arm64: dts: Revert "specify console via command line"
[linux/fpc-iii.git] / mm / gup.c
blob1b521e0ac1de736ae1397721a43ea9c79a612655
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
25 #include "internal.h"
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
33 * Return the compound head page with ref appropriately incremented,
34 * or NULL if that failed.
36 static inline struct page *try_get_compound_head(struct page *page, int refs)
38 struct page *head = compound_head(page);
40 if (WARN_ON_ONCE(page_ref_count(head) < 0))
41 return NULL;
42 if (unlikely(!page_cache_add_speculative(head, refs)))
43 return NULL;
44 return head;
47 /**
48 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
49 * @pages: array of pages to be maybe marked dirty, and definitely released.
50 * @npages: number of pages in the @pages array.
51 * @make_dirty: whether to mark the pages dirty
53 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
54 * variants called on that page.
56 * For each page in the @pages array, make that page (or its head page, if a
57 * compound page) dirty, if @make_dirty is true, and if the page was previously
58 * listed as clean. In any case, releases all pages using unpin_user_page(),
59 * possibly via unpin_user_pages(), for the non-dirty case.
61 * Please see the unpin_user_page() documentation for details.
63 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
64 * required, then the caller should a) verify that this is really correct,
65 * because _lock() is usually required, and b) hand code it:
66 * set_page_dirty_lock(), unpin_user_page().
69 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
70 bool make_dirty)
72 unsigned long index;
75 * TODO: this can be optimized for huge pages: if a series of pages is
76 * physically contiguous and part of the same compound page, then a
77 * single operation to the head page should suffice.
80 if (!make_dirty) {
81 unpin_user_pages(pages, npages);
82 return;
85 for (index = 0; index < npages; index++) {
86 struct page *page = compound_head(pages[index]);
88 * Checking PageDirty at this point may race with
89 * clear_page_dirty_for_io(), but that's OK. Two key
90 * cases:
92 * 1) This code sees the page as already dirty, so it
93 * skips the call to set_page_dirty(). That could happen
94 * because clear_page_dirty_for_io() called
95 * page_mkclean(), followed by set_page_dirty().
96 * However, now the page is going to get written back,
97 * which meets the original intention of setting it
98 * dirty, so all is well: clear_page_dirty_for_io() goes
99 * on to call TestClearPageDirty(), and write the page
100 * back.
102 * 2) This code sees the page as clean, so it calls
103 * set_page_dirty(). The page stays dirty, despite being
104 * written back, so it gets written back again in the
105 * next writeback cycle. This is harmless.
107 if (!PageDirty(page))
108 set_page_dirty_lock(page);
109 unpin_user_page(page);
112 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
115 * unpin_user_pages() - release an array of gup-pinned pages.
116 * @pages: array of pages to be marked dirty and released.
117 * @npages: number of pages in the @pages array.
119 * For each page in the @pages array, release the page using unpin_user_page().
121 * Please see the unpin_user_page() documentation for details.
123 void unpin_user_pages(struct page **pages, unsigned long npages)
125 unsigned long index;
128 * TODO: this can be optimized for huge pages: if a series of pages is
129 * physically contiguous and part of the same compound page, then a
130 * single operation to the head page should suffice.
132 for (index = 0; index < npages; index++)
133 unpin_user_page(pages[index]);
135 EXPORT_SYMBOL(unpin_user_pages);
137 #ifdef CONFIG_MMU
138 static struct page *no_page_table(struct vm_area_struct *vma,
139 unsigned int flags)
142 * When core dumping an enormous anonymous area that nobody
143 * has touched so far, we don't want to allocate unnecessary pages or
144 * page tables. Return error instead of NULL to skip handle_mm_fault,
145 * then get_dump_page() will return NULL to leave a hole in the dump.
146 * But we can only make this optimization where a hole would surely
147 * be zero-filled if handle_mm_fault() actually did handle it.
149 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
150 return ERR_PTR(-EFAULT);
151 return NULL;
154 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
155 pte_t *pte, unsigned int flags)
157 /* No page to get reference */
158 if (flags & FOLL_GET)
159 return -EFAULT;
161 if (flags & FOLL_TOUCH) {
162 pte_t entry = *pte;
164 if (flags & FOLL_WRITE)
165 entry = pte_mkdirty(entry);
166 entry = pte_mkyoung(entry);
168 if (!pte_same(*pte, entry)) {
169 set_pte_at(vma->vm_mm, address, pte, entry);
170 update_mmu_cache(vma, address, pte);
174 /* Proper page table entry exists, but no corresponding struct page */
175 return -EEXIST;
179 * FOLL_FORCE can write to even unwritable pte's, but only
180 * after we've gone through a COW cycle and they are dirty.
182 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
184 return pte_write(pte) ||
185 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
188 static struct page *follow_page_pte(struct vm_area_struct *vma,
189 unsigned long address, pmd_t *pmd, unsigned int flags,
190 struct dev_pagemap **pgmap)
192 struct mm_struct *mm = vma->vm_mm;
193 struct page *page;
194 spinlock_t *ptl;
195 pte_t *ptep, pte;
197 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
198 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
199 (FOLL_PIN | FOLL_GET)))
200 return ERR_PTR(-EINVAL);
201 retry:
202 if (unlikely(pmd_bad(*pmd)))
203 return no_page_table(vma, flags);
205 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
206 pte = *ptep;
207 if (!pte_present(pte)) {
208 swp_entry_t entry;
210 * KSM's break_ksm() relies upon recognizing a ksm page
211 * even while it is being migrated, so for that case we
212 * need migration_entry_wait().
214 if (likely(!(flags & FOLL_MIGRATION)))
215 goto no_page;
216 if (pte_none(pte))
217 goto no_page;
218 entry = pte_to_swp_entry(pte);
219 if (!is_migration_entry(entry))
220 goto no_page;
221 pte_unmap_unlock(ptep, ptl);
222 migration_entry_wait(mm, pmd, address);
223 goto retry;
225 if ((flags & FOLL_NUMA) && pte_protnone(pte))
226 goto no_page;
227 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
228 pte_unmap_unlock(ptep, ptl);
229 return NULL;
232 page = vm_normal_page(vma, address, pte);
233 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
235 * Only return device mapping pages in the FOLL_GET case since
236 * they are only valid while holding the pgmap reference.
238 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
239 if (*pgmap)
240 page = pte_page(pte);
241 else
242 goto no_page;
243 } else if (unlikely(!page)) {
244 if (flags & FOLL_DUMP) {
245 /* Avoid special (like zero) pages in core dumps */
246 page = ERR_PTR(-EFAULT);
247 goto out;
250 if (is_zero_pfn(pte_pfn(pte))) {
251 page = pte_page(pte);
252 } else {
253 int ret;
255 ret = follow_pfn_pte(vma, address, ptep, flags);
256 page = ERR_PTR(ret);
257 goto out;
261 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
262 int ret;
263 get_page(page);
264 pte_unmap_unlock(ptep, ptl);
265 lock_page(page);
266 ret = split_huge_page(page);
267 unlock_page(page);
268 put_page(page);
269 if (ret)
270 return ERR_PTR(ret);
271 goto retry;
274 if (flags & FOLL_GET) {
275 if (unlikely(!try_get_page(page))) {
276 page = ERR_PTR(-ENOMEM);
277 goto out;
280 if (flags & FOLL_TOUCH) {
281 if ((flags & FOLL_WRITE) &&
282 !pte_dirty(pte) && !PageDirty(page))
283 set_page_dirty(page);
285 * pte_mkyoung() would be more correct here, but atomic care
286 * is needed to avoid losing the dirty bit: it is easier to use
287 * mark_page_accessed().
289 mark_page_accessed(page);
291 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
292 /* Do not mlock pte-mapped THP */
293 if (PageTransCompound(page))
294 goto out;
297 * The preliminary mapping check is mainly to avoid the
298 * pointless overhead of lock_page on the ZERO_PAGE
299 * which might bounce very badly if there is contention.
301 * If the page is already locked, we don't need to
302 * handle it now - vmscan will handle it later if and
303 * when it attempts to reclaim the page.
305 if (page->mapping && trylock_page(page)) {
306 lru_add_drain(); /* push cached pages to LRU */
308 * Because we lock page here, and migration is
309 * blocked by the pte's page reference, and we
310 * know the page is still mapped, we don't even
311 * need to check for file-cache page truncation.
313 mlock_vma_page(page);
314 unlock_page(page);
317 out:
318 pte_unmap_unlock(ptep, ptl);
319 return page;
320 no_page:
321 pte_unmap_unlock(ptep, ptl);
322 if (!pte_none(pte))
323 return NULL;
324 return no_page_table(vma, flags);
327 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
328 unsigned long address, pud_t *pudp,
329 unsigned int flags,
330 struct follow_page_context *ctx)
332 pmd_t *pmd, pmdval;
333 spinlock_t *ptl;
334 struct page *page;
335 struct mm_struct *mm = vma->vm_mm;
337 pmd = pmd_offset(pudp, address);
339 * The READ_ONCE() will stabilize the pmdval in a register or
340 * on the stack so that it will stop changing under the code.
