irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / Documentation / video4linux / v4l2-controls.txt
blob5517db602f37b0d3f9a0939832a2494103c422de
1 Introduction
2 ============
4 The V4L2 control API seems simple enough, but quickly becomes very hard to
5 implement correctly in drivers. But much of the code needed to handle controls
6 is actually not driver specific and can be moved to the V4L core framework.
8 After all, the only part that a driver developer is interested in is:
10 1) How do I add a control?
11 2) How do I set the control's value? (i.e. s_ctrl)
13 And occasionally:
15 3) How do I get the control's value? (i.e. g_volatile_ctrl)
16 4) How do I validate the user's proposed control value? (i.e. try_ctrl)
18 All the rest is something that can be done centrally.
20 The control framework was created in order to implement all the rules of the
21 V4L2 specification with respect to controls in a central place. And to make
22 life as easy as possible for the driver developer.
24 Note that the control framework relies on the presence of a struct v4l2_device
25 for V4L2 drivers and struct v4l2_subdev for sub-device drivers.
28 Objects in the framework
29 ========================
31 There are two main objects:
33 The v4l2_ctrl object describes the control properties and keeps track of the
34 control's value (both the current value and the proposed new value).
36 v4l2_ctrl_handler is the object that keeps track of controls. It maintains a
37 list of v4l2_ctrl objects that it owns and another list of references to
38 controls, possibly to controls owned by other handlers.
41 Basic usage for V4L2 and sub-device drivers
42 ===========================================
44 1) Prepare the driver:
46 1.1) Add the handler to your driver's top-level struct:
48         struct foo_dev {
49                 ...
50                 struct v4l2_ctrl_handler ctrl_handler;
51                 ...
52         };
54         struct foo_dev *foo;
56 1.2) Initialize the handler:
58         v4l2_ctrl_handler_init(&foo->ctrl_handler, nr_of_controls);
60   The second argument is a hint telling the function how many controls this
61   handler is expected to handle. It will allocate a hashtable based on this
62   information. It is a hint only.
64 1.3) Hook the control handler into the driver:
66 1.3.1) For V4L2 drivers do this:
68         struct foo_dev {
69                 ...
70                 struct v4l2_device v4l2_dev;
71                 ...
72                 struct v4l2_ctrl_handler ctrl_handler;
73                 ...
74         };
76         foo->v4l2_dev.ctrl_handler = &foo->ctrl_handler;
78   Where foo->v4l2_dev is of type struct v4l2_device.
80   Finally, remove all control functions from your v4l2_ioctl_ops (if any):
81   vidioc_queryctrl, vidioc_query_ext_ctrl, vidioc_querymenu, vidioc_g_ctrl,
82   vidioc_s_ctrl, vidioc_g_ext_ctrls, vidioc_try_ext_ctrls and vidioc_s_ext_ctrls.
83   Those are now no longer needed.
85 1.3.2) For sub-device drivers do this:
87         struct foo_dev {
88                 ...
89                 struct v4l2_subdev sd;
90                 ...
91                 struct v4l2_ctrl_handler ctrl_handler;
92                 ...
93         };
95         foo->sd.ctrl_handler = &foo->ctrl_handler;
97   Where foo->sd is of type struct v4l2_subdev.
99   And set all core control ops in your struct v4l2_subdev_core_ops to these
100   helpers:
102         .queryctrl = v4l2_subdev_queryctrl,
103         .querymenu = v4l2_subdev_querymenu,
104         .g_ctrl = v4l2_subdev_g_ctrl,
105         .s_ctrl = v4l2_subdev_s_ctrl,
106         .g_ext_ctrls = v4l2_subdev_g_ext_ctrls,
107         .try_ext_ctrls = v4l2_subdev_try_ext_ctrls,
108         .s_ext_ctrls = v4l2_subdev_s_ext_ctrls,
110   Note: this is a temporary solution only. Once all V4L2 drivers that depend
111   on subdev drivers are converted to the control framework these helpers will
112   no longer be needed.
