, and may flip
759 * bits on second half.
761 * If the extent we found extends past our range, we
762 * just split and search again. It'll get split again
763 * the next time though.
765 * If the extent we found is inside our range, we clear
766 * the desired bit on it.
769 if (state
->start
< start
) {
770 prealloc
= alloc_extent_state_atomic(prealloc
);
772 err
= split_state(tree
, state
, prealloc
, start
);
774 extent_io_tree_panic(tree
, err
);
779 if (state
->end
<= end
) {
780 state
= clear_state_bit(tree
, state
, &bits
, wake
,
787 * | ---- desired range ---- |
789 * We need to split the extent, and clear the bit
792 if (state
->start
<= end
&& state
->end
> end
) {
793 prealloc
= alloc_extent_state_atomic(prealloc
);
795 err
= split_state(tree
, state
, prealloc
, end
+ 1);
797 extent_io_tree_panic(tree
, err
);
802 clear_state_bit(tree
, prealloc
, &bits
, wake
, changeset
);
808 state
= clear_state_bit(tree
, state
, &bits
, wake
, changeset
);
810 if (last_end
== (u64
)-1)
812 start
= last_end
+ 1;
813 if (start
<= end
&& state
&& !need_resched())
819 spin_unlock(&tree
->lock
);
820 if (gfpflags_allow_blocking(mask
))
825 spin_unlock(&tree
->lock
);
827 free_extent_state(prealloc
);
833 static void wait_on_state(struct extent_io_tree
*tree
,
834 struct extent_state
*state
)
835 __releases(tree
->lock
)
836 __acquires(tree
->lock
)
839 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
840 spin_unlock(&tree
->lock
);
842 spin_lock(&tree
->lock
);
843 finish_wait(&state
->wq
, &wait
);
847 * waits for one or more bits to clear on a range in the state tree.
848 * The range [start, end] is inclusive.
849 * The tree lock is taken by this function
851 static void wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
854 struct extent_state
*state
;
855 struct rb_node
*node
;
857 btrfs_debug_check_extent_io_range(tree
, start
, end
);
859 spin_lock(&tree
->lock
);
863 * this search will find all the extents that end after
866 node
= tree_search(tree
, start
);
871 state
= rb_entry(node
, struct extent_state
, rb_node
);
873 if (state
->start
> end
)
876 if (state
->state
& bits
) {
877 start
= state
->start
;
878 refcount_inc(&state
->refs
);
879 wait_on_state(tree
, state
);
880 free_extent_state(state
);
883 start
= state
->end
+ 1;
888 if (!cond_resched_lock(&tree
->lock
)) {
889 node
= rb_next(node
);
894 spin_unlock(&tree
->lock
);
897 static void set_state_bits(struct extent_io_tree
*tree
,
898 struct extent_state
*state
,
899 unsigned *bits
, struct extent_changeset
*changeset
)
901 unsigned bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
904 if (tree
->private_data
&& is_data_inode(tree
->private_data
))
905 btrfs_set_delalloc_extent(tree
->private_data
, state
, bits
);
907 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
908 u64 range
= state
->end
- state
->start
+ 1;
909 tree
->dirty_bytes
+= range
;
911 ret
= add_extent_changeset(state
, bits_to_set
, changeset
, 1);
913 state
->state
|= bits_to_set
;
916 static void cache_state_if_flags(struct extent_state
*state
,
917 struct extent_state
**cached_ptr
,
920 if (cached_ptr
&& !(*cached_ptr
)) {
921 if (!flags
|| (state
->state
& flags
)) {
923 refcount_inc(&state
->refs
);
928 static void cache_state(struct extent_state
*state
,
929 struct extent_state
**cached_ptr
)
931 return cache_state_if_flags(state
, cached_ptr
,
932 EXTENT_LOCKED
| EXTENT_BOUNDARY
);
936 * set some bits on a range in the tree. This may require allocations or
937 * sleeping, so the gfp mask is used to indicate what is allowed.
939 * If any of the exclusive bits are set, this will fail with -EEXIST if some
940 * part of the range already has the desired bits set. The start of the
941 * existing range is returned in failed_start in this case.
943 * [start, end] is inclusive This takes the tree lock.
946 static int __must_check
947 __set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
948 unsigned bits
, unsigned exclusive_bits
,
949 u64
*failed_start
, struct extent_state
**cached_state
,
950 gfp_t mask
, struct extent_changeset
*changeset
)
952 struct extent_state
*state
;
953 struct extent_state
*prealloc
= NULL
;
954 struct rb_node
*node
;
956 struct rb_node
*parent
;
961 btrfs_debug_check_extent_io_range(tree
, start
, end
);
962 trace_btrfs_set_extent_bit(tree
, start
, end
- start
+ 1, bits
);
965 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
967 * Don't care for allocation failure here because we might end
968 * up not needing the pre-allocated extent state at all, which
969 * is the case if we only have in the tree extent states that
970 * cover our input range and don't cover too any other range.
971 * If we end up needing a new extent state we allocate it later.
973 prealloc
= alloc_extent_state(mask
);
976 spin_lock(&tree
->lock
);
977 if (cached_state
&& *cached_state
) {
978 state
= *cached_state
;
979 if (state
->start
<= start
&& state
->end
> start
&&
980 extent_state_in_tree(state
)) {
981 node
= &state
->rb_node
;
986 * this search will find all the extents that end after
989 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
991 prealloc
= alloc_extent_state_atomic(prealloc
);
993 err
= insert_state(tree
, prealloc
, start
, end
,
994 &p
, &parent
, &bits
, changeset
);
996 extent_io_tree_panic(tree
, err
);
998 cache_state(prealloc
, cached_state
);
1002 state
= rb_entry(node
, struct extent_state
, rb_node
);
1004 last_start
= state
->start
;
1005 last_end
= state
->end
;
1008 * | ---- desired range ---- |
1011 * Just lock what we found and keep going
1013 if (state
->start
== start
&& state
->end
<= end
) {
1014 if (state
->state
& exclusive_bits
) {
1015 *failed_start
= state
->start
;
1020 set_state_bits(tree
, state
, &bits
, changeset
);
1021 cache_state(state
, cached_state
);
1022 merge_state(tree
, state
);
1023 if (last_end
== (u64
)-1)
1025 start
= last_end
+ 1;
1026 state
= next_state(state
);
1027 if (start
< end
&& state
&& state
->start
== start
&&
1034 * | ---- desired range ---- |
1037 * | ------------- state -------------- |
1039 * We need to split the extent we found, and may flip bits on
1042 * If the extent we found extends past our
1043 * range, we just split and search again. It'll get split
1044 * again the next time though.
1046 * If the extent we found is inside our range, we set the
1047 * desired bit on it.
1049 if (state
->start
< start
) {
1050 if (state
->state
& exclusive_bits
) {
1051 *failed_start
= start
;
1056 prealloc
= alloc_extent_state_atomic(prealloc
);
1058 err
= split_state(tree
, state
, prealloc
, start
);
1060 extent_io_tree_panic(tree
, err
);
1065 if (state
->end
<= end
) {
1066 set_state_bits(tree
, state
, &bits
, changeset
);
1067 cache_state(state
, cached_state
);
1068 merge_state(tree
, state
);
1069 if (last_end
== (u64
)-1)
1071 start
= last_end
+ 1;
1072 state
= next_state(state
);
1073 if (start
< end
&& state
&& state
->start
== start
&&
1080 * | ---- desired range ---- |
1081 * | state | or | state |
1083 * There's a hole, we need to insert something in it and
1084 * ignore the extent we found.
1086 if (state
->start
> start
) {
1088 if (end
< last_start
)
1091 this_end
= last_start
- 1;
1093 prealloc
= alloc_extent_state_atomic(prealloc
);
1097 * Avoid to free 'prealloc' if it can be merged with
1100 err
= insert_state(tree
, prealloc
, start
, this_end
,
1101 NULL
, NULL
, &bits
, changeset
);
1103 extent_io_tree_panic(tree
, err
);
1105 cache_state(prealloc
, cached_state
);
1107 start
= this_end
+ 1;
1111 * | ---- desired range ---- |
1113 * We need to split the extent, and set the bit
1116 if (state
->start
<= end
&& state
->end
> end
) {
1117 if (state
->state
& exclusive_bits
) {
1118 *failed_start
= start
;
1123 prealloc
= alloc_extent_state_atomic(prealloc
);
1125 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1127 extent_io_tree_panic(tree
, err
);
1129 set_state_bits(tree
, prealloc
, &bits
, changeset
);
1130 cache_state(prealloc
, cached_state
);
1131 merge_state(tree
, prealloc
);
1139 spin_unlock(&tree
->lock
);
1140 if (gfpflags_allow_blocking(mask
))
1145 spin_unlock(&tree
->lock
);
1147 free_extent_state(prealloc
);
1153 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1154 unsigned bits
, u64
* failed_start
,
1155 struct extent_state
**cached_state
, gfp_t mask
)
1157 return __set_extent_bit(tree
, start
, end
, bits
, 0, failed_start
,
1158 cached_state
, mask
, NULL
);
1163 * convert_extent_bit - convert all bits in a given range from one bit to
1165 * @tree: the io tree to search
1166 * @start: the start offset in bytes
1167 * @end: the end offset in bytes (inclusive)
1168 * @bits: the bits to set in this range
1169 * @clear_bits: the bits to clear in this range
1170 * @cached_state: state that we're going to cache
1172 * This will go through and set bits for the given range. If any states exist
1173 * already in this range they are set with the given bit and cleared of the
1174 * clear_bits. This is only meant to be used by things that are mergeable, ie
1175 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1176 * boundary bits like LOCK.
1178 * All allocations are done with GFP_NOFS.
1180 int convert_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1181 unsigned bits
, unsigned clear_bits
,
1182 struct extent_state
**cached_state
)
1184 struct extent_state
*state
;
1185 struct extent_state
*prealloc
= NULL
;
1186 struct rb_node
*node
;
1188 struct rb_node
*parent
;
1192 bool first_iteration
= true;
1194 btrfs_debug_check_extent_io_range(tree
, start
, end
);
1195 trace_btrfs_convert_extent_bit(tree
, start
, end
- start
+ 1, bits
,
1201 * Best effort, don't worry if extent state allocation fails
1202 * here for the first iteration. We might have a cached state
1203 * that matches exactly the target range, in which case no
1204 * extent state allocations are needed. We'll only know this
1205 * after locking the tree.
1207 prealloc
= alloc_extent_state(GFP_NOFS
);
1208 if (!prealloc
&& !first_iteration
)
1212 spin_lock(&tree
->lock
);
1213 if (cached_state
&& *cached_state
) {
1214 state
= *cached_state
;
1215 if (state
->start
<= start
&& state
->end
> start
&&
1216 extent_state_in_tree(state
)) {
1217 node
= &state
->rb_node
;
1223 * this search will find all the extents that end after
1226 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
1228 prealloc
= alloc_extent_state_atomic(prealloc
);
1233 err
= insert_state(tree
, prealloc
, start
, end
,
1234 &p
, &parent
, &bits
, NULL
);
1236 extent_io_tree_panic(tree
, err
);
1237 cache_state(prealloc
, cached_state
);
1241 state
= rb_entry(node
, struct extent_state
, rb_node
);
1243 last_start
= state
->start
;
1244 last_end
= state
->end
;
1247 * | ---- desired range ---- |
1250 * Just lock what we found and keep going
1252 if (state
->start
== start
&& state
->end
<= end
) {
1253 set_state_bits(tree
, state
, &bits
, NULL
);
1254 cache_state(state
, cached_state
);
1255 state
= clear_state_bit(tree
, state
, &clear_bits
, 0, NULL
);
1256 if (last_end
== (u64
)-1)
1258 start
= last_end
+ 1;
1259 if (start
< end
&& state
&& state
->start
== start
&&
1266 * | ---- desired range ---- |
1269 * | ------------- state -------------- |
1271 * We need to split the extent we found, and may flip bits on
1274 * If the extent we found extends past our
1275 * range, we just split and search again. It'll get split
1276 * again the next time though.
1278 * If the extent we found is inside our range, we set the
1279 * desired bit on it.
1281 if (state
->start
< start
) {
1282 prealloc
= alloc_extent_state_atomic(prealloc
);
1287 err
= split_state(tree
, state
, prealloc
, start
);
1289 extent_io_tree_panic(tree
, err
);
1293 if (state
->end
<= end
) {
1294 set_state_bits(tree
, state
, &bits
, NULL
);
1295 cache_state(state
, cached_state
);
1296 state
= clear_state_bit(tree
, state
, &clear_bits
, 0,
1298 if (last_end
== (u64
)-1)
1300 start
= last_end
+ 1;
1301 if (start
< end
&& state
&& state
->start
== start
&&
1308 * | ---- desired range ---- |
1309 * | state | or | state |
1311 * There's a hole, we need to insert something in it and
1312 * ignore the extent we found.
1314 if (state
->start
> start
) {
1316 if (end
< last_start
)
1319 this_end
= last_start
- 1;
1321 prealloc
= alloc_extent_state_atomic(prealloc
);
1328 * Avoid to free 'prealloc' if it can be merged with
1331 err
= insert_state(tree
, prealloc
, start
, this_end
,
1332 NULL
, NULL
, &bits
, NULL
);
1334 extent_io_tree_panic(tree
, err
);
1335 cache_state(prealloc
, cached_state
);
1337 start
= this_end
+ 1;
1341 * | ---- desired range ---- |
1343 * We need to split the extent, and set the bit
1346 if (state
->start
<= end
&& state
->end
> end
) {
1347 prealloc
= alloc_extent_state_atomic(prealloc
);
1353 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1355 extent_io_tree_panic(tree
, err
);
1357 set_state_bits(tree
, prealloc
, &bits
, NULL
);
1358 cache_state(prealloc
, cached_state
);
1359 clear_state_bit(tree
, prealloc
, &clear_bits
, 0, NULL
);
1367 spin_unlock(&tree
->lock
);
1369 first_iteration
= false;
1373 spin_unlock(&tree
->lock
);
1375 free_extent_state(prealloc
);
1380 /* wrappers around set/clear extent bit */
1381 int set_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1382 unsigned bits
, struct extent_changeset
*changeset
)
1385 * We don't support EXTENT_LOCKED yet, as current changeset will
1386 * record any bits changed, so for EXTENT_LOCKED case, it will
1387 * either fail with -EEXIST or changeset will record the whole
1390 BUG_ON(bits
& EXTENT_LOCKED
);
1392 return __set_extent_bit(tree
, start
, end
, bits
, 0, NULL
, NULL
, GFP_NOFS
,
1396 int set_extent_bits_nowait(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1399 return __set_extent_bit(tree
, start
, end
, bits
, 0, NULL
, NULL
,
1403 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1404 unsigned bits
, int wake
, int delete,
1405 struct extent_state
**cached
)
1407 return __clear_extent_bit(tree
, start
, end
, bits
, wake
, delete,
1408 cached
, GFP_NOFS
, NULL
);
1411 int clear_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1412 unsigned bits
, struct extent_changeset
*changeset
)
1415 * Don't support EXTENT_LOCKED case, same reason as
1416 * set_record_extent_bits().
1418 BUG_ON(bits
& EXTENT_LOCKED
);
1420 return __clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, GFP_NOFS
,
1425 * either insert or lock state struct between start and end use mask to tell
1426 * us if waiting is desired.
1428 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1429 struct extent_state
**cached_state
)
1435 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
,
1436 EXTENT_LOCKED
, &failed_start
,
1437 cached_state
, GFP_NOFS
, NULL
);
1438 if (err
== -EEXIST
) {
1439 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1440 start
= failed_start
;
1443 WARN_ON(start
> end
);
1448 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1453 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1454 &failed_start
, NULL
, GFP_NOFS
, NULL
);
1455 if (err
== -EEXIST
) {
1456 if (failed_start
> start
)
1457 clear_extent_bit(tree
, start
, failed_start
- 1,
1458 EXTENT_LOCKED
, 1, 0, NULL
);
1464 void extent_range_clear_dirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1466 unsigned long index
= start
>> PAGE_SHIFT
;
1467 unsigned long end_index
= end
>> PAGE_SHIFT
;
1470 while (index
<= end_index
) {
1471 page
= find_get_page(inode
->i_mapping
, index
);
1472 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1473 clear_page_dirty_for_io(page
);
1479 void extent_range_redirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1481 unsigned long index
= start
>> PAGE_SHIFT
;
1482 unsigned long end_index
= end
>> PAGE_SHIFT
;
1485 while (index
<= end_index
) {
1486 page
= find_get_page(inode
->i_mapping
, index
);
1487 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1488 __set_page_dirty_nobuffers(page
);
1489 account_page_redirty(page
);
1495 /* find the first state struct with 'bits' set after 'start', and
1496 * return it. tree->lock must be held. NULL will returned if
1497 * nothing was found after 'start'
1499 static struct extent_state
*
1500 find_first_extent_bit_state(struct extent_io_tree
*tree
,
1501 u64 start
, unsigned bits
)
1503 struct rb_node
*node
;
1504 struct extent_state
*state
;
1507 * this search will find all the extents that end after
1510 node
= tree_search(tree
, start
);
1515 state
= rb_entry(node
, struct extent_state
, rb_node
);
1516 if (state
->end
>= start
&& (state
->state
& bits
))
1519 node
= rb_next(node
);
1528 * find the first offset in the io tree with 'bits' set. zero is
1529 * returned if we find something, and *start_ret and *end_ret are
1530 * set to reflect the state struct that was found.