342 pmdval = READ_ONCE(*pmd);
343 if (pmd_none(pmdval))
344 return no_page_table(vma, flags);
345 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
346 page = follow_huge_pmd(mm, address, pmd, flags);
347 if (page)
348 return page;
349 return no_page_table(vma, flags);
351 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
352 page = follow_huge_pd(vma, address,
353 __hugepd(pmd_val(pmdval)), flags,
354 PMD_SHIFT);
355 if (page)
356 return page;
357 return no_page_table(vma, flags);
359 retry:
360 if (!pmd_present(pmdval)) {
361 if (likely(!(flags & FOLL_MIGRATION)))
362 return no_page_table(vma, flags);
363 VM_BUG_ON(thp_migration_supported() &&
364 !is_pmd_migration_entry(pmdval));
365 if (is_pmd_migration_entry(pmdval))
366 pmd_migration_entry_wait(mm, pmd);
367 pmdval = READ_ONCE(*pmd);
369 * MADV_DONTNEED may convert the pmd to null because
370 * mmap_sem is held in read mode
372 if (pmd_none(pmdval))
373 return no_page_table(vma, flags);
374 goto retry;
376 if (pmd_devmap(pmdval)) {
377 ptl = pmd_lock(mm, pmd);
378 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
379 spin_unlock(ptl);
380 if (page)
381 return page;
383 if (likely(!pmd_trans_huge(pmdval)))
384 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
386 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
387 return no_page_table(vma, flags);
389 retry_locked:
390 ptl = pmd_lock(mm, pmd);
391 if (unlikely(pmd_none(*pmd))) {
392 spin_unlock(ptl);
393 return no_page_table(vma, flags);
395 if (unlikely(!pmd_present(*pmd))) {
396 spin_unlock(ptl);
397 if (likely(!(flags & FOLL_MIGRATION)))
398 return no_page_table(vma, flags);
399 pmd_migration_entry_wait(mm, pmd);
400 goto retry_locked;
402 if (unlikely(!pmd_trans_huge(*pmd))) {
403 spin_unlock(ptl);
404 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
406 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
407 int ret;
408 page = pmd_page(*pmd);
409 if (is_huge_zero_page(page)) {
410 spin_unlock(ptl);
411 ret = 0;
412 split_huge_pmd(vma, pmd, address);
413 if (pmd_trans_unstable(pmd))
414 ret = -EBUSY;
415 } else if (flags & FOLL_SPLIT) {
416 if (unlikely(!try_get_page(page))) {
417 spin_unlock(ptl);
418 return ERR_PTR(-ENOMEM);
420 spin_unlock(ptl);
421 lock_page(page);
422 ret = split_huge_page(page);
423 unlock_page(page);
424 put_page(page);
425 if (pmd_none(*pmd))
426 return no_page_table(vma, flags);
427 } else { /* flags & FOLL_SPLIT_PMD */
428 spin_unlock(ptl);
429 split_huge_pmd(vma, pmd, address);
430 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
433 return ret ? ERR_PTR(ret) :
434 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
436 page = follow_trans_huge_pmd(vma, address, pmd, flags);
437 spin_unlock(ptl);
438 ctx->page_mask = HPAGE_PMD_NR - 1;
439 return page;
442 static struct page *follow_pud_mask(struct vm_area_struct *vma,
443 unsigned long address, p4d_t *p4dp,
444 unsigned int flags,
445 struct follow_page_context *ctx)
447 pud_t *pud;
448 spinlock_t *ptl;
449 struct page *page;
450 struct mm_struct *mm = vma->vm_mm;
452 pud = pud_offset(p4dp, address);
453 if (pud_none(*pud))
454 return no_page_table(vma, flags);
455 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
456 page = follow_huge_pud(mm, address, pud, flags);
457 if (page)
458 return page;
459 return no_page_table(vma, flags);
461 if (is_hugepd(__hugepd(pud_val(*pud)))) {
462 page = follow_huge_pd(vma, address,
463 __hugepd(pud_val(*pud)), flags,
464 PUD_SHIFT);
465 if (page)
466 return page;
467 return no_page_table(vma, flags);
469 if (pud_devmap(*pud)) {
470 ptl = pud_lock(mm, pud);
471 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
472 spin_unlock(ptl);
473 if (page)
474 return page;
476 if (unlikely(pud_bad(*pud)))
477 return no_page_table(vma, flags);
479 return follow_pmd_mask(vma, address, pud, flags, ctx);
482 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
483 unsigned long address, pgd_t *pgdp,
484 unsigned int flags,
485 struct follow_page_context *ctx)
487 p4d_t *p4d;
488 struct page *page;
490 p4d = p4d_offset(pgdp, address);
491 if (p4d_none(*p4d))
492 return no_page_table(vma, flags);
493 BUILD_BUG_ON(p4d_huge(*p4d));
494 if (unlikely(p4d_bad(*p4d)))
495 return no_page_table(vma, flags);
497 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
498 page = follow_huge_pd(vma, address,
499 __hugepd(p4d_val(*p4d)), flags,
500 P4D_SHIFT);
501 if (page)
502 return page;
503 return no_page_table(vma, flags);
505 return follow_pud_mask(vma, address, p4d, flags, ctx);
509 * follow_page_mask - look up a page descriptor from a user-virtual address
510 * @vma: vm_area_struct mapping @address
511 * @address: virtual address to look up
512 * @flags: flags modifying lookup behaviour
513 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
514 * pointer to output page_mask
516 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
518 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
519 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
521 * On output, the @ctx->page_mask is set according to the size of the page.
523 * Return: the mapped (struct page *), %NULL if no mapping exists, or
524 * an error pointer if there is a mapping to something not represented
525 * by a page descriptor (see also vm_normal_page()).
527 static struct page *follow_page_mask(struct vm_area_struct *vma,
528 unsigned long address, unsigned int flags,
529 struct follow_page_context *ctx)
531 pgd_t *pgd;
532 struct page *page;
533 struct mm_struct *mm = vma->vm_mm;
535 ctx->page_mask = 0;
537 /* make this handle hugepd */
538 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
539 if (!IS_ERR(page)) {
540 BUG_ON(flags & FOLL_GET);
541 return page;
544 pgd = pgd_offset(mm, address);
546 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
547 return no_page_table(vma, flags);
549 if (pgd_huge(*pgd)) {
550 page = follow_huge_pgd(mm, address, pgd, flags);
551 if (page)
552 return page;
553 return no_page_table(vma, flags);
555 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
556 page = follow_huge_pd(vma, address,
557 __hugepd(pgd_val(*pgd)), flags,
558 PGDIR_SHIFT);
559 if (page)
560 return page;
561 return no_page_table(vma, flags);
564 return follow_p4d_mask(vma, address, pgd, flags, ctx);
567 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
568 unsigned int foll_flags)
570 struct follow_page_context ctx = { NULL };
571 struct page *page;
573 page = follow_page_mask(vma, address, foll_flags, &ctx);
574 if (ctx.pgmap)
575 put_dev_pagemap(ctx.pgmap);
576 return page;
579 static int get_gate_page(struct mm_struct *mm, unsigned long address,
580 unsigned int gup_flags, struct vm_area_struct **vma,
581 struct page **page)
583 pgd_t *pgd;
584 p4d_t *p4d;
585 pud_t *pud;
586 pmd_t *pmd;
587 pte_t *pte;
588 int ret = -EFAULT;
590 /* user gate pages are read-only */
591 if (gup_flags & FOLL_WRITE)
592 return -EFAULT;
593 if (address > TASK_SIZE)
594 pgd = pgd_offset_k(address);
595 else
596 pgd = pgd_offset_gate(mm, address);
597 if (pgd_none(*pgd))
598 return -EFAULT;
599 p4d = p4d_offset(pgd, address);
600 if (p4d_none(*p4d))
601 return -EFAULT;
602 pud = pud_offset(p4d, address);
603 if (pud_none(*pud))
604 return -EFAULT;
605 pmd = pmd_offset(pud, address);
606 if (!pmd_present(*pmd))
607 return -EFAULT;
608 VM_BUG_ON(pmd_trans_huge(*pmd));
609 pte = pte_offset_map(pmd, address);
610 if (pte_none(*pte))
611 goto unmap;
612 *vma = get_gate_vma(mm);
613 if (!page)
614 goto out;
615 *page = vm_normal_page(*vma, address, *pte);
616 if (!*page) {
617 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
618 goto unmap;
619 *page = pte_page(*pte);
621 if (unlikely(!try_get_page(*page))) {
622 ret = -ENOMEM;
623 goto unmap;
625 out:
626 ret = 0;
627 unmap:
628 pte_unmap(pte);
629 return ret;
633 * mmap_sem must be held on entry. If @nonblocking != NULL and
634 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
635 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
637 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
638 unsigned long address, unsigned int *flags, int *nonblocking)
640 unsigned int fault_flags = 0;
641 vm_fault_t ret;
643 /* mlock all present pages, but do not fault in new pages */
644 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
645 return -ENOENT;
646 if (*flags & FOLL_WRITE)
647 fault_flags |= FAULT_FLAG_WRITE;
648 if (*flags & FOLL_REMOTE)
649 fault_flags |= FAULT_FLAG_REMOTE;
650 if (nonblocking)
651 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
652 if (*flags & FOLL_NOWAIT)
653 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
654 if (*flags & FOLL_TRIED) {
655 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
656 fault_flags |= FAULT_FLAG_TRIED;
659 ret = handle_mm_fault(vma, address, fault_flags);
660 if (ret & VM_FAULT_ERROR) {
661 int err = vm_fault_to_errno(ret, *flags);
663 if (err)
664 return err;
665 BUG();
668 if (tsk) {
669 if (ret & VM_FAULT_MAJOR)
670 tsk->maj_flt++;
671 else
672 tsk->min_flt++;
675 if (ret & VM_FAULT_RETRY) {
676 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
677 *nonblocking = 0;
678 return -EBUSY;
682 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
683 * necessary, even if maybe_mkwrite decided not to set pte_write. We
684 * can thus safely do subsequent page lookups as if they were reads.
