2 * Software multibuffer async crypto daemon.
4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
6 * Adapted from crypto daemon.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
15 #include <crypto/algapi.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/mcryptd.h>
19 #include <crypto/crypto_wq.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/sched/stat.h>
28 #include <linux/slab.h>
30 #define MCRYPTD_MAX_CPU_QLEN 100
31 #define MCRYPTD_BATCH 9
33 static void *mcryptd_alloc_instance(struct crypto_alg
*alg
, unsigned int head
,
36 struct mcryptd_flush_list
{
37 struct list_head list
;
41 static struct mcryptd_flush_list __percpu
*mcryptd_flist
;
43 struct hashd_instance_ctx
{
44 struct crypto_ahash_spawn spawn
;
45 struct mcryptd_queue
*queue
;
48 static void mcryptd_queue_worker(struct work_struct
*work
);
50 void mcryptd_arm_flusher(struct mcryptd_alg_cstate
*cstate
, unsigned long delay
)
52 struct mcryptd_flush_list
*flist
;
54 if (!cstate
->flusher_engaged
) {
55 /* put the flusher on the flush list */
56 flist
= per_cpu_ptr(mcryptd_flist
, smp_processor_id());
57 mutex_lock(&flist
->lock
);
58 list_add_tail(&cstate
->flush_list
, &flist
->list
);
59 cstate
->flusher_engaged
= true;
60 cstate
->next_flush
= jiffies
+ delay
;
61 queue_delayed_work_on(smp_processor_id(), kcrypto_wq
,
62 &cstate
->flush
, delay
);
63 mutex_unlock(&flist
->lock
);
66 EXPORT_SYMBOL(mcryptd_arm_flusher
);
68 static int mcryptd_init_queue(struct mcryptd_queue
*queue
,
69 unsigned int max_cpu_qlen
)
72 struct mcryptd_cpu_queue
*cpu_queue
;
74 queue
->cpu_queue
= alloc_percpu(struct mcryptd_cpu_queue
);
75 pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue
, queue
->cpu_queue
);
76 if (!queue
->cpu_queue
)
78 for_each_possible_cpu(cpu
) {
79 cpu_queue
= per_cpu_ptr(queue
->cpu_queue
, cpu
);
80 pr_debug("cpu_queue #%d %p\n", cpu
, queue
->cpu_queue
);
81 crypto_init_queue(&cpu_queue
->queue
, max_cpu_qlen
);
82 INIT_WORK(&cpu_queue
->work
, mcryptd_queue_worker
);
83 spin_lock_init(&cpu_queue
->q_lock
);
88 static void mcryptd_fini_queue(struct mcryptd_queue
*queue
)
91 struct mcryptd_cpu_queue
*cpu_queue
;
93 for_each_possible_cpu(cpu
) {
94 cpu_queue
= per_cpu_ptr(queue
->cpu_queue
, cpu
);
95 BUG_ON(cpu_queue
->queue
.qlen
);
97 free_percpu(queue
->cpu_queue
);
100 static int mcryptd_enqueue_request(struct mcryptd_queue
*queue
,
101 struct crypto_async_request
*request
,
102 struct mcryptd_hash_request_ctx
*rctx
)
105 struct mcryptd_cpu_queue
*cpu_queue
;
107 cpu_queue
= raw_cpu_ptr(queue
->cpu_queue
);
108 spin_lock(&cpu_queue
->q_lock
);
109 cpu
= smp_processor_id();
110 rctx
->tag
.cpu
= smp_processor_id();
112 err
= crypto_enqueue_request(&cpu_queue
->queue
, request
);
113 pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
114 cpu
, cpu_queue
, request
);
115 spin_unlock(&cpu_queue
->q_lock
);
116 queue_work_on(cpu
, kcrypto_wq
, &cpu_queue
->work
);
122 * Try to opportunisticlly flush the partially completed jobs if
123 * crypto daemon is the only task running.
