irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / arch / arm / kvm / arm.c
blobe06fd299de0846b44b72cd037eacd05b0b2cb051
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
66 BUG_ON(preemptible());
67 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 /**
71 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72 * Must be called from non-preemptible context
74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
76 BUG_ON(preemptible());
77 return __this_cpu_read(kvm_arm_running_vcpu);
80 /**
81 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
85 return &kvm_arm_running_vcpu;
88 int kvm_arch_hardware_enable(void)
90 return 0;
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 int kvm_arch_hardware_setup(void)
100 return 0;
103 void kvm_arch_check_processor_compat(void *rtn)
105 *(int *)rtn = 0;
110 * kvm_arch_init_vm - initializes a VM data structure
111 * @kvm: pointer to the KVM struct
113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 int ret = 0;
117 if (type)
118 return -EINVAL;
120 ret = kvm_alloc_stage2_pgd(kvm);
121 if (ret)
122 goto out_fail_alloc;
124 ret = create_hyp_mappings(kvm, kvm + 1);
125 if (ret)
126 goto out_free_stage2_pgd;
128 kvm_vgic_early_init(kvm);
129 kvm_timer_init(kvm);
131 /* Mark the initial VMID generation invalid */
132 kvm->arch.vmid_gen = 0;
134 /* The maximum number of VCPUs is limited by the host's GIC model */
135 kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
137 return ret;
138 out_free_stage2_pgd:
139 kvm_free_stage2_pgd(kvm);
140 out_fail_alloc:
141 return ret;
144 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
146 return VM_FAULT_SIGBUS;
151 * kvm_arch_destroy_vm - destroy the VM data structure
152 * @kvm: pointer to the KVM struct
154 void kvm_arch_destroy_vm(struct kvm *kvm)
156 int i;
158 kvm_free_stage2_pgd(kvm);
160 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
161 if (kvm->vcpus[i]) {
162 kvm_arch_vcpu_free(kvm->vcpus[i]);
163 kvm->vcpus[i] = NULL;
167 kvm_vgic_destroy(kvm);
170 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
172 int r;
173 switch (ext) {
174 case KVM_CAP_IRQCHIP:
175 case KVM_CAP_IOEVENTFD:
176 case KVM_CAP_DEVICE_CTRL:
177 case KVM_CAP_USER_MEMORY:
178 case KVM_CAP_SYNC_MMU:
179 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
180 case KVM_CAP_ONE_REG:
181 case KVM_CAP_ARM_PSCI:
182 case KVM_CAP_ARM_PSCI_0_2:
183 case KVM_CAP_READONLY_MEM:
184 case KVM_CAP_MP_STATE:
185 r = 1;
186 break;
187 case KVM_CAP_COALESCED_MMIO:
188 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
189 break;
190 case KVM_CAP_ARM_SET_DEVICE_ADDR:
191 r = 1;
192 break;
193 case KVM_CAP_NR_VCPUS:
194 r = num_online_cpus();
195 break;
196 case KVM_CAP_MAX_VCPUS:
197 r = KVM_MAX_VCPUS;
198 break;
199 default:
200 r = kvm_arch_dev_ioctl_check_extension(ext);
201 break;
203 return r;
206 long kvm_arch_dev_ioctl(struct file *filp,
207 unsigned int ioctl, unsigned long arg)
209 return -EINVAL;
213 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
215 int err;
216 struct kvm_vcpu *vcpu;
218 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
219 err = -EBUSY;
220 goto out;
223 if (id >= kvm->arch.max_vcpus) {
224 err = -EINVAL;
225 goto out;
228 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
229 if (!vcpu) {
230 err = -ENOMEM;
231 goto out;
234 err = kvm_vcpu_init(vcpu, kvm, id);
235 if (err)
236 goto free_vcpu;
238 err = create_hyp_mappings(vcpu, vcpu + 1);
239 if (err)
240 goto vcpu_uninit;
242 return vcpu;
243 vcpu_uninit:
244 kvm_vcpu_uninit(vcpu);
245 free_vcpu:
246 kmem_cache_free(kvm_vcpu_cache, vcpu);
247 out:
248 return ERR_PTR(err);
251 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
253 kvm_vgic_vcpu_early_init(vcpu);
256 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
258 kvm_mmu_free_memory_caches(vcpu);
259 kvm_timer_vcpu_terminate(vcpu);
260 kvm_vgic_vcpu_destroy(vcpu);
261 kmem_cache_free(kvm_vcpu_cache, vcpu);
264 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
266 kvm_arch_vcpu_free(vcpu);
269 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
271 return kvm_timer_should_fire(vcpu);
274 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
276 kvm_timer_schedule(vcpu);
279 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
281 kvm_timer_unschedule(vcpu);
284 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
286 /* Force users to call KVM_ARM_VCPU_INIT */
287 vcpu->arch.target = -1;
288 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
290 /* Set up the timer */
291 kvm_timer_vcpu_init(vcpu);
293 kvm_arm_reset_debug_ptr(vcpu);
295 return 0;
298 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
300 vcpu->cpu = cpu;
301 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
303 kvm_arm_set_running_vcpu(vcpu);
306 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
309 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
310 * if the vcpu is no longer assigned to a cpu. This is used for the
311 * optimized make_all_cpus_request path.