1532 * If nothing was found, 1 is returned. If found something, return 0.
1534 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1535 u64
*start_ret
, u64
*end_ret
, unsigned bits
,
1536 struct extent_state
**cached_state
)
1538 struct extent_state
*state
;
1541 spin_lock(&tree
->lock
);
1542 if (cached_state
&& *cached_state
) {
1543 state
= *cached_state
;
1544 if (state
->end
== start
- 1 && extent_state_in_tree(state
)) {
1545 while ((state
= next_state(state
)) != NULL
) {
1546 if (state
->state
& bits
)
1549 free_extent_state(*cached_state
);
1550 *cached_state
= NULL
;
1553 free_extent_state(*cached_state
);
1554 *cached_state
= NULL
;
1557 state
= find_first_extent_bit_state(tree
, start
, bits
);
1560 cache_state_if_flags(state
, cached_state
, 0);
1561 *start_ret
= state
->start
;
1562 *end_ret
= state
->end
;
1566 spin_unlock(&tree
->lock
);
1571 * find_first_clear_extent_bit - find the first range that has @bits not set.
1572 * This range could start before @start.
1574 * @tree - the tree to search
1575 * @start - the offset at/after which the found extent should start
1576 * @start_ret - records the beginning of the range
1577 * @end_ret - records the end of the range (inclusive)
1578 * @bits - the set of bits which must be unset
1580 * Since unallocated range is also considered one which doesn't have the bits
1581 * set it's possible that @end_ret contains -1, this happens in case the range
1582 * spans (last_range_end, end of device]. In this case it's up to the caller to
1583 * trim @end_ret to the appropriate size.
1585 void find_first_clear_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1586 u64
*start_ret
, u64
*end_ret
, unsigned bits
)
1588 struct extent_state
*state
;
1589 struct rb_node
*node
, *prev
= NULL
, *next
;
1591 spin_lock(&tree
->lock
);
1593 /* Find first extent with bits cleared */
1595 node
= __etree_search(tree
, start
, &next
, &prev
, NULL
, NULL
);
1596 if (!node
&& !next
&& !prev
) {
1598 * Tree is completely empty, send full range and let
1599 * caller deal with it
1604 } else if (!node
&& !next
) {
1606 * We are past the last allocated chunk, set start at
1607 * the end of the last extent.
1609 state
= rb_entry(prev
, struct extent_state
, rb_node
);
1610 *start_ret
= state
->end
+ 1;
1617 * At this point 'node' either contains 'start' or start is
1620 state
= rb_entry(node
, struct extent_state
, rb_node
);
1622 if (in_range(start
, state
->start
, state
->end
- state
->start
+ 1)) {
1623 if (state
->state
& bits
) {
1625 * |--range with bits sets--|
1629 start
= state
->end
+ 1;
1632 * 'start' falls within a range that doesn't
1633 * have the bits set, so take its start as
1634 * the beginning of the desired range
1636 * |--range with bits cleared----|
1640 *start_ret
= state
->start
;
1645 * |---prev range---|---hole/unset---|---node range---|
1651 * |---hole/unset--||--first node--|
1656 state
= rb_entry(prev
, struct extent_state
,
1658 *start_ret
= state
->end
+ 1;
1667 * Find the longest stretch from start until an entry which has the
1671 state
= rb_entry(node
, struct extent_state
, rb_node
);
1672 if (state
->end
>= start
&& !(state
->state
& bits
)) {
1673 *end_ret
= state
->end
;
1675 *end_ret
= state
->start
- 1;
1679 node
= rb_next(node
);
1684 spin_unlock(&tree
->lock
);
1688 * find a contiguous range of bytes in the file marked as delalloc, not
1689 * more than 'max_bytes'. start and end are used to return the range,
1691 * true is returned if we find something, false if nothing was in the tree
1693 bool btrfs_find_delalloc_range(struct extent_io_tree
*tree
, u64
*start
,
1694 u64
*end
, u64 max_bytes
,
1695 struct extent_state
**cached_state
)
1697 struct rb_node
*node
;
1698 struct extent_state
*state
;
1699 u64 cur_start
= *start
;
1701 u64 total_bytes
= 0;
1703 spin_lock(&tree
->lock
);
1706 * this search will find all the extents that end after
1709 node
= tree_search(tree
, cur_start
);
1716 state
= rb_entry(node
, struct extent_state
, rb_node
);
1717 if (found
&& (state
->start
!= cur_start
||
1718 (state
->state
& EXTENT_BOUNDARY
))) {
1721 if (!(state
->state
& EXTENT_DELALLOC
)) {
1727 *start
= state
->start
;
1728 *cached_state
= state
;
1729 refcount_inc(&state
->refs
);
1733 cur_start
= state
->end
+ 1;
1734 node
= rb_next(node
);
1735 total_bytes
+= state
->end
- state
->start
+ 1;
1736 if (total_bytes
>= max_bytes
)
1742 spin_unlock(&tree
->lock
);
1746 static int __process_pages_contig(struct address_space
*mapping
,
1747 struct page
*locked_page
,
1748 pgoff_t start_index
, pgoff_t end_index
,
1749 unsigned long page_ops
, pgoff_t
*index_ret
);
1751 static noinline
void __unlock_for_delalloc(struct inode
*inode
,
1752 struct page
*locked_page
,
1755 unsigned long index
= start
>> PAGE_SHIFT
;
1756 unsigned long end_index
= end
>> PAGE_SHIFT
;
1758 ASSERT(locked_page
);
1759 if (index
== locked_page
->index
&& end_index
== index
)
1762 __process_pages_contig(inode
->i_mapping
, locked_page
, index
, end_index
,
1766 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1767 struct page
*locked_page
,
1771 unsigned long index
= delalloc_start
>> PAGE_SHIFT
;
1772 unsigned long index_ret
= index
;
1773 unsigned long end_index
= delalloc_end
>> PAGE_SHIFT
;
1776 ASSERT(locked_page
);
1777 if (index
== locked_page
->index
&& index
== end_index
)
1780 ret
= __process_pages_contig(inode
->i_mapping
, locked_page
, index
,
1781 end_index
, PAGE_LOCK
, &index_ret
);
1783 __unlock_for_delalloc(inode
, locked_page
, delalloc_start
,
1784 (u64
)index_ret
<< PAGE_SHIFT
);
1789 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1790 * more than @max_bytes. @Start and @end are used to return the range,
1792 * Return: true if we find something
1793 * false if nothing was in the tree
1796 noinline_for_stack
bool find_lock_delalloc_range(struct inode
*inode
,
1797 struct page
*locked_page
, u64
*start
,
1800 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
1801 u64 max_bytes
= BTRFS_MAX_EXTENT_SIZE
;
1805 struct extent_state
*cached_state
= NULL
;
1810 /* step one, find a bunch of delalloc bytes starting at start */
1811 delalloc_start
= *start
;
1813 found
= btrfs_find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1814 max_bytes
, &cached_state
);
1815 if (!found
|| delalloc_end
<= *start
) {
1816 *start
= delalloc_start
;
1817 *end
= delalloc_end
;
1818 free_extent_state(cached_state
);
1823 * start comes from the offset of locked_page. We have to lock
1824 * pages in order, so we can't process delalloc bytes before
1827 if (delalloc_start
< *start
)
1828 delalloc_start
= *start
;
1831 * make sure to limit the number of pages we try to lock down
1833 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
)
1834 delalloc_end
= delalloc_start
+ max_bytes
- 1;
1836 /* step two, lock all the pages after the page that has start */
1837 ret
= lock_delalloc_pages(inode
, locked_page
,
1838 delalloc_start
, delalloc_end
);
1839 ASSERT(!ret
|| ret
== -EAGAIN
);
1840 if (ret
== -EAGAIN
) {
1841 /* some of the pages are gone, lets avoid looping by
1842 * shortening the size of the delalloc range we're searching
1844 free_extent_state(cached_state
);
1845 cached_state
= NULL
;
1847 max_bytes
= PAGE_SIZE
;
1856 /* step three, lock the state bits for the whole range */
1857 lock_extent_bits(tree
, delalloc_start
, delalloc_end
, &cached_state
);
1859 /* then test to make sure it is all still delalloc */
1860 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1861 EXTENT_DELALLOC
, 1, cached_state
);
1863 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1865 __unlock_for_delalloc(inode
, locked_page
,
1866 delalloc_start
, delalloc_end
);
1870 free_extent_state(cached_state
);
1871 *start
= delalloc_start
;
1872 *end
= delalloc_end
;
1877 static int __process_pages_contig(struct address_space
*mapping
,
1878 struct page
*locked_page
,
1879 pgoff_t start_index
, pgoff_t end_index
,
1880 unsigned long page_ops
, pgoff_t
*index_ret
)
1882 unsigned long nr_pages
= end_index
- start_index
+ 1;
1883 unsigned long pages_locked
= 0;
1884 pgoff_t index
= start_index
;
1885 struct page
*pages
[16];
1890 if (page_ops
& PAGE_LOCK
) {
1891 ASSERT(page_ops
== PAGE_LOCK
);
1892 ASSERT(index_ret
&& *index_ret
== start_index
);
1895 if ((page_ops
& PAGE_SET_ERROR
) && nr_pages
> 0)
1896 mapping_set_error(mapping
, -EIO
);
1898 while (nr_pages
> 0) {
1899 ret
= find_get_pages_contig(mapping
, index
,
1900 min_t(unsigned long,
1901 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1904 * Only if we're going to lock these pages,
1905 * can we find nothing at @index.
1907 ASSERT(page_ops
& PAGE_LOCK
);
1912 for (i
= 0; i
< ret
; i
++) {
1913 if (page_ops
& PAGE_SET_PRIVATE2
)
1914 SetPagePrivate2(pages
[i
]);
1916 if (locked_page
&& pages
[i
] == locked_page
) {
1921 if (page_ops
& PAGE_CLEAR_DIRTY
)
1922 clear_page_dirty_for_io(pages
[i
]);
1923 if (page_ops
& PAGE_SET_WRITEBACK
)
1924 set_page_writeback(pages
[i
]);
1925 if (page_ops
& PAGE_SET_ERROR
)
1926 SetPageError(pages
[i
]);
1927 if (page_ops
& PAGE_END_WRITEBACK
)
1928 end_page_writeback(pages
[i
]);
1929 if (page_ops
& PAGE_UNLOCK
)
1930 unlock_page(pages
[i
]);
1931 if (page_ops
& PAGE_LOCK
) {
1932 lock_page(pages
[i
]);
1933 if (!PageDirty(pages
[i
]) ||
1934 pages
[i
]->mapping
!= mapping
) {
1935 unlock_page(pages
[i
]);
1949 if (err
&& index_ret
)
1950 *index_ret
= start_index
+ pages_locked
- 1;
1954 void extent_clear_unlock_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1955 struct page
*locked_page
,
1956 unsigned clear_bits
,
1957 unsigned long page_ops
)
1959 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, clear_bits
, 1, 0,
1962 __process_pages_contig(inode
->i_mapping
, locked_page
,
1963 start
>> PAGE_SHIFT
, end
>> PAGE_SHIFT
,
1968 * count the number of bytes in the tree that have a given bit(s)
1969 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1970 * cached. The total number found is returned.
1972 u64
count_range_bits(struct extent_io_tree
*tree
,
1973 u64
*start
, u64 search_end
, u64 max_bytes
,
1974 unsigned bits
, int contig
)
1976 struct rb_node
*node
;
1977 struct extent_state
*state
;
1978 u64 cur_start
= *start
;
1979 u64 total_bytes
= 0;
1983 if (WARN_ON(search_end
<= cur_start
))
1986 spin_lock(&tree
->lock
);
1987 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1988 total_bytes
= tree
->dirty_bytes
;
1992 * this search will find all the extents that end after
1995 node
= tree_search(tree
, cur_start
);
2000 state
= rb_entry(node
, struct extent_state
, rb_node
);
2001 if (state
->start
> search_end
)
2003 if (contig
&& found
&& state
->start
> last
+ 1)
2005 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
2006 total_bytes
+= min(search_end
, state
->end
) + 1 -
2007 max(cur_start
, state
->start
);
2008 if (total_bytes
>= max_bytes
)
2011 *start
= max(cur_start
, state
->start
);
2015 } else if (contig
&& found
) {
2018 node
= rb_next(node
);
2023 spin_unlock(&tree
->lock
);
2028 * set the private field for a given byte offset in the tree. If there isn't
2029 * an extent_state there already, this does nothing.
2031 int set_state_failrec(struct extent_io_tree
*tree
, u64 start
,
2032 struct io_failure_record
*failrec
)
2034 struct rb_node
*node
;
2035 struct extent_state
*state
;
2038 spin_lock(&tree
->lock
);
2040 * this search will find all the extents that end after
2043 node
= tree_search(tree
, start
);
2048 state
= rb_entry(node
, struct extent_state
, rb_node
);
2049 if (state
->start
!= start
) {
2053 state
->failrec
= failrec
;
2055 spin_unlock(&tree
->lock
);
2059 int get_state_failrec(struct extent_io_tree
*tree
, u64 start
,
2060 struct io_failure_record
**failrec
)
2062 struct rb_node
*node
;
2063 struct extent_state
*state
;
2066 spin_lock(&tree
->lock
);
2068 * this search will find all the extents that end after
2071 node
= tree_search(tree
, start
);
2076 state
= rb_entry(node
, struct extent_state
, rb_node
);
2077 if (state
->start
!= start
) {
2081 *failrec
= state
->failrec
;
2083 spin_unlock(&tree
->lock
);
2088 * searches a range in the state tree for a given mask.
2089 * If 'filled' == 1, this returns 1 only if every extent in the tree
2090 * has the bits set. Otherwise, 1 is returned if any bit in the
2091 * range is found set.
2093 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
2094 unsigned bits
, int filled
, struct extent_state
*cached
)
2096 struct extent_state
*state
= NULL
;
2097 struct rb_node
*node
;
2100 spin_lock(&tree
->lock
);
2101 if (cached
&& extent_state_in_tree(cached
) && cached
->start
<= start
&&
2102 cached
->end
> start
)
2103 node
= &cached
->rb_node
;
2105 node
= tree_search(tree
, start
);
2106 while (node
&& start
<= end
) {
2107 state
= rb_entry(node
, struct extent_state
, rb_node
);
2109 if (filled
&& state
->start
> start
) {
2114 if (state
->start
> end
)
2117 if (state
->state
& bits
) {
2121 } else if (filled
) {
2126 if (state
->end
== (u64
)-1)
2129 start
= state
->end
+ 1;
2132 node
= rb_next(node
);
2139 spin_unlock(&tree
->lock
);
2144 * helper function to set a given page up to date if all the
2145 * extents in the tree for that page are up to date
2147 static void check_page_uptodate(struct extent_io_tree
*tree
, struct page
*page
)
2149 u64 start
= page_offset(page
);
2150 u64 end
= start
+ PAGE_SIZE
- 1;
2151 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
2152 SetPageUptodate(page
);
2155 int free_io_failure(struct extent_io_tree
*failure_tree
,
2156 struct extent_io_tree
*io_tree
,
2157 struct io_failure_record
*rec
)
2162 set_state_failrec(failure_tree
, rec
->start
, NULL
);
2163 ret
= clear_extent_bits(failure_tree
, rec
->start
,
2164 rec
->start
+ rec
->len
- 1,
2165 EXTENT_LOCKED
| EXTENT_DIRTY
);
2169 ret
= clear_extent_bits(io_tree
, rec
->start
,
2170 rec
->start
+ rec
->len
- 1,
2180 * this bypasses the standard btrfs submit functions deliberately, as
2181 * the standard behavior is to write all copies in a raid setup. here we only
2182 * want to write the one bad copy. so we do the mapping for ourselves and issue
2183 * submit_bio directly.
2184 * to avoid any synchronization issues, wait for the data after writing, which
2185 * actually prevents the read that triggered the error from finishing.
2186 * currently, there can be no more than two copies of every data bit. thus,
2187 * exactly one rewrite is required.
