arm64: dts: Revert "specify console via command line"
[linux/fpc-iii.git] / mm / mmu_notifier.c
blobef3973a5d34a9481ede0a2e34d22371c9dbc5e60
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/mmu_notifier.c
5 * Copyright (C) 2008 Qumranet, Inc.
6 * Copyright (C) 2008 SGI
7 * Christoph Lameter <cl@linux.com>
8 */
10 #include <linux/rculist.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/export.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/interval_tree.h>
16 #include <linux/srcu.h>
17 #include <linux/rcupdate.h>
18 #include <linux/sched.h>
19 #include <linux/sched/mm.h>
20 #include <linux/slab.h>
22 /* global SRCU for all MMs */
23 DEFINE_STATIC_SRCU(srcu);
25 #ifdef CONFIG_LOCKDEP
26 struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
27 .name = "mmu_notifier_invalidate_range_start"
29 #endif
32 * The mmu_notifier_subscriptions structure is allocated and installed in
33 * mm->notifier_subscriptions inside the mm_take_all_locks() protected
34 * critical section and it's released only when mm_count reaches zero
35 * in mmdrop().
37 struct mmu_notifier_subscriptions {
38 /* all mmu notifiers registered in this mm are queued in this list */
39 struct hlist_head list;
40 bool has_itree;
41 /* to serialize the list modifications and hlist_unhashed */
42 spinlock_t lock;
43 unsigned long invalidate_seq;
44 unsigned long active_invalidate_ranges;
45 struct rb_root_cached itree;
46 wait_queue_head_t wq;
47 struct hlist_head deferred_list;
51 * This is a collision-retry read-side/write-side 'lock', a lot like a
52 * seqcount, however this allows multiple write-sides to hold it at
53 * once. Conceptually the write side is protecting the values of the PTEs in
54 * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
55 * writer exists.
57 * Note that the core mm creates nested invalidate_range_start()/end() regions
58 * within the same thread, and runs invalidate_range_start()/end() in parallel
59 * on multiple CPUs. This is designed to not reduce concurrency or block
60 * progress on the mm side.
62 * As a secondary function, holding the full write side also serves to prevent
63 * writers for the itree, this is an optimization to avoid extra locking
64 * during invalidate_range_start/end notifiers.
66 * The write side has two states, fully excluded:
67 * - mm->active_invalidate_ranges != 0
68 * - subscriptions->invalidate_seq & 1 == True (odd)
69 * - some range on the mm_struct is being invalidated
70 * - the itree is not allowed to change
72 * And partially excluded:
73 * - mm->active_invalidate_ranges != 0
74 * - subscriptions->invalidate_seq & 1 == False (even)
75 * - some range on the mm_struct is being invalidated
76 * - the itree is allowed to change
78 * Operations on notifier_subscriptions->invalidate_seq (under spinlock):
79 * seq |= 1 # Begin writing
80 * seq++ # Release the writing state
81 * seq & 1 # True if a writer exists
83 * The later state avoids some expensive work on inv_end in the common case of
84 * no mmu_interval_notifier monitoring the VA.
86 static bool
87 mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions)
89 lockdep_assert_held(&subscriptions->lock);
90 return subscriptions->invalidate_seq & 1;
93 static struct mmu_interval_notifier *
94 mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions,
95 const struct mmu_notifier_range *range,
96 unsigned long *seq)
98 struct interval_tree_node *node;
99 struct mmu_interval_notifier *res = NULL;
101 spin_lock(&subscriptions->lock);
102 subscriptions->active_invalidate_ranges++;
103 node = interval_tree_iter_first(&subscriptions->itree, range->start,
104 range->end - 1);
105 if (node) {
106 subscriptions->invalidate_seq |= 1;
107 res = container_of(node, struct mmu_interval_notifier,
108 interval_tree);
111 *seq = subscriptions->invalidate_seq;
112 spin_unlock(&subscriptions->lock);
113 return res;
116 static struct mmu_interval_notifier *
117 mn_itree_inv_next(struct mmu_interval_notifier *interval_sub,
118 const struct mmu_notifier_range *range)
120 struct interval_tree_node *node;
122 node = interval_tree_iter_next(&interval_sub->interval_tree,
123 range->start, range->end - 1);
124 if (!node)
125 return NULL;
126 return container_of(node, struct mmu_interval_notifier, interval_tree);
129 static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions)
131 struct mmu_interval_notifier *interval_sub;
132 struct hlist_node *next;
134 spin_lock(&subscriptions->lock);
135 if (--subscriptions->active_invalidate_ranges ||
136 !mn_itree_is_invalidating(subscriptions)) {
137 spin_unlock(&subscriptions->lock);
138 return;
141 /* Make invalidate_seq even */
142 subscriptions->invalidate_seq++;
145 * The inv_end incorporates a deferred mechanism like rtnl_unlock().