114 1.4) Clean up the handler at the end:
116         v4l2_ctrl_handler_free(&foo->ctrl_handler);
119 2) Add controls:
121 You add non-menu controls by calling v4l2_ctrl_new_std:
123         struct v4l2_ctrl *v4l2_ctrl_new_std(struct v4l2_ctrl_handler *hdl,
124                         const struct v4l2_ctrl_ops *ops,
125                         u32 id, s32 min, s32 max, u32 step, s32 def);
127 Menu and integer menu controls are added by calling v4l2_ctrl_new_std_menu:
129         struct v4l2_ctrl *v4l2_ctrl_new_std_menu(struct v4l2_ctrl_handler *hdl,
130                         const struct v4l2_ctrl_ops *ops,
131                         u32 id, s32 max, s32 skip_mask, s32 def);
133 Menu controls with a driver specific menu are added by calling
134 v4l2_ctrl_new_std_menu_items:
136        struct v4l2_ctrl *v4l2_ctrl_new_std_menu_items(
137                        struct v4l2_ctrl_handler *hdl,
138                        const struct v4l2_ctrl_ops *ops, u32 id, s32 max,
139                        s32 skip_mask, s32 def, const char * const *qmenu);
141 Integer menu controls with a driver specific menu can be added by calling
142 v4l2_ctrl_new_int_menu:
144         struct v4l2_ctrl *v4l2_ctrl_new_int_menu(struct v4l2_ctrl_handler *hdl,
145                         const struct v4l2_ctrl_ops *ops,
146                         u32 id, s32 max, s32 def, const s64 *qmenu_int);
148 These functions are typically called right after the v4l2_ctrl_handler_init:
150         static const s64 exp_bias_qmenu[] = {
151                -2, -1, 0, 1, 2
152         };
153         static const char * const test_pattern[] = {
154                 "Disabled",
155                 "Vertical Bars",
156                 "Solid Black",
157                 "Solid White",
158         };
160         v4l2_ctrl_handler_init(&foo->ctrl_handler, nr_of_controls);
161         v4l2_ctrl_new_std(&foo->ctrl_handler, &foo_ctrl_ops,
162                         V4L2_CID_BRIGHTNESS, 0, 255, 1, 128);
163         v4l2_ctrl_new_std(&foo->ctrl_handler, &foo_ctrl_ops,
164                         V4L2_CID_CONTRAST, 0, 255, 1, 128);
165         v4l2_ctrl_new_std_menu(&foo->ctrl_handler, &foo_ctrl_ops,
166                         V4L2_CID_POWER_LINE_FREQUENCY,
167                         V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0,
168                         V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
169         v4l2_ctrl_new_int_menu(&foo->ctrl_handler, &foo_ctrl_ops,
170                         V4L2_CID_EXPOSURE_BIAS,
171                         ARRAY_SIZE(exp_bias_qmenu) - 1,
172                         ARRAY_SIZE(exp_bias_qmenu) / 2 - 1,
173                         exp_bias_qmenu);
174         v4l2_ctrl_new_std_menu_items(&foo->ctrl_handler, &foo_ctrl_ops,
175                         V4L2_CID_TEST_PATTERN, ARRAY_SIZE(test_pattern) - 1, 0,
176                         0, test_pattern);
177         ...
178         if (foo->ctrl_handler.error) {
179                 int err = foo->ctrl_handler.error;
181                 v4l2_ctrl_handler_free(&foo->ctrl_handler);
182                 return err;
183         }
185 The v4l2_ctrl_new_std function returns the v4l2_ctrl pointer to the new
186 control, but if you do not need to access the pointer outside the control ops,
187 then there is no need to store it.
189 The v4l2_ctrl_new_std function will fill in most fields based on the control
190 ID except for the min, max, step and default values. These are passed in the
191 last four arguments. These values are driver specific while control attributes
192 like type, name, flags are all global. The control's current value will be set
193 to the default value.
195 The v4l2_ctrl_new_std_menu function is very similar but it is used for menu
196 controls. There is no min argument since that is always 0 for menu controls,
197 and instead of a step there is a skip_mask argument: if bit X is 1, then menu
198 item X is skipped.
200 The v4l2_ctrl_new_int_menu function creates a new standard integer menu
201 control with driver-specific items in the menu. It differs from
202 v4l2_ctrl_new_std_menu in that it doesn't have the mask argument and takes
203 as the last argument an array of signed 64-bit integers that form an exact
204 menu item list.