2189 int repair_io_failure(struct btrfs_fs_info
*fs_info
, u64 ino
, u64 start
,
2190 u64 length
, u64 logical
, struct page
*page
,
2191 unsigned int pg_offset
, int mirror_num
)
2194 struct btrfs_device
*dev
;
2197 struct btrfs_bio
*bbio
= NULL
;
2200 ASSERT(!(fs_info
->sb
->s_flags
& SB_RDONLY
));
2201 BUG_ON(!mirror_num
);
2203 bio
= btrfs_io_bio_alloc(1);
2204 bio
->bi_iter
.bi_size
= 0;
2205 map_length
= length
;
2208 * Avoid races with device replace and make sure our bbio has devices
2209 * associated to its stripes that don't go away while we are doing the
2210 * read repair operation.
2212 btrfs_bio_counter_inc_blocked(fs_info
);
2213 if (btrfs_is_parity_mirror(fs_info
, logical
, length
)) {
2215 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2216 * to update all raid stripes, but here we just want to correct
2217 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2218 * stripe's dev and sector.
2220 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
, logical
,
2221 &map_length
, &bbio
, 0);
2223 btrfs_bio_counter_dec(fs_info
);
2227 ASSERT(bbio
->mirror_num
== 1);
2229 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_WRITE
, logical
,
2230 &map_length
, &bbio
, mirror_num
);
2232 btrfs_bio_counter_dec(fs_info
);
2236 BUG_ON(mirror_num
!= bbio
->mirror_num
);
2239 sector
= bbio
->stripes
[bbio
->mirror_num
- 1].physical
>> 9;
2240 bio
->bi_iter
.bi_sector
= sector
;
2241 dev
= bbio
->stripes
[bbio
->mirror_num
- 1].dev
;
2242 btrfs_put_bbio(bbio
);
2243 if (!dev
|| !dev
->bdev
||
2244 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
)) {
2245 btrfs_bio_counter_dec(fs_info
);
2249 bio_set_dev(bio
, dev
->bdev
);
2250 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
;
2251 bio_add_page(bio
, page
, length
, pg_offset
);
2253 if (btrfsic_submit_bio_wait(bio
)) {
2254 /* try to remap that extent elsewhere? */
2255 btrfs_bio_counter_dec(fs_info
);
2257 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
2261 btrfs_info_rl_in_rcu(fs_info
,
2262 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2264 rcu_str_deref(dev
->name
), sector
);
2265 btrfs_bio_counter_dec(fs_info
);
2270 int btrfs_repair_eb_io_failure(struct extent_buffer
*eb
, int mirror_num
)
2272 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
2273 u64 start
= eb
->start
;
2274 int i
, num_pages
= num_extent_pages(eb
);
2277 if (sb_rdonly(fs_info
->sb
))
2280 for (i
= 0; i
< num_pages
; i
++) {
2281 struct page
*p
= eb
->pages
[i
];
2283 ret
= repair_io_failure(fs_info
, 0, start
, PAGE_SIZE
, start
, p
,
2284 start
- page_offset(p
), mirror_num
);
2294 * each time an IO finishes, we do a fast check in the IO failure tree
2295 * to see if we need to process or clean up an io_failure_record
2297 int clean_io_failure(struct btrfs_fs_info
*fs_info
,
2298 struct extent_io_tree
*failure_tree
,
2299 struct extent_io_tree
*io_tree
, u64 start
,
2300 struct page
*page
, u64 ino
, unsigned int pg_offset
)
2303 struct io_failure_record
*failrec
;
2304 struct extent_state
*state
;
2309 ret
= count_range_bits(failure_tree
, &private, (u64
)-1, 1,
2314 ret
= get_state_failrec(failure_tree
, start
, &failrec
);
2318 BUG_ON(!failrec
->this_mirror
);
2320 if (failrec
->in_validation
) {
2321 /* there was no real error, just free the record */
2322 btrfs_debug(fs_info
,
2323 "clean_io_failure: freeing dummy error at %llu",
2327 if (sb_rdonly(fs_info
->sb
))
2330 spin_lock(&io_tree
->lock
);
2331 state
= find_first_extent_bit_state(io_tree
,
2334 spin_unlock(&io_tree
->lock
);
2336 if (state
&& state
->start
<= failrec
->start
&&
2337 state
->end
>= failrec
->start
+ failrec
->len
- 1) {
2338 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
,
2340 if (num_copies
> 1) {
2341 repair_io_failure(fs_info
, ino
, start
, failrec
->len
,
2342 failrec
->logical
, page
, pg_offset
,
2343 failrec
->failed_mirror
);
2348 free_io_failure(failure_tree
, io_tree
, failrec
);
2354 * Can be called when
2355 * - hold extent lock
2356 * - under ordered extent
2357 * - the inode is freeing
2359 void btrfs_free_io_failure_record(struct btrfs_inode
*inode
, u64 start
, u64 end
)
2361 struct extent_io_tree
*failure_tree
= &inode
->io_failure_tree
;
2362 struct io_failure_record
*failrec
;
2363 struct extent_state
*state
, *next
;
2365 if (RB_EMPTY_ROOT(&failure_tree
->state
))
2368 spin_lock(&failure_tree
->lock
);
2369 state
= find_first_extent_bit_state(failure_tree
, start
, EXTENT_DIRTY
);
2371 if (state
->start
> end
)
2374 ASSERT(state
->end
<= end
);
2376 next
= next_state(state
);
2378 failrec
= state
->failrec
;
2379 free_extent_state(state
);
2384 spin_unlock(&failure_tree
->lock
);
2387 int btrfs_get_io_failure_record(struct inode
*inode
, u64 start
, u64 end
,
2388 struct io_failure_record
**failrec_ret
)
2390 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2391 struct io_failure_record
*failrec
;
2392 struct extent_map
*em
;
2393 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2394 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2395 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2399 ret
= get_state_failrec(failure_tree
, start
, &failrec
);
2401 failrec
= kzalloc(sizeof(*failrec
), GFP_NOFS
);
2405 failrec
->start
= start
;
2406 failrec
->len
= end
- start
+ 1;
2407 failrec
->this_mirror
= 0;
2408 failrec
->bio_flags
= 0;
2409 failrec
->in_validation
= 0;
2411 read_lock(&em_tree
->lock
);
2412 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
2414 read_unlock(&em_tree
->lock
);
2419 if (em
->start
> start
|| em
->start
+ em
->len
<= start
) {
2420 free_extent_map(em
);
2423 read_unlock(&em_tree
->lock
);
2429 logical
= start
- em
->start
;
2430 logical
= em
->block_start
+ logical
;
2431 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2432 logical
= em
->block_start
;
2433 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
2434 extent_set_compress_type(&failrec
->bio_flags
,
2438 btrfs_debug(fs_info
,
2439 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2440 logical
, start
, failrec
->len
);
2442 failrec
->logical
= logical
;
2443 free_extent_map(em
);
2445 /* set the bits in the private failure tree */
2446 ret
= set_extent_bits(failure_tree
, start
, end
,
2447 EXTENT_LOCKED
| EXTENT_DIRTY
);
2449 ret
= set_state_failrec(failure_tree
, start
, failrec
);
2450 /* set the bits in the inode's tree */
2452 ret
= set_extent_bits(tree
, start
, end
, EXTENT_DAMAGED
);
2458 btrfs_debug(fs_info
,
2459 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2460 failrec
->logical
, failrec
->start
, failrec
->len
,
2461 failrec
->in_validation
);
2463 * when data can be on disk more than twice, add to failrec here
2464 * (e.g. with a list for failed_mirror) to make
2465 * clean_io_failure() clean all those errors at once.
2469 *failrec_ret
= failrec
;
2474 bool btrfs_check_repairable(struct inode
*inode
, unsigned failed_bio_pages
,
2475 struct io_failure_record
*failrec
, int failed_mirror
)
2477 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2480 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
2481 if (num_copies
== 1) {
2483 * we only have a single copy of the data, so don't bother with
2484 * all the retry and error correction code that follows. no
2485 * matter what the error is, it is very likely to persist.
2487 btrfs_debug(fs_info
,
2488 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2489 num_copies
, failrec
->this_mirror
, failed_mirror
);
2494 * there are two premises:
2495 * a) deliver good data to the caller
2496 * b) correct the bad sectors on disk
2498 if (failed_bio_pages
> 1) {
2500 * to fulfill b), we need to know the exact failing sectors, as
2501 * we don't want to rewrite any more than the failed ones. thus,
2502 * we need separate read requests for the failed bio
2504 * if the following BUG_ON triggers, our validation request got
2505 * merged. we need separate requests for our algorithm to work.
2507 BUG_ON(failrec
->in_validation
);
2508 failrec
->in_validation
= 1;
2509 failrec
->this_mirror
= failed_mirror
;
2512 * we're ready to fulfill a) and b) alongside. get a good copy
2513 * of the failed sector and if we succeed, we have setup
2514 * everything for repair_io_failure to do the rest for us.
2516 if (failrec
->in_validation
) {
2517 BUG_ON(failrec
->this_mirror
!= failed_mirror
);
2518 failrec
->in_validation
= 0;
2519 failrec
->this_mirror
= 0;
2521 failrec
->failed_mirror
= failed_mirror
;
2522 failrec
->this_mirror
++;
2523 if (failrec
->this_mirror
== failed_mirror
)
2524 failrec
->this_mirror
++;
2527 if (failrec
->this_mirror
> num_copies
) {
2528 btrfs_debug(fs_info
,
2529 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2530 num_copies
, failrec
->this_mirror
, failed_mirror
);
2538 struct bio
*btrfs_create_repair_bio(struct inode
*inode
, struct bio
*failed_bio
,
2539 struct io_failure_record
*failrec
,
2540 struct page
*page
, int pg_offset
, int icsum
,
2541 bio_end_io_t
*endio_func
, void *data
)
2543 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2545 struct btrfs_io_bio
*btrfs_failed_bio
;
2546 struct btrfs_io_bio
*btrfs_bio
;
2548 bio
= btrfs_io_bio_alloc(1);
2549 bio
->bi_end_io
= endio_func
;
2550 bio
->bi_iter
.bi_sector
= failrec
->logical
>> 9;
2551 bio
->bi_iter
.bi_size
= 0;
2552 bio
->bi_private
= data
;
2554 btrfs_failed_bio
= btrfs_io_bio(failed_bio
);
2555 if (btrfs_failed_bio
->csum
) {
2556 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
2558 btrfs_bio
= btrfs_io_bio(bio
);
2559 btrfs_bio
->csum
= btrfs_bio
->csum_inline
;
2561 memcpy(btrfs_bio
->csum
, btrfs_failed_bio
->csum
+ icsum
,
2565 bio_add_page(bio
, page
, failrec
->len
, pg_offset
);
2571 * This is a generic handler for readpage errors. If other copies exist, read
2572 * those and write back good data to the failed position. Does not investigate
2573 * in remapping the failed extent elsewhere, hoping the device will be smart
2574 * enough to do this as needed
2576 static int bio_readpage_error(struct bio
*failed_bio
, u64 phy_offset
,
2577 struct page
*page
, u64 start
, u64 end
,
2580 struct io_failure_record
*failrec
;
2581 struct inode
*inode
= page
->mapping
->host
;
2582 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2583 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2586 blk_status_t status
;
2588 unsigned failed_bio_pages
= failed_bio
->bi_iter
.bi_size
>> PAGE_SHIFT
;
2590 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
2592 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
2596 if (!btrfs_check_repairable(inode
, failed_bio_pages
, failrec
,
2598 free_io_failure(failure_tree
, tree
, failrec
);
2602 if (failed_bio_pages
> 1)
2603 read_mode
|= REQ_FAILFAST_DEV
;
2605 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
2606 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
2607 start
- page_offset(page
),
2608 (int)phy_offset
, failed_bio
->bi_end_io
,
2610 bio
->bi_opf
= REQ_OP_READ
| read_mode
;
2612 btrfs_debug(btrfs_sb(inode
->i_sb
),
2613 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2614 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
2616 status
= tree
->ops
->submit_bio_hook(tree
->private_data
, bio
, failrec
->this_mirror
,
2617 failrec
->bio_flags
);
2619 free_io_failure(failure_tree
, tree
, failrec
);
2621 ret
= blk_status_to_errno(status
);
2627 /* lots and lots of room for performance fixes in the end_bio funcs */
2629 void end_extent_writepage(struct page
*page
, int err
, u64 start
, u64 end
)
2631 int uptodate
= (err
== 0);
2634 btrfs_writepage_endio_finish_ordered(page
, start
, end
, uptodate
);
2637 ClearPageUptodate(page
);
2639 ret
= err
< 0 ? err
: -EIO
;
2640 mapping_set_error(page
->mapping
, ret
);
2645 * after a writepage IO is done, we need to:
2646 * clear the uptodate bits on error
2647 * clear the writeback bits in the extent tree for this IO
2648 * end_page_writeback if the page has no more pending IO
2650 * Scheduling is not allowed, so the extent state tree is expected
2651 * to have one and only one object corresponding to this IO.
2653 static void end_bio_extent_writepage(struct bio
*bio
)
2655 int error
= blk_status_to_errno(bio
->bi_status
);
2656 struct bio_vec
*bvec
;
2659 struct bvec_iter_all iter_all
;
2661 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
2662 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
2663 struct page
*page
= bvec
->bv_page
;
2664 struct inode
*inode
= page
->mapping
->host
;
2665 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2667 /* We always issue full-page reads, but if some block
2668 * in a page fails to read, blk_update_request() will
2669 * advance bv_offset and adjust bv_len to compensate.
2670 * Print a warning for nonzero offsets, and an error
2671 * if they don't add up to a full page. */
2672 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_SIZE
) {
2673 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_SIZE
)
2675 "partial page write in btrfs with offset %u and length %u",
2676 bvec
->bv_offset
, bvec
->bv_len
);
2679 "incomplete page write in btrfs with offset %u and length %u",
2680 bvec
->bv_offset
, bvec
->bv_len
);
2683 start
= page_offset(page
);
2684 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2686 end_extent_writepage(page
, error
, start
, end
);
2687 end_page_writeback(page
);
2694 endio_readpage_release_extent(struct extent_io_tree
*tree
, u64 start
, u64 len
,
2697 struct extent_state
*cached
= NULL
;
2698 u64 end
= start
+ len
- 1;
2700 if (uptodate
&& tree
->track_uptodate
)
2701 set_extent_uptodate(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2702 unlock_extent_cached_atomic(tree
, start
, end
, &cached
);
2706 * after a readpage IO is done, we need to:
2707 * clear the uptodate bits on error
2708 * set the uptodate bits if things worked
2709 * set the page up to date if all extents in the tree are uptodate
2710 * clear the lock bit in the extent tree
2711 * unlock the page if there are no other extents locked for it
2713 * Scheduling is not allowed, so the extent state tree is expected
2714 * to have one and only one object corresponding to this IO.
2716 static void end_bio_extent_readpage(struct bio
*bio
)
2718 struct bio_vec
*bvec
;
2719 int uptodate
= !bio
->bi_status
;
2720 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
2721 struct extent_io_tree
*tree
, *failure_tree
;
2726 u64 extent_start
= 0;
2730 struct bvec_iter_all iter_all
;
2732 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
2733 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
2734 struct page
*page
= bvec
->bv_page
;
2735 struct inode
*inode
= page
->mapping
->host
;
2736 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2737 bool data_inode
= btrfs_ino(BTRFS_I(inode
))
2738 != BTRFS_BTREE_INODE_OBJECTID
;
2740 btrfs_debug(fs_info
,
2741 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2742 (u64
)bio
->bi_iter
.bi_sector
, bio
->bi_status
,
2743 io_bio
->mirror_num
);
2744 tree
= &BTRFS_I(inode
)->io_tree
;
2745 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2747 /* We always issue full-page reads, but if some block
2748 * in a page fails to read, blk_update_request() will
2749 * advance bv_offset and adjust bv_len to compensate.
2750 * Print a warning for nonzero offsets, and an error
2751 * if they don't add up to a full page. */
2752 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_SIZE
) {
2753 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_SIZE
)
2755 "partial page read in btrfs with offset %u and length %u",
2756 bvec
->bv_offset
, bvec
->bv_len
);
2759 "incomplete page read in btrfs with offset %u and length %u",
2760 bvec
->bv_offset
, bvec
->bv_len
);
2763 start
= page_offset(page
);
2764 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2767 mirror
= io_bio
->mirror_num
;
2768 if (likely(uptodate
)) {
2769 ret
= tree
->ops
->readpage_end_io_hook(io_bio
, offset
,
2775 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
2776 failure_tree
, tree
, start
,
2778 btrfs_ino(BTRFS_I(inode
)), 0);
2781 if (likely(uptodate
))
2787 * The generic bio_readpage_error handles errors the
2788 * following way: If possible, new read requests are
2789 * created and submitted and will end up in
2790 * end_bio_extent_readpage as well (if we're lucky,
2791 * not in the !uptodate case). In that case it returns
2792 * 0 and we just go on with the next page in our bio.