313 vcpu->cpu = -1;
315 kvm_arm_set_running_vcpu(NULL);
318 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
319 struct kvm_mp_state *mp_state)
321 if (vcpu->arch.power_off)
322 mp_state->mp_state = KVM_MP_STATE_STOPPED;
323 else
324 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
326 return 0;
329 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
330 struct kvm_mp_state *mp_state)
332 switch (mp_state->mp_state) {
333 case KVM_MP_STATE_RUNNABLE:
334 vcpu->arch.power_off = false;
335 break;
336 case KVM_MP_STATE_STOPPED:
337 vcpu->arch.power_off = true;
338 break;
339 default:
340 return -EINVAL;
343 return 0;
347 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
348 * @v: The VCPU pointer
350 * If the guest CPU is not waiting for interrupts or an interrupt line is
351 * asserted, the CPU is by definition runnable.
353 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
355 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
356 && !v->arch.power_off && !v->arch.pause);
359 /* Just ensure a guest exit from a particular CPU */
360 static void exit_vm_noop(void *info)
364 void force_vm_exit(const cpumask_t *mask)
366 smp_call_function_many(mask, exit_vm_noop, NULL, true);
370 * need_new_vmid_gen - check that the VMID is still valid
371 * @kvm: The VM's VMID to checkt
373 * return true if there is a new generation of VMIDs being used
375 * The hardware supports only 256 values with the value zero reserved for the
376 * host, so we check if an assigned value belongs to a previous generation,
377 * which which requires us to assign a new value. If we're the first to use a
378 * VMID for the new generation, we must flush necessary caches and TLBs on all
379 * CPUs.
381 static bool need_new_vmid_gen(struct kvm *kvm)
383 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
387 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
388 * @kvm The guest that we are about to run
390 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
391 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
392 * caches and TLBs.
394 static void update_vttbr(struct kvm *kvm)
396 phys_addr_t pgd_phys;
397 u64 vmid;
399 if (!need_new_vmid_gen(kvm))
400 return;
402 spin_lock(&kvm_vmid_lock);
405 * We need to re-check the vmid_gen here to ensure that if another vcpu
406 * already allocated a valid vmid for this vm, then this vcpu should
407 * use the same vmid.
409 if (!need_new_vmid_gen(kvm)) {
410 spin_unlock(&kvm_vmid_lock);
411 return;
414 /* First user of a new VMID generation? */
415 if (unlikely(kvm_next_vmid == 0)) {
416 atomic64_inc(&kvm_vmid_gen);
417 kvm_next_vmid = 1;
420 * On SMP we know no other CPUs can use this CPU's or each
421 * other's VMID after force_vm_exit returns since the
422 * kvm_vmid_lock blocks them from reentry to the guest.
424 force_vm_exit(cpu_all_mask);
426 * Now broadcast TLB + ICACHE invalidation over the inner
427 * shareable domain to make sure all data structures are
428 * clean.
430 kvm_call_hyp(__kvm_flush_vm_context);
433 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
434 kvm->arch.vmid = kvm_next_vmid;
435 kvm_next_vmid++;
437 /* update vttbr to be used with the new vmid */
438 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
439 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
440 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
441 kvm->arch.vttbr = pgd_phys | vmid;
443 spin_unlock(&kvm_vmid_lock);
446 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
448 struct kvm *kvm = vcpu->kvm;
449 int ret;
451 if (likely(vcpu->arch.has_run_once))
452 return 0;
454 vcpu->arch.has_run_once = true;
457 * Map the VGIC hardware resources before running a vcpu the first
458 * time on this VM.
460 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
461 ret = kvm_vgic_map_resources(kvm);
462 if (ret)
463 return ret;
467 * Enable the arch timers only if we have an in-kernel VGIC
468 * and it has been properly initialized, since we cannot handle
469 * interrupts from the virtual timer with a userspace gic.