206 The v4l2_ctrl_new_std_menu_items function is very similar to
207 v4l2_ctrl_new_std_menu but takes an extra parameter qmenu, which is the driver
208 specific menu for an otherwise standard menu control. A good example for this
209 control is the test pattern control for capture/display/sensors devices that
210 have the capability to generate test patterns. These test patterns are hardware
211 specific, so the contents of the menu will vary from device to device.
213 Note that if something fails, the function will return NULL or an error and
214 set ctrl_handler->error to the error code. If ctrl_handler->error was already
215 set, then it will just return and do nothing. This is also true for
216 v4l2_ctrl_handler_init if it cannot allocate the internal data structure.
218 This makes it easy to init the handler and just add all controls and only check
219 the error code at the end. Saves a lot of repetitive error checking.
221 It is recommended to add controls in ascending control ID order: it will be
222 a bit faster that way.
224 3) Optionally force initial control setup:
226         v4l2_ctrl_handler_setup(&foo->ctrl_handler);
228 This will call s_ctrl for all controls unconditionally. Effectively this
229 initializes the hardware to the default control values. It is recommended
230 that you do this as this ensures that both the internal data structures and
231 the hardware are in sync.
233 4) Finally: implement the v4l2_ctrl_ops
235         static const struct v4l2_ctrl_ops foo_ctrl_ops = {
236                 .s_ctrl = foo_s_ctrl,
237         };
239 Usually all you need is s_ctrl:
241         static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
242         {
243                 struct foo *state = container_of(ctrl->handler, struct foo, ctrl_handler);
245                 switch (ctrl->id) {
246                 case V4L2_CID_BRIGHTNESS:
247                         write_reg(0x123, ctrl->val);
248                         break;
249                 case V4L2_CID_CONTRAST:
250                         write_reg(0x456, ctrl->val);
251                         break;
252                 }
253                 return 0;
254         }
256 The control ops are called with the v4l2_ctrl pointer as argument.
257 The new control value has already been validated, so all you need to do is
258 to actually update the hardware registers.
260 You're done! And this is sufficient for most of the drivers we have. No need
261 to do any validation of control values, or implement QUERYCTRL, QUERY_EXT_CTRL
262 and QUERYMENU. And G/S_CTRL as well as G/TRY/S_EXT_CTRLS are automatically supported.
265 ==============================================================================
267 The remainder of this document deals with more advanced topics and scenarios.
268 In practice the basic usage as described above is sufficient for most drivers.
270 ===============================================================================
273 Inheriting Controls
274 ===================
276 When a sub-device is registered with a V4L2 driver by calling
277 v4l2_device_register_subdev() and the ctrl_handler fields of both v4l2_subdev
278 and v4l2_device are set, then the controls of the subdev will become
279 automatically available in the V4L2 driver as well. If the subdev driver
280 contains controls that already exist in the V4L2 driver, then those will be
281 skipped (so a V4L2 driver can always override a subdev control).
283 What happens here is that v4l2_device_register_subdev() calls
284 v4l2_ctrl_add_handler() adding the controls of the subdev to the controls
285 of v4l2_device.
288 Accessing Control Values
289 ========================
291 The following union is used inside the control framework to access control
292 values:
294 union v4l2_ctrl_ptr {
295         s32 *p_s32;
296         s64 *p_s64;
297         char *p_char;
298         void *p;
301 The v4l2_ctrl struct contains these fields that can be used to access both
302 current and new values:
304         s32 val;
305         struct {
306                 s32 val;
307         } cur;
310         union v4l2_ctrl_ptr p_new;
311         union v4l2_ctrl_ptr p_cur;
313 If the control has a simple s32 type type, then:
315         &ctrl->val == ctrl->p_new.p_s32
316         &ctrl->cur.val == ctrl->p_cur.p_s32
318 For all other types use ctrl->p_cur.p<something>. Basically the val
319 and cur.val fields can be considered an alias since these are used so often.
321 Within the control ops you can freely use these. The val and cur.val speak for
322 themselves. The p_char pointers point to character buffers of length
323 ctrl->maximum + 1, and are always 0-terminated.
325 Unless the control is marked volatile the p_cur field points to the the
326 current cached control value. When you create a new control this value is made
327 identical to the default value. After calling v4l2_ctrl_handler_setup() this
328 value is passed to the hardware. It is generally a good idea to call this
329 function.