2793 * If it can't handle the error it will return -EIO and
2794 * we remain responsible for that page.
2796 ret
= bio_readpage_error(bio
, offset
, page
, start
, end
,
2799 uptodate
= !bio
->bi_status
;
2804 struct extent_buffer
*eb
;
2806 eb
= (struct extent_buffer
*)page
->private;
2807 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
2808 eb
->read_mirror
= mirror
;
2809 atomic_dec(&eb
->io_pages
);
2810 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
,
2812 btree_readahead_hook(eb
, -EIO
);
2815 if (likely(uptodate
)) {
2816 loff_t i_size
= i_size_read(inode
);
2817 pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2820 /* Zero out the end if this page straddles i_size */
2821 off
= offset_in_page(i_size
);
2822 if (page
->index
== end_index
&& off
)
2823 zero_user_segment(page
, off
, PAGE_SIZE
);
2824 SetPageUptodate(page
);
2826 ClearPageUptodate(page
);
2832 if (unlikely(!uptodate
)) {
2834 endio_readpage_release_extent(tree
,
2840 endio_readpage_release_extent(tree
, start
,
2841 end
- start
+ 1, 0);
2842 } else if (!extent_len
) {
2843 extent_start
= start
;
2844 extent_len
= end
+ 1 - start
;
2845 } else if (extent_start
+ extent_len
== start
) {
2846 extent_len
+= end
+ 1 - start
;
2848 endio_readpage_release_extent(tree
, extent_start
,
2849 extent_len
, uptodate
);
2850 extent_start
= start
;
2851 extent_len
= end
+ 1 - start
;
2856 endio_readpage_release_extent(tree
, extent_start
, extent_len
,
2858 btrfs_io_bio_free_csum(io_bio
);
2863 * Initialize the members up to but not including 'bio'. Use after allocating a
2864 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2865 * 'bio' because use of __GFP_ZERO is not supported.
2867 static inline void btrfs_io_bio_init(struct btrfs_io_bio
*btrfs_bio
)
2869 memset(btrfs_bio
, 0, offsetof(struct btrfs_io_bio
, bio
));
2873 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2874 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2875 * for the appropriate container_of magic
2877 struct bio
*btrfs_bio_alloc(u64 first_byte
)
2881 bio
= bio_alloc_bioset(GFP_NOFS
, BIO_MAX_PAGES
, &btrfs_bioset
);
2882 bio
->bi_iter
.bi_sector
= first_byte
>> 9;
2883 btrfs_io_bio_init(btrfs_io_bio(bio
));
2887 struct bio
*btrfs_bio_clone(struct bio
*bio
)
2889 struct btrfs_io_bio
*btrfs_bio
;
2892 /* Bio allocation backed by a bioset does not fail */
2893 new = bio_clone_fast(bio
, GFP_NOFS
, &btrfs_bioset
);
2894 btrfs_bio
= btrfs_io_bio(new);
2895 btrfs_io_bio_init(btrfs_bio
);
2896 btrfs_bio
->iter
= bio
->bi_iter
;
2900 struct bio
*btrfs_io_bio_alloc(unsigned int nr_iovecs
)
2904 /* Bio allocation backed by a bioset does not fail */
2905 bio
= bio_alloc_bioset(GFP_NOFS
, nr_iovecs
, &btrfs_bioset
);
2906 btrfs_io_bio_init(btrfs_io_bio(bio
));
2910 struct bio
*btrfs_bio_clone_partial(struct bio
*orig
, int offset
, int size
)
2913 struct btrfs_io_bio
*btrfs_bio
;
2915 /* this will never fail when it's backed by a bioset */
2916 bio
= bio_clone_fast(orig
, GFP_NOFS
, &btrfs_bioset
);
2919 btrfs_bio
= btrfs_io_bio(bio
);
2920 btrfs_io_bio_init(btrfs_bio
);
2922 bio_trim(bio
, offset
>> 9, size
>> 9);
2923 btrfs_bio
->iter
= bio
->bi_iter
;
2928 * @opf: bio REQ_OP_* and REQ_* flags as one value
2929 * @tree: tree so we can call our merge_bio hook
2930 * @wbc: optional writeback control for io accounting
2931 * @page: page to add to the bio
2932 * @pg_offset: offset of the new bio or to check whether we are adding
2933 * a contiguous page to the previous one
2934 * @size: portion of page that we want to write
2935 * @offset: starting offset in the page
2936 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2937 * @end_io_func: end_io callback for new bio
2938 * @mirror_num: desired mirror to read/write
2939 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2940 * @bio_flags: flags of the current bio to see if we can merge them
2942 static int submit_extent_page(unsigned int opf
, struct extent_io_tree
*tree
,
2943 struct writeback_control
*wbc
,
2944 struct page
*page
, u64 offset
,
2945 size_t size
, unsigned long pg_offset
,
2946 struct bio
**bio_ret
,
2947 bio_end_io_t end_io_func
,
2949 unsigned long prev_bio_flags
,
2950 unsigned long bio_flags
,
2951 bool force_bio_submit
)
2955 size_t page_size
= min_t(size_t, size
, PAGE_SIZE
);
2956 sector_t sector
= offset
>> 9;
2962 bool can_merge
= true;
2965 if (prev_bio_flags
& EXTENT_BIO_COMPRESSED
)
2966 contig
= bio
->bi_iter
.bi_sector
== sector
;
2968 contig
= bio_end_sector(bio
) == sector
;
2971 if (btrfs_bio_fits_in_stripe(page
, page_size
, bio
, bio_flags
))
2974 if (prev_bio_flags
!= bio_flags
|| !contig
|| !can_merge
||
2976 bio_add_page(bio
, page
, page_size
, pg_offset
) < page_size
) {
2977 ret
= submit_one_bio(bio
, mirror_num
, prev_bio_flags
);
2985 wbc_account_cgroup_owner(wbc
, page
, page_size
);
2990 bio
= btrfs_bio_alloc(offset
);
2991 bio_add_page(bio
, page
, page_size
, pg_offset
);
2992 bio
->bi_end_io
= end_io_func
;
2993 bio
->bi_private
= tree
;
2994 bio
->bi_write_hint
= page
->mapping
->host
->i_write_hint
;
2997 struct block_device
*bdev
;
2999 bdev
= BTRFS_I(page
->mapping
->host
)->root
->fs_info
->fs_devices
->latest_bdev
;
3000 bio_set_dev(bio
, bdev
);
3001 wbc_init_bio(wbc
, bio
);
3002 wbc_account_cgroup_owner(wbc
, page
, page_size
);
3010 static void attach_extent_buffer_page(struct extent_buffer
*eb
,
3013 if (!PagePrivate(page
)) {
3014 SetPagePrivate(page
);
3016 set_page_private(page
, (unsigned long)eb
);
3018 WARN_ON(page
->private != (unsigned long)eb
);
3022 void set_page_extent_mapped(struct page
*page
)
3024 if (!PagePrivate(page
)) {
3025 SetPagePrivate(page
);
3027 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
3031 static struct extent_map
*
3032 __get_extent_map(struct inode
*inode
, struct page
*page
, size_t pg_offset
,
3033 u64 start
, u64 len
, get_extent_t
*get_extent
,
3034 struct extent_map
**em_cached
)
3036 struct extent_map
*em
;
3038 if (em_cached
&& *em_cached
) {
3040 if (extent_map_in_tree(em
) && start
>= em
->start
&&
3041 start
< extent_map_end(em
)) {
3042 refcount_inc(&em
->refs
);
3046 free_extent_map(em
);
3050 em
= get_extent(BTRFS_I(inode
), page
, pg_offset
, start
, len
);
3051 if (em_cached
&& !IS_ERR_OR_NULL(em
)) {
3053 refcount_inc(&em
->refs
);
3059 * basic readpage implementation. Locked extent state structs are inserted
3060 * into the tree that are removed when the IO is done (by the end_io
3062 * XXX JDM: This needs looking at to ensure proper page locking
3063 * return 0 on success, otherwise return error
3065 static int __do_readpage(struct extent_io_tree
*tree
,
3067 get_extent_t
*get_extent
,
3068 struct extent_map
**em_cached
,
3069 struct bio
**bio
, int mirror_num
,
3070 unsigned long *bio_flags
, unsigned int read_flags
,
3073 struct inode
*inode
= page
->mapping
->host
;
3074 u64 start
= page_offset(page
);
3075 const u64 end
= start
+ PAGE_SIZE
- 1;
3078 u64 last_byte
= i_size_read(inode
);
3081 struct extent_map
*em
;
3084 size_t pg_offset
= 0;
3086 size_t disk_io_size
;
3087 size_t blocksize
= inode
->i_sb
->s_blocksize
;
3088 unsigned long this_bio_flag
= 0;
3090 set_page_extent_mapped(page
);
3092 if (!PageUptodate(page
)) {
3093 if (cleancache_get_page(page
) == 0) {
3094 BUG_ON(blocksize
!= PAGE_SIZE
);
3095 unlock_extent(tree
, start
, end
);
3100 if (page
->index
== last_byte
>> PAGE_SHIFT
) {
3102 size_t zero_offset
= offset_in_page(last_byte
);
3105 iosize
= PAGE_SIZE
- zero_offset
;
3106 userpage
= kmap_atomic(page
);
3107 memset(userpage
+ zero_offset
, 0, iosize
);
3108 flush_dcache_page(page
);
3109 kunmap_atomic(userpage
);
3112 while (cur
<= end
) {
3113 bool force_bio_submit
= false;
3116 if (cur
>= last_byte
) {
3118 struct extent_state
*cached
= NULL
;
3120 iosize
= PAGE_SIZE
- pg_offset
;
3121 userpage
= kmap_atomic(page
);
3122 memset(userpage
+ pg_offset
, 0, iosize
);
3123 flush_dcache_page(page
);
3124 kunmap_atomic(userpage
);
3125 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3127 unlock_extent_cached(tree
, cur
,
3128 cur
+ iosize
- 1, &cached
);
3131 em
= __get_extent_map(inode
, page
, pg_offset
, cur
,
3132 end
- cur
+ 1, get_extent
, em_cached
);
3133 if (IS_ERR_OR_NULL(em
)) {
3135 unlock_extent(tree
, cur
, end
);
3138 extent_offset
= cur
- em
->start
;
3139 BUG_ON(extent_map_end(em
) <= cur
);
3142 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
3143 this_bio_flag
|= EXTENT_BIO_COMPRESSED
;
3144 extent_set_compress_type(&this_bio_flag
,
3148 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
3149 cur_end
= min(extent_map_end(em
) - 1, end
);
3150 iosize
= ALIGN(iosize
, blocksize
);
3151 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
3152 disk_io_size
= em
->block_len
;
3153 offset
= em
->block_start
;
3155 offset
= em
->block_start
+ extent_offset
;
3156 disk_io_size
= iosize
;
3158 block_start
= em
->block_start
;
3159 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
3160 block_start
= EXTENT_MAP_HOLE
;
3163 * If we have a file range that points to a compressed extent
3164 * and it's followed by a consecutive file range that points to
3165 * to the same compressed extent (possibly with a different
3166 * offset and/or length, so it either points to the whole extent
3167 * or only part of it), we must make sure we do not submit a
3168 * single bio to populate the pages for the 2 ranges because
3169 * this makes the compressed extent read zero out the pages
3170 * belonging to the 2nd range. Imagine the following scenario:
3173 * [0 - 8K] [8K - 24K]
3176 * points to extent X, points to extent X,
3177 * offset 4K, length of 8K offset 0, length 16K
3179 * [extent X, compressed length = 4K uncompressed length = 16K]
3181 * If the bio to read the compressed extent covers both ranges,
3182 * it will decompress extent X into the pages belonging to the
3183 * first range and then it will stop, zeroing out the remaining
3184 * pages that belong to the other range that points to extent X.
3185 * So here we make sure we submit 2 bios, one for the first
3186 * range and another one for the third range. Both will target
3187 * the same physical extent from disk, but we can't currently
3188 * make the compressed bio endio callback populate the pages
3189 * for both ranges because each compressed bio is tightly
3190 * coupled with a single extent map, and each range can have
3191 * an extent map with a different offset value relative to the
3192 * uncompressed data of our extent and different lengths. This
3193 * is a corner case so we prioritize correctness over
3194 * non-optimal behavior (submitting 2 bios for the same extent).
3196 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) &&
3197 prev_em_start
&& *prev_em_start
!= (u64
)-1 &&
3198 *prev_em_start
!= em
->start
)
3199 force_bio_submit
= true;
3202 *prev_em_start
= em
->start
;
3204 free_extent_map(em
);
3207 /* we've found a hole, just zero and go on */
3208 if (block_start
== EXTENT_MAP_HOLE
) {
3210 struct extent_state
*cached
= NULL
;
3212 userpage
= kmap_atomic(page
);
3213 memset(userpage
+ pg_offset
, 0, iosize
);
3214 flush_dcache_page(page
);
3215 kunmap_atomic(userpage
);
3217 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3219 unlock_extent_cached(tree
, cur
,
3220 cur
+ iosize
- 1, &cached
);
3222 pg_offset
+= iosize
;
3225 /* the get_extent function already copied into the page */
3226 if (test_range_bit(tree
, cur
, cur_end
,
3227 EXTENT_UPTODATE
, 1, NULL
)) {
3228 check_page_uptodate(tree
, page
);
3229 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3231 pg_offset
+= iosize
;
3234 /* we have an inline extent but it didn't get marked up
3235 * to date. Error out
3237 if (block_start
== EXTENT_MAP_INLINE
) {
3239 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3241 pg_offset
+= iosize
;
3245 ret
= submit_extent_page(REQ_OP_READ
| read_flags
, tree
, NULL
,
3246 page
, offset
, disk_io_size
,
3248 end_bio_extent_readpage
, mirror_num
,
3254 *bio_flags
= this_bio_flag
;
3257 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3261 pg_offset
+= iosize
;
3265 if (!PageError(page
))
3266 SetPageUptodate(page
);
3272 static inline void contiguous_readpages(struct extent_io_tree
*tree
,
3273 struct page
*pages
[], int nr_pages
,
3275 struct extent_map
**em_cached
,
3277 unsigned long *bio_flags
,
3280 struct btrfs_inode
*inode
= BTRFS_I(pages
[0]->mapping
->host
);
3283 btrfs_lock_and_flush_ordered_range(tree
, inode
, start
, end
, NULL
);
3285 for (index
= 0; index
< nr_pages
; index
++) {
3286 __do_readpage(tree
, pages
[index
], btrfs_get_extent
, em_cached
,
3287 bio
, 0, bio_flags
, REQ_RAHEAD
, prev_em_start
);
3288 put_page(pages
[index
]);
3292 static int __extent_read_full_page(struct extent_io_tree
*tree
,
3294 get_extent_t
*get_extent
,
3295 struct bio
**bio
, int mirror_num
,
3296 unsigned long *bio_flags
,
3297 unsigned int read_flags
)
3299 struct btrfs_inode
*inode
= BTRFS_I(page
->mapping
->host
);
3300 u64 start
= page_offset(page
);
3301 u64 end
= start
+ PAGE_SIZE
- 1;
3304 btrfs_lock_and_flush_ordered_range(tree
, inode
, start
, end
, NULL
);
3306 ret
= __do_readpage(tree
, page
, get_extent
, NULL
, bio
, mirror_num
,
3307 bio_flags
, read_flags
, NULL
);
3311 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
3312 get_extent_t
*get_extent
, int mirror_num
)
3314 struct bio
*bio
= NULL
;
3315 unsigned long bio_flags
= 0;
3318 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, mirror_num
,
3321 ret
= submit_one_bio(bio
, mirror_num
, bio_flags
);
3325 static void update_nr_written(struct writeback_control
*wbc
,
3326 unsigned long nr_written
)
3328 wbc
->nr_to_write
-= nr_written
;
3332 * helper for __extent_writepage, doing all of the delayed allocation setup.
3334 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3335 * to write the page (copy into inline extent). In this case the IO has
3336 * been started and the page is already unlocked.
3338 * This returns 0 if all went well (page still locked)
3339 * This returns < 0 if there were errors (page still locked)
3341 static noinline_for_stack
int writepage_delalloc(struct inode
*inode
,
3342 struct page
*page
, struct writeback_control
*wbc
,
3343 u64 delalloc_start
, unsigned long *nr_written
)
3345 u64 page_end
= delalloc_start
+ PAGE_SIZE
- 1;
3347 u64 delalloc_to_write
= 0;
3348 u64 delalloc_end
= 0;
3350 int page_started
= 0;
3353 while (delalloc_end
< page_end
) {
3354 found
= find_lock_delalloc_range(inode
, page
,
3358 delalloc_start
= delalloc_end
+ 1;
3361 ret
= btrfs_run_delalloc_range(inode
, page
, delalloc_start
,
3362 delalloc_end
, &page_started
, nr_written
, wbc
);
3366 * btrfs_run_delalloc_range should return < 0 for error
3367 * but just in case, we use > 0 here meaning the IO is
3368 * started, so we don't want to return > 0 unless
3369 * things are going well.