471 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
472 kvm_timer_enable(kvm);
474 return 0;
477 bool kvm_arch_intc_initialized(struct kvm *kvm)
479 return vgic_initialized(kvm);
482 static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
483 static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
485 static void kvm_arm_halt_guest(struct kvm *kvm)
487 int i;
488 struct kvm_vcpu *vcpu;
490 kvm_for_each_vcpu(i, vcpu, kvm)
491 vcpu->arch.pause = true;
492 force_vm_exit(cpu_all_mask);
495 static void kvm_arm_resume_guest(struct kvm *kvm)
497 int i;
498 struct kvm_vcpu *vcpu;
500 kvm_for_each_vcpu(i, vcpu, kvm) {
501 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
503 vcpu->arch.pause = false;
504 wake_up_interruptible(wq);
508 static void vcpu_sleep(struct kvm_vcpu *vcpu)
510 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
512 wait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
513 (!vcpu->arch.pause)));
516 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
518 return vcpu->arch.target >= 0;
522 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
523 * @vcpu: The VCPU pointer
524 * @run: The kvm_run structure pointer used for userspace state exchange
526 * This function is called through the VCPU_RUN ioctl called from user space. It
527 * will execute VM code in a loop until the time slice for the process is used
528 * or some emulation is needed from user space in which case the function will
529 * return with return value 0 and with the kvm_run structure filled in with the
530 * required data for the requested emulation.
532 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
534 int ret;
535 sigset_t sigsaved;
537 if (unlikely(!kvm_vcpu_initialized(vcpu)))
538 return -ENOEXEC;
540 ret = kvm_vcpu_first_run_init(vcpu);
541 if (ret)
542 return ret;
544 if (run->exit_reason == KVM_EXIT_MMIO) {
545 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
546 if (ret)
547 return ret;
550 if (vcpu->sigset_active)
551 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
553 ret = 1;
554 run->exit_reason = KVM_EXIT_UNKNOWN;
555 while (ret > 0) {
557 * Check conditions before entering the guest
559 cond_resched();
561 update_vttbr(vcpu->kvm);
563 if (vcpu->arch.power_off || vcpu->arch.pause)
564 vcpu_sleep(vcpu);
567 * Preparing the interrupts to be injected also
568 * involves poking the GIC, which must be done in a
569 * non-preemptible context.
571 preempt_disable();
572 kvm_timer_flush_hwstate(vcpu);
573 kvm_vgic_flush_hwstate(vcpu);
575 local_irq_disable();
578 * Re-check atomic conditions
580 if (signal_pending(current)) {
581 ret = -EINTR;
582 run->exit_reason = KVM_EXIT_INTR;
585 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
586 vcpu->arch.power_off || vcpu->arch.pause) {
587 local_irq_enable();
588 kvm_timer_sync_hwstate(vcpu);
589 kvm_vgic_sync_hwstate(vcpu);
590 preempt_enable();
591 continue;
594 kvm_arm_setup_debug(vcpu);
596 /**************************************************************
597 * Enter the guest
599 trace_kvm_entry(*vcpu_pc(vcpu));
600 __kvm_guest_enter();
601 vcpu->mode = IN_GUEST_MODE;
603 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
605 vcpu->mode = OUTSIDE_GUEST_MODE;
607 * Back from guest
608 *************************************************************/
610 kvm_arm_clear_debug(vcpu);
613 * We may have taken a host interrupt in HYP mode (ie
614 * while executing the guest). This interrupt is still
615 * pending, as we haven't serviced it yet!
617 * We're now back in SVC mode, with interrupts
618 * disabled. Enabling the interrupts now will have
619 * the effect of taking the interrupt again, in SVC
620 * mode this time.
622 local_irq_enable();
625 * We do local_irq_enable() before calling kvm_guest_exit() so
626 * that if a timer interrupt hits while running the guest we
627 * account that tick as being spent in the guest. We enable
628 * preemption after calling kvm_guest_exit() so that if we get
629 * preempted we make sure ticks after that is not counted as
630 * guest time.
632 kvm_guest_exit();
633 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
636 * We must sync the timer state before the vgic state so that
637 * the vgic can properly sample the updated state of the
638 * interrupt line.