331 Whenever a new value is set that new value is automatically cached. This means
332 that most drivers do not need to implement the g_volatile_ctrl() op. The
333 exception is for controls that return a volatile register such as a signal
334 strength read-out that changes continuously. In that case you will need to
335 implement g_volatile_ctrl like this:
337         static int foo_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
338         {
339                 switch (ctrl->id) {
340                 case V4L2_CID_BRIGHTNESS:
341                         ctrl->val = read_reg(0x123);
342                         break;
343                 }
344         }
346 Note that you use the 'new value' union as well in g_volatile_ctrl. In general
347 controls that need to implement g_volatile_ctrl are read-only controls. If they
348 are not, a V4L2_EVENT_CTRL_CH_VALUE will not be generated when the control
349 changes.
351 To mark a control as volatile you have to set V4L2_CTRL_FLAG_VOLATILE:
353         ctrl = v4l2_ctrl_new_std(&sd->ctrl_handler, ...);
354         if (ctrl)
355                 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
357 For try/s_ctrl the new values (i.e. as passed by the user) are filled in and
358 you can modify them in try_ctrl or set them in s_ctrl. The 'cur' union
359 contains the current value, which you can use (but not change!) as well.
361 If s_ctrl returns 0 (OK), then the control framework will copy the new final
362 values to the 'cur' union.
364 While in g_volatile/s/try_ctrl you can access the value of all controls owned
365 by the same handler since the handler's lock is held. If you need to access
366 the value of controls owned by other handlers, then you have to be very careful
367 not to introduce deadlocks.
369 Outside of the control ops you have to go through to helper functions to get
370 or set a single control value safely in your driver:
372         s32 v4l2_ctrl_g_ctrl(struct v4l2_ctrl *ctrl);
373         int v4l2_ctrl_s_ctrl(struct v4l2_ctrl *ctrl, s32 val);
375 These functions go through the control framework just as VIDIOC_G/S_CTRL ioctls
376 do. Don't use these inside the control ops g_volatile/s/try_ctrl, though, that
377 will result in a deadlock since these helpers lock the handler as well.
379 You can also take the handler lock yourself:
381         mutex_lock(&state->ctrl_handler.lock);
382         pr_info("String value is '%s'\n", ctrl1->p_cur.p_char);
383         pr_info("Integer value is '%s'\n", ctrl2->cur.val);
384         mutex_unlock(&state->ctrl_handler.lock);
387 Menu Controls
388 =============
390 The v4l2_ctrl struct contains this union:
392         union {
393                 u32 step;
394                 u32 menu_skip_mask;
395         };
397 For menu controls menu_skip_mask is used. What it does is that it allows you
398 to easily exclude certain menu items. This is used in the VIDIOC_QUERYMENU
399 implementation where you can return -EINVAL if a certain menu item is not
400 present. Note that VIDIOC_QUERYCTRL always returns a step value of 1 for
401 menu controls.
403 A good example is the MPEG Audio Layer II Bitrate menu control where the
404 menu is a list of standardized possible bitrates. But in practice hardware
405 implementations will only support a subset of those. By setting the skip
406 mask you can tell the framework which menu items should be skipped. Setting
407 it to 0 means that all menu items are supported.
409 You set this mask either through the v4l2_ctrl_config struct for a custom
410 control, or by calling v4l2_ctrl_new_std_menu().
413 Custom Controls
414 ===============
416 Driver specific controls can be created using v4l2_ctrl_new_custom():
418         static const struct v4l2_ctrl_config ctrl_filter = {
419                 .ops = &ctrl_custom_ops,
420                 .id = V4L2_CID_MPEG_CX2341X_VIDEO_SPATIAL_FILTER,
421                 .name = "Spatial Filter",
422                 .type = V4L2_CTRL_TYPE_INTEGER,
423                 .flags = V4L2_CTRL_FLAG_SLIDER,
424                 .max = 15,
425                 .step = 1,
426         };
428         ctrl = v4l2_ctrl_new_custom(&foo->ctrl_handler, &ctrl_filter, NULL);
430 The last argument is the priv pointer which can be set to driver-specific
431 private data.
433 The v4l2_ctrl_config struct also has a field to set the is_private flag.
435 If the name field is not set, then the framework will assume this is a standard
436 control and will fill in the name, type and flags fields accordingly.