3371 ret
= ret
< 0 ? ret
: -EIO
;
3375 * delalloc_end is already one less than the total length, so
3376 * we don't subtract one from PAGE_SIZE
3378 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
3379 PAGE_SIZE
) >> PAGE_SHIFT
;
3380 delalloc_start
= delalloc_end
+ 1;
3382 if (wbc
->nr_to_write
< delalloc_to_write
) {
3385 if (delalloc_to_write
< thresh
* 2)
3386 thresh
= delalloc_to_write
;
3387 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
3391 /* did the fill delalloc function already unlock and start
3396 * we've unlocked the page, so we can't update
3397 * the mapping's writeback index, just update
3400 wbc
->nr_to_write
-= *nr_written
;
3411 * helper for __extent_writepage. This calls the writepage start hooks,
3412 * and does the loop to map the page into extents and bios.
3414 * We return 1 if the IO is started and the page is unlocked,
3415 * 0 if all went well (page still locked)
3416 * < 0 if there were errors (page still locked)
3418 static noinline_for_stack
int __extent_writepage_io(struct inode
*inode
,
3420 struct writeback_control
*wbc
,
3421 struct extent_page_data
*epd
,
3423 unsigned long nr_written
,
3426 struct extent_io_tree
*tree
= epd
->tree
;
3427 u64 start
= page_offset(page
);
3428 u64 page_end
= start
+ PAGE_SIZE
- 1;
3434 struct extent_map
*em
;
3435 size_t pg_offset
= 0;
3439 const unsigned int write_flags
= wbc_to_write_flags(wbc
);
3442 ret
= btrfs_writepage_cow_fixup(page
, start
, page_end
);
3444 /* Fixup worker will requeue */
3445 redirty_page_for_writepage(wbc
, page
);
3446 update_nr_written(wbc
, nr_written
);
3452 * we don't want to touch the inode after unlocking the page,
3453 * so we update the mapping writeback index now
3455 update_nr_written(wbc
, nr_written
+ 1);
3458 blocksize
= inode
->i_sb
->s_blocksize
;
3460 while (cur
<= end
) {
3464 if (cur
>= i_size
) {
3465 btrfs_writepage_endio_finish_ordered(page
, cur
,
3469 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur
,
3471 if (IS_ERR_OR_NULL(em
)) {
3473 ret
= PTR_ERR_OR_ZERO(em
);
3477 extent_offset
= cur
- em
->start
;
3478 em_end
= extent_map_end(em
);
3479 BUG_ON(em_end
<= cur
);
3481 iosize
= min(em_end
- cur
, end
- cur
+ 1);
3482 iosize
= ALIGN(iosize
, blocksize
);
3483 offset
= em
->block_start
+ extent_offset
;
3484 block_start
= em
->block_start
;
3485 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
3486 free_extent_map(em
);
3490 * compressed and inline extents are written through other
3493 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
3494 block_start
== EXTENT_MAP_INLINE
) {
3498 btrfs_writepage_endio_finish_ordered(page
, cur
,
3499 cur
+ iosize
- 1, 1);
3501 pg_offset
+= iosize
;
3505 btrfs_set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
3506 if (!PageWriteback(page
)) {
3507 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
3508 "page %lu not writeback, cur %llu end %llu",
3509 page
->index
, cur
, end
);
3512 ret
= submit_extent_page(REQ_OP_WRITE
| write_flags
, tree
, wbc
,
3513 page
, offset
, iosize
, pg_offset
,
3515 end_bio_extent_writepage
,
3519 if (PageWriteback(page
))
3520 end_page_writeback(page
);
3524 pg_offset
+= iosize
;
3532 * the writepage semantics are similar to regular writepage. extent
3533 * records are inserted to lock ranges in the tree, and as dirty areas
3534 * are found, they are marked writeback. Then the lock bits are removed
3535 * and the end_io handler clears the writeback ranges
3537 * Return 0 if everything goes well.
3538 * Return <0 for error.
3540 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
3541 struct extent_page_data
*epd
)
3543 struct inode
*inode
= page
->mapping
->host
;
3544 u64 start
= page_offset(page
);
3545 u64 page_end
= start
+ PAGE_SIZE
- 1;
3549 loff_t i_size
= i_size_read(inode
);
3550 unsigned long end_index
= i_size
>> PAGE_SHIFT
;
3551 unsigned long nr_written
= 0;
3553 trace___extent_writepage(page
, inode
, wbc
);
3555 WARN_ON(!PageLocked(page
));
3557 ClearPageError(page
);
3559 pg_offset
= offset_in_page(i_size
);
3560 if (page
->index
> end_index
||
3561 (page
->index
== end_index
&& !pg_offset
)) {
3562 page
->mapping
->a_ops
->invalidatepage(page
, 0, PAGE_SIZE
);
3567 if (page
->index
== end_index
) {
3570 userpage
= kmap_atomic(page
);
3571 memset(userpage
+ pg_offset
, 0,
3572 PAGE_SIZE
- pg_offset
);
3573 kunmap_atomic(userpage
);
3574 flush_dcache_page(page
);
3577 set_page_extent_mapped(page
);
3579 if (!epd
->extent_locked
) {
3580 ret
= writepage_delalloc(inode
, page
, wbc
, start
, &nr_written
);
3587 ret
= __extent_writepage_io(inode
, page
, wbc
, epd
,
3588 i_size
, nr_written
, &nr
);
3594 /* make sure the mapping tag for page dirty gets cleared */
3595 set_page_writeback(page
);
3596 end_page_writeback(page
);
3598 if (PageError(page
)) {
3599 ret
= ret
< 0 ? ret
: -EIO
;
3600 end_extent_writepage(page
, ret
, start
, page_end
);
3607 void wait_on_extent_buffer_writeback(struct extent_buffer
*eb
)
3609 wait_on_bit_io(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
,
3610 TASK_UNINTERRUPTIBLE
);
3613 static void end_extent_buffer_writeback(struct extent_buffer
*eb
)
3615 clear_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3616 smp_mb__after_atomic();
3617 wake_up_bit(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
);
3621 * Lock eb pages and flush the bio if we can't the locks
3623 * Return 0 if nothing went wrong
3624 * Return >0 is same as 0, except bio is not submitted
3625 * Return <0 if something went wrong, no page is locked
3627 static noinline_for_stack
int lock_extent_buffer_for_io(struct extent_buffer
*eb
,
3628 struct extent_page_data
*epd
)
3630 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
3631 int i
, num_pages
, failed_page_nr
;
3635 if (!btrfs_try_tree_write_lock(eb
)) {
3636 ret
= flush_write_bio(epd
);
3640 btrfs_tree_lock(eb
);
3643 if (test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
)) {
3644 btrfs_tree_unlock(eb
);
3648 ret
= flush_write_bio(epd
);
3654 wait_on_extent_buffer_writeback(eb
);
3655 btrfs_tree_lock(eb
);
3656 if (!test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
))
3658 btrfs_tree_unlock(eb
);
3663 * We need to do this to prevent races in people who check if the eb is
3664 * under IO since we can end up having no IO bits set for a short period
3667 spin_lock(&eb
->refs_lock
);
3668 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3669 set_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3670 spin_unlock(&eb
->refs_lock
);
3671 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3672 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
3674 fs_info
->dirty_metadata_batch
);
3677 spin_unlock(&eb
->refs_lock
);
3680 btrfs_tree_unlock(eb
);
3685 num_pages
= num_extent_pages(eb
);
3686 for (i
= 0; i
< num_pages
; i
++) {
3687 struct page
*p
= eb
->pages
[i
];
3689 if (!trylock_page(p
)) {
3693 err
= flush_write_bio(epd
);
3707 /* Unlock already locked pages */
3708 for (i
= 0; i
< failed_page_nr
; i
++)
3709 unlock_page(eb
->pages
[i
]);
3711 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3712 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3713 * be made and undo everything done before.
3715 btrfs_tree_lock(eb
);
3716 spin_lock(&eb
->refs_lock
);
3717 set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
3718 end_extent_buffer_writeback(eb
);
3719 spin_unlock(&eb
->refs_lock
);
3720 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
, eb
->len
,
3721 fs_info
->dirty_metadata_batch
);
3722 btrfs_clear_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3723 btrfs_tree_unlock(eb
);
3727 static void set_btree_ioerr(struct page
*page
)
3729 struct extent_buffer
*eb
= (struct extent_buffer
*)page
->private;
3730 struct btrfs_fs_info
*fs_info
;
3733 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
))
3737 * If we error out, we should add back the dirty_metadata_bytes
3738 * to make it consistent.
3740 fs_info
= eb
->fs_info
;
3741 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
3742 eb
->len
, fs_info
->dirty_metadata_batch
);
3745 * If writeback for a btree extent that doesn't belong to a log tree
3746 * failed, increment the counter transaction->eb_write_errors.
3747 * We do this because while the transaction is running and before it's
3748 * committing (when we call filemap_fdata[write|wait]_range against
3749 * the btree inode), we might have
3750 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3751 * returns an error or an error happens during writeback, when we're
3752 * committing the transaction we wouldn't know about it, since the pages
3753 * can be no longer dirty nor marked anymore for writeback (if a
3754 * subsequent modification to the extent buffer didn't happen before the
3755 * transaction commit), which makes filemap_fdata[write|wait]_range not
3756 * able to find the pages tagged with SetPageError at transaction
3757 * commit time. So if this happens we must abort the transaction,
3758 * otherwise we commit a super block with btree roots that point to
3759 * btree nodes/leafs whose content on disk is invalid - either garbage
3760 * or the content of some node/leaf from a past generation that got
3761 * cowed or deleted and is no longer valid.
3763 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3764 * not be enough - we need to distinguish between log tree extents vs
3765 * non-log tree extents, and the next filemap_fdatawait_range() call
3766 * will catch and clear such errors in the mapping - and that call might
3767 * be from a log sync and not from a transaction commit. Also, checking
3768 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3769 * not done and would not be reliable - the eb might have been released
3770 * from memory and reading it back again means that flag would not be
3771 * set (since it's a runtime flag, not persisted on disk).
3773 * Using the flags below in the btree inode also makes us achieve the
3774 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3775 * writeback for all dirty pages and before filemap_fdatawait_range()
3776 * is called, the writeback for all dirty pages had already finished
3777 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3778 * filemap_fdatawait_range() would return success, as it could not know
3779 * that writeback errors happened (the pages were no longer tagged for
3782 switch (eb
->log_index
) {
3784 set_bit(BTRFS_FS_BTREE_ERR
, &eb
->fs_info
->flags
);
3787 set_bit(BTRFS_FS_LOG1_ERR
, &eb
->fs_info
->flags
);
3790 set_bit(BTRFS_FS_LOG2_ERR
, &eb
->fs_info
->flags
);
3793 BUG(); /* unexpected, logic error */
3797 static void end_bio_extent_buffer_writepage(struct bio
*bio
)
3799 struct bio_vec
*bvec
;
3800 struct extent_buffer
*eb
;
3802 struct bvec_iter_all iter_all
;
3804 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
3805 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
3806 struct page
*page
= bvec
->bv_page
;
3808 eb
= (struct extent_buffer
*)page
->private;
3810 done
= atomic_dec_and_test(&eb
->io_pages
);
3812 if (bio
->bi_status
||
3813 test_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
)) {
3814 ClearPageUptodate(page
);
3815 set_btree_ioerr(page
);
3818 end_page_writeback(page
);
3823 end_extent_buffer_writeback(eb
);
3829 static noinline_for_stack
int write_one_eb(struct extent_buffer
*eb
,
3830 struct writeback_control
*wbc
,
3831 struct extent_page_data
*epd
)
3833 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
3834 struct extent_io_tree
*tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
3835 u64 offset
= eb
->start
;
3838 unsigned long start
, end
;
3839 unsigned int write_flags
= wbc_to_write_flags(wbc
) | REQ_META
;
3842 clear_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
);
3843 num_pages
= num_extent_pages(eb
);
3844 atomic_set(&eb
->io_pages
, num_pages
);
3846 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3847 nritems
= btrfs_header_nritems(eb
);
3848 if (btrfs_header_level(eb
) > 0) {
3849 end
= btrfs_node_key_ptr_offset(nritems
);
3851 memzero_extent_buffer(eb
, end
, eb
->len
- end
);
3855 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3857 start
= btrfs_item_nr_offset(nritems
);
3858 end
= BTRFS_LEAF_DATA_OFFSET
+ leaf_data_end(eb
);
3859 memzero_extent_buffer(eb
, start
, end
- start
);
3862 for (i
= 0; i
< num_pages
; i
++) {
3863 struct page
*p
= eb
->pages
[i
];
3865 clear_page_dirty_for_io(p
);
3866 set_page_writeback(p
);
3867 ret
= submit_extent_page(REQ_OP_WRITE
| write_flags
, tree
, wbc
,
3868 p
, offset
, PAGE_SIZE
, 0,
3870 end_bio_extent_buffer_writepage
,
3874 if (PageWriteback(p
))
3875 end_page_writeback(p
);
3876 if (atomic_sub_and_test(num_pages
- i
, &eb
->io_pages
))
3877 end_extent_buffer_writeback(eb
);
3881 offset
+= PAGE_SIZE
;
3882 update_nr_written(wbc
, 1);
3886 if (unlikely(ret
)) {
3887 for (; i
< num_pages
; i
++) {
3888 struct page
*p
= eb
->pages
[i
];
3889 clear_page_dirty_for_io(p
);
3897 int btree_write_cache_pages(struct address_space
*mapping
,
3898 struct writeback_control
*wbc
)
3900 struct extent_io_tree
*tree
= &BTRFS_I(mapping
->host
)->io_tree
;
3901 struct extent_buffer
*eb
, *prev_eb
= NULL
;
3902 struct extent_page_data epd
= {
3906 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3910 int nr_to_write_done
= 0;
3911 struct pagevec pvec
;
3914 pgoff_t end
; /* Inclusive */
3918 pagevec_init(&pvec
);
3919 if (wbc
->range_cyclic
) {
3920 index
= mapping
->writeback_index
; /* Start from prev offset */
3923 * Start from the beginning does not need to cycle over the
3924 * range, mark it as scanned.
3926 scanned
= (index
== 0);
3928 index
= wbc
->range_start
>> PAGE_SHIFT
;
3929 end
= wbc
->range_end
>> PAGE_SHIFT
;
3932 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3933 tag
= PAGECACHE_TAG_TOWRITE
;
3935 tag
= PAGECACHE_TAG_DIRTY
;
3937 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3938 tag_pages_for_writeback(mapping
, index
, end
);
3939 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3940 (nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
, &index
, end
,
3944 for (i
= 0; i
< nr_pages
; i
++) {
3945 struct page
*page
= pvec
.pages
[i
];
3947 if (!PagePrivate(page
))
3950 spin_lock(&mapping
->private_lock
);
3951 if (!PagePrivate(page
)) {
3952 spin_unlock(&mapping
->private_lock
);
3956 eb
= (struct extent_buffer
*)page
->private;
3959 * Shouldn't happen and normally this would be a BUG_ON
3960 * but no sense in crashing the users box for something
3961 * we can survive anyway.
3964 spin_unlock(&mapping
->private_lock
);
3968 if (eb
== prev_eb
) {
3969 spin_unlock(&mapping
->private_lock
);
3973 ret
= atomic_inc_not_zero(&eb
->refs
);
3974 spin_unlock(&mapping
->private_lock
);
3979 ret
= lock_extent_buffer_for_io(eb
, &epd
);
3981 free_extent_buffer(eb
);
3983 } else if (ret
< 0) {
3985 free_extent_buffer(eb
);
3989 ret
= write_one_eb(eb
, wbc
, &epd
);
3992 free_extent_buffer(eb
);
3995 free_extent_buffer(eb
);
3998 * the filesystem may choose to bump up nr_to_write.
3999 * We have to make sure to honor the new nr_to_write
4002 nr_to_write_done
= wbc
->nr_to_write
<= 0;
4004 pagevec_release(&pvec
);
4007 if (!scanned
&& !done
) {
4009 * We hit the last page and there is more work to be done: wrap
4010 * back to the start of the file
4018 end_write_bio(&epd
, ret
);
4021 ret
= flush_write_bio(&epd
);
4026 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4027 * @mapping: address space structure to write
4028 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4029 * @data: data passed to __extent_writepage function
4031 * If a page is already under I/O, write_cache_pages() skips it, even
4032 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4033 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4034 * and msync() need to guarantee that all the data which was dirty at the time
4035 * the call was made get new I/O started against them. If wbc->sync_mode is
4036 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4037 * existing IO to complete.