146 * Adds and removes are queued until the final inv_end happens then
147 * they are progressed. This arrangement for tree updates is used to
148 * avoid using a blocking lock during invalidate_range_start.
150 hlist_for_each_entry_safe(interval_sub, next,
151 &subscriptions->deferred_list,
152 deferred_item) {
153 if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb))
154 interval_tree_insert(&interval_sub->interval_tree,
155 &subscriptions->itree);
156 else
157 interval_tree_remove(&interval_sub->interval_tree,
158 &subscriptions->itree);
159 hlist_del(&interval_sub->deferred_item);
161 spin_unlock(&subscriptions->lock);
163 wake_up_all(&subscriptions->wq);
167 * mmu_interval_read_begin - Begin a read side critical section against a VA
168 * range
169 * interval_sub: The interval subscription
171 * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
172 * collision-retry scheme similar to seqcount for the VA range under
173 * subscription. If the mm invokes invalidation during the critical section
174 * then mmu_interval_read_retry() will return true.
176 * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
177 * require a blocking context. The critical region formed by this can sleep,
178 * and the required 'user_lock' can also be a sleeping lock.
180 * The caller is required to provide a 'user_lock' to serialize both teardown
181 * and setup.
183 * The return value should be passed to mmu_interval_read_retry().
185 unsigned long
186 mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub)
188 struct mmu_notifier_subscriptions *subscriptions =
189 interval_sub->mm->notifier_subscriptions;
190 unsigned long seq;
191 bool is_invalidating;
194 * If the subscription has a different seq value under the user_lock
195 * than we started with then it has collided.
197 * If the subscription currently has the same seq value as the
198 * subscriptions seq, then it is currently between
199 * invalidate_start/end and is colliding.
201 * The locking looks broadly like this:
202 * mn_tree_invalidate_start(): mmu_interval_read_begin():
203 * spin_lock
204 * seq = READ_ONCE(interval_sub->invalidate_seq);
205 * seq == subs->invalidate_seq
206 * spin_unlock
207 * spin_lock
208 * seq = ++subscriptions->invalidate_seq
209 * spin_unlock
210 * op->invalidate_range():
211 * user_lock
212 * mmu_interval_set_seq()
213 * interval_sub->invalidate_seq = seq
214 * user_unlock
216 * [Required: mmu_interval_read_retry() == true]
218 * mn_itree_inv_end():
219 * spin_lock
220 * seq = ++subscriptions->invalidate_seq
221 * spin_unlock
223 * user_lock
224 * mmu_interval_read_retry():
225 * interval_sub->invalidate_seq != seq
226 * user_unlock
228 * Barriers are not needed here as any races here are closed by an
229 * eventual mmu_interval_read_retry(), which provides a barrier via the
230 * user_lock.
232 spin_lock(&subscriptions->lock);
233 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
234 seq = READ_ONCE(interval_sub->invalidate_seq);
235 is_invalidating = seq == subscriptions->invalidate_seq;
236 spin_unlock(&subscriptions->lock);
239 * interval_sub->invalidate_seq must always be set to an odd value via
240 * mmu_interval_set_seq() using the provided cur_seq from
241 * mn_itree_inv_start_range(). This ensures that if seq does wrap we
242 * will always clear the below sleep in some reasonable time as
243 * subscriptions->invalidate_seq is even in the idle state.
245 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
246 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
247 if (is_invalidating)
248 wait_event(subscriptions->wq,
249 READ_ONCE(subscriptions->invalidate_seq) != seq);
252 * Notice that mmu_interval_read_retry() can already be true at this
253 * point, avoiding loops here allows the caller to provide a global
254 * time bound.