640 kvm_timer_sync_hwstate(vcpu);
642 kvm_vgic_sync_hwstate(vcpu);
644 preempt_enable();
646 ret = handle_exit(vcpu, run, ret);
649 if (vcpu->sigset_active)
650 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
651 return ret;
654 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
656 int bit_index;
657 bool set;
658 unsigned long *ptr;
660 if (number == KVM_ARM_IRQ_CPU_IRQ)
661 bit_index = __ffs(HCR_VI);
662 else /* KVM_ARM_IRQ_CPU_FIQ */
663 bit_index = __ffs(HCR_VF);
665 ptr = (unsigned long *)&vcpu->arch.irq_lines;
666 if (level)
667 set = test_and_set_bit(bit_index, ptr);
668 else
669 set = test_and_clear_bit(bit_index, ptr);
672 * If we didn't change anything, no need to wake up or kick other CPUs
674 if (set == level)
675 return 0;
678 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
679 * trigger a world-switch round on the running physical CPU to set the
680 * virtual IRQ/FIQ fields in the HCR appropriately.
682 kvm_vcpu_kick(vcpu);
684 return 0;
687 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
688 bool line_status)
690 u32 irq = irq_level->irq;
691 unsigned int irq_type, vcpu_idx, irq_num;
692 int nrcpus = atomic_read(&kvm->online_vcpus);
693 struct kvm_vcpu *vcpu = NULL;
694 bool level = irq_level->level;
696 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
697 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
698 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
700 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
702 switch (irq_type) {
703 case KVM_ARM_IRQ_TYPE_CPU:
704 if (irqchip_in_kernel(kvm))
705 return -ENXIO;
707 if (vcpu_idx >= nrcpus)
708 return -EINVAL;
710 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
711 if (!vcpu)
712 return -EINVAL;
714 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
715 return -EINVAL;
717 return vcpu_interrupt_line(vcpu, irq_num, level);
718 case KVM_ARM_IRQ_TYPE_PPI:
719 if (!irqchip_in_kernel(kvm))
720 return -ENXIO;
722 if (vcpu_idx >= nrcpus)
723 return -EINVAL;
725 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
726 if (!vcpu)
727 return -EINVAL;
729 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
730 return -EINVAL;
732 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
733 case KVM_ARM_IRQ_TYPE_SPI:
734 if (!irqchip_in_kernel(kvm))
735 return -ENXIO;
737 if (irq_num < VGIC_NR_PRIVATE_IRQS)
738 return -EINVAL;
740 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
743 return -EINVAL;
746 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
747 const struct kvm_vcpu_init *init)
749 unsigned int i;
750 int phys_target = kvm_target_cpu();
752 if (init->target != phys_target)
753 return -EINVAL;
756 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
757 * use the same target.
759 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
760 return -EINVAL;
762 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
763 for (i = 0; i < sizeof(init->features) * 8; i++) {
764 bool set = (init->features[i / 32] & (1 << (i % 32)));
766 if (set && i >= KVM_VCPU_MAX_FEATURES)
767 return -ENOENT;
770 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
771 * use the same feature set.
773 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
774 test_bit(i, vcpu->arch.features) != set)
775 return -EINVAL;
777 if (set)
778 set_bit(i, vcpu->arch.features);
781 vcpu->arch.target = phys_target;
783 /* Now we know what it is, we can reset it. */
784 return kvm_reset_vcpu(vcpu);
788 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
789 struct kvm_vcpu_init *init)
791 int ret;
793 ret = kvm_vcpu_set_target(vcpu, init);
794 if (ret)
795 return ret;
798 * Ensure a rebooted VM will fault in RAM pages and detect if the
799 * guest MMU is turned off and flush the caches as needed.
801 if (vcpu->arch.has_run_once)
802 stage2_unmap_vm(vcpu->kvm);
804 vcpu_reset_hcr(vcpu);
807 * Handle the "start in power-off" case.