4039 static int extent_write_cache_pages(struct address_space
*mapping
,
4040 struct writeback_control
*wbc
,
4041 struct extent_page_data
*epd
)
4043 struct inode
*inode
= mapping
->host
;
4046 int nr_to_write_done
= 0;
4047 struct pagevec pvec
;
4050 pgoff_t end
; /* Inclusive */
4052 int range_whole
= 0;
4057 * We have to hold onto the inode so that ordered extents can do their
4058 * work when the IO finishes. The alternative to this is failing to add
4059 * an ordered extent if the igrab() fails there and that is a huge pain
4060 * to deal with, so instead just hold onto the inode throughout the
4061 * writepages operation. If it fails here we are freeing up the inode
4062 * anyway and we'd rather not waste our time writing out stuff that is
4063 * going to be truncated anyway.
4068 pagevec_init(&pvec
);
4069 if (wbc
->range_cyclic
) {
4070 index
= mapping
->writeback_index
; /* Start from prev offset */
4073 * Start from the beginning does not need to cycle over the
4074 * range, mark it as scanned.
4076 scanned
= (index
== 0);
4078 index
= wbc
->range_start
>> PAGE_SHIFT
;
4079 end
= wbc
->range_end
>> PAGE_SHIFT
;
4080 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
4086 * We do the tagged writepage as long as the snapshot flush bit is set
4087 * and we are the first one who do the filemap_flush() on this inode.
4089 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4090 * not race in and drop the bit.
4092 if (range_whole
&& wbc
->nr_to_write
== LONG_MAX
&&
4093 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH
,
4094 &BTRFS_I(inode
)->runtime_flags
))
4095 wbc
->tagged_writepages
= 1;
4097 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
4098 tag
= PAGECACHE_TAG_TOWRITE
;
4100 tag
= PAGECACHE_TAG_DIRTY
;
4102 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
4103 tag_pages_for_writeback(mapping
, index
, end
);
4105 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
4106 (nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
,
4107 &index
, end
, tag
))) {
4110 for (i
= 0; i
< nr_pages
; i
++) {
4111 struct page
*page
= pvec
.pages
[i
];
4113 done_index
= page
->index
+ 1;
4115 * At this point we hold neither the i_pages lock nor
4116 * the page lock: the page may be truncated or
4117 * invalidated (changing page->mapping to NULL),
4118 * or even swizzled back from swapper_space to
4119 * tmpfs file mapping
4121 if (!trylock_page(page
)) {
4122 ret
= flush_write_bio(epd
);
4127 if (unlikely(page
->mapping
!= mapping
)) {
4132 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
4133 if (PageWriteback(page
)) {
4134 ret
= flush_write_bio(epd
);
4137 wait_on_page_writeback(page
);
4140 if (PageWriteback(page
) ||
4141 !clear_page_dirty_for_io(page
)) {
4146 ret
= __extent_writepage(page
, wbc
, epd
);
4153 * the filesystem may choose to bump up nr_to_write.
4154 * We have to make sure to honor the new nr_to_write
4157 nr_to_write_done
= wbc
->nr_to_write
<= 0;
4159 pagevec_release(&pvec
);
4162 if (!scanned
&& !done
) {
4164 * We hit the last page and there is more work to be done: wrap
4165 * back to the start of the file
4171 * If we're looping we could run into a page that is locked by a
4172 * writer and that writer could be waiting on writeback for a
4173 * page in our current bio, and thus deadlock, so flush the
4176 ret
= flush_write_bio(epd
);
4181 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 && range_whole
))
4182 mapping
->writeback_index
= done_index
;
4184 btrfs_add_delayed_iput(inode
);
4188 int extent_write_full_page(struct page
*page
, struct writeback_control
*wbc
)
4191 struct extent_page_data epd
= {
4193 .tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
,
4195 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4198 ret
= __extent_writepage(page
, wbc
, &epd
);
4201 end_write_bio(&epd
, ret
);
4205 ret
= flush_write_bio(&epd
);
4210 int extent_write_locked_range(struct inode
*inode
, u64 start
, u64 end
,
4214 struct address_space
*mapping
= inode
->i_mapping
;
4215 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
4217 unsigned long nr_pages
= (end
- start
+ PAGE_SIZE
) >>
4220 struct extent_page_data epd
= {
4224 .sync_io
= mode
== WB_SYNC_ALL
,
4226 struct writeback_control wbc_writepages
= {
4228 .nr_to_write
= nr_pages
* 2,
4229 .range_start
= start
,
4230 .range_end
= end
+ 1,
4231 /* We're called from an async helper function */
4232 .punt_to_cgroup
= 1,
4233 .no_cgroup_owner
= 1,
4236 wbc_attach_fdatawrite_inode(&wbc_writepages
, inode
);
4237 while (start
<= end
) {
4238 page
= find_get_page(mapping
, start
>> PAGE_SHIFT
);
4239 if (clear_page_dirty_for_io(page
))
4240 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
4242 btrfs_writepage_endio_finish_ordered(page
, start
,
4243 start
+ PAGE_SIZE
- 1, 1);
4252 ret
= flush_write_bio(&epd
);
4254 end_write_bio(&epd
, ret
);
4256 wbc_detach_inode(&wbc_writepages
);
4260 int extent_writepages(struct address_space
*mapping
,
4261 struct writeback_control
*wbc
)
4264 struct extent_page_data epd
= {
4266 .tree
= &BTRFS_I(mapping
->host
)->io_tree
,
4268 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4271 ret
= extent_write_cache_pages(mapping
, wbc
, &epd
);
4274 end_write_bio(&epd
, ret
);
4277 ret
= flush_write_bio(&epd
);
4281 int extent_readpages(struct address_space
*mapping
, struct list_head
*pages
,
4284 struct bio
*bio
= NULL
;
4285 unsigned long bio_flags
= 0;
4286 struct page
*pagepool
[16];
4287 struct extent_map
*em_cached
= NULL
;
4288 struct extent_io_tree
*tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4290 u64 prev_em_start
= (u64
)-1;
4292 while (!list_empty(pages
)) {
4295 for (nr
= 0; nr
< ARRAY_SIZE(pagepool
) && !list_empty(pages
);) {
4296 struct page
*page
= lru_to_page(pages
);
4298 prefetchw(&page
->flags
);
4299 list_del(&page
->lru
);
4300 if (add_to_page_cache_lru(page
, mapping
, page
->index
,
4301 readahead_gfp_mask(mapping
))) {
4306 pagepool
[nr
++] = page
;
4307 contig_end
= page_offset(page
) + PAGE_SIZE
- 1;
4311 u64 contig_start
= page_offset(pagepool
[0]);
4313 ASSERT(contig_start
+ nr
* PAGE_SIZE
- 1 == contig_end
);
4315 contiguous_readpages(tree
, pagepool
, nr
, contig_start
,
4316 contig_end
, &em_cached
, &bio
, &bio_flags
,
4322 free_extent_map(em_cached
);
4325 return submit_one_bio(bio
, 0, bio_flags
);
4330 * basic invalidatepage code, this waits on any locked or writeback
4331 * ranges corresponding to the page, and then deletes any extent state
4332 * records from the tree
4334 int extent_invalidatepage(struct extent_io_tree
*tree
,
4335 struct page
*page
, unsigned long offset
)
4337 struct extent_state
*cached_state
= NULL
;
4338 u64 start
= page_offset(page
);
4339 u64 end
= start
+ PAGE_SIZE
- 1;
4340 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
4342 start
+= ALIGN(offset
, blocksize
);
4346 lock_extent_bits(tree
, start
, end
, &cached_state
);
4347 wait_on_page_writeback(page
);
4348 clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
4349 EXTENT_DO_ACCOUNTING
, 1, 1, &cached_state
);
4354 * a helper for releasepage, this tests for areas of the page that
4355 * are locked or under IO and drops the related state bits if it is safe
4358 static int try_release_extent_state(struct extent_io_tree
*tree
,
4359 struct page
*page
, gfp_t mask
)
4361 u64 start
= page_offset(page
);
4362 u64 end
= start
+ PAGE_SIZE
- 1;
4365 if (test_range_bit(tree
, start
, end
, EXTENT_LOCKED
, 0, NULL
)) {
4369 * at this point we can safely clear everything except the
4370 * locked bit and the nodatasum bit
4372 ret
= __clear_extent_bit(tree
, start
, end
,
4373 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
4374 0, 0, NULL
, mask
, NULL
);
4376 /* if clear_extent_bit failed for enomem reasons,
4377 * we can't allow the release to continue.
4388 * a helper for releasepage. As long as there are no locked extents
4389 * in the range corresponding to the page, both state records and extent
4390 * map records are removed
4392 int try_release_extent_mapping(struct page
*page
, gfp_t mask
)
4394 struct extent_map
*em
;
4395 u64 start
= page_offset(page
);
4396 u64 end
= start
+ PAGE_SIZE
- 1;
4397 struct btrfs_inode
*btrfs_inode
= BTRFS_I(page
->mapping
->host
);
4398 struct extent_io_tree
*tree
= &btrfs_inode
->io_tree
;
4399 struct extent_map_tree
*map
= &btrfs_inode
->extent_tree
;
4401 if (gfpflags_allow_blocking(mask
) &&
4402 page
->mapping
->host
->i_size
> SZ_16M
) {
4404 while (start
<= end
) {
4405 len
= end
- start
+ 1;
4406 write_lock(&map
->lock
);
4407 em
= lookup_extent_mapping(map
, start
, len
);
4409 write_unlock(&map
->lock
);
4412 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
4413 em
->start
!= start
) {
4414 write_unlock(&map
->lock
);
4415 free_extent_map(em
);
4418 if (!test_range_bit(tree
, em
->start
,
4419 extent_map_end(em
) - 1,
4420 EXTENT_LOCKED
, 0, NULL
)) {
4421 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4422 &btrfs_inode
->runtime_flags
);
4423 remove_extent_mapping(map
, em
);
4424 /* once for the rb tree */
4425 free_extent_map(em
);
4427 start
= extent_map_end(em
);
4428 write_unlock(&map
->lock
);
4431 free_extent_map(em
);
4434 return try_release_extent_state(tree
, page
, mask
);
4438 * helper function for fiemap, which doesn't want to see any holes.
4439 * This maps until we find something past 'last'
4441 static struct extent_map
*get_extent_skip_holes(struct inode
*inode
,
4442 u64 offset
, u64 last
)
4444 u64 sectorsize
= btrfs_inode_sectorsize(inode
);
4445 struct extent_map
*em
;
4452 len
= last
- offset
;
4455 len
= ALIGN(len
, sectorsize
);
4456 em
= btrfs_get_extent_fiemap(BTRFS_I(inode
), offset
, len
);
4457 if (IS_ERR_OR_NULL(em
))
4460 /* if this isn't a hole return it */
4461 if (em
->block_start
!= EXTENT_MAP_HOLE
)
4464 /* this is a hole, advance to the next extent */
4465 offset
= extent_map_end(em
);
4466 free_extent_map(em
);
4474 * To cache previous fiemap extent
4476 * Will be used for merging fiemap extent
4478 struct fiemap_cache
{
4487 * Helper to submit fiemap extent.
4489 * Will try to merge current fiemap extent specified by @offset, @phys,
4490 * @len and @flags with cached one.
4491 * And only when we fails to merge, cached one will be submitted as
4494 * Return value is the same as fiemap_fill_next_extent().
4496 static int emit_fiemap_extent(struct fiemap_extent_info
*fieinfo
,
4497 struct fiemap_cache
*cache
,
4498 u64 offset
, u64 phys
, u64 len
, u32 flags
)
4506 * Sanity check, extent_fiemap() should have ensured that new
4507 * fiemap extent won't overlap with cached one.
4510 * NOTE: Physical address can overlap, due to compression
4512 if (cache
->offset
+ cache
->len
> offset
) {
4518 * Only merges fiemap extents if
4519 * 1) Their logical addresses are continuous
4521 * 2) Their physical addresses are continuous
4522 * So truly compressed (physical size smaller than logical size)
4523 * extents won't get merged with each other
4525 * 3) Share same flags except FIEMAP_EXTENT_LAST
4526 * So regular extent won't get merged with prealloc extent
4528 if (cache
->offset
+ cache
->len
== offset
&&
4529 cache
->phys
+ cache
->len
== phys
&&
4530 (cache
->flags
& ~FIEMAP_EXTENT_LAST
) ==
4531 (flags
& ~FIEMAP_EXTENT_LAST
)) {
4533 cache
->flags
|= flags
;
4534 goto try_submit_last
;
4537 /* Not mergeable, need to submit cached one */
4538 ret
= fiemap_fill_next_extent(fieinfo
, cache
->offset
, cache
->phys
,
4539 cache
->len
, cache
->flags
);
4540 cache
->cached
= false;
4544 cache
->cached
= true;
4545 cache
->offset
= offset
;
4548 cache
->flags
= flags
;
4550 if (cache
->flags
& FIEMAP_EXTENT_LAST
) {
4551 ret
= fiemap_fill_next_extent(fieinfo
, cache
->offset
,
4552 cache
->phys
, cache
->len
, cache
->flags
);
4553 cache
->cached
= false;
4559 * Emit last fiemap cache
4561 * The last fiemap cache may still be cached in the following case:
4563 * |<- Fiemap range ->|
4564 * |<------------ First extent ----------->|
4566 * In this case, the first extent range will be cached but not emitted.
4567 * So we must emit it before ending extent_fiemap().
4569 static int emit_last_fiemap_cache(struct fiemap_extent_info
*fieinfo
,
4570 struct fiemap_cache
*cache
)
4577 ret
= fiemap_fill_next_extent(fieinfo
, cache
->offset
, cache
->phys
,
4578 cache
->len
, cache
->flags
);
4579 cache
->cached
= false;
4585 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4586 __u64 start
, __u64 len
)
4590 u64 max
= start
+ len
;
4594 u64 last_for_get_extent
= 0;
4596 u64 isize
= i_size_read(inode
);
4597 struct btrfs_key found_key
;
4598 struct extent_map
*em
= NULL
;
4599 struct extent_state
*cached_state
= NULL
;
4600 struct btrfs_path
*path
;
4601 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4602 struct fiemap_cache cache
= { 0 };
4603 struct ulist
*roots
;
4604 struct ulist
*tmp_ulist
;
4613 path
= btrfs_alloc_path();
4616 path
->leave_spinning
= 1;
4618 roots
= ulist_alloc(GFP_KERNEL
);
4619 tmp_ulist
= ulist_alloc(GFP_KERNEL
);
4620 if (!roots
|| !tmp_ulist
) {
4622 goto out_free_ulist
;
4625 start
= round_down(start
, btrfs_inode_sectorsize(inode
));
4626 len
= round_up(max
, btrfs_inode_sectorsize(inode
)) - start
;
4629 * lookup the last file extent. We're not using i_size here
4630 * because there might be preallocation past i_size
4632 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
4633 btrfs_ino(BTRFS_I(inode
)), -1, 0);
4635 goto out_free_ulist
;
4643 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
4644 found_type
= found_key
.type
;
4646 /* No extents, but there might be delalloc bits */
4647 if (found_key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
4648 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4649 /* have to trust i_size as the end */
4651 last_for_get_extent
= isize
;
4654 * remember the start of the last extent. There are a
4655 * bunch of different factors that go into the length of the
4656 * extent, so its much less complex to remember where it started
4658 last
= found_key
.offset
;
4659 last_for_get_extent
= last
+ 1;
4661 btrfs_release_path(path
);
4664 * we might have some extents allocated but more delalloc past those
4665 * extents. so, we trust isize unless the start of the last extent is
4670 last_for_get_extent
= isize
;
4673 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4676 em
= get_extent_skip_holes(inode
, start
, last_for_get_extent
);
4685 u64 offset_in_extent
= 0;
4687 /* break if the extent we found is outside the range */
4688 if (em
->start
>= max
|| extent_map_end(em
) < off
)
4692 * get_extent may return an extent that starts before our
4693 * requested range. We have to make sure the ranges
4694 * we return to fiemap always move forward and don't
4695 * overlap, so adjust the offsets here
4697 em_start
= max(em
->start
, off
);
4700 * record the offset from the start of the extent
4701 * for adjusting the disk offset below. Only do this if the
4702 * extent isn't compressed since our in ram offset may be past
4703 * what we have actually allocated on disk.