439 Active and Grabbed Controls
440 ===========================
442 If you get more complex relationships between controls, then you may have to
443 activate and deactivate controls. For example, if the Chroma AGC control is
444 on, then the Chroma Gain control is inactive. That is, you may set it, but
445 the value will not be used by the hardware as long as the automatic gain
446 control is on. Typically user interfaces can disable such input fields.
448 You can set the 'active' status using v4l2_ctrl_activate(). By default all
449 controls are active. Note that the framework does not check for this flag.
450 It is meant purely for GUIs. The function is typically called from within
451 s_ctrl.
453 The other flag is the 'grabbed' flag. A grabbed control means that you cannot
454 change it because it is in use by some resource. Typical examples are MPEG
455 bitrate controls that cannot be changed while capturing is in progress.
457 If a control is set to 'grabbed' using v4l2_ctrl_grab(), then the framework
458 will return -EBUSY if an attempt is made to set this control. The
459 v4l2_ctrl_grab() function is typically called from the driver when it
460 starts or stops streaming.
463 Control Clusters
464 ================
466 By default all controls are independent from the others. But in more
467 complex scenarios you can get dependencies from one control to another.
468 In that case you need to 'cluster' them:
470         struct foo {
471                 struct v4l2_ctrl_handler ctrl_handler;
472 #define AUDIO_CL_VOLUME (0)
473 #define AUDIO_CL_MUTE   (1)
474                 struct v4l2_ctrl *audio_cluster[2];
475                 ...
476         };
478         state->audio_cluster[AUDIO_CL_VOLUME] =
479                 v4l2_ctrl_new_std(&state->ctrl_handler, ...);
480         state->audio_cluster[AUDIO_CL_MUTE] =
481                 v4l2_ctrl_new_std(&state->ctrl_handler, ...);
482         v4l2_ctrl_cluster(ARRAY_SIZE(state->audio_cluster), state->audio_cluster);
484 From now on whenever one or more of the controls belonging to the same
485 cluster is set (or 'gotten', or 'tried'), only the control ops of the first
486 control ('volume' in this example) is called. You effectively create a new
487 composite control. Similar to how a 'struct' works in C.
489 So when s_ctrl is called with V4L2_CID_AUDIO_VOLUME as argument, you should set
490 all two controls belonging to the audio_cluster:
492         static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
493         {
494                 struct foo *state = container_of(ctrl->handler, struct foo, ctrl_handler);
496                 switch (ctrl->id) {
497                 case V4L2_CID_AUDIO_VOLUME: {
498                         struct v4l2_ctrl *mute = ctrl->cluster[AUDIO_CL_MUTE];
500                         write_reg(0x123, mute->val ? 0 : ctrl->val);
501                         break;
502                 }
503                 case V4L2_CID_CONTRAST:
504                         write_reg(0x456, ctrl->val);
505                         break;
506                 }
507                 return 0;
508         }
510 In the example above the following are equivalent for the VOLUME case:
512         ctrl == ctrl->cluster[AUDIO_CL_VOLUME] == state->audio_cluster[AUDIO_CL_VOLUME]
513         ctrl->cluster[AUDIO_CL_MUTE] == state->audio_cluster[AUDIO_CL_MUTE]
515 In practice using cluster arrays like this becomes very tiresome. So instead
516 the following equivalent method is used:
518         struct {
519                 /* audio cluster */
520                 struct v4l2_ctrl *volume;
521                 struct v4l2_ctrl *mute;
522         };
524 The anonymous struct is used to clearly 'cluster' these two control pointers,
525 but it serves no other purpose. The effect is the same as creating an
526 array with two control pointers. So you can just do:
528         state->volume = v4l2_ctrl_new_std(&state->ctrl_handler, ...);
529         state->mute = v4l2_ctrl_new_std(&state->ctrl_handler, ...);
530         v4l2_ctrl_cluster(2, &state->volume);
532 And in foo_s_ctrl you can use these pointers directly: state->mute->val.
534 Note that controls in a cluster may be NULL. For example, if for some
535 reason mute was never added (because the hardware doesn't support that
536 particular feature), then mute will be NULL. So in that case we have a
537 cluster of 2 controls, of which only 1 is actually instantiated. The
538 only restriction is that the first control of the cluster must always be
539 present, since that is the 'master' control of the cluster. The master
540 control is the one that identifies the cluster and that provides the
541 pointer to the v4l2_ctrl_ops struct that is used for that cluster.