685 * But only do so when looping for pte_write is futile: in some cases
686 * userspace may also be wanting to write to the gotten user page,
687 * which a read fault here might prevent (a readonly page might get
688 * reCOWed by userspace write).
690 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
691 *flags |= FOLL_COW;
692 return 0;
695 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
697 vm_flags_t vm_flags = vma->vm_flags;
698 int write = (gup_flags & FOLL_WRITE);
699 int foreign = (gup_flags & FOLL_REMOTE);
701 if (vm_flags & (VM_IO | VM_PFNMAP))
702 return -EFAULT;
704 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
705 return -EFAULT;
707 if (write) {
708 if (!(vm_flags & VM_WRITE)) {
709 if (!(gup_flags & FOLL_FORCE))
710 return -EFAULT;
712 * We used to let the write,force case do COW in a
713 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
714 * set a breakpoint in a read-only mapping of an
715 * executable, without corrupting the file (yet only
716 * when that file had been opened for writing!).
717 * Anon pages in shared mappings are surprising: now
718 * just reject it.
720 if (!is_cow_mapping(vm_flags))
721 return -EFAULT;
723 } else if (!(vm_flags & VM_READ)) {
724 if (!(gup_flags & FOLL_FORCE))
725 return -EFAULT;
727 * Is there actually any vma we can reach here which does not
728 * have VM_MAYREAD set?
730 if (!(vm_flags & VM_MAYREAD))
731 return -EFAULT;
734 * gups are always data accesses, not instruction
735 * fetches, so execute=false here
737 if (!arch_vma_access_permitted(vma, write, false, foreign))
738 return -EFAULT;
739 return 0;
743 * __get_user_pages() - pin user pages in memory
744 * @tsk: task_struct of target task
745 * @mm: mm_struct of target mm
746 * @start: starting user address
747 * @nr_pages: number of pages from start to pin
748 * @gup_flags: flags modifying pin behaviour
749 * @pages: array that receives pointers to the pages pinned.
750 * Should be at least nr_pages long. Or NULL, if caller
751 * only intends to ensure the pages are faulted in.
752 * @vmas: array of pointers to vmas corresponding to each page.
753 * Or NULL if the caller does not require them.
754 * @nonblocking: whether waiting for disk IO or mmap_sem contention
756 * Returns either number of pages pinned (which may be less than the
757 * number requested), or an error. Details about the return value:
759 * -- If nr_pages is 0, returns 0.
760 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
761 * -- If nr_pages is >0, and some pages were pinned, returns the number of
762 * pages pinned. Again, this may be less than nr_pages.
764 * The caller is responsible for releasing returned @pages, via put_page().
766 * @vmas are valid only as long as mmap_sem is held.
768 * Must be called with mmap_sem held. It may be released. See below.
770 * __get_user_pages walks a process's page tables and takes a reference to
771 * each struct page that each user address corresponds to at a given
772 * instant. That is, it takes the page that would be accessed if a user
773 * thread accesses the given user virtual address at that instant.
775 * This does not guarantee that the page exists in the user mappings when
776 * __get_user_pages returns, and there may even be a completely different
777 * page there in some cases (eg. if mmapped pagecache has been invalidated
778 * and subsequently re faulted). However it does guarantee that the page
779 * won't be freed completely. And mostly callers simply care that the page
780 * contains data that was valid *at some point in time*. Typically, an IO
781 * or similar operation cannot guarantee anything stronger anyway because
782 * locks can't be held over the syscall boundary.
784 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
785 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
786 * appropriate) must be called after the page is finished with, and
787 * before put_page is called.
789 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
790 * or mmap_sem contention, and if waiting is needed to pin all pages,
791 * *@nonblocking will be set to 0. Further, if @gup_flags does not
792 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
793 * this case.
795 * A caller using such a combination of @nonblocking and @gup_flags
796 * must therefore hold the mmap_sem for reading only, and recognize
797 * when it's been released. Otherwise, it must be held for either
798 * reading or writing and will not be released.
800 * In most cases, get_user_pages or get_user_pages_fast should be used
801 * instead of __get_user_pages. __get_user_pages should be used only if
802 * you need some special @gup_flags.
804 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
805 unsigned long start, unsigned long nr_pages,
806 unsigned int gup_flags, struct page **pages,
807 struct vm_area_struct **vmas, int *nonblocking)
809 long ret = 0, i = 0;
810 struct vm_area_struct *vma = NULL;
811 struct follow_page_context ctx = { NULL };
813 if (!nr_pages)
814 return 0;
816 start = untagged_addr(start);
818 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
821 * If FOLL_FORCE is set then do not force a full fault as the hinting
822 * fault information is unrelated to the reference behaviour of a task
823 * using the address space
825 if (!(gup_flags & FOLL_FORCE))
826 gup_flags |= FOLL_NUMA;
828 do {
829 struct page *page;
830 unsigned int foll_flags = gup_flags;
831 unsigned int page_increm;
833 /* first iteration or cross vma bound */
834 if (!vma || start >= vma->vm_end) {
835 vma = find_extend_vma(mm, start);
836 if (!vma && in_gate_area(mm, start)) {
837 ret = get_gate_page(mm, start & PAGE_MASK,
838 gup_flags, &vma,
839 pages ? &pages[i] : NULL);
840 if (ret)
841 goto out;
842 ctx.page_mask = 0;
843 goto next_page;
846 if (!vma || check_vma_flags(vma, gup_flags)) {
847 ret = -EFAULT;
848 goto out;
850 if (is_vm_hugetlb_page(vma)) {
851 i = follow_hugetlb_page(mm, vma, pages, vmas,
852 &start, &nr_pages, i,
853 gup_flags, nonblocking);
854 continue;
857 retry:
859 * If we have a pending SIGKILL, don't keep faulting pages and
860 * potentially allocating memory.
862 if (fatal_signal_pending(current)) {
863 ret = -ERESTARTSYS;
864 goto out;
866 cond_resched();
868 page = follow_page_mask(vma, start, foll_flags, &ctx);
869 if (!page) {
870 ret = faultin_page(tsk, vma, start, &foll_flags,
871 nonblocking);
872 switch (ret) {
873 case 0:
874 goto retry;
875 case -EBUSY:
876 ret = 0;
877 /* FALLTHRU */
878 case -EFAULT:
879 case -ENOMEM:
880 case -EHWPOISON:
881 goto out;
882 case -ENOENT:
883 goto next_page;
885 BUG();
886 } else if (PTR_ERR(page) == -EEXIST) {
888 * Proper page table entry exists, but no corresponding
889 * struct page.
891 goto next_page;
892 } else if (IS_ERR(page)) {
893 ret = PTR_ERR(page);
894 goto out;
896 if (pages) {
897 pages[i] = page;
898 flush_anon_page(vma, page, start);
899 flush_dcache_page(page);
900 ctx.page_mask = 0;
902 next_page:
903 if (vmas) {
904 vmas[i] = vma;
905 ctx.page_mask = 0;
907 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
908 if (page_increm > nr_pages)
909 page_increm = nr_pages;
910 i += page_increm;
911 start += page_increm * PAGE_SIZE;
912 nr_pages -= page_increm;
913 } while (nr_pages);
914 out:
915 if (ctx.pgmap)
916 put_dev_pagemap(ctx.pgmap);
917 return i ? i : ret;
920 static bool vma_permits_fault(struct vm_area_struct *vma,
921 unsigned int fault_flags)
923 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
924 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
925 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
927 if (!(vm_flags & vma->vm_flags))
928 return false;
931 * The architecture might have a hardware protection
932 * mechanism other than read/write that can deny access.