125 static void mcryptd_opportunistic_flush(void)
127 struct mcryptd_flush_list
*flist
;
128 struct mcryptd_alg_cstate
*cstate
;
130 flist
= per_cpu_ptr(mcryptd_flist
, smp_processor_id());
131 while (single_task_running()) {
132 mutex_lock(&flist
->lock
);
133 cstate
= list_first_entry_or_null(&flist
->list
,
134 struct mcryptd_alg_cstate
, flush_list
);
135 if (!cstate
|| !cstate
->flusher_engaged
) {
136 mutex_unlock(&flist
->lock
);
139 list_del(&cstate
->flush_list
);
140 cstate
->flusher_engaged
= false;
141 mutex_unlock(&flist
->lock
);
142 cstate
->alg_state
->flusher(cstate
);
147 * Called in workqueue context, do one real cryption work (via
148 * req->complete) and reschedule itself if there are more work to
151 static void mcryptd_queue_worker(struct work_struct
*work
)
153 struct mcryptd_cpu_queue
*cpu_queue
;
154 struct crypto_async_request
*req
, *backlog
;
158 * Need to loop through more than once for multi-buffer to
162 cpu_queue
= container_of(work
, struct mcryptd_cpu_queue
, work
);
164 while (i
< MCRYPTD_BATCH
|| single_task_running()) {
166 spin_lock_bh(&cpu_queue
->q_lock
);
167 backlog
= crypto_get_backlog(&cpu_queue
->queue
);
168 req
= crypto_dequeue_request(&cpu_queue
->queue
);
169 spin_unlock_bh(&cpu_queue
->q_lock
);
172 mcryptd_opportunistic_flush();
177 backlog
->complete(backlog
, -EINPROGRESS
);
178 req
->complete(req
, 0);
179 if (!cpu_queue
->queue
.qlen
)
183 if (cpu_queue
->queue
.qlen
)
184 queue_work_on(smp_processor_id(), kcrypto_wq
, &cpu_queue
->work
);
187 void mcryptd_flusher(struct work_struct
*__work
)
189 struct mcryptd_alg_cstate
*alg_cpu_state
;
190 struct mcryptd_alg_state
*alg_state
;
191 struct mcryptd_flush_list
*flist
;
194 cpu
= smp_processor_id();
195 alg_cpu_state
= container_of(to_delayed_work(__work
),
196 struct mcryptd_alg_cstate
, flush
);
197 alg_state
= alg_cpu_state
->alg_state
;
198 if (alg_cpu_state
->cpu
!= cpu
)
199 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
200 cpu
, alg_cpu_state
->cpu
);
202 if (alg_cpu_state
->flusher_engaged
) {
203 flist
= per_cpu_ptr(mcryptd_flist
, cpu
);
204 mutex_lock(&flist
->lock
);
205 list_del(&alg_cpu_state
->flush_list
);
206 alg_cpu_state
->flusher_engaged
= false;
207 mutex_unlock(&flist
->lock
);
208 alg_state
->flusher(alg_cpu_state
);
211 EXPORT_SYMBOL_GPL(mcryptd_flusher
);
213 static inline struct mcryptd_queue
*mcryptd_get_queue(struct crypto_tfm
*tfm
)
215 struct crypto_instance
*inst
= crypto_tfm_alg_instance(tfm
);
216 struct mcryptd_instance_ctx
*ictx
= crypto_instance_ctx(inst
);
221 static void *mcryptd_alloc_instance(struct crypto_alg
*alg
, unsigned int head
,
225 struct crypto_instance
*inst
;
228 p
= kzalloc(head
+ sizeof(*inst
) + tail
, GFP_KERNEL
);
230 return ERR_PTR(-ENOMEM
);
232 inst
= (void *)(p
+ head
);
235 if (snprintf(inst
->alg
.cra_driver_name
, CRYPTO_MAX_ALG_NAME
,
236 "mcryptd(%s)", alg
->cra_driver_name
) >= CRYPTO_MAX_ALG_NAME
)
239 memcpy(inst
->alg
.cra_name
, alg
->cra_name
, CRYPTO_MAX_ALG_NAME
);
241 inst
->alg
.cra_priority
= alg
->cra_priority
+ 50;
242 inst
->alg
.cra_blocksize
= alg
->cra_blocksize
;
243 inst
->alg
.cra_alignmask
= alg
->cra_alignmask
;
254 static inline bool mcryptd_check_internal(struct rtattr
**tb
, u32
*type
,
257 struct crypto_attr_type
*algt
;
259 algt
= crypto_get_attr_type(tb
);
263 *type
|= algt
->type
& CRYPTO_ALG_INTERNAL
;
264 *mask
|= algt
->mask
& CRYPTO_ALG_INTERNAL
;
266 if (*type
& *mask
& CRYPTO_ALG_INTERNAL
)