4705 if (!test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4706 offset_in_extent
= em_start
- em
->start
;
4707 em_end
= extent_map_end(em
);
4708 em_len
= em_end
- em_start
;
4710 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
)
4711 disko
= em
->block_start
+ offset_in_extent
;
4716 * bump off for our next call to get_extent
4718 off
= extent_map_end(em
);
4722 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
4724 flags
|= FIEMAP_EXTENT_LAST
;
4725 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
4726 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
4727 FIEMAP_EXTENT_NOT_ALIGNED
);
4728 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
4729 flags
|= (FIEMAP_EXTENT_DELALLOC
|
4730 FIEMAP_EXTENT_UNKNOWN
);
4731 } else if (fieinfo
->fi_extents_max
) {
4732 u64 bytenr
= em
->block_start
-
4733 (em
->start
- em
->orig_start
);
4736 * As btrfs supports shared space, this information
4737 * can be exported to userspace tools via
4738 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4739 * then we're just getting a count and we can skip the
4742 ret
= btrfs_check_shared(root
,
4743 btrfs_ino(BTRFS_I(inode
)),
4744 bytenr
, roots
, tmp_ulist
);
4748 flags
|= FIEMAP_EXTENT_SHARED
;
4751 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4752 flags
|= FIEMAP_EXTENT_ENCODED
;
4753 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4754 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
4756 free_extent_map(em
);
4758 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
4759 (last
== (u64
)-1 && isize
<= em_end
)) {
4760 flags
|= FIEMAP_EXTENT_LAST
;
4764 /* now scan forward to see if this is really the last extent. */
4765 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
);
4771 flags
|= FIEMAP_EXTENT_LAST
;
4774 ret
= emit_fiemap_extent(fieinfo
, &cache
, em_start
, disko
,
4784 ret
= emit_last_fiemap_cache(fieinfo
, &cache
);
4785 free_extent_map(em
);
4787 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4791 btrfs_free_path(path
);
4793 ulist_free(tmp_ulist
);
4797 static void __free_extent_buffer(struct extent_buffer
*eb
)
4799 btrfs_leak_debug_del(&eb
->leak_list
);
4800 kmem_cache_free(extent_buffer_cache
, eb
);
4803 int extent_buffer_under_io(struct extent_buffer
*eb
)
4805 return (atomic_read(&eb
->io_pages
) ||
4806 test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
) ||
4807 test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4811 * Release all pages attached to the extent buffer.
4813 static void btrfs_release_extent_buffer_pages(struct extent_buffer
*eb
)
4817 int mapped
= !test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
);
4819 BUG_ON(extent_buffer_under_io(eb
));
4821 num_pages
= num_extent_pages(eb
);
4822 for (i
= 0; i
< num_pages
; i
++) {
4823 struct page
*page
= eb
->pages
[i
];
4828 spin_lock(&page
->mapping
->private_lock
);
4830 * We do this since we'll remove the pages after we've
4831 * removed the eb from the radix tree, so we could race
4832 * and have this page now attached to the new eb. So
4833 * only clear page_private if it's still connected to
4836 if (PagePrivate(page
) &&
4837 page
->private == (unsigned long)eb
) {
4838 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4839 BUG_ON(PageDirty(page
));
4840 BUG_ON(PageWriteback(page
));
4842 * We need to make sure we haven't be attached
4845 ClearPagePrivate(page
);
4846 set_page_private(page
, 0);
4847 /* One for the page private */
4852 spin_unlock(&page
->mapping
->private_lock
);
4854 /* One for when we allocated the page */
4860 * Helper for releasing the extent buffer.
4862 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
4864 btrfs_release_extent_buffer_pages(eb
);
4865 __free_extent_buffer(eb
);
4868 static struct extent_buffer
*
4869 __alloc_extent_buffer(struct btrfs_fs_info
*fs_info
, u64 start
,
4872 struct extent_buffer
*eb
= NULL
;
4874 eb
= kmem_cache_zalloc(extent_buffer_cache
, GFP_NOFS
|__GFP_NOFAIL
);
4877 eb
->fs_info
= fs_info
;
4879 rwlock_init(&eb
->lock
);
4880 atomic_set(&eb
->blocking_readers
, 0);
4881 eb
->blocking_writers
= 0;
4882 eb
->lock_nested
= false;
4883 init_waitqueue_head(&eb
->write_lock_wq
);
4884 init_waitqueue_head(&eb
->read_lock_wq
);
4886 btrfs_leak_debug_add(&eb
->leak_list
, &buffers
);
4888 spin_lock_init(&eb
->refs_lock
);
4889 atomic_set(&eb
->refs
, 1);
4890 atomic_set(&eb
->io_pages
, 0);
4893 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4895 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4896 > MAX_INLINE_EXTENT_BUFFER_SIZE
);
4897 BUG_ON(len
> MAX_INLINE_EXTENT_BUFFER_SIZE
);
4899 #ifdef CONFIG_BTRFS_DEBUG
4900 eb
->spinning_writers
= 0;
4901 atomic_set(&eb
->spinning_readers
, 0);
4902 atomic_set(&eb
->read_locks
, 0);
4903 eb
->write_locks
= 0;
4909 struct extent_buffer
*btrfs_clone_extent_buffer(struct extent_buffer
*src
)
4913 struct extent_buffer
*new;
4914 int num_pages
= num_extent_pages(src
);
4916 new = __alloc_extent_buffer(src
->fs_info
, src
->start
, src
->len
);
4920 for (i
= 0; i
< num_pages
; i
++) {
4921 p
= alloc_page(GFP_NOFS
);
4923 btrfs_release_extent_buffer(new);
4926 attach_extent_buffer_page(new, p
);
4927 WARN_ON(PageDirty(p
));
4930 copy_page(page_address(p
), page_address(src
->pages
[i
]));
4933 set_bit(EXTENT_BUFFER_UPTODATE
, &new->bflags
);
4934 set_bit(EXTENT_BUFFER_UNMAPPED
, &new->bflags
);
4939 struct extent_buffer
*__alloc_dummy_extent_buffer(struct btrfs_fs_info
*fs_info
,
4940 u64 start
, unsigned long len
)
4942 struct extent_buffer
*eb
;
4946 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
4950 num_pages
= num_extent_pages(eb
);
4951 for (i
= 0; i
< num_pages
; i
++) {
4952 eb
->pages
[i
] = alloc_page(GFP_NOFS
);
4956 set_extent_buffer_uptodate(eb
);
4957 btrfs_set_header_nritems(eb
, 0);
4958 set_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
);
4963 __free_page(eb
->pages
[i
- 1]);
4964 __free_extent_buffer(eb
);
4968 struct extent_buffer
*alloc_dummy_extent_buffer(struct btrfs_fs_info
*fs_info
,
4971 return __alloc_dummy_extent_buffer(fs_info
, start
, fs_info
->nodesize
);
4974 static void check_buffer_tree_ref(struct extent_buffer
*eb
)
4977 /* the ref bit is tricky. We have to make sure it is set
4978 * if we have the buffer dirty. Otherwise the
4979 * code to free a buffer can end up dropping a dirty
4982 * Once the ref bit is set, it won't go away while the
4983 * buffer is dirty or in writeback, and it also won't
4984 * go away while we have the reference count on the
4987 * We can't just set the ref bit without bumping the
4988 * ref on the eb because free_extent_buffer might
4989 * see the ref bit and try to clear it. If this happens
4990 * free_extent_buffer might end up dropping our original
4991 * ref by mistake and freeing the page before we are able
4992 * to add one more ref.
4994 * So bump the ref count first, then set the bit. If someone
4995 * beat us to it, drop the ref we added.
4997 refs
= atomic_read(&eb
->refs
);
4998 if (refs
>= 2 && test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5001 spin_lock(&eb
->refs_lock
);
5002 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5003 atomic_inc(&eb
->refs
);
5004 spin_unlock(&eb
->refs_lock
);
5007 static void mark_extent_buffer_accessed(struct extent_buffer
*eb
,
5008 struct page
*accessed
)
5012 check_buffer_tree_ref(eb
);
5014 num_pages
= num_extent_pages(eb
);
5015 for (i
= 0; i
< num_pages
; i
++) {
5016 struct page
*p
= eb
->pages
[i
];
5019 mark_page_accessed(p
);
5023 struct extent_buffer
*find_extent_buffer(struct btrfs_fs_info
*fs_info
,
5026 struct extent_buffer
*eb
;
5029 eb
= radix_tree_lookup(&fs_info
->buffer_radix
,
5030 start
>> PAGE_SHIFT
);
5031 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
5034 * Lock our eb's refs_lock to avoid races with
5035 * free_extent_buffer. When we get our eb it might be flagged
5036 * with EXTENT_BUFFER_STALE and another task running
5037 * free_extent_buffer might have seen that flag set,
5038 * eb->refs == 2, that the buffer isn't under IO (dirty and
5039 * writeback flags not set) and it's still in the tree (flag
5040 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5041 * of decrementing the extent buffer's reference count twice.
5042 * So here we could race and increment the eb's reference count,
5043 * clear its stale flag, mark it as dirty and drop our reference
5044 * before the other task finishes executing free_extent_buffer,
5045 * which would later result in an attempt to free an extent
5046 * buffer that is dirty.
5048 if (test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
)) {
5049 spin_lock(&eb
->refs_lock
);
5050 spin_unlock(&eb
->refs_lock
);
5052 mark_extent_buffer_accessed(eb
, NULL
);
5060 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5061 struct extent_buffer
*alloc_test_extent_buffer(struct btrfs_fs_info
*fs_info
,
5064 struct extent_buffer
*eb
, *exists
= NULL
;
5067 eb
= find_extent_buffer(fs_info
, start
);
5070 eb
= alloc_dummy_extent_buffer(fs_info
, start
);
5072 return ERR_PTR(-ENOMEM
);
5073 eb
->fs_info
= fs_info
;
5075 ret
= radix_tree_preload(GFP_NOFS
);
5077 exists
= ERR_PTR(ret
);
5080 spin_lock(&fs_info
->buffer_lock
);
5081 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
5082 start
>> PAGE_SHIFT
, eb
);
5083 spin_unlock(&fs_info
->buffer_lock
);
5084 radix_tree_preload_end();
5085 if (ret
== -EEXIST
) {
5086 exists
= find_extent_buffer(fs_info
, start
);
5092 check_buffer_tree_ref(eb
);
5093 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
5097 btrfs_release_extent_buffer(eb
);
5102 struct extent_buffer
*alloc_extent_buffer(struct btrfs_fs_info
*fs_info
,
5105 unsigned long len
= fs_info
->nodesize
;
5108 unsigned long index
= start
>> PAGE_SHIFT
;
5109 struct extent_buffer
*eb
;
5110 struct extent_buffer
*exists
= NULL
;
5112 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
5116 if (!IS_ALIGNED(start
, fs_info
->sectorsize
)) {
5117 btrfs_err(fs_info
, "bad tree block start %llu", start
);
5118 return ERR_PTR(-EINVAL
);
5121 eb
= find_extent_buffer(fs_info
, start
);
5125 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
5127 return ERR_PTR(-ENOMEM
);
5129 num_pages
= num_extent_pages(eb
);
5130 for (i
= 0; i
< num_pages
; i
++, index
++) {
5131 p
= find_or_create_page(mapping
, index
, GFP_NOFS
|__GFP_NOFAIL
);
5133 exists
= ERR_PTR(-ENOMEM
);
5137 spin_lock(&mapping
->private_lock
);
5138 if (PagePrivate(p
)) {
5140 * We could have already allocated an eb for this page
5141 * and attached one so lets see if we can get a ref on
5142 * the existing eb, and if we can we know it's good and
5143 * we can just return that one, else we know we can just
5144 * overwrite page->private.
5146 exists
= (struct extent_buffer
*)p
->private;
5147 if (atomic_inc_not_zero(&exists
->refs
)) {
5148 spin_unlock(&mapping
->private_lock
);
5151 mark_extent_buffer_accessed(exists
, p
);
5157 * Do this so attach doesn't complain and we need to
5158 * drop the ref the old guy had.
5160 ClearPagePrivate(p
);
5161 WARN_ON(PageDirty(p
));
5164 attach_extent_buffer_page(eb
, p
);
5165 spin_unlock(&mapping
->private_lock
);
5166 WARN_ON(PageDirty(p
));
5168 if (!PageUptodate(p
))
5172 * We can't unlock the pages just yet since the extent buffer
5173 * hasn't been properly inserted in the radix tree, this
5174 * opens a race with btree_releasepage which can free a page
5175 * while we are still filling in all pages for the buffer and
5180 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5182 ret
= radix_tree_preload(GFP_NOFS
);
5184 exists
= ERR_PTR(ret
);
5188 spin_lock(&fs_info
->buffer_lock
);
5189 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
5190 start
>> PAGE_SHIFT
, eb
);
5191 spin_unlock(&fs_info
->buffer_lock
);
5192 radix_tree_preload_end();
5193 if (ret
== -EEXIST
) {
5194 exists
= find_extent_buffer(fs_info
, start
);
5200 /* add one reference for the tree */
5201 check_buffer_tree_ref(eb
);
5202 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
5205 * Now it's safe to unlock the pages because any calls to
5206 * btree_releasepage will correctly detect that a page belongs to a
5207 * live buffer and won't free them prematurely.
5209 for (i
= 0; i
< num_pages
; i
++)
5210 unlock_page(eb
->pages
[i
]);
5214 WARN_ON(!atomic_dec_and_test(&eb
->refs
));
5215 for (i
= 0; i
< num_pages
; i
++) {
5217 unlock_page(eb
->pages
[i
]);
5220 btrfs_release_extent_buffer(eb
);
5224 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
5226 struct extent_buffer
*eb
=
5227 container_of(head
, struct extent_buffer
, rcu_head
);
5229 __free_extent_buffer(eb
);
5232 static int release_extent_buffer(struct extent_buffer
*eb
)
5234 lockdep_assert_held(&eb
->refs_lock
);
5236 WARN_ON(atomic_read(&eb
->refs
) == 0);
5237 if (atomic_dec_and_test(&eb
->refs
)) {
5238 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
)) {
5239 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
5241 spin_unlock(&eb
->refs_lock
);
5243 spin_lock(&fs_info
->buffer_lock
);
5244 radix_tree_delete(&fs_info
->buffer_radix
,
5245 eb
->start
>> PAGE_SHIFT
);
5246 spin_unlock(&fs_info
->buffer_lock
);
5248 spin_unlock(&eb
->refs_lock
);
5251 /* Should be safe to release our pages at this point */
5252 btrfs_release_extent_buffer_pages(eb
);
5253 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5254 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
))) {
5255 __free_extent_buffer(eb
);
5259 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);
5262 spin_unlock(&eb
->refs_lock
);
5267 void free_extent_buffer(struct extent_buffer
*eb
)
5275 refs
= atomic_read(&eb
->refs
);
5276 if ((!test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
) && refs
<= 3)
5277 || (test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
) &&
5280 old
= atomic_cmpxchg(&eb
->refs
, refs
, refs
- 1);
5285 spin_lock(&eb
->refs_lock
);
5286 if (atomic_read(&eb
->refs
) == 2 &&
5287 test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
) &&
5288 !extent_buffer_under_io(eb
) &&
5289 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5290 atomic_dec(&eb
->refs
);
5293 * I know this is terrible, but it's temporary until we stop tracking
5294 * the uptodate bits and such for the extent buffers.
5296 release_extent_buffer(eb
);
5299 void free_extent_buffer_stale(struct extent_buffer
*eb
)
5304 spin_lock(&eb
->refs_lock
);
5305 set_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
);
5307 if (atomic_read(&eb
->refs
) == 2 && !extent_buffer_under_io(eb
) &&
5308 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5309 atomic_dec(&eb
->refs
);
5310 release_extent_buffer(eb
);
5313 void clear_extent_buffer_dirty(struct extent_buffer
*eb
)
5319 num_pages
= num_extent_pages(eb
);
5321 for (i
= 0; i
< num_pages
; i
++) {
5322 page
= eb
->pages
[i
];
5323 if (!PageDirty(page
))
5327 WARN_ON(!PagePrivate(page
));
5329 clear_page_dirty_for_io(page
);
5330 xa_lock_irq(&page
->mapping
->i_pages
);
5331 if (!PageDirty(page
))
5332 __xa_clear_mark(&page
->mapping
->i_pages
,
5333 page_index(page
), PAGECACHE_TAG_DIRTY
);
5334 xa_unlock_irq(&page
->mapping
->i_pages
);
5335 ClearPageError(page
);
5338 WARN_ON(atomic_read(&eb
->refs
) == 0);
5341 bool set_extent_buffer_dirty(struct extent_buffer
*eb
)
5347 check_buffer_tree_ref(eb
);
5349 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
5351 num_pages
= num_extent_pages(eb
);
5352 WARN_ON(atomic_read(&eb
->refs
) == 0);
5353 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
));
5356 for (i
= 0; i
< num_pages
; i
++)
5357 set_page_dirty(eb
->pages
[i
]);
5359 #ifdef CONFIG_BTRFS_DEBUG
5360 for (i
= 0; i
< num_pages
; i
++)
5361 ASSERT(PageDirty(eb
->pages
[i
]));
5367 void clear_extent_buffer_uptodate(struct extent_buffer
*eb
)
5373 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5374 num_pages
= num_extent_pages(eb
);
5375 for (i
= 0; i
< num_pages
; i
++) {
5376 page
= eb
->pages
[i
];
5378 ClearPageUptodate(page
);
5382 void set_extent_buffer_uptodate(struct extent_buffer
*eb
)
5388 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5389 num_pages
= num_extent_pages(eb
);
5390 for (i
= 0; i
< num_pages
; i
++) {
5391 page
= eb
->pages
[i
];
5392 SetPageUptodate(page
);
5396 int read_extent_buffer_pages(struct extent_buffer
*eb
, int wait
, int mirror_num
)
5402 int locked_pages
= 0;
5403 int all_uptodate
= 1;
5405 unsigned long num_reads
= 0;
5406 struct bio
*bio
= NULL
;
5407 unsigned long bio_flags
= 0;
5408 struct extent_io_tree
*tree
= &BTRFS_I(eb
->fs_info
->btree_inode
)->io_tree
;
5410 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
5413 num_pages
= num_extent_pages(eb
);
5414 for (i
= 0; i
< num_pages
; i
++) {
5415 page
= eb
->pages
[i
];
5416 if (wait
== WAIT_NONE
) {
5417 if (!trylock_page(page
))
5425 * We need to firstly lock all pages to make sure that
5426 * the uptodate bit of our pages won't be affected by
5427 * clear_extent_buffer_uptodate().