934 * gup always represents data access, not instruction
935 * fetches, so execute=false here:
937 if (!arch_vma_access_permitted(vma, write, false, foreign))
938 return false;
940 return true;
944 * fixup_user_fault() - manually resolve a user page fault
945 * @tsk: the task_struct to use for page fault accounting, or
946 * NULL if faults are not to be recorded.
947 * @mm: mm_struct of target mm
948 * @address: user address
949 * @fault_flags:flags to pass down to handle_mm_fault()
950 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
951 * does not allow retry
953 * This is meant to be called in the specific scenario where for locking reasons
954 * we try to access user memory in atomic context (within a pagefault_disable()
955 * section), this returns -EFAULT, and we want to resolve the user fault before
956 * trying again.
958 * Typically this is meant to be used by the futex code.
960 * The main difference with get_user_pages() is that this function will
961 * unconditionally call handle_mm_fault() which will in turn perform all the
962 * necessary SW fixup of the dirty and young bits in the PTE, while
963 * get_user_pages() only guarantees to update these in the struct page.
965 * This is important for some architectures where those bits also gate the
966 * access permission to the page because they are maintained in software. On
967 * such architectures, gup() will not be enough to make a subsequent access
968 * succeed.
970 * This function will not return with an unlocked mmap_sem. So it has not the
971 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
973 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
974 unsigned long address, unsigned int fault_flags,
975 bool *unlocked)
977 struct vm_area_struct *vma;
978 vm_fault_t ret, major = 0;
980 address = untagged_addr(address);
982 if (unlocked)
983 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
985 retry:
986 vma = find_extend_vma(mm, address);
987 if (!vma || address < vma->vm_start)
988 return -EFAULT;
990 if (!vma_permits_fault(vma, fault_flags))
991 return -EFAULT;
993 ret = handle_mm_fault(vma, address, fault_flags);
994 major |= ret & VM_FAULT_MAJOR;
995 if (ret & VM_FAULT_ERROR) {
996 int err = vm_fault_to_errno(ret, 0);
998 if (err)
999 return err;
1000 BUG();
1003 if (ret & VM_FAULT_RETRY) {
1004 down_read(&mm->mmap_sem);
1005 if (!(fault_flags & FAULT_FLAG_TRIED)) {
1006 *unlocked = true;
1007 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
1008 fault_flags |= FAULT_FLAG_TRIED;
1009 goto retry;
1013 if (tsk) {
1014 if (major)
1015 tsk->maj_flt++;
1016 else
1017 tsk->min_flt++;
1019 return 0;
1021 EXPORT_SYMBOL_GPL(fixup_user_fault);
1023 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1024 struct mm_struct *mm,
1025 unsigned long start,
1026 unsigned long nr_pages,
1027 struct page **pages,
1028 struct vm_area_struct **vmas,
1029 int *locked,
1030 unsigned int flags)
1032 long ret, pages_done;
1033 bool lock_dropped;
1035 if (locked) {
1036 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1037 BUG_ON(vmas);
1038 /* check caller initialized locked */
1039 BUG_ON(*locked != 1);
1043 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1044 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1045 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1046 * for FOLL_GET, not for the newer FOLL_PIN.
1048 * FOLL_PIN always expects pages to be non-null, but no need to assert
1049 * that here, as any failures will be obvious enough.
1051 if (pages && !(flags & FOLL_PIN))
1052 flags |= FOLL_GET;
1054 pages_done = 0;
1055 lock_dropped = false;
1056 for (;;) {
1057 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1058 vmas, locked);
1059 if (!locked)
1060 /* VM_FAULT_RETRY couldn't trigger, bypass */
1061 return ret;
1063 /* VM_FAULT_RETRY cannot return errors */
1064 if (!*locked) {
1065 BUG_ON(ret < 0);
1066 BUG_ON(ret >= nr_pages);
1069 if (ret > 0) {
1070 nr_pages -= ret;
1071 pages_done += ret;
1072 if (!nr_pages)
1073 break;
1075 if (*locked) {
1077 * VM_FAULT_RETRY didn't trigger or it was a
1078 * FOLL_NOWAIT.
1080 if (!pages_done)
1081 pages_done = ret;
1082 break;
1085 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1086 * For the prefault case (!pages) we only update counts.
1088 if (likely(pages))
1089 pages += ret;
1090 start += ret << PAGE_SHIFT;
1093 * Repeat on the address that fired VM_FAULT_RETRY
1094 * without FAULT_FLAG_ALLOW_RETRY but with
1095 * FAULT_FLAG_TRIED.
1097 *locked = 1;
1098 lock_dropped = true;
1099 down_read(&mm->mmap_sem);
1100 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1101 pages, NULL, NULL);
1102 if (ret != 1) {
1103 BUG_ON(ret > 1);
1104 if (!pages_done)
1105 pages_done = ret;
1106 break;
1108 nr_pages--;
1109 pages_done++;
1110 if (!nr_pages)
1111 break;
1112 if (likely(pages))
1113 pages++;
1114 start += PAGE_SIZE;
1116 if (lock_dropped && *locked) {
1118 * We must let the caller know we temporarily dropped the lock
1119 * and so the critical section protected by it was lost.
1121 up_read(&mm->mmap_sem);
1122 *locked = 0;
1124 return pages_done;
1128 * populate_vma_page_range() - populate a range of pages in the vma.
1129 * @vma: target vma
1130 * @start: start address
1131 * @end: end address
1132 * @nonblocking:
1134 * This takes care of mlocking the pages too if VM_LOCKED is set.
1136 * return 0 on success, negative error code on error.
1138 * vma->vm_mm->mmap_sem must be held.
1140 * If @nonblocking is NULL, it may be held for read or write and will
1141 * be unperturbed.
1143 * If @nonblocking is non-NULL, it must held for read only and may be
1144 * released. If it's released, *@nonblocking will be set to 0.
1146 long populate_vma_page_range(struct vm_area_struct *vma,
1147 unsigned long start, unsigned long end, int *nonblocking)
1149 struct mm_struct *mm = vma->vm_mm;
1150 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1151 int gup_flags;
1153 VM_BUG_ON(start & ~PAGE_MASK);
1154 VM_BUG_ON(end & ~PAGE_MASK);
1155 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1156 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1157 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1159 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1160 if (vma->vm_flags & VM_LOCKONFAULT)
1161 gup_flags &= ~FOLL_POPULATE;
1163 * We want to touch writable mappings with a write fault in order
1164 * to break COW, except for shared mappings because these don't COW
1165 * and we would not want to dirty them for nothing.
1167 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1168 gup_flags |= FOLL_WRITE;
1171 * We want mlock to succeed for regions that have any permissions
1172 * other than PROT_NONE.
1174 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1175 gup_flags |= FOLL_FORCE;
1178 * We made sure addr is within a VMA, so the following will
1179 * not result in a stack expansion that recurses back here.
1181 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1182 NULL, NULL, nonblocking);
1186 * __mm_populate - populate and/or mlock pages within a range of address space.
1188 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1189 * flags. VMAs must be already marked with the desired vm_flags, and
1190 * mmap_sem must not be held.
1192 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1194 struct mm_struct *mm = current->mm;
1195 unsigned long end, nstart, nend;
1196 struct vm_area_struct *vma = NULL;
1197 int locked = 0;
1198 long ret = 0;
1200 end = start + len;
1202 for (nstart = start; nstart < end; nstart = nend) {
1204 * We want to fault in pages for [nstart; end) address range.
1205 * Find first corresponding VMA.
1207 if (!locked) {
1208 locked = 1;
1209 down_read(&mm->mmap_sem);
1210 vma = find_vma(mm, nstart);
1211 } else if (nstart >= vma->vm_end)
1212 vma = vma->vm_next;
1213 if (!vma || vma->vm_start >= end)
1214 break;
1216 * Set [nstart; nend) to intersection of desired address
1217 * range with the first VMA. Also, skip undesirable VMA types.
1219 nend = min(end, vma->vm_end);
1220 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1221 continue;
1222 if (nstart < vma->vm_start)
1223 nstart = vma->vm_start;
1225 * Now fault in a range of pages. populate_vma_page_range()
1226 * double checks the vma flags, so that it won't mlock pages
1227 * if the vma was already munlocked.