257 return seq;
259 EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
261 static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions,
262 struct mm_struct *mm)
264 struct mmu_notifier_range range = {
265 .flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
266 .event = MMU_NOTIFY_RELEASE,
267 .mm = mm,
268 .start = 0,
269 .end = ULONG_MAX,
271 struct mmu_interval_notifier *interval_sub;
272 unsigned long cur_seq;
273 bool ret;
275 for (interval_sub =
276 mn_itree_inv_start_range(subscriptions, &range, &cur_seq);
277 interval_sub;
278 interval_sub = mn_itree_inv_next(interval_sub, &range)) {
279 ret = interval_sub->ops->invalidate(interval_sub, &range,
280 cur_seq);
281 WARN_ON(!ret);
284 mn_itree_inv_end(subscriptions);
288 * This function can't run concurrently against mmu_notifier_register
289 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
290 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
291 * in parallel despite there being no task using this mm any more,
292 * through the vmas outside of the exit_mmap context, such as with
293 * vmtruncate. This serializes against mmu_notifier_unregister with
294 * the notifier_subscriptions->lock in addition to SRCU and it serializes
295 * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions
296 * can't go away from under us as exit_mmap holds an mm_count pin
297 * itself.
299 static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions,
300 struct mm_struct *mm)
302 struct mmu_notifier *subscription;
303 int id;
306 * SRCU here will block mmu_notifier_unregister until
307 * ->release returns.
309 id = srcu_read_lock(&srcu);
310 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist)
312 * If ->release runs before mmu_notifier_unregister it must be
313 * handled, as it's the only way for the driver to flush all
314 * existing sptes and stop the driver from establishing any more
315 * sptes before all the pages in the mm are freed.
317 if (subscription->ops->release)
318 subscription->ops->release(subscription, mm);
320 spin_lock(&subscriptions->lock);
321 while (unlikely(!hlist_empty(&subscriptions->list))) {
322 subscription = hlist_entry(subscriptions->list.first,
323 struct mmu_notifier, hlist);
325 * We arrived before mmu_notifier_unregister so
326 * mmu_notifier_unregister will do nothing other than to wait
327 * for ->release to finish and for mmu_notifier_unregister to
328 * return.
330 hlist_del_init_rcu(&subscription->hlist);
332 spin_unlock(&subscriptions->lock);
333 srcu_read_unlock(&srcu, id);
336 * synchronize_srcu here prevents mmu_notifier_release from returning to
337 * exit_mmap (which would proceed with freeing all pages in the mm)
338 * until the ->release method returns, if it was invoked by
339 * mmu_notifier_unregister.
341 * The notifier_subscriptions can't go away from under us because
342 * one mm_count is held by exit_mmap.
344 synchronize_srcu(&srcu);
347 void __mmu_notifier_release(struct mm_struct *mm)
349 struct mmu_notifier_subscriptions *subscriptions =
350 mm->notifier_subscriptions;
352 if (subscriptions->has_itree)
353 mn_itree_release(subscriptions, mm);
355 if (!hlist_empty(&subscriptions->list))
356 mn_hlist_release(subscriptions, mm);
360 * If no young bitflag is supported by the hardware, ->clear_flush_young can
361 * unmap the address and return 1 or 0 depending if the mapping previously
362 * existed or not.
364 int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
365 unsigned long start,
366 unsigned long end)
368 struct mmu_notifier *subscription;
369 int young = 0, id;
371 id = srcu_read_lock(&srcu);
372 hlist_for_each_entry_rcu(subscription,
373 &mm->notifier_subscriptions->list, hlist) {
374 if (subscription->ops->clear_flush_young)
375 young |= subscription->ops->clear_flush_young(
376 subscription, mm, start, end);
378 srcu_read_unlock(&srcu, id);
380 return young;
383 int __mmu_notifier_clear_young(struct mm_struct *mm,
384 unsigned long start,
385 unsigned long end)
387 struct mmu_notifier *subscription;
388 int young = 0, id;
390 id = srcu_read_lock(&srcu);