543 Obviously, all controls in the cluster array must be initialized to either
544 a valid control or to NULL.
546 In rare cases you might want to know which controls of a cluster actually
547 were set explicitly by the user. For this you can check the 'is_new' flag of
548 each control. For example, in the case of a volume/mute cluster the 'is_new'
549 flag of the mute control would be set if the user called VIDIOC_S_CTRL for
550 mute only. If the user would call VIDIOC_S_EXT_CTRLS for both mute and volume
551 controls, then the 'is_new' flag would be 1 for both controls.
553 The 'is_new' flag is always 1 when called from v4l2_ctrl_handler_setup().
556 Handling autogain/gain-type Controls with Auto Clusters
557 =======================================================
559 A common type of control cluster is one that handles 'auto-foo/foo'-type
560 controls. Typical examples are autogain/gain, autoexposure/exposure,
561 autowhitebalance/red balance/blue balance. In all cases you have one control
562 that determines whether another control is handled automatically by the hardware,
563 or whether it is under manual control from the user.
565 If the cluster is in automatic mode, then the manual controls should be
566 marked inactive and volatile. When the volatile controls are read the
567 g_volatile_ctrl operation should return the value that the hardware's automatic
568 mode set up automatically.
570 If the cluster is put in manual mode, then the manual controls should become
571 active again and the volatile flag is cleared (so g_volatile_ctrl is no longer
572 called while in manual mode). In addition just before switching to manual mode
573 the current values as determined by the auto mode are copied as the new manual
574 values.
576 Finally the V4L2_CTRL_FLAG_UPDATE should be set for the auto control since
577 changing that control affects the control flags of the manual controls.
579 In order to simplify this a special variation of v4l2_ctrl_cluster was
580 introduced:
582 void v4l2_ctrl_auto_cluster(unsigned ncontrols, struct v4l2_ctrl **controls,
583                         u8 manual_val, bool set_volatile);
585 The first two arguments are identical to v4l2_ctrl_cluster. The third argument
586 tells the framework which value switches the cluster into manual mode. The
587 last argument will optionally set V4L2_CTRL_FLAG_VOLATILE for the non-auto controls.
588 If it is false, then the manual controls are never volatile. You would typically
589 use that if the hardware does not give you the option to read back to values as
590 determined by the auto mode (e.g. if autogain is on, the hardware doesn't allow
591 you to obtain the current gain value).
593 The first control of the cluster is assumed to be the 'auto' control.
595 Using this function will ensure that you don't need to handle all the complex
596 flag and volatile handling.
599 VIDIOC_LOG_STATUS Support
600 =========================
602 This ioctl allow you to dump the current status of a driver to the kernel log.
603 The v4l2_ctrl_handler_log_status(ctrl_handler, prefix) can be used to dump the
604 value of the controls owned by the given handler to the log. You can supply a
605 prefix as well. If the prefix didn't end with a space, then ': ' will be added
606 for you.
609 Different Handlers for Different Video Nodes
610 ============================================
612 Usually the V4L2 driver has just one control handler that is global for
613 all video nodes. But you can also specify different control handlers for
614 different video nodes. You can do that by manually setting the ctrl_handler
615 field of struct video_device.
617 That is no problem if there are no subdevs involved but if there are, then
618 you need to block the automatic merging of subdev controls to the global
619 control handler. You do that by simply setting the ctrl_handler field in
620 struct v4l2_device to NULL. Now v4l2_device_register_subdev() will no longer
621 merge subdev controls.
623 After each subdev was added, you will then have to call v4l2_ctrl_add_handler
624 manually to add the subdev's control handler (sd->ctrl_handler) to the desired
625 control handler. This control handler may be specific to the video_device or
626 for a subset of video_device's. For example: the radio device nodes only have
627 audio controls, while the video and vbi device nodes share the same control
628 handler for the audio and video controls.
630 If you want to have one handler (e.g. for a radio device node) have a subset
631 of another handler (e.g. for a video device node), then you should first add
632 the controls to the first handler, add the other controls to the second
633 handler and finally add the first handler to the second. For example:
635         v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_VOLUME, ...);
636         v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...);
637         v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_BRIGHTNESS, ...);
638         v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_CONTRAST, ...);
639         v4l2_ctrl_add_handler(&video_ctrl_handler, &radio_ctrl_handler, NULL);
641 The last argument to v4l2_ctrl_add_handler() is a filter function that allows
642 you to filter which controls will be added. Set it to NULL if you want to add
643 all controls.