1229 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1230 if (ret < 0) {
1231 if (ignore_errors) {
1232 ret = 0;
1233 continue; /* continue at next VMA */
1235 break;
1237 nend = nstart + ret * PAGE_SIZE;
1238 ret = 0;
1240 if (locked)
1241 up_read(&mm->mmap_sem);
1242 return ret; /* 0 or negative error code */
1246 * get_dump_page() - pin user page in memory while writing it to core dump
1247 * @addr: user address
1249 * Returns struct page pointer of user page pinned for dump,
1250 * to be freed afterwards by put_page().
1252 * Returns NULL on any kind of failure - a hole must then be inserted into
1253 * the corefile, to preserve alignment with its headers; and also returns
1254 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1255 * allowing a hole to be left in the corefile to save diskspace.
1257 * Called without mmap_sem, but after all other threads have been killed.
1259 #ifdef CONFIG_ELF_CORE
1260 struct page *get_dump_page(unsigned long addr)
1262 struct vm_area_struct *vma;
1263 struct page *page;
1265 if (__get_user_pages(current, current->mm, addr, 1,
1266 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1267 NULL) < 1)
1268 return NULL;
1269 flush_cache_page(vma, addr, page_to_pfn(page));
1270 return page;
1272 #endif /* CONFIG_ELF_CORE */
1273 #else /* CONFIG_MMU */
1274 static long __get_user_pages_locked(struct task_struct *tsk,
1275 struct mm_struct *mm, unsigned long start,
1276 unsigned long nr_pages, struct page **pages,
1277 struct vm_area_struct **vmas, int *locked,
1278 unsigned int foll_flags)
1280 struct vm_area_struct *vma;
1281 unsigned long vm_flags;
1282 int i;
1284 /* calculate required read or write permissions.
1285 * If FOLL_FORCE is set, we only require the "MAY" flags.
1287 vm_flags = (foll_flags & FOLL_WRITE) ?
1288 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1289 vm_flags &= (foll_flags & FOLL_FORCE) ?
1290 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1292 for (i = 0; i < nr_pages; i++) {
1293 vma = find_vma(mm, start);
1294 if (!vma)
1295 goto finish_or_fault;
1297 /* protect what we can, including chardevs */
1298 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1299 !(vm_flags & vma->vm_flags))
1300 goto finish_or_fault;
1302 if (pages) {
1303 pages[i] = virt_to_page(start);
1304 if (pages[i])
1305 get_page(pages[i]);
1307 if (vmas)
1308 vmas[i] = vma;
1309 start = (start + PAGE_SIZE) & PAGE_MASK;
1312 return i;
1314 finish_or_fault:
1315 return i ? : -EFAULT;
1317 #endif /* !CONFIG_MMU */
1319 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1320 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1322 long i;
1323 struct vm_area_struct *vma_prev = NULL;
1325 for (i = 0; i < nr_pages; i++) {
1326 struct vm_area_struct *vma = vmas[i];
1328 if (vma == vma_prev)
1329 continue;
1331 vma_prev = vma;
1333 if (vma_is_fsdax(vma))
1334 return true;
1336 return false;
1339 #ifdef CONFIG_CMA
1340 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1343 * We want to make sure we allocate the new page from the same node
1344 * as the source page.
1346 int nid = page_to_nid(page);
1348 * Trying to allocate a page for migration. Ignore allocation
1349 * failure warnings. We don't force __GFP_THISNODE here because
1350 * this node here is the node where we have CMA reservation and
1351 * in some case these nodes will have really less non movable
1352 * allocation memory.
1354 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1356 if (PageHighMem(page))
1357 gfp_mask |= __GFP_HIGHMEM;
1359 #ifdef CONFIG_HUGETLB_PAGE
1360 if (PageHuge(page)) {
1361 struct hstate *h = page_hstate(page);
1363 * We don't want to dequeue from the pool because pool pages will
1364 * mostly be from the CMA region.
1366 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1368 #endif
1369 if (PageTransHuge(page)) {
1370 struct page *thp;
1372 * ignore allocation failure warnings
1374 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1377 * Remove the movable mask so that we don't allocate from
1378 * CMA area again.
1380 thp_gfpmask &= ~__GFP_MOVABLE;
1381 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1382 if (!thp)
1383 return NULL;
1384 prep_transhuge_page(thp);
1385 return thp;
1388 return __alloc_pages_node(nid, gfp_mask, 0);
1391 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1392 struct mm_struct *mm,
1393 unsigned long start,
1394 unsigned long nr_pages,
1395 struct page **pages,
1396 struct vm_area_struct **vmas,
1397 unsigned int gup_flags)
1399 unsigned long i;
1400 unsigned long step;
1401 bool drain_allow = true;
1402 bool migrate_allow = true;
1403 LIST_HEAD(cma_page_list);
1404 long ret = nr_pages;
1406 check_again:
1407 for (i = 0; i < nr_pages;) {
1409 struct page *head = compound_head(pages[i]);
1412 * gup may start from a tail page. Advance step by the left
1413 * part.
1415 step = compound_nr(head) - (pages[i] - head);
1417 * If we get a page from the CMA zone, since we are going to
1418 * be pinning these entries, we might as well move them out
1419 * of the CMA zone if possible.
1421 if (is_migrate_cma_page(head)) {
1422 if (PageHuge(head))
1423 isolate_huge_page(head, &cma_page_list);
1424 else {
1425 if (!PageLRU(head) && drain_allow) {
1426 lru_add_drain_all();
1427 drain_allow = false;
1430 if (!isolate_lru_page(head)) {
1431 list_add_tail(&head->lru, &cma_page_list);
1432 mod_node_page_state(page_pgdat(head),
1433 NR_ISOLATED_ANON +
1434 page_is_file_cache(head),
1435 hpage_nr_pages(head));
1440 i += step;
1443 if (!list_empty(&cma_page_list)) {
1445 * drop the above get_user_pages reference.
1447 for (i = 0; i < nr_pages; i++)
1448 put_page(pages[i]);
1450 if (migrate_pages(&cma_page_list, new_non_cma_page,
1451 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1453 * some of the pages failed migration. Do get_user_pages
1454 * without migration.
1456 migrate_allow = false;
1458 if (!list_empty(&cma_page_list))
1459 putback_movable_pages(&cma_page_list);
1462 * We did migrate all the pages, Try to get the page references
1463 * again migrating any new CMA pages which we failed to isolate
1464 * earlier.
1466 ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1467 pages, vmas, NULL,
1468 gup_flags);
1470 if ((ret > 0) && migrate_allow) {
1471 nr_pages = ret;
1472 drain_allow = true;
1473 goto check_again;
1477 return ret;
1479 #else
1480 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1481 struct mm_struct *mm,
1482 unsigned long start,
1483 unsigned long nr_pages,
1484 struct page **pages,
1485 struct vm_area_struct **vmas,
1486 unsigned int gup_flags)
1488 return nr_pages;
1490 #endif /* CONFIG_CMA */
1493 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1494 * allows us to process the FOLL_LONGTERM flag.
1496 static long __gup_longterm_locked(struct task_struct *tsk,
1497 struct mm_struct *mm,
1498 unsigned long start,
1499 unsigned long nr_pages,
1500 struct page **pages,
1501 struct vm_area_struct **vmas,
1502 unsigned int gup_flags)
1504 struct vm_area_struct **vmas_tmp = vmas;
1505 unsigned long flags = 0;
1506 long rc, i;
1508 if (gup_flags & FOLL_LONGTERM) {
1509 if (!pages)
1510 return -EINVAL;
1512 if (!vmas_tmp) {
1513 vmas_tmp = kcalloc(nr_pages,
1514 sizeof(struct vm_area_struct *),
1515 GFP_KERNEL);
1516 if (!vmas_tmp)
1517 return -ENOMEM;
1519 flags = memalloc_nocma_save();
1522 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1523 vmas_tmp, NULL, gup_flags);
1525 if (gup_flags & FOLL_LONGTERM) {
1526 memalloc_nocma_restore(flags);
1527 if (rc < 0)
1528 goto out;
1530 if (check_dax_vmas(vmas_tmp, rc)) {
1531 for (i = 0; i < rc; i++)
1532 put_page(pages[i]);
1533 rc = -EOPNOTSUPP;
1534 goto out;
1537 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1538 vmas_tmp, gup_flags);
1541 out:
1542 if (vmas_tmp != vmas)
1543 kfree(vmas_tmp);
1544 return rc;
1546 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1547 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1548 struct mm_struct *mm,
1549 unsigned long start,
1550 unsigned long nr_pages,
1551 struct page **pages,
1552 struct vm_area_struct **vmas,
1553 unsigned int flags)
1555 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1556 NULL, flags);
1558 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1561 * get_user_pages_remote() - pin user pages in memory
1562 * @tsk: the task_struct to use for page fault accounting, or
1563 * NULL if faults are not to be recorded.