391 hlist_for_each_entry_rcu(subscription,
392 &mm->notifier_subscriptions->list, hlist) {
393 if (subscription->ops->clear_young)
394 young |= subscription->ops->clear_young(subscription,
395 mm, start, end);
397 srcu_read_unlock(&srcu, id);
399 return young;
402 int __mmu_notifier_test_young(struct mm_struct *mm,
403 unsigned long address)
405 struct mmu_notifier *subscription;
406 int young = 0, id;
408 id = srcu_read_lock(&srcu);
409 hlist_for_each_entry_rcu(subscription,
410 &mm->notifier_subscriptions->list, hlist) {
411 if (subscription->ops->test_young) {
412 young = subscription->ops->test_young(subscription, mm,
413 address);
414 if (young)
415 break;
418 srcu_read_unlock(&srcu, id);
420 return young;
423 void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
424 pte_t pte)
426 struct mmu_notifier *subscription;
427 int id;
429 id = srcu_read_lock(&srcu);
430 hlist_for_each_entry_rcu(subscription,
431 &mm->notifier_subscriptions->list, hlist) {
432 if (subscription->ops->change_pte)
433 subscription->ops->change_pte(subscription, mm, address,
434 pte);
436 srcu_read_unlock(&srcu, id);
439 static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions,
440 const struct mmu_notifier_range *range)
442 struct mmu_interval_notifier *interval_sub;
443 unsigned long cur_seq;
445 for (interval_sub =
446 mn_itree_inv_start_range(subscriptions, range, &cur_seq);
447 interval_sub;
448 interval_sub = mn_itree_inv_next(interval_sub, range)) {
449 bool ret;
451 ret = interval_sub->ops->invalidate(interval_sub, range,
452 cur_seq);
453 if (!ret) {
454 if (WARN_ON(mmu_notifier_range_blockable(range)))
455 continue;
456 goto out_would_block;
459 return 0;
461 out_would_block:
463 * On -EAGAIN the non-blocking caller is not allowed to call
464 * invalidate_range_end()
466 mn_itree_inv_end(subscriptions);
467 return -EAGAIN;
470 static int mn_hlist_invalidate_range_start(
471 struct mmu_notifier_subscriptions *subscriptions,
472 struct mmu_notifier_range *range)
474 struct mmu_notifier *subscription;
475 int ret = 0;
476 int id;
478 id = srcu_read_lock(&srcu);
479 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist) {
480 const struct mmu_notifier_ops *ops = subscription->ops;
482 if (ops->invalidate_range_start) {
483 int _ret;
485 if (!mmu_notifier_range_blockable(range))
486 non_block_start();
487 _ret = ops->invalidate_range_start(subscription, range);
488 if (!mmu_notifier_range_blockable(range))
489 non_block_end();
490 if (_ret) {
491 pr_info("%pS callback failed with %d in %sblockable context.\n",
492 ops->invalidate_range_start, _ret,
493 !mmu_notifier_range_blockable(range) ?
494 "non-" :
495 "");
496 WARN_ON(mmu_notifier_range_blockable(range) ||
497 _ret != -EAGAIN);
498 ret = _ret;
502 srcu_read_unlock(&srcu, id);
504 return ret;
507 int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
509 struct mmu_notifier_subscriptions *subscriptions =
510 range->mm->notifier_subscriptions;
511 int ret;
513 if (subscriptions->has_itree) {
514 ret = mn_itree_invalidate(subscriptions, range);
515 if (ret)
516 return ret;
518 if (!hlist_empty(&subscriptions->list))
519 return mn_hlist_invalidate_range_start(subscriptions, range);
520 return 0;
523 static void
524 mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions,
525 struct mmu_notifier_range *range, bool only_end)
527 struct mmu_notifier *subscription;
528 int id;
530 id = srcu_read_lock(&srcu);
531 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist) {
533 * Call invalidate_range here too to avoid the need for the
534 * subsystem of having to register an invalidate_range_end
535 * call-back when there is invalidate_range already. Usually a
536 * subsystem registers either invalidate_range_start()/end() or
537 * invalidate_range(), so this will be no additional overhead
538 * (besides the pointer check).
540 * We skip call to invalidate_range() if we know it is safe ie
541 * call site use mmu_notifier_invalidate_range_only_end() which
542 * is safe to do when we know that a call to invalidate_range()
543 * already happen under page table lock.