5429 for (i
= 0; i
< num_pages
; i
++) {
5430 page
= eb
->pages
[i
];
5431 if (!PageUptodate(page
)) {
5438 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5442 clear_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
5443 eb
->read_mirror
= 0;
5444 atomic_set(&eb
->io_pages
, num_reads
);
5445 for (i
= 0; i
< num_pages
; i
++) {
5446 page
= eb
->pages
[i
];
5448 if (!PageUptodate(page
)) {
5450 atomic_dec(&eb
->io_pages
);
5455 ClearPageError(page
);
5456 err
= __extent_read_full_page(tree
, page
,
5457 btree_get_extent
, &bio
,
5458 mirror_num
, &bio_flags
,
5463 * We use &bio in above __extent_read_full_page,
5464 * so we ensure that if it returns error, the
5465 * current page fails to add itself to bio and
5466 * it's been unlocked.
5468 * We must dec io_pages by ourselves.
5470 atomic_dec(&eb
->io_pages
);
5478 err
= submit_one_bio(bio
, mirror_num
, bio_flags
);
5483 if (ret
|| wait
!= WAIT_COMPLETE
)
5486 for (i
= 0; i
< num_pages
; i
++) {
5487 page
= eb
->pages
[i
];
5488 wait_on_page_locked(page
);
5489 if (!PageUptodate(page
))
5496 while (locked_pages
> 0) {
5498 page
= eb
->pages
[locked_pages
];
5504 void read_extent_buffer(const struct extent_buffer
*eb
, void *dstv
,
5505 unsigned long start
, unsigned long len
)
5511 char *dst
= (char *)dstv
;
5512 size_t start_offset
= offset_in_page(eb
->start
);
5513 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5515 if (start
+ len
> eb
->len
) {
5516 WARN(1, KERN_ERR
"btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5517 eb
->start
, eb
->len
, start
, len
);
5518 memset(dst
, 0, len
);
5522 offset
= offset_in_page(start_offset
+ start
);
5525 page
= eb
->pages
[i
];
5527 cur
= min(len
, (PAGE_SIZE
- offset
));
5528 kaddr
= page_address(page
);
5529 memcpy(dst
, kaddr
+ offset
, cur
);
5538 int read_extent_buffer_to_user(const struct extent_buffer
*eb
,
5540 unsigned long start
, unsigned long len
)
5546 char __user
*dst
= (char __user
*)dstv
;
5547 size_t start_offset
= offset_in_page(eb
->start
);
5548 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5551 WARN_ON(start
> eb
->len
);
5552 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5554 offset
= offset_in_page(start_offset
+ start
);
5557 page
= eb
->pages
[i
];
5559 cur
= min(len
, (PAGE_SIZE
- offset
));
5560 kaddr
= page_address(page
);
5561 if (copy_to_user(dst
, kaddr
+ offset
, cur
)) {
5576 * return 0 if the item is found within a page.
5577 * return 1 if the item spans two pages.
5578 * return -EINVAL otherwise.
5580 int map_private_extent_buffer(const struct extent_buffer
*eb
,
5581 unsigned long start
, unsigned long min_len
,
5582 char **map
, unsigned long *map_start
,
5583 unsigned long *map_len
)
5588 size_t start_offset
= offset_in_page(eb
->start
);
5589 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5590 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
5593 if (start
+ min_len
> eb
->len
) {
5594 WARN(1, KERN_ERR
"btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5595 eb
->start
, eb
->len
, start
, min_len
);
5603 offset
= start_offset
;
5607 *map_start
= ((u64
)i
<< PAGE_SHIFT
) - start_offset
;
5611 kaddr
= page_address(p
);
5612 *map
= kaddr
+ offset
;
5613 *map_len
= PAGE_SIZE
- offset
;
5617 int memcmp_extent_buffer(const struct extent_buffer
*eb
, const void *ptrv
,
5618 unsigned long start
, unsigned long len
)
5624 char *ptr
= (char *)ptrv
;
5625 size_t start_offset
= offset_in_page(eb
->start
);
5626 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5629 WARN_ON(start
> eb
->len
);
5630 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5632 offset
= offset_in_page(start_offset
+ start
);
5635 page
= eb
->pages
[i
];
5637 cur
= min(len
, (PAGE_SIZE
- offset
));
5639 kaddr
= page_address(page
);
5640 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
5652 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer
*eb
,
5657 WARN_ON(!PageUptodate(eb
->pages
[0]));
5658 kaddr
= page_address(eb
->pages
[0]);
5659 memcpy(kaddr
+ offsetof(struct btrfs_header
, chunk_tree_uuid
), srcv
,
5663 void write_extent_buffer_fsid(struct extent_buffer
*eb
, const void *srcv
)
5667 WARN_ON(!PageUptodate(eb
->pages
[0]));
5668 kaddr
= page_address(eb
->pages
[0]);
5669 memcpy(kaddr
+ offsetof(struct btrfs_header
, fsid
), srcv
,
5673 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
5674 unsigned long start
, unsigned long len
)
5680 char *src
= (char *)srcv
;
5681 size_t start_offset
= offset_in_page(eb
->start
);
5682 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5684 WARN_ON(start
> eb
->len
);
5685 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5687 offset
= offset_in_page(start_offset
+ start
);
5690 page
= eb
->pages
[i
];
5691 WARN_ON(!PageUptodate(page
));
5693 cur
= min(len
, PAGE_SIZE
- offset
);
5694 kaddr
= page_address(page
);
5695 memcpy(kaddr
+ offset
, src
, cur
);
5704 void memzero_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
5711 size_t start_offset
= offset_in_page(eb
->start
);
5712 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5714 WARN_ON(start
> eb
->len
);
5715 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5717 offset
= offset_in_page(start_offset
+ start
);
5720 page
= eb
->pages
[i
];
5721 WARN_ON(!PageUptodate(page
));
5723 cur
= min(len
, PAGE_SIZE
- offset
);
5724 kaddr
= page_address(page
);
5725 memset(kaddr
+ offset
, 0, cur
);
5733 void copy_extent_buffer_full(struct extent_buffer
*dst
,
5734 struct extent_buffer
*src
)
5739 ASSERT(dst
->len
== src
->len
);
5741 num_pages
= num_extent_pages(dst
);
5742 for (i
= 0; i
< num_pages
; i
++)
5743 copy_page(page_address(dst
->pages
[i
]),
5744 page_address(src
->pages
[i
]));
5747 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
5748 unsigned long dst_offset
, unsigned long src_offset
,
5751 u64 dst_len
= dst
->len
;
5756 size_t start_offset
= offset_in_page(dst
->start
);
5757 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_SHIFT
;
5759 WARN_ON(src
->len
!= dst_len
);
5761 offset
= offset_in_page(start_offset
+ dst_offset
);
5764 page
= dst
->pages
[i
];
5765 WARN_ON(!PageUptodate(page
));
5767 cur
= min(len
, (unsigned long)(PAGE_SIZE
- offset
));
5769 kaddr
= page_address(page
);
5770 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
5780 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5782 * @eb: the extent buffer
5783 * @start: offset of the bitmap item in the extent buffer
5785 * @page_index: return index of the page in the extent buffer that contains the
5787 * @page_offset: return offset into the page given by page_index
5789 * This helper hides the ugliness of finding the byte in an extent buffer which
5790 * contains a given bit.
5792 static inline void eb_bitmap_offset(struct extent_buffer
*eb
,
5793 unsigned long start
, unsigned long nr
,
5794 unsigned long *page_index
,
5795 size_t *page_offset
)
5797 size_t start_offset
= offset_in_page(eb
->start
);
5798 size_t byte_offset
= BIT_BYTE(nr
);
5802 * The byte we want is the offset of the extent buffer + the offset of
5803 * the bitmap item in the extent buffer + the offset of the byte in the
5806 offset
= start_offset
+ start
+ byte_offset
;
5808 *page_index
= offset
>> PAGE_SHIFT
;
5809 *page_offset
= offset_in_page(offset
);
5813 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5814 * @eb: the extent buffer
5815 * @start: offset of the bitmap item in the extent buffer
5816 * @nr: bit number to test
5818 int extent_buffer_test_bit(struct extent_buffer
*eb
, unsigned long start
,
5826 eb_bitmap_offset(eb
, start
, nr
, &i
, &offset
);
5827 page
= eb
->pages
[i
];
5828 WARN_ON(!PageUptodate(page
));
5829 kaddr
= page_address(page
);
5830 return 1U & (kaddr
[offset
] >> (nr
& (BITS_PER_BYTE
- 1)));
5834 * extent_buffer_bitmap_set - set an area of a bitmap
5835 * @eb: the extent buffer
5836 * @start: offset of the bitmap item in the extent buffer
5837 * @pos: bit number of the first bit
5838 * @len: number of bits to set
5840 void extent_buffer_bitmap_set(struct extent_buffer
*eb
, unsigned long start
,
5841 unsigned long pos
, unsigned long len
)
5847 const unsigned int size
= pos
+ len
;
5848 int bits_to_set
= BITS_PER_BYTE
- (pos
% BITS_PER_BYTE
);
5849 u8 mask_to_set
= BITMAP_FIRST_BYTE_MASK(pos
);
5851 eb_bitmap_offset(eb
, start
, pos
, &i
, &offset
);
5852 page
= eb
->pages
[i
];
5853 WARN_ON(!PageUptodate(page
));
5854 kaddr
= page_address(page
);
5856 while (len
>= bits_to_set
) {
5857 kaddr
[offset
] |= mask_to_set
;
5859 bits_to_set
= BITS_PER_BYTE
;
5861 if (++offset
>= PAGE_SIZE
&& len
> 0) {
5863 page
= eb
->pages
[++i
];
5864 WARN_ON(!PageUptodate(page
));
5865 kaddr
= page_address(page
);
5869 mask_to_set
&= BITMAP_LAST_BYTE_MASK(size
);
5870 kaddr
[offset
] |= mask_to_set
;
5876 * extent_buffer_bitmap_clear - clear an area of a bitmap
5877 * @eb: the extent buffer
5878 * @start: offset of the bitmap item in the extent buffer
5879 * @pos: bit number of the first bit
5880 * @len: number of bits to clear
5882 void extent_buffer_bitmap_clear(struct extent_buffer
*eb
, unsigned long start
,
5883 unsigned long pos
, unsigned long len
)
5889 const unsigned int size
= pos
+ len
;
5890 int bits_to_clear
= BITS_PER_BYTE
- (pos
% BITS_PER_BYTE
);
5891 u8 mask_to_clear
= BITMAP_FIRST_BYTE_MASK(pos
);
5893 eb_bitmap_offset(eb
, start
, pos
, &i
, &offset
);
5894 page
= eb
->pages
[i
];
5895 WARN_ON(!PageUptodate(page
));
5896 kaddr
= page_address(page
);
5898 while (len
>= bits_to_clear
) {
5899 kaddr
[offset
] &= ~mask_to_clear
;
5900 len
-= bits_to_clear
;
5901 bits_to_clear
= BITS_PER_BYTE
;
5903 if (++offset
>= PAGE_SIZE
&& len
> 0) {
5905 page
= eb
->pages
[++i
];
5906 WARN_ON(!PageUptodate(page
));
5907 kaddr
= page_address(page
);
5911 mask_to_clear
&= BITMAP_LAST_BYTE_MASK(size
);
5912 kaddr
[offset
] &= ~mask_to_clear
;
5916 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
5918 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
5919 return distance
< len
;
5922 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
5923 unsigned long dst_off
, unsigned long src_off
,
5926 char *dst_kaddr
= page_address(dst_page
);
5928 int must_memmove
= 0;
5930 if (dst_page
!= src_page
) {
5931 src_kaddr
= page_address(src_page
);
5933 src_kaddr
= dst_kaddr
;
5934 if (areas_overlap(src_off
, dst_off
, len
))
5939 memmove(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5941 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5944 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5945 unsigned long src_offset
, unsigned long len
)
5947 struct btrfs_fs_info
*fs_info
= dst
->fs_info
;
5949 size_t dst_off_in_page
;
5950 size_t src_off_in_page
;
5951 size_t start_offset
= offset_in_page(dst
->start
);
5952 unsigned long dst_i
;
5953 unsigned long src_i
;
5955 if (src_offset
+ len
> dst
->len
) {
5957 "memmove bogus src_offset %lu move len %lu dst len %lu",
5958 src_offset
, len
, dst
->len
);
5961 if (dst_offset
+ len
> dst
->len
) {
5963 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5964 dst_offset
, len
, dst
->len
);
5969 dst_off_in_page
= offset_in_page(start_offset
+ dst_offset
);
5970 src_off_in_page
= offset_in_page(start_offset
+ src_offset
);
5972 dst_i
= (start_offset
+ dst_offset
) >> PAGE_SHIFT
;
5973 src_i
= (start_offset
+ src_offset
) >> PAGE_SHIFT
;
5975 cur
= min(len
, (unsigned long)(PAGE_SIZE
-
5977 cur
= min_t(unsigned long, cur
,
5978 (unsigned long)(PAGE_SIZE
- dst_off_in_page
));
5980 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
5981 dst_off_in_page
, src_off_in_page
, cur
);
5989 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5990 unsigned long src_offset
, unsigned long len
)
5992 struct btrfs_fs_info
*fs_info
= dst
->fs_info
;
5994 size_t dst_off_in_page
;
5995 size_t src_off_in_page
;
5996 unsigned long dst_end
= dst_offset
+ len
- 1;
5997 unsigned long src_end
= src_offset
+ len
- 1;
5998 size_t start_offset
= offset_in_page(dst
->start
);
5999 unsigned long dst_i
;
6000 unsigned long src_i
;
6002 if (src_offset
+ len
> dst
->len
) {
6004 "memmove bogus src_offset %lu move len %lu len %lu",
6005 src_offset
, len
, dst
->len
);
6008 if (dst_offset
+ len
> dst
->len
) {
6010 "memmove bogus dst_offset %lu move len %lu len %lu",
6011 dst_offset
, len
, dst
->len
);
6014 if (dst_offset
< src_offset
) {
6015 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
6019 dst_i
= (start_offset
+ dst_end
) >> PAGE_SHIFT
;
6020 src_i
= (start_offset
+ src_end
) >> PAGE_SHIFT
;
6022 dst_off_in_page
= offset_in_page(start_offset
+ dst_end
);
6023 src_off_in_page
= offset_in_page(start_offset
+ src_end
);
6025 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
6026 cur
= min(cur
, dst_off_in_page
+ 1);
6027 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
6028 dst_off_in_page
- cur
+ 1,
6029 src_off_in_page
- cur
+ 1, cur
);
6037 int try_release_extent_buffer(struct page
*page
)
6039 struct extent_buffer
*eb
;
6042 * We need to make sure nobody is attaching this page to an eb right
6045 spin_lock(&page
->mapping
->private_lock
);
6046 if (!PagePrivate(page
)) {
6047 spin_unlock(&page
->mapping
->private_lock
);
6051 eb
= (struct extent_buffer
*)page
->private;
6055 * This is a little awful but should be ok, we need to make sure that
6056 * the eb doesn't disappear out from under us while we're looking at
6059 spin_lock(&eb
->refs_lock
);
6060 if (atomic_read(&eb
->refs
) != 1 || extent_buffer_under_io(eb
)) {
6061 spin_unlock(&eb
->refs_lock
);
6062 spin_unlock(&page
->mapping
->private_lock
);
6065 spin_unlock(&page
->mapping
->private_lock
);
6068 * If tree ref isn't set then we know the ref on this eb is a real ref,
6069 * so just return, this page will likely be freed soon anyway.
6071 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
)) {
6072 spin_unlock(&eb
->refs_lock
);
6076 return release_extent_buffer(eb
);