1564 * @mm: mm_struct of target mm
1565 * @start: starting user address
1566 * @nr_pages: number of pages from start to pin
1567 * @gup_flags: flags modifying lookup behaviour
1568 * @pages: array that receives pointers to the pages pinned.
1569 * Should be at least nr_pages long. Or NULL, if caller
1570 * only intends to ensure the pages are faulted in.
1571 * @vmas: array of pointers to vmas corresponding to each page.
1572 * Or NULL if the caller does not require them.
1573 * @locked: pointer to lock flag indicating whether lock is held and
1574 * subsequently whether VM_FAULT_RETRY functionality can be
1575 * utilised. Lock must initially be held.
1577 * Returns either number of pages pinned (which may be less than the
1578 * number requested), or an error. Details about the return value:
1580 * -- If nr_pages is 0, returns 0.
1581 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1582 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1583 * pages pinned. Again, this may be less than nr_pages.
1585 * The caller is responsible for releasing returned @pages, via put_page().
1587 * @vmas are valid only as long as mmap_sem is held.
1589 * Must be called with mmap_sem held for read or write.
1591 * get_user_pages walks a process's page tables and takes a reference to
1592 * each struct page that each user address corresponds to at a given
1593 * instant. That is, it takes the page that would be accessed if a user
1594 * thread accesses the given user virtual address at that instant.
1596 * This does not guarantee that the page exists in the user mappings when
1597 * get_user_pages returns, and there may even be a completely different
1598 * page there in some cases (eg. if mmapped pagecache has been invalidated
1599 * and subsequently re faulted). However it does guarantee that the page
1600 * won't be freed completely. And mostly callers simply care that the page
1601 * contains data that was valid *at some point in time*. Typically, an IO
1602 * or similar operation cannot guarantee anything stronger anyway because
1603 * locks can't be held over the syscall boundary.
1605 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1606 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1607 * be called after the page is finished with, and before put_page is called.
1609 * get_user_pages is typically used for fewer-copy IO operations, to get a
1610 * handle on the memory by some means other than accesses via the user virtual
1611 * addresses. The pages may be submitted for DMA to devices or accessed via
1612 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1613 * use the correct cache flushing APIs.
1615 * See also get_user_pages_fast, for performance critical applications.
1617 * get_user_pages should be phased out in favor of
1618 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1619 * should use get_user_pages because it cannot pass
1620 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1622 #ifdef CONFIG_MMU
1623 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1624 unsigned long start, unsigned long nr_pages,
1625 unsigned int gup_flags, struct page **pages,
1626 struct vm_area_struct **vmas, int *locked)
1629 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1630 * never directly by the caller, so enforce that with an assertion:
1632 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1633 return -EINVAL;
1636 * Parts of FOLL_LONGTERM behavior are incompatible with
1637 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1638 * vmas. However, this only comes up if locked is set, and there are
1639 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1640 * allow what we can.
1642 if (gup_flags & FOLL_LONGTERM) {
1643 if (WARN_ON_ONCE(locked))
1644 return -EINVAL;
1646 * This will check the vmas (even if our vmas arg is NULL)
1647 * and return -ENOTSUPP if DAX isn't allowed in this case:
1649 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1650 vmas, gup_flags | FOLL_TOUCH |
1651 FOLL_REMOTE);
1654 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1655 locked,
1656 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1658 EXPORT_SYMBOL(get_user_pages_remote);
1660 #else /* CONFIG_MMU */
1661 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1662 unsigned long start, unsigned long nr_pages,
1663 unsigned int gup_flags, struct page **pages,
1664 struct vm_area_struct **vmas, int *locked)
1666 return 0;
1668 #endif /* !CONFIG_MMU */
1671 * This is the same as get_user_pages_remote(), just with a
1672 * less-flexible calling convention where we assume that the task
1673 * and mm being operated on are the current task's and don't allow
1674 * passing of a locked parameter. We also obviously don't pass
1675 * FOLL_REMOTE in here.
1677 long get_user_pages(unsigned long start, unsigned long nr_pages,
1678 unsigned int gup_flags, struct page **pages,
1679 struct vm_area_struct **vmas)
1682 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1683 * never directly by the caller, so enforce that with an assertion:
1685 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1686 return -EINVAL;
1688 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1689 pages, vmas, gup_flags | FOLL_TOUCH);
1691 EXPORT_SYMBOL(get_user_pages);
1694 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1695 * paths better by using either get_user_pages_locked() or
1696 * get_user_pages_unlocked().
1698 * get_user_pages_locked() is suitable to replace the form:
1700 * down_read(&mm->mmap_sem);
1701 * do_something()
1702 * get_user_pages(tsk, mm, ..., pages, NULL);
1703 * up_read(&mm->mmap_sem);
1705 * to:
1707 * int locked = 1;
1708 * down_read(&mm->mmap_sem);
1709 * do_something()
1710 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1711 * if (locked)
1712 * up_read(&mm->mmap_sem);
1714 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1715 unsigned int gup_flags, struct page **pages,
1716 int *locked)
1719 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1720 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1721 * vmas. As there are no users of this flag in this call we simply
1722 * disallow this option for now.
1724 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1725 return -EINVAL;
1727 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1728 pages, NULL, locked,
1729 gup_flags | FOLL_TOUCH);
1731 EXPORT_SYMBOL(get_user_pages_locked);
1734 * get_user_pages_unlocked() is suitable to replace the form:
1736 * down_read(&mm->mmap_sem);
1737 * get_user_pages(tsk, mm, ..., pages, NULL);
1738 * up_read(&mm->mmap_sem);
1740 * with:
1742 * get_user_pages_unlocked(tsk, mm, ..., pages);
1744 * It is functionally equivalent to get_user_pages_fast so
1745 * get_user_pages_fast should be used instead if specific gup_flags
1746 * (e.g. FOLL_FORCE) are not required.
1748 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1749 struct page **pages, unsigned int gup_flags)
1751 struct mm_struct *mm = current->mm;
1752 int locked = 1;
1753 long ret;
1756 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1757 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1758 * vmas. As there are no users of this flag in this call we simply
1759 * disallow this option for now.
1761 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1762 return -EINVAL;
1764 down_read(&mm->mmap_sem);
1765 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1766 &locked, gup_flags | FOLL_TOUCH);
1767 if (locked)
1768 up_read(&mm->mmap_sem);
1769 return ret;
1771 EXPORT_SYMBOL(get_user_pages_unlocked);
1774 * Fast GUP
1776 * get_user_pages_fast attempts to pin user pages by walking the page
1777 * tables directly and avoids taking locks. Thus the walker needs to be
1778 * protected from page table pages being freed from under it, and should
1779 * block any THP splits.
1781 * One way to achieve this is to have the walker disable interrupts, and
1782 * rely on IPIs from the TLB flushing code blocking before the page table
1783 * pages are freed. This is unsuitable for architectures that do not need
1784 * to broadcast an IPI when invalidating TLBs.
1786 * Another way to achieve this is to batch up page table containing pages
1787 * belonging to more than one mm_user, then rcu_sched a callback to free those
1788 * pages. Disabling interrupts will allow the fast_gup walker to both block
1789 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1790 * (which is a relatively rare event). The code below adopts this strategy.
1792 * Before activating this code, please be aware that the following assumptions
1793 * are currently made:
1795 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1796 * free pages containing page tables or TLB flushing requires IPI broadcast.
1798 * *) ptes can be read atomically by the architecture.
1800 * *) access_ok is sufficient to validate userspace address ranges.
1802 * The last two assumptions can be relaxed by the addition of helper functions.
1804 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1806 #ifdef CONFIG_HAVE_FAST_GUP
1807 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1809 * WARNING: only to be used in the get_user_pages_fast() implementation.
1811 * With get_user_pages_fast(), we walk down the pagetables without taking any
1812 * locks. For this we would like to load the pointers atomically, but sometimes
1813 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
1814 * we do have is the guarantee that a PTE will only either go from not present
1815 * to present, or present to not present or both -- it will not switch to a
1816 * completely different present page without a TLB flush in between; something
1817 * that we are blocking by holding interrupts off.
1819 * Setting ptes from not present to present goes:
1821 * ptep->pte_high = h;
1822 * smp_wmb();
1823 * ptep->pte_low = l;
1825 * And present to not present goes:
1827 * ptep->pte_low = 0;
1828 * smp_wmb();
1829 * ptep->pte_high = 0;
1831 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1832 * We load pte_high *after* loading pte_low, which ensures we don't see an older
1833 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
1834 * picked up a changed pte high. We might have gotten rubbish values from
1835 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1836 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1837 * operates on present ptes we're safe.
1839 static inline pte_t gup_get_pte(pte_t *ptep)
1841 pte_t pte;
1843 do {
1844 pte.pte_low = ptep->pte_low;
1845 smp_rmb();
1846 pte.pte_high = ptep->pte_high;
1847 smp_rmb();
1848 } while (unlikely(pte.pte_low != ptep->pte_low));
1850 return pte;
1852 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1854 * We require that the PTE can be read atomically.