272 static int mcryptd_hash_init_tfm(struct crypto_tfm
*tfm
)
274 struct crypto_instance
*inst
= crypto_tfm_alg_instance(tfm
);
275 struct hashd_instance_ctx
*ictx
= crypto_instance_ctx(inst
);
276 struct crypto_ahash_spawn
*spawn
= &ictx
->spawn
;
277 struct mcryptd_hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
278 struct crypto_ahash
*hash
;
280 hash
= crypto_spawn_ahash(spawn
);
282 return PTR_ERR(hash
);
285 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
286 sizeof(struct mcryptd_hash_request_ctx
) +
287 crypto_ahash_reqsize(hash
));
291 static void mcryptd_hash_exit_tfm(struct crypto_tfm
*tfm
)
293 struct mcryptd_hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
295 crypto_free_ahash(ctx
->child
);
298 static int mcryptd_hash_setkey(struct crypto_ahash
*parent
,
299 const u8
*key
, unsigned int keylen
)
301 struct mcryptd_hash_ctx
*ctx
= crypto_ahash_ctx(parent
);
302 struct crypto_ahash
*child
= ctx
->child
;
305 crypto_ahash_clear_flags(child
, CRYPTO_TFM_REQ_MASK
);
306 crypto_ahash_set_flags(child
, crypto_ahash_get_flags(parent
) &
307 CRYPTO_TFM_REQ_MASK
);
308 err
= crypto_ahash_setkey(child
, key
, keylen
);
309 crypto_ahash_set_flags(parent
, crypto_ahash_get_flags(child
) &
310 CRYPTO_TFM_RES_MASK
);
314 static int mcryptd_hash_enqueue(struct ahash_request
*req
,
315 crypto_completion_t complete
)
319 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
320 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
321 struct mcryptd_queue
*queue
=
322 mcryptd_get_queue(crypto_ahash_tfm(tfm
));
324 rctx
->complete
= req
->base
.complete
;
325 req
->base
.complete
= complete
;
327 ret
= mcryptd_enqueue_request(queue
, &req
->base
, rctx
);
332 static void mcryptd_hash_init(struct crypto_async_request
*req_async
, int err
)
334 struct mcryptd_hash_ctx
*ctx
= crypto_tfm_ctx(req_async
->tfm
);
335 struct crypto_ahash
*child
= ctx
->child
;
336 struct ahash_request
*req
= ahash_request_cast(req_async
);
337 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
338 struct ahash_request
*desc
= &rctx
->areq
;
340 if (unlikely(err
== -EINPROGRESS
))
343 ahash_request_set_tfm(desc
, child
);
344 ahash_request_set_callback(desc
, CRYPTO_TFM_REQ_MAY_SLEEP
,
345 rctx
->complete
, req_async
);
347 rctx
->out
= req
->result
;
348 err
= crypto_ahash_init(desc
);
352 rctx
->complete(&req
->base
, err
);
356 static int mcryptd_hash_init_enqueue(struct ahash_request
*req
)
358 return mcryptd_hash_enqueue(req
, mcryptd_hash_init
);
361 static void mcryptd_hash_update(struct crypto_async_request
*req_async
, int err
)
363 struct ahash_request
*req
= ahash_request_cast(req_async
);
364 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
366 if (unlikely(err
== -EINPROGRESS
))
369 rctx
->out
= req
->result
;
370 err
= ahash_mcryptd_update(&rctx
->areq
);
372 req
->base
.complete
= rctx
->complete
;
379 rctx
->complete(&req
->base
, err
);
383 static int mcryptd_hash_update_enqueue(struct ahash_request
*req
)
385 return mcryptd_hash_enqueue(req
, mcryptd_hash_update
);
388 static void mcryptd_hash_final(struct crypto_async_request
*req_async
, int err
)
390 struct ahash_request
*req
= ahash_request_cast(req_async
);
391 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
393 if (unlikely(err
== -EINPROGRESS
))
396 rctx
->out
= req
->result
;
397 err
= ahash_mcryptd_final(&rctx
->areq
);
399 req
->base
.complete
= rctx
->complete
;
406 rctx
->complete(&req
->base
, err
);
410 static int mcryptd_hash_final_enqueue(struct ahash_request