545 if (!only_end && subscription->ops->invalidate_range)
546 subscription->ops->invalidate_range(subscription,
547 range->mm,
548 range->start,
549 range->end);
550 if (subscription->ops->invalidate_range_end) {
551 if (!mmu_notifier_range_blockable(range))
552 non_block_start();
553 subscription->ops->invalidate_range_end(subscription,
554 range);
555 if (!mmu_notifier_range_blockable(range))
556 non_block_end();
559 srcu_read_unlock(&srcu, id);
562 void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
563 bool only_end)
565 struct mmu_notifier_subscriptions *subscriptions =
566 range->mm->notifier_subscriptions;
568 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
569 if (subscriptions->has_itree)
570 mn_itree_inv_end(subscriptions);
572 if (!hlist_empty(&subscriptions->list))
573 mn_hlist_invalidate_end(subscriptions, range, only_end);
574 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
577 void __mmu_notifier_invalidate_range(struct mm_struct *mm,
578 unsigned long start, unsigned long end)
580 struct mmu_notifier *subscription;
581 int id;
583 id = srcu_read_lock(&srcu);
584 hlist_for_each_entry_rcu(subscription,
585 &mm->notifier_subscriptions->list, hlist) {
586 if (subscription->ops->invalidate_range)
587 subscription->ops->invalidate_range(subscription, mm,
588 start, end);
590 srcu_read_unlock(&srcu, id);
594 * Same as mmu_notifier_register but here the caller must hold the mmap_sem in
595 * write mode. A NULL mn signals the notifier is being registered for itree
596 * mode.
598 int __mmu_notifier_register(struct mmu_notifier *subscription,
599 struct mm_struct *mm)
601 struct mmu_notifier_subscriptions *subscriptions = NULL;
602 int ret;
604 lockdep_assert_held_write(&mm->mmap_sem);
605 BUG_ON(atomic_read(&mm->mm_users) <= 0);
607 if (IS_ENABLED(CONFIG_LOCKDEP)) {
608 fs_reclaim_acquire(GFP_KERNEL);
609 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
610 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
611 fs_reclaim_release(GFP_KERNEL);
614 if (!mm->notifier_subscriptions) {
616 * kmalloc cannot be called under mm_take_all_locks(), but we
617 * know that mm->notifier_subscriptions can't change while we
618 * hold the write side of the mmap_sem.
620 subscriptions = kzalloc(
621 sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL);
622 if (!subscriptions)
623 return -ENOMEM;
625 INIT_HLIST_HEAD(&subscriptions->list);
626 spin_lock_init(&subscriptions->lock);
627 subscriptions->invalidate_seq = 2;
628 subscriptions->itree = RB_ROOT_CACHED;
629 init_waitqueue_head(&subscriptions->wq);
630 INIT_HLIST_HEAD(&subscriptions->deferred_list);
633 ret = mm_take_all_locks(mm);
634 if (unlikely(ret))
635 goto out_clean;
638 * Serialize the update against mmu_notifier_unregister. A
639 * side note: mmu_notifier_release can't run concurrently with
640 * us because we hold the mm_users pin (either implicitly as
641 * current->mm or explicitly with get_task_mm() or similar).
642 * We can't race against any other mmu notifier method either
643 * thanks to mm_take_all_locks().
645 * release semantics on the initialization of the
646 * mmu_notifier_subscriptions's contents are provided for unlocked
647 * readers. acquire can only be used while holding the mmgrab or
648 * mmget, and is safe because once created the
649 * mmu_notifier_subscriptions is not freed until the mm is destroyed.
650 * As above, users holding the mmap_sem or one of the
651 * mm_take_all_locks() do not need to use acquire semantics.
653 if (subscriptions)
654 smp_store_release(&mm->notifier_subscriptions, subscriptions);
656 if (subscription) {
657 /* Pairs with the mmdrop in mmu_notifier_unregister_* */
658 mmgrab(mm);
659 subscription->mm = mm;
660 subscription->users = 1;
662 spin_lock(&mm->notifier_subscriptions->lock);
663 hlist_add_head_rcu(&subscription->hlist,
664 &mm->notifier_subscriptions->list);
665 spin_unlock(&mm->notifier_subscriptions->lock);
666 } else
667 mm->notifier_subscriptions->has_itree = true;
669 mm_drop_all_locks(mm);
670 BUG_ON(atomic_read(&mm->mm_users) <= 0);
671 return 0;
673 out_clean:
674 kfree(subscriptions);
675 return ret;
677 EXPORT_SYMBOL_GPL(__mmu_notifier_register);
680 * mmu_notifier_register - Register a notifier on a mm
681 * @mn: The notifier to attach
682 * @mm: The mm to attach the notifier to
684 * Must not hold mmap_sem nor any other VM related lock when calling
685 * this registration function. Must also ensure mm_users can't go down
686 * to zero while this runs to avoid races with mmu_notifier_release,
687 * so mm has to be current->mm or the mm should be pinned safely such
688 * as with get_task_mm(). If the mm is not current->mm, the mm_users
689 * pin should be released by calling mmput after mmu_notifier_register
690 * returns.