1856 static inline pte_t gup_get_pte(pte_t *ptep)
1858 return READ_ONCE(*ptep);
1860 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1862 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1863 struct page **pages)
1865 while ((*nr) - nr_start) {
1866 struct page *page = pages[--(*nr)];
1868 ClearPageReferenced(page);
1869 put_page(page);
1873 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1874 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1875 unsigned int flags, struct page **pages, int *nr)
1877 struct dev_pagemap *pgmap = NULL;
1878 int nr_start = *nr, ret = 0;
1879 pte_t *ptep, *ptem;
1881 ptem = ptep = pte_offset_map(&pmd, addr);
1882 do {
1883 pte_t pte = gup_get_pte(ptep);
1884 struct page *head, *page;
1887 * Similar to the PMD case below, NUMA hinting must take slow
1888 * path using the pte_protnone check.
1890 if (pte_protnone(pte))
1891 goto pte_unmap;
1893 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1894 goto pte_unmap;
1896 if (pte_devmap(pte)) {
1897 if (unlikely(flags & FOLL_LONGTERM))
1898 goto pte_unmap;
1900 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1901 if (unlikely(!pgmap)) {
1902 undo_dev_pagemap(nr, nr_start, pages);
1903 goto pte_unmap;
1905 } else if (pte_special(pte))
1906 goto pte_unmap;
1908 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1909 page = pte_page(pte);
1911 head = try_get_compound_head(page, 1);
1912 if (!head)
1913 goto pte_unmap;
1915 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1916 put_page(head);
1917 goto pte_unmap;
1920 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1922 SetPageReferenced(page);
1923 pages[*nr] = page;
1924 (*nr)++;
1926 } while (ptep++, addr += PAGE_SIZE, addr != end);
1928 ret = 1;
1930 pte_unmap:
1931 if (pgmap)
1932 put_dev_pagemap(pgmap);
1933 pte_unmap(ptem);
1934 return ret;
1936 #else
1939 * If we can't determine whether or not a pte is special, then fail immediately
1940 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1941 * to be special.
1943 * For a futex to be placed on a THP tail page, get_futex_key requires a
1944 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1945 * useful to have gup_huge_pmd even if we can't operate on ptes.
1947 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1948 unsigned int flags, struct page **pages, int *nr)
1950 return 0;
1952 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1954 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1955 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1956 unsigned long end, struct page **pages, int *nr)
1958 int nr_start = *nr;
1959 struct dev_pagemap *pgmap = NULL;
1961 do {
1962 struct page *page = pfn_to_page(pfn);
1964 pgmap = get_dev_pagemap(pfn, pgmap);
1965 if (unlikely(!pgmap)) {
1966 undo_dev_pagemap(nr, nr_start, pages);
1967 return 0;
1969 SetPageReferenced(page);
1970 pages[*nr] = page;
1971 get_page(page);
1972 (*nr)++;
1973 pfn++;
1974 } while (addr += PAGE_SIZE, addr != end);
1976 if (pgmap)
1977 put_dev_pagemap(pgmap);
1978 return 1;
1981 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1982 unsigned long end, struct page **pages, int *nr)
1984 unsigned long fault_pfn;
1985 int nr_start = *nr;
1987 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1988 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1989 return 0;
1991 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1992 undo_dev_pagemap(nr, nr_start, pages);
1993 return 0;
1995 return 1;
1998 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1999 unsigned long end, struct page **pages, int *nr)
2001 unsigned long fault_pfn;
2002 int nr_start = *nr;
2004 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2005 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
2006 return 0;
2008 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2009 undo_dev_pagemap(nr, nr_start, pages);
2010 return 0;
2012 return 1;
2014 #else
2015 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2016 unsigned long end, struct page **pages, int *nr)
2018 BUILD_BUG();
2019 return 0;
2022 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2023 unsigned long end, struct page **pages, int *nr)
2025 BUILD_BUG();
2026 return 0;
2028 #endif
2030 static int record_subpages(struct page *page, unsigned long addr,
2031 unsigned long end, struct page **pages)
2033 int nr;
2035 for (nr = 0; addr != end; addr += PAGE_SIZE)
2036 pages[nr++] = page++;
2038 return nr;
2041 static void put_compound_head(struct page *page, int refs)
2043 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2045 * Calling put_page() for each ref is unnecessarily slow. Only the last
2046 * ref needs a put_page().
2048 if (refs > 1)
2049 page_ref_sub(page, refs - 1);
2050 put_page(page);
2053 #ifdef CONFIG_ARCH_HAS_HUGEPD
2054 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2055 unsigned long sz)
2057 unsigned long __boundary = (addr + sz) & ~(sz-1);
2058 return (__boundary - 1 < end - 1) ? __boundary : end;
2061 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2062 unsigned long end, unsigned int flags,
2063 struct page **pages, int *nr)
2065 unsigned long pte_end;
2066 struct page *head, *page;
2067 pte_t pte;
2068 int refs;
2070 pte_end = (addr + sz) & ~(sz-1);
2071 if (pte_end < end)
2072 end = pte_end;
2074 pte = READ_ONCE(*ptep);
2076 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2077 return 0;
2079 /* hugepages are never "special" */
2080 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2082 head = pte_page(pte);
2083 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2084 refs = record_subpages(page, addr, end, pages + *nr);
2086 head = try_get_compound_head(head, refs);
2087 if (!head)
2088 return 0;
2090 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2091 put_compound_head(head, refs);
2092 return 0;
2095 *nr += refs;
2096 SetPageReferenced(head);
2097 return 1;
2100 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2101 unsigned int pdshift, unsigned long end, unsigned int flags,
2102 struct page **pages, int *nr)
2104 pte_t *ptep;
2105 unsigned long sz = 1UL << hugepd_shift(hugepd);
2106 unsigned long next;
2108 ptep = hugepte_offset(hugepd, addr, pdshift);
2109 do {
2110 next = hugepte_addr_end(addr, end, sz);
2111 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2112 return 0;
2113 } while (ptep++, addr = next, addr != end);
2115 return 1;
2117 #else
2118 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2119 unsigned int pdshift, unsigned long end, unsigned int flags,
2120 struct page **pages, int *nr)
2122 return 0;
2124 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2126 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2127 unsigned long end, unsigned int flags,
2128 struct page **pages, int *nr)
2130 struct page *head, *page;
2131 int refs;
2133 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2134 return 0;
2136 if (pmd_devmap(orig)) {
2137 if (unlikely(flags & FOLL_LONGTERM))
2138 return 0;
2139 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
2142 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2143 refs = record_subpages(page, addr, end, pages + *nr);
2145 head = try_get_compound_head(pmd_page(orig), refs);
2146 if (!head)
2147 return 0;
2149 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2150 put_compound_head(head, refs);
2151 return 0;
2154 *nr += refs;
2155 SetPageReferenced(head);
2156 return 1;
2159 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2160 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2162 struct page *head, *page;
2163 int refs;
2165 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2166 return 0;
2168 if (pud_devmap(orig)) {
2169 if (unlikely(flags & FOLL_LONGTERM))
2170 return 0;
2171 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
2174 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2175 refs = record_subpages(page, addr, end, pages + *nr);
2177 head = try_get_compound_head(pud_page(orig), refs);
2178 if (!head)
2179 return 0;
2181 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2182 put_compound_head(head, refs);
2183 return 0;
2186 *nr += refs;
2187 SetPageReferenced(head);
2188 return 1;
2191 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2192 unsigned long end, unsigned int flags,
2193 struct page **pages, int *nr)
2195 int refs;
2196 struct page *head, *page;
2198 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2199 return 0;
2201 BUILD_BUG_ON(pgd_devmap(orig));
2203 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2204 refs = record_subpages(page, addr, end, pages + *nr);
2206 head = try_get_compound_head(pgd_page(orig), refs);
2207 if (!head)
2208 return 0;
2210 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2211 put_compound_head(head, refs);
2212 return 0;
2215 *nr += refs;
2216 SetPageReferenced(head);
2217 return 1;
2220 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2221 unsigned int flags, struct page **pages, int *nr)
2223 unsigned long next;
2224 pmd_t *pmdp;
2226 pmdp = pmd_offset(&pud, addr);
2227 do {
2228 pmd_t pmd = READ_ONCE(*pmdp);
2230 next = pmd_addr_end(addr, end);
2231 if (!pmd_present(pmd))
2232 return 0;
2234 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2235 pmd_devmap(pmd))) {
2237 * NUMA hinting faults need to be handled in the GUP
2238 * slowpath for accounting purposes and so that they
2239 * can be serialised against THP migration.