*req
)
412 return mcryptd_hash_enqueue(req
, mcryptd_hash_final
);
415 static void mcryptd_hash_finup(struct crypto_async_request
*req_async
, int err
)
417 struct ahash_request
*req
= ahash_request_cast(req_async
);
418 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
420 if (unlikely(err
== -EINPROGRESS
))
422 rctx
->out
= req
->result
;
423 err
= ahash_mcryptd_finup(&rctx
->areq
);
426 req
->base
.complete
= rctx
->complete
;
433 rctx
->complete(&req
->base
, err
);
437 static int mcryptd_hash_finup_enqueue(struct ahash_request
*req
)
439 return mcryptd_hash_enqueue(req
, mcryptd_hash_finup
);
442 static void mcryptd_hash_digest(struct crypto_async_request
*req_async
, int err
)
444 struct mcryptd_hash_ctx
*ctx
= crypto_tfm_ctx(req_async
->tfm
);
445 struct crypto_ahash
*child
= ctx
->child
;
446 struct ahash_request
*req
= ahash_request_cast(req_async
);
447 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
448 struct ahash_request
*desc
= &rctx
->areq
;
450 if (unlikely(err
== -EINPROGRESS
))
453 ahash_request_set_tfm(desc
, child
);
454 ahash_request_set_callback(desc
, CRYPTO_TFM_REQ_MAY_SLEEP
,
455 rctx
->complete
, req_async
);
457 rctx
->out
= req
->result
;
458 err
= ahash_mcryptd_digest(desc
);
462 rctx
->complete(&req
->base
, err
);
466 static int mcryptd_hash_digest_enqueue(struct ahash_request
*req
)
468 return mcryptd_hash_enqueue(req
, mcryptd_hash_digest
);
471 static int mcryptd_hash_export(struct ahash_request
*req
, void *out
)
473 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
475 return crypto_ahash_export(&rctx
->areq
, out
);
478 static int mcryptd_hash_import(struct ahash_request
*req
, const void *in
)
480 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
482 return crypto_ahash_import(&rctx
->areq
, in
);
485 static int mcryptd_create_hash(struct crypto_template
*tmpl
, struct rtattr
**tb
,
486 struct mcryptd_queue
*queue
)
488 struct hashd_instance_ctx
*ctx
;
489 struct ahash_instance
*inst
;
490 struct hash_alg_common
*halg
;
491 struct crypto_alg
*alg
;
496 if (!mcryptd_check_internal(tb
, &type
, &mask
))
499 halg
= ahash_attr_alg(tb
[1], type
, mask
);
501 return PTR_ERR(halg
);
504 pr_debug("crypto: mcryptd hash alg: %s\n", alg
->cra_name
);
505 inst
= mcryptd_alloc_instance(alg
, ahash_instance_headroom(),
511 ctx
= ahash_instance_ctx(inst
);
514 err
= crypto_init_ahash_spawn(&ctx
->spawn
, halg
,
515 ahash_crypto_instance(inst
));
519 inst
->alg
.halg
.base
.cra_flags
= CRYPTO_ALG_ASYNC
|
520 (alg
->cra_flags
& (CRYPTO_ALG_INTERNAL
|
521 CRYPTO_ALG_OPTIONAL_KEY
));
523 inst
->alg
.halg
.digestsize
= halg
->digestsize
;
524 inst
->alg
.halg
.statesize
= halg
->statesize
;
525 inst
->alg
.halg
.base
.cra_ctxsize
= sizeof(struct mcryptd_hash_ctx
);
527 inst
->alg
.halg
.base
.cra_init
= mcryptd_hash_init_tfm
;
528 inst
->alg
.halg
.base
.cra_exit
= mcryptd_hash_exit_tfm
;
530 inst
->alg
.init
= mcryptd_hash_init_enqueue
;
531 inst
->alg
.update
= mcryptd_hash_update_enqueue
;
532 inst
->alg
.final
= mcryptd_hash_final_enqueue
;
533 inst
->alg
.finup
= mcryptd_hash_finup_enqueue
;
534 inst
->alg
.export
= mcryptd_hash_export
;
535 inst
->alg
.import
= mcryptd_hash_import
;
536 if (crypto_hash_alg_has_setkey(halg
))
537 inst
->alg
.setkey
= mcryptd_hash_setkey
;
538 inst
->alg
.digest
= mcryptd_hash_digest_enqueue
;
540 err
= ahash_register_instance(tmpl
, inst
);
542 crypto_drop_ahash(&ctx
->spawn
);
552 static struct mcryptd_queue mqueue