645 Or you can add specific controls to a handler:
647         volume = v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_AUDIO_VOLUME, ...);
648         v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_BRIGHTNESS, ...);
649         v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_CONTRAST, ...);
650         v4l2_ctrl_add_ctrl(&radio_ctrl_handler, volume);
652 What you should not do is make two identical controls for two handlers.
653 For example:
655         v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...);
656         v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_AUDIO_MUTE, ...);
658 This would be bad since muting the radio would not change the video mute
659 control. The rule is to have one control for each hardware 'knob' that you
660 can twiddle.
663 Finding Controls
664 ================
666 Normally you have created the controls yourself and you can store the struct
667 v4l2_ctrl pointer into your own struct.
669 But sometimes you need to find a control from another handler that you do
670 not own. For example, if you have to find a volume control from a subdev.
672 You can do that by calling v4l2_ctrl_find:
674         struct v4l2_ctrl *volume;
676         volume = v4l2_ctrl_find(sd->ctrl_handler, V4L2_CID_AUDIO_VOLUME);
678 Since v4l2_ctrl_find will lock the handler you have to be careful where you
679 use it. For example, this is not a good idea:
681         struct v4l2_ctrl_handler ctrl_handler;
683         v4l2_ctrl_new_std(&ctrl_handler, &video_ops, V4L2_CID_BRIGHTNESS, ...);
684         v4l2_ctrl_new_std(&ctrl_handler, &video_ops, V4L2_CID_CONTRAST, ...);
686 ...and in video_ops.s_ctrl:
688         case V4L2_CID_BRIGHTNESS:
689                 contrast = v4l2_find_ctrl(&ctrl_handler, V4L2_CID_CONTRAST);
690                 ...
692 When s_ctrl is called by the framework the ctrl_handler.lock is already taken, so
693 attempting to find another control from the same handler will deadlock.
695 It is recommended not to use this function from inside the control ops.
698 Inheriting Controls
699 ===================
701 When one control handler is added to another using v4l2_ctrl_add_handler, then
702 by default all controls from one are merged to the other. But a subdev might
703 have low-level controls that make sense for some advanced embedded system, but
704 not when it is used in consumer-level hardware. In that case you want to keep
705 those low-level controls local to the subdev. You can do this by simply
706 setting the 'is_private' flag of the control to 1:
708         static const struct v4l2_ctrl_config ctrl_private = {
709                 .ops = &ctrl_custom_ops,
710                 .id = V4L2_CID_...,
711                 .name = "Some Private Control",
712                 .type = V4L2_CTRL_TYPE_INTEGER,
713                 .max = 15,
714                 .step = 1,
715                 .is_private = 1,
716         };
718         ctrl = v4l2_ctrl_new_custom(&foo->ctrl_handler, &ctrl_private, NULL);
720 These controls will now be skipped when v4l2_ctrl_add_handler is called.
723 V4L2_CTRL_TYPE_CTRL_CLASS Controls
724 ==================================
726 Controls of this type can be used by GUIs to get the name of the control class.
727 A fully featured GUI can make a dialog with multiple tabs with each tab
728 containing the controls belonging to a particular control class. The name of
729 each tab can be found by querying a special control with ID <control class | 1>.
731 Drivers do not have to care about this. The framework will automatically add
732 a control of this type whenever the first control belonging to a new control
733 class is added.
736 Adding Notify Callbacks
737 =======================
739 Sometimes the platform or bridge driver needs to be notified when a control
740 from a sub-device driver changes. You can set a notify callback by calling
741 this function:
743 void v4l2_ctrl_notify(struct v4l2_ctrl *ctrl,
744         void (*notify)(struct v4l2_ctrl *ctrl, void *priv), void *priv);
746 Whenever the give control changes value the notify callback will be called
747 with a pointer to the control and the priv pointer that was passed with
748 v4l2_ctrl_notify. Note that the control's handler lock is held when the
749 notify function is called.
751 There can be only one notify function per control handler. Any attempt
752 to set another notify function will cause a WARN_ON.