2241 if (pmd_protnone(pmd))
2242 return 0;
2244 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2245 pages, nr))
2246 return 0;
2248 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2250 * architecture have different format for hugetlbfs
2251 * pmd format and THP pmd format
2253 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2254 PMD_SHIFT, next, flags, pages, nr))
2255 return 0;
2256 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2257 return 0;
2258 } while (pmdp++, addr = next, addr != end);
2260 return 1;
2263 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2264 unsigned int flags, struct page **pages, int *nr)
2266 unsigned long next;
2267 pud_t *pudp;
2269 pudp = pud_offset(&p4d, addr);
2270 do {
2271 pud_t pud = READ_ONCE(*pudp);
2273 next = pud_addr_end(addr, end);
2274 if (unlikely(!pud_present(pud)))
2275 return 0;
2276 if (unlikely(pud_huge(pud))) {
2277 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2278 pages, nr))
2279 return 0;
2280 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2281 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2282 PUD_SHIFT, next, flags, pages, nr))
2283 return 0;
2284 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2285 return 0;
2286 } while (pudp++, addr = next, addr != end);
2288 return 1;
2291 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2292 unsigned int flags, struct page **pages, int *nr)
2294 unsigned long next;
2295 p4d_t *p4dp;
2297 p4dp = p4d_offset(&pgd, addr);
2298 do {
2299 p4d_t p4d = READ_ONCE(*p4dp);
2301 next = p4d_addr_end(addr, end);
2302 if (p4d_none(p4d))
2303 return 0;
2304 BUILD_BUG_ON(p4d_huge(p4d));
2305 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2306 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2307 P4D_SHIFT, next, flags, pages, nr))
2308 return 0;
2309 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2310 return 0;
2311 } while (p4dp++, addr = next, addr != end);
2313 return 1;
2316 static void gup_pgd_range(unsigned long addr, unsigned long end,
2317 unsigned int flags, struct page **pages, int *nr)
2319 unsigned long next;
2320 pgd_t *pgdp;
2322 pgdp = pgd_offset(current->mm, addr);
2323 do {
2324 pgd_t pgd = READ_ONCE(*pgdp);
2326 next = pgd_addr_end(addr, end);
2327 if (pgd_none(pgd))
2328 return;
2329 if (unlikely(pgd_huge(pgd))) {
2330 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2331 pages, nr))
2332 return;
2333 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2334 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2335 PGDIR_SHIFT, next, flags, pages, nr))
2336 return;
2337 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2338 return;
2339 } while (pgdp++, addr = next, addr != end);
2341 #else
2342 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2343 unsigned int flags, struct page **pages, int *nr)
2346 #endif /* CONFIG_HAVE_FAST_GUP */
2348 #ifndef gup_fast_permitted
2350 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2351 * we need to fall back to the slow version:
2353 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2355 return true;
2357 #endif
2360 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2361 * the regular GUP.
2362 * Note a difference with get_user_pages_fast: this always returns the
2363 * number of pages pinned, 0 if no pages were pinned.
2365 * If the architecture does not support this function, simply return with no
2366 * pages pinned.
2368 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2369 struct page **pages)
2371 unsigned long len, end;
2372 unsigned long flags;
2373 int nr = 0;
2375 start = untagged_addr(start) & PAGE_MASK;
2376 len = (unsigned long) nr_pages << PAGE_SHIFT;
2377 end = start + len;
2379 if (end <= start)
2380 return 0;
2381 if (unlikely(!access_ok((void __user *)start, len)))
2382 return 0;
2385 * Disable interrupts. We use the nested form as we can already have
2386 * interrupts disabled by get_futex_key.
2388 * With interrupts disabled, we block page table pages from being
2389 * freed from under us. See struct mmu_table_batch comments in
2390 * include/asm-generic/tlb.h for more details.
2392 * We do not adopt an rcu_read_lock(.) here as we also want to
2393 * block IPIs that come from THPs splitting.
2396 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2397 gup_fast_permitted(start, end)) {
2398 local_irq_save(flags);
2399 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2400 local_irq_restore(flags);
2403 return nr;
2405 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2407 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2408 unsigned int gup_flags, struct page **pages)
2410 int ret;
2413 * FIXME: FOLL_LONGTERM does not work with
2414 * get_user_pages_unlocked() (see comments in that function)
2416 if (gup_flags & FOLL_LONGTERM) {
2417 down_read(&current->mm->mmap_sem);
2418 ret = __gup_longterm_locked(current, current->mm,
2419 start, nr_pages,
2420 pages, NULL, gup_flags);
2421 up_read(&current->mm->mmap_sem);
2422 } else {
2423 ret = get_user_pages_unlocked(start, nr_pages,
2424 pages, gup_flags);
2427 return ret;
2430 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2431 unsigned int gup_flags,
2432 struct page **pages)
2434 unsigned long addr, len, end;
2435 int nr = 0, ret = 0;
2437 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2438 FOLL_FORCE | FOLL_PIN)))
2439 return -EINVAL;
2441 start = untagged_addr(start) & PAGE_MASK;
2442 addr = start;
2443 len = (unsigned long) nr_pages << PAGE_SHIFT;
2444 end = start + len;
2446 if (end <= start)
2447 return 0;
2448 if (unlikely(!access_ok((void __user *)start, len)))
2449 return -EFAULT;
2451 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2452 gup_fast_permitted(start, end)) {
2453 local_irq_disable();
2454 gup_pgd_range(addr, end, gup_flags, pages, &nr);
2455 local_irq_enable();
2456 ret = nr;
2459 if (nr < nr_pages) {
2460 /* Try to get the remaining pages with get_user_pages */
2461 start += nr << PAGE_SHIFT;
2462 pages += nr;
2464 ret = __gup_longterm_unlocked(start, nr_pages - nr,
2465 gup_flags, pages);
2467 /* Have to be a bit careful with return values */
2468 if (nr > 0) {
2469 if (ret < 0)
2470 ret = nr;
2471 else
2472 ret += nr;
2476 return ret;
2480 * get_user_pages_fast() - pin user pages in memory
2481 * @start: starting user address
2482 * @nr_pages: number of pages from start to pin
2483 * @gup_flags: flags modifying pin behaviour
2484 * @pages: array that receives pointers to the pages pinned.
2485 * Should be at least nr_pages long.
2487 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2488 * If not successful, it will fall back to taking the lock and
2489 * calling get_user_pages().
2491 * Returns number of pages pinned. This may be fewer than the number requested.
2492 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2493 * -errno.
2495 int get_user_pages_fast(unsigned long start, int nr_pages,
2496 unsigned int gup_flags, struct page **pages)
2499 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2500 * never directly by the caller, so enforce that:
2502 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2503 return -EINVAL;
2505 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2507 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2510 * pin_user_pages_fast() - pin user pages in memory without taking locks
2512 * For now, this is a placeholder function, until various call sites are
2513 * converted to use the correct get_user_pages*() or pin_user_pages*() API. So,
2514 * this is identical to get_user_pages_fast().
2516 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2517 * is NOT intended for Case 2 (RDMA: long-term pins).
2519 int pin_user_pages_fast(unsigned long start, int nr_pages,
2520 unsigned int gup_flags, struct page **pages)
2523 * This is a placeholder, until the pin functionality is activated.
2524 * Until then, just behave like the corresponding get_user_pages*()
2525 * routine.
2527 return get_user_pages_fast(start, nr_pages, gup_flags, pages);
2529 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2532 * pin_user_pages_remote() - pin pages of a remote process (task != current)
2534 * For now, this is a placeholder function, until various call sites are
2535 * converted to use the correct get_user_pages*() or pin_user_pages*() API. So,
2536 * this is identical to get_user_pages_remote().
2538 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2539 * is NOT intended for Case 2 (RDMA: long-term pins).
2541 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2542 unsigned long start, unsigned long nr_pages,
2543 unsigned int gup_flags, struct page **pages,
2544 struct vm_area_struct **vmas, int *locked)
2547 * This is a placeholder, until the pin functionality is activated.
2548 * Until then, just behave like the corresponding get_user_pages*()
2549 * routine.
2551 return get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, pages,
2552 vmas, locked);
2554 EXPORT_SYMBOL(pin_user_pages_remote);
2557 * pin_user_pages() - pin user pages in memory for use by other devices
2559 * For now, this is a placeholder function, until various call sites are
2560 * converted to use the correct get_user_pages*() or pin_user_pages*() API. So,
2561 * this is identical to get_user_pages().
2563 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2564 * is NOT intended for Case 2 (RDMA: long-term pins).
2566 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2567 unsigned int gup_flags, struct page **pages,
2568 struct vm_area_struct **vmas)
2571 * This is a placeholder, until the pin functionality is activated.
2572 * Until then, just behave like the corresponding get_user_pages*()
2573 * routine.
2575 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
2577 EXPORT_SYMBOL(pin_user_pages);