;
554 static int mcryptd_create(struct crypto_template
*tmpl
, struct rtattr
**tb
)
556 struct crypto_attr_type
*algt
;
558 algt
= crypto_get_attr_type(tb
);
560 return PTR_ERR(algt
);
562 switch (algt
->type
& algt
->mask
& CRYPTO_ALG_TYPE_MASK
) {
563 case CRYPTO_ALG_TYPE_DIGEST
:
564 return mcryptd_create_hash(tmpl
, tb
, &mqueue
);
571 static void mcryptd_free(struct crypto_instance
*inst
)
573 struct mcryptd_instance_ctx
*ctx
= crypto_instance_ctx(inst
);
574 struct hashd_instance_ctx
*hctx
= crypto_instance_ctx(inst
);
576 switch (inst
->alg
.cra_flags
& CRYPTO_ALG_TYPE_MASK
) {
577 case CRYPTO_ALG_TYPE_AHASH
:
578 crypto_drop_ahash(&hctx
->spawn
);
579 kfree(ahash_instance(inst
));
582 crypto_drop_spawn(&ctx
->spawn
);
587 static struct crypto_template mcryptd_tmpl
= {
589 .create
= mcryptd_create
,
590 .free
= mcryptd_free
,
591 .module
= THIS_MODULE
,
594 struct mcryptd_ahash
*mcryptd_alloc_ahash(const char *alg_name
,
597 char mcryptd_alg_name
[CRYPTO_MAX_ALG_NAME
];
598 struct crypto_ahash
*tfm
;
600 if (snprintf(mcryptd_alg_name
, CRYPTO_MAX_ALG_NAME
,
601 "mcryptd(%s)", alg_name
) >= CRYPTO_MAX_ALG_NAME
)
602 return ERR_PTR(-EINVAL
);
603 tfm
= crypto_alloc_ahash(mcryptd_alg_name
, type
, mask
);
605 return ERR_CAST(tfm
);
606 if (tfm
->base
.__crt_alg
->cra_module
!= THIS_MODULE
) {
607 crypto_free_ahash(tfm
);
608 return ERR_PTR(-EINVAL
);
611 return __mcryptd_ahash_cast(tfm
);
613 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash
);
615 int ahash_mcryptd_digest(struct ahash_request
*desc
)
617 return crypto_ahash_init(desc
) ?: ahash_mcryptd_finup(desc
);
620 int ahash_mcryptd_update(struct ahash_request
*desc
)
622 /* alignment is to be done by multi-buffer crypto algorithm if needed */
624 return crypto_ahash_update(desc
);
627 int ahash_mcryptd_finup(struct ahash_request
*desc
)
629 /* alignment is to be done by multi-buffer crypto algorithm if needed */
631 return crypto_ahash_finup(desc
);
634 int ahash_mcryptd_final(struct ahash_request
*desc
)
636 /* alignment is to be done by multi-buffer crypto algorithm if needed */
638 return crypto_ahash_final(desc
);
641 struct crypto_ahash
*mcryptd_ahash_child(struct mcryptd_ahash
*tfm
)
643 struct mcryptd_hash_ctx
*ctx
= crypto_ahash_ctx(&tfm
->base
);
647 EXPORT_SYMBOL_GPL(mcryptd_ahash_child
);
649 struct ahash_request
*mcryptd_ahash_desc(struct ahash_request
*req
)
651 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
654 EXPORT_SYMBOL_GPL(mcryptd_ahash_desc
);
656 void mcryptd_free_ahash(struct mcryptd_ahash
*tfm
)
658 crypto_free_ahash(&tfm
->base
);
660 EXPORT_SYMBOL_GPL(mcryptd_free_ahash
);
662 static int __init
mcryptd_init(void)
665 struct mcryptd_flush_list
*flist
;
667 mcryptd_flist
= alloc_percpu(struct mcryptd_flush_list
);
668 for_each_possible_cpu(cpu
) {
669 flist
= per_cpu_ptr(mcryptd_flist
, cpu
);
670 INIT_LIST_HEAD(&flist
->list
);
671 mutex_init(&flist
->lock
);
674 err
= mcryptd_init_queue(&mqueue
, MCRYPTD_MAX_CPU_QLEN
);
676 free_percpu(mcryptd_flist
);
680 err
= crypto_register_template(&mcryptd_tmpl
);
682 mcryptd_fini_queue(&mqueue
);
683 free_percpu(mcryptd_flist
);
689 static void __exit
mcryptd_exit(void)
691 mcryptd_fini_queue(&mqueue
);
692 crypto_unregister_template(&mcryptd_tmpl
);
693 free_percpu(mcryptd_flist
);
696 subsys_initcall(mcryptd_init
);
697 module_exit(mcryptd_exit
);
699 MODULE_LICENSE("GPL");
700 MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
701 MODULE_ALIAS_CRYPTO("mcryptd");