692 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
693 * unregister the notifier.
695 * While the caller has a mmu_notifier get the subscription->mm pointer will remain
696 * valid, and can be converted to an active mm pointer via mmget_not_zero().
698 int mmu_notifier_register(struct mmu_notifier *subscription,
699 struct mm_struct *mm)
701 int ret;
703 down_write(&mm->mmap_sem);
704 ret = __mmu_notifier_register(subscription, mm);
705 up_write(&mm->mmap_sem);
706 return ret;
708 EXPORT_SYMBOL_GPL(mmu_notifier_register);
710 static struct mmu_notifier *
711 find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
713 struct mmu_notifier *subscription;
715 spin_lock(&mm->notifier_subscriptions->lock);
716 hlist_for_each_entry_rcu(subscription,
717 &mm->notifier_subscriptions->list, hlist) {
718 if (subscription->ops != ops)
719 continue;
721 if (likely(subscription->users != UINT_MAX))
722 subscription->users++;
723 else
724 subscription = ERR_PTR(-EOVERFLOW);
725 spin_unlock(&mm->notifier_subscriptions->lock);
726 return subscription;
728 spin_unlock(&mm->notifier_subscriptions->lock);
729 return NULL;
733 * mmu_notifier_get_locked - Return the single struct mmu_notifier for
734 * the mm & ops
735 * @ops: The operations struct being subscribe with
736 * @mm : The mm to attach notifiers too
738 * This function either allocates a new mmu_notifier via
739 * ops->alloc_notifier(), or returns an already existing notifier on the
740 * list. The value of the ops pointer is used to determine when two notifiers
741 * are the same.
743 * Each call to mmu_notifier_get() must be paired with a call to
744 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_sem.
746 * While the caller has a mmu_notifier get the mm pointer will remain valid,
747 * and can be converted to an active mm pointer via mmget_not_zero().
749 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
750 struct mm_struct *mm)
752 struct mmu_notifier *subscription;
753 int ret;
755 lockdep_assert_held_write(&mm->mmap_sem);
757 if (mm->notifier_subscriptions) {
758 subscription = find_get_mmu_notifier(mm, ops);
759 if (subscription)
760 return subscription;
763 subscription = ops->alloc_notifier(mm);
764 if (IS_ERR(subscription))
765 return subscription;
766 subscription->ops = ops;
767 ret = __mmu_notifier_register(subscription, mm);
768 if (ret)
769 goto out_free;
770 return subscription;
771 out_free:
772 subscription->ops->free_notifier(subscription);
773 return ERR_PTR(ret);
775 EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
777 /* this is called after the last mmu_notifier_unregister() returned */
778 void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
780 BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list));
781 kfree(mm->notifier_subscriptions);
782 mm->notifier_subscriptions = LIST_POISON1; /* debug */
786 * This releases the mm_count pin automatically and frees the mm
787 * structure if it was the last user of it. It serializes against
788 * running mmu notifiers with SRCU and against mmu_notifier_unregister
789 * with the unregister lock + SRCU. All sptes must be dropped before
790 * calling mmu_notifier_unregister. ->release or any other notifier
791 * method may be invoked concurrently with mmu_notifier_unregister,
792 * and only after mmu_notifier_unregister returned we're guaranteed
793 * that ->release or any other method can't run anymore.
795 void mmu_notifier_unregister(struct mmu_notifier *subscription,
796 struct mm_struct *mm)
798 BUG_ON(atomic_read(&mm->mm_count) <= 0);
800 if (!hlist_unhashed(&subscription->hlist)) {
802 * SRCU here will force exit_mmap to wait for ->release to
803 * finish before freeing the pages.
805 int id;
807 id = srcu_read_lock(&srcu);
809 * exit_mmap will block in mmu_notifier_release to guarantee
810 * that ->release is called before freeing the pages.
812 if (subscription->ops->release)
813 subscription->ops->release(subscription, mm);
814 srcu_read_unlock(&srcu, id);
816 spin_lock(&mm->notifier_subscriptions->lock);
818 * Can not use list_del_rcu() since __mmu_notifier_release
819 * can delete it before we hold the lock.