809 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
810 vcpu->arch.power_off = true;
811 else
812 vcpu->arch.power_off = false;
814 return 0;
817 long kvm_arch_vcpu_ioctl(struct file *filp,
818 unsigned int ioctl, unsigned long arg)
820 struct kvm_vcpu *vcpu = filp->private_data;
821 void __user *argp = (void __user *)arg;
823 switch (ioctl) {
824 case KVM_ARM_VCPU_INIT: {
825 struct kvm_vcpu_init init;
827 if (copy_from_user(&init, argp, sizeof(init)))
828 return -EFAULT;
830 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
832 case KVM_SET_ONE_REG:
833 case KVM_GET_ONE_REG: {
834 struct kvm_one_reg reg;
836 if (unlikely(!kvm_vcpu_initialized(vcpu)))
837 return -ENOEXEC;
839 if (copy_from_user(&reg, argp, sizeof(reg)))
840 return -EFAULT;
841 if (ioctl == KVM_SET_ONE_REG)
842 return kvm_arm_set_reg(vcpu, &reg);
843 else
844 return kvm_arm_get_reg(vcpu, &reg);
846 case KVM_GET_REG_LIST: {
847 struct kvm_reg_list __user *user_list = argp;
848 struct kvm_reg_list reg_list;
849 unsigned n;
851 if (unlikely(!kvm_vcpu_initialized(vcpu)))
852 return -ENOEXEC;
854 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
855 return -EFAULT;
856 n = reg_list.n;
857 reg_list.n = kvm_arm_num_regs(vcpu);
858 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
859 return -EFAULT;
860 if (n < reg_list.n)
861 return -E2BIG;
862 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
864 default:
865 return -EINVAL;
870 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
871 * @kvm: kvm instance
872 * @log: slot id and address to which we copy the log
874 * Steps 1-4 below provide general overview of dirty page logging. See
875 * kvm_get_dirty_log_protect() function description for additional details.
877 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
878 * always flush the TLB (step 4) even if previous step failed and the dirty
879 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
880 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
881 * writes will be marked dirty for next log read.
883 * 1. Take a snapshot of the bit and clear it if needed.
884 * 2. Write protect the corresponding page.
885 * 3. Copy the snapshot to the userspace.
886 * 4. Flush TLB's if needed.
888 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
890 bool is_dirty = false;
891 int r;
893 mutex_lock(&kvm->slots_lock);
895 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
897 if (is_dirty)
898 kvm_flush_remote_tlbs(kvm);
900 mutex_unlock(&kvm->slots_lock);
901 return r;
904 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
905 struct kvm_arm_device_addr *dev_addr)
907 unsigned long dev_id, type;
909 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
910 KVM_ARM_DEVICE_ID_SHIFT;
911 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
912 KVM_ARM_DEVICE_TYPE_SHIFT;
914 switch (dev_id) {
915 case KVM_ARM_DEVICE_VGIC_V2:
916 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
917 default:
918 return -ENODEV;
922 long kvm_arch_vm_ioctl(struct file *filp,
923 unsigned int ioctl, unsigned long arg)
925 struct kvm *kvm = filp->private_data;
926 void __user *argp = (void __user *)arg;
928 switch (ioctl) {
929 case KVM_CREATE_IRQCHIP: {
930 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
932 case KVM_ARM_SET_DEVICE_ADDR: {
933 struct kvm_arm_device_addr dev_addr;
935 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
936 return -EFAULT;
937 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
939 case KVM_ARM_PREFERRED_TARGET: {
940 int err;
941 struct kvm_vcpu_init init;
943 err = kvm_vcpu_preferred_target(&init);
944 if (err)
945 return err;
947 if (copy_to_user(argp, &init, sizeof(init)))
948 return -EFAULT;
950 return 0;
952 default:
953 return -EINVAL;
957 static void cpu_init_hyp_mode(void *dummy)
959 phys_addr_t boot_pgd_ptr;
960 phys_addr_t pgd_ptr;
961 unsigned long hyp_stack_ptr;
962 unsigned long stack_page;
963 unsigned long vector_ptr;
965 /* Switch from the HYP stub to our own HYP init vector */
966 __hyp_set_vectors(kvm_get_idmap_vector());
968 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
969 pgd_ptr = kvm_mmu_get_httbr();
970 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
971 hyp_stack_ptr = stack_page + PAGE_SIZE;
972 vector_ptr = (unsigned long)__kvm_hyp_vector;
974 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
976 kvm_arm_init_debug();
979 static int hyp_init_cpu_notify(struct notifier_block *self,
980 unsigned long action, void *cpu)
982 switch (action) {
983 case CPU_STARTING:
984 case CPU_STARTING_FROZEN:
985 if (__hyp_get_vectors() == hyp_default_vectors)
986 cpu_init_hyp_mode(NULL);
987 break;
990 return NOTIFY_OK;
993 static struct notifier_block hyp_init_cpu_nb = {
994 .notifier_call = hyp_init_cpu_notify,
997 #ifdef CONFIG_CPU_PM
998 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
999 unsigned long cmd,
1000 void *v)
1002 if (cmd == CPU_PM_EXIT &&
1003 __hyp_get_vectors() == hyp_default_vectors) {
1004 cpu_init_hyp_mode(NULL);
1005 return NOTIFY_OK;
1008 return NOTIFY_DONE;
1011 static struct notifier_block hyp_init_cpu_pm_nb = {
1012 .notifier_call = hyp_init_cpu_pm_notifier,
1015 static void __init hyp_cpu_pm_init(void)
1017 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1019 #else
1020 static inline void hyp_cpu_pm_init(void)
1023 #endif
1026 * Inits Hyp-mode on all online CPUs
1028 static int init_hyp_mode(void)
1030 int cpu;
1031 int err = 0;
1034 * Allocate Hyp PGD and setup Hyp identity mapping
1036 err = kvm_mmu_init();
1037 if (err)
1038 goto out_err;
1041 * It is probably enough to obtain the default on one
1042 * CPU. It's unlikely to be different on the others.