821 hlist_del_init_rcu(&subscription->hlist);
822 spin_unlock(&mm->notifier_subscriptions->lock);
826 * Wait for any running method to finish, of course including
827 * ->release if it was run by mmu_notifier_release instead of us.
829 synchronize_srcu(&srcu);
831 BUG_ON(atomic_read(&mm->mm_count) <= 0);
833 mmdrop(mm);
835 EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
837 static void mmu_notifier_free_rcu(struct rcu_head *rcu)
839 struct mmu_notifier *subscription =
840 container_of(rcu, struct mmu_notifier, rcu);
841 struct mm_struct *mm = subscription->mm;
843 subscription->ops->free_notifier(subscription);
844 /* Pairs with the get in __mmu_notifier_register() */
845 mmdrop(mm);
849 * mmu_notifier_put - Release the reference on the notifier
850 * @mn: The notifier to act on
852 * This function must be paired with each mmu_notifier_get(), it releases the
853 * reference obtained by the get. If this is the last reference then process
854 * to free the notifier will be run asynchronously.
856 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
857 * when the mm_struct is destroyed. Instead free_notifier is always called to
858 * release any resources held by the user.
860 * As ops->release is not guaranteed to be called, the user must ensure that
861 * all sptes are dropped, and no new sptes can be established before
862 * mmu_notifier_put() is called.
864 * This function can be called from the ops->release callback, however the
865 * caller must still ensure it is called pairwise with mmu_notifier_get().
867 * Modules calling this function must call mmu_notifier_synchronize() in
868 * their __exit functions to ensure the async work is completed.
870 void mmu_notifier_put(struct mmu_notifier *subscription)
872 struct mm_struct *mm = subscription->mm;
874 spin_lock(&mm->notifier_subscriptions->lock);
875 if (WARN_ON(!subscription->users) || --subscription->users)
876 goto out_unlock;
877 hlist_del_init_rcu(&subscription->hlist);
878 spin_unlock(&mm->notifier_subscriptions->lock);
880 call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu);
881 return;
883 out_unlock:
884 spin_unlock(&mm->notifier_subscriptions->lock);
886 EXPORT_SYMBOL_GPL(mmu_notifier_put);
888 static int __mmu_interval_notifier_insert(
889 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
890 struct mmu_notifier_subscriptions *subscriptions, unsigned long start,
891 unsigned long length, const struct mmu_interval_notifier_ops *ops)
893 interval_sub->mm = mm;
894 interval_sub->ops = ops;
895 RB_CLEAR_NODE(&interval_sub->interval_tree.rb);
896 interval_sub->interval_tree.start = start;
898 * Note that the representation of the intervals in the interval tree
899 * considers the ending point as contained in the interval.
901 if (length == 0 ||
902 check_add_overflow(start, length - 1,
903 &interval_sub->interval_tree.last))
904 return -EOVERFLOW;
906 /* Must call with a mmget() held */
907 if (WARN_ON(atomic_read(&mm->mm_count) <= 0))
908 return -EINVAL;
910 /* pairs with mmdrop in mmu_interval_notifier_remove() */
911 mmgrab(mm);
914 * If some invalidate_range_start/end region is going on in parallel
915 * we don't know what VA ranges are affected, so we must assume this
916 * new range is included.
918 * If the itree is invalidating then we are not allowed to change
919 * it. Retrying until invalidation is done is tricky due to the
920 * possibility for live lock, instead defer the add to
921 * mn_itree_inv_end() so this algorithm is deterministic.
923 * In all cases the value for the interval_sub->invalidate_seq should be
924 * odd, see mmu_interval_read_begin()
926 spin_lock(&subscriptions->lock);
927 if (subscriptions->active_invalidate_ranges) {
928 if (mn_itree_is_invalidating(subscriptions))
929 hlist_add_head(&interval_sub->deferred_item,
930 &subscriptions->deferred_list);
931 else {
932 subscriptions->invalidate_seq |= 1;
933 interval_tree_insert(&interval_sub->interval_tree,
934 &subscriptions->itree);
936 interval_sub->invalidate_seq = subscriptions->invalidate_seq;
937 } else {
938 WARN_ON(mn_itree_is_invalidating(subscriptions));
940 * The starting seq for a subscription not under invalidation
941 * should be odd, not equal to the current invalidate_seq and
942 * invalidate_seq should not 'wrap' to the new seq any time
943 * soon.
945 interval_sub->invalidate_seq =
946 subscriptions->invalidate_seq - 1;
947 interval_tree_insert(&interval_sub->interval_tree,
948 &subscriptions->itree);
950 spin_unlock(&subscriptions->lock);
951 return 0;
955 * mmu_interval_notifier_insert - Insert an interval notifier
956 * @interval_sub: Interval subscription to register
957 * @start: Starting virtual address to monitor
958 * @length: Length of the range to monitor
959 * @mm : mm_struct to attach to
961 * This function subscribes the interval notifier for notifications from the
962 * mm. Upon return the ops related to mmu_interval_notifier will be called
963 * whenever an event that intersects with the given range occurs.
965 * Upon return the range_notifier may not be present in the interval tree yet.
966 * The caller must use the normal interval notifier read flow via
967 * mmu_interval_read_begin() to establish SPTEs for this range.
969 int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
970 struct mm_struct *mm, unsigned long start,
971 unsigned long length,
972 const struct mmu_interval_notifier_ops *ops)
974 struct mmu_notifier_subscriptions *subscriptions;
975 int ret;
977 might_lock(&mm->mmap_sem);
979 subscriptions = smp_load_acquire(&mm->notifier_subscriptions);
980 if (!subscriptions || !subscriptions->has_itree) {
981 ret = mmu_notifier_register(NULL, mm);
982 if (ret)
983 return ret;
984 subscriptions = mm->notifier_subscriptions;
986 return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
987 start, length, ops);
989 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
991 int mmu_interval_notifier_insert_locked(
992 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
993 unsigned long start, unsigned long length,
994 const struct mmu_interval_notifier_ops *ops)
996 struct mmu_notifier_subscriptions *subscriptions =
997 mm->notifier_subscriptions;
998 int ret;
1000 lockdep_assert_held_write(&mm->mmap_sem);
1002 if (!subscriptions || !subscriptions->has_itree) {
1003 ret = __mmu_notifier_register(NULL, mm);
1004 if (ret)
1005 return ret;
1006 subscriptions = mm->notifier_subscriptions;
1008 return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1009 start, length, ops);
1011 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
1014 * mmu_interval_notifier_remove - Remove a interval notifier
1015 * @interval_sub: Interval subscription to unregister
1017 * This function must be paired with mmu_interval_notifier_insert(). It cannot
1018 * be called from any ops callback.
1020 * Once this returns ops callbacks are no longer running on other CPUs and
1021 * will not be called in future.
1023 void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub)
1025 struct mm_struct *mm = interval_sub->mm;
1026 struct mmu_notifier_subscriptions *subscriptions =
1027 mm->notifier_subscriptions;
1028 unsigned long seq = 0;
1030 might_sleep();
1032 spin_lock(&subscriptions->lock);
1033 if (mn_itree_is_invalidating(subscriptions)) {
1035 * remove is being called after insert put this on the
1036 * deferred list, but before the deferred list was processed.
1038 if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) {
1039 hlist_del(&interval_sub->deferred_item);
1040 } else {
1041 hlist_add_head(&interval_sub->deferred_item,
1042 &subscriptions->deferred_list);
1043 seq = subscriptions->invalidate_seq;
1045 } else {
1046 WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb));
1047 interval_tree_remove(&interval_sub->interval_tree,
1048 &subscriptions->itree);
1050 spin_unlock(&subscriptions->lock);
1053 * The possible sleep on progress in the invalidation requires the
1054 * caller not hold any locks held by invalidation callbacks.
1056 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
1057 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
1058 if (seq)
1059 wait_event(subscriptions->wq,
1060 READ_ONCE(subscriptions->invalidate_seq) != seq);
1062 /* pairs with mmgrab in mmu_interval_notifier_insert() */
1063 mmdrop(mm);
1065 EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
1068 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
1070 * This function ensures that all outstanding async SRU work from
1071 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
1072 * associated with an unused mmu_notifier will no longer be called.
1074 * Before using the caller must ensure that all of its mmu_notifiers have been
1075 * fully released via mmu_notifier_put().
1077 * Modules using the mmu_notifier_put() API should call this in their __exit
1078 * function to avoid module unloading races.
1080 void mmu_notifier_synchronize(void)
1082 synchronize_srcu(&srcu);
1084 EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
1086 bool
1087 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
1089 if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
1090 return false;
1091 /* Return true if the vma still have the read flag set. */
1092 return range->vma->vm_flags & VM_READ;
1094 EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);