1044 hyp_default_vectors = __hyp_get_vectors();
1047 * Allocate stack pages for Hypervisor-mode
1049 for_each_possible_cpu(cpu) {
1050 unsigned long stack_page;
1052 stack_page = __get_free_page(GFP_KERNEL);
1053 if (!stack_page) {
1054 err = -ENOMEM;
1055 goto out_free_stack_pages;
1058 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1062 * Map the Hyp-code called directly from the host
1064 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1065 if (err) {
1066 kvm_err("Cannot map world-switch code\n");
1067 goto out_free_mappings;
1071 * Map the Hyp stack pages
1073 for_each_possible_cpu(cpu) {
1074 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1075 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1077 if (err) {
1078 kvm_err("Cannot map hyp stack\n");
1079 goto out_free_mappings;
1084 * Map the host CPU structures
1086 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1087 if (!kvm_host_cpu_state) {
1088 err = -ENOMEM;
1089 kvm_err("Cannot allocate host CPU state\n");
1090 goto out_free_mappings;
1093 for_each_possible_cpu(cpu) {
1094 kvm_cpu_context_t *cpu_ctxt;
1096 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1097 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1099 if (err) {
1100 kvm_err("Cannot map host CPU state: %d\n", err);
1101 goto out_free_context;
1106 * Execute the init code on each CPU.
1108 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1111 * Init HYP view of VGIC
1113 err = kvm_vgic_hyp_init();
1114 if (err)
1115 goto out_free_context;
1118 * Init HYP architected timer support
1120 err = kvm_timer_hyp_init();
1121 if (err)
1122 goto out_free_context;
1124 #ifndef CONFIG_HOTPLUG_CPU
1125 free_boot_hyp_pgd();
1126 #endif
1128 kvm_perf_init();
1130 kvm_info("Hyp mode initialized successfully\n");
1132 return 0;
1133 out_free_context:
1134 free_percpu(kvm_host_cpu_state);
1135 out_free_mappings:
1136 free_hyp_pgds();
1137 out_free_stack_pages:
1138 for_each_possible_cpu(cpu)
1139 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1140 out_err:
1141 kvm_err("error initializing Hyp mode: %d\n", err);
1142 return err;
1145 static void check_kvm_target_cpu(void *ret)
1147 *(int *)ret = kvm_target_cpu();
1150 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1152 struct kvm_vcpu *vcpu;
1153 int i;
1155 mpidr &= MPIDR_HWID_BITMASK;
1156 kvm_for_each_vcpu(i, vcpu, kvm) {
1157 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1158 return vcpu;
1160 return NULL;
1164 * Initialize Hyp-mode and memory mappings on all CPUs.
1166 int kvm_arch_init(void *opaque)
1168 int err;
1169 int ret, cpu;
1171 if (!is_hyp_mode_available()) {
1172 kvm_err("HYP mode not available\n");
1173 return -ENODEV;
1176 for_each_online_cpu(cpu) {
1177 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1178 if (ret < 0) {
1179 kvm_err("Error, CPU %d not supported!\n", cpu);
1180 return -ENODEV;
1184 cpu_notifier_register_begin();
1186 err = init_hyp_mode();
1187 if (err)
1188 goto out_err;
1190 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1191 if (err) {
1192 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1193 goto out_err;
1196 cpu_notifier_register_done();
1198 hyp_cpu_pm_init();
1200 kvm_coproc_table_init();
1201 return 0;
1202 out_err:
1203 cpu_notifier_register_done();
1204 return err;
1207 /* NOP: Compiling as a module not supported */
1208 void kvm_arch_exit(void)
1210 kvm_perf_teardown();
1213 static int arm_init(void)
1215 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1216 return rc;
1219 module_init(arm_init);