2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
20 #include <linux/kvm_host.h>
21 #include <linux/uaccess.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_host.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_coproc.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <trace/events/kvm.h>
31 #include "../vfp/vfpinstr.h"
37 /******************************************************************************
38 * Co-processor emulation
39 *****************************************************************************/
41 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
42 static u32 cache_levels
;
44 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
48 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
49 * of cp15 registers can be viewed either as couple of two u32 registers
50 * or one u64 register. Current u64 register encoding is that least
51 * significant u32 word is followed by most significant u32 word.
53 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu
*vcpu
,
54 const struct coproc_reg
*r
,
57 vcpu
->arch
.cp15
[r
->reg
] = val
& 0xffffffff;
58 vcpu
->arch
.cp15
[r
->reg
+ 1] = val
>> 32;
61 static inline u64
vcpu_cp15_reg64_get(struct kvm_vcpu
*vcpu
,
62 const struct coproc_reg
*r
)
66 val
= vcpu
->arch
.cp15
[r
->reg
+ 1];
68 val
= val
| vcpu
->arch
.cp15
[r
->reg
];
72 int kvm_handle_cp10_id(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
74 kvm_inject_undefined(vcpu
);
78 int kvm_handle_cp_0_13_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
81 * We can get here, if the host has been built without VFPv3 support,
82 * but the guest attempted a floating point operation.
84 kvm_inject_undefined(vcpu
);
88 int kvm_handle_cp14_load_store(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
90 kvm_inject_undefined(vcpu
);
94 int kvm_handle_cp14_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
96 kvm_inject_undefined(vcpu
);
100 static void reset_mpidr(struct kvm_vcpu
*vcpu
, const struct coproc_reg
*r
)
103 * Compute guest MPIDR. We build a virtual cluster out of the
104 * vcpu_id, but we read the 'U' bit from the underlying
107 vcpu
->arch
.cp15
[c0_MPIDR
] = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK
) |
108 ((vcpu
->vcpu_id
>> 2) << MPIDR_LEVEL_BITS
) |
109 (vcpu
->vcpu_id
& 3));
112 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
113 static bool access_actlr(struct kvm_vcpu
*vcpu
,
114 const struct coproc_params
*p
,
115 const struct coproc_reg
*r
)
118 return ignore_write(vcpu
, p
);
120 *vcpu_reg(vcpu
, p
->Rt1
) = vcpu
->arch
.cp15
[c1_ACTLR
];
124 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
125 static bool access_cbar(struct kvm_vcpu
*vcpu
,
126 const struct coproc_params
*p
,
127 const struct coproc_reg
*r
)
130 return write_to_read_only(vcpu
, p
);
131 return read_zero(vcpu
, p
);
134 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
135 static bool access_l2ctlr(struct kvm_vcpu
*vcpu
,
136 const struct coproc_params
*p
,
137 const struct coproc_reg
*r
)
140 return ignore_write(vcpu
, p
);
142 *vcpu_reg(vcpu
, p
->Rt1
) = vcpu
->arch
.cp15
[c9_L2CTLR
];
146 static void reset_l2ctlr(struct kvm_vcpu
*vcpu
, const struct coproc_reg
*r
)
150 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr
));
151 l2ctlr
&= ~(3 << 24);
152 ncores
= atomic_read(&vcpu
->kvm
->online_vcpus
) - 1;
153 /* How many cores in the current cluster and the next ones */
154 ncores
-= (vcpu
->vcpu_id
& ~3);
155 /* Cap it to the maximum number of cores in a single cluster */
156 ncores
= min(ncores
, 3U);
157 l2ctlr
|= (ncores
& 3) << 24;
159 vcpu
->arch
.cp15
[c9_L2CTLR
] = l2ctlr
;
162 static void reset_actlr(struct kvm_vcpu
*vcpu
, const struct coproc_reg
*r
)
166 /* ACTLR contains SMP bit: make sure you create all cpus first! */
167 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr
));
168 /* Make the SMP bit consistent with the guest configuration */
169 if (atomic_read(&vcpu
->kvm
->online_vcpus
) > 1)
174 vcpu
->arch
.cp15
[c1_ACTLR
] = actlr
;
178 * TRM entries: A7:4.3.50, A15:4.3.49
179 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
181 static bool access_l2ectlr(struct kvm_vcpu
*vcpu
,
182 const struct coproc_params
*p
,
183 const struct coproc_reg
*r
)
186 return ignore_write(vcpu
, p
);
188 *vcpu_reg(vcpu
, p
->Rt1
) = 0;
193 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
195 static bool access_dcsw(struct kvm_vcpu
*vcpu
,
196 const struct coproc_params
*p
,
197 const struct coproc_reg
*r
)
200 return read_from_write_only(vcpu
, p
);
202 kvm_set_way_flush(vcpu
);
207 * Generic accessor for VM registers. Only called as long as HCR_TVM
208 * is set. If the guest enables the MMU, we stop trapping the VM
209 * sys_regs and leave it in complete control of the caches.
211 * Used by the cpu-specific code.
213 bool access_vm_reg(struct kvm_vcpu
*vcpu
,
214 const struct coproc_params
*p
,
215 const struct coproc_reg
*r
)
217 bool was_enabled
= vcpu_has_cache_enabled(vcpu
);
219 BUG_ON(!p
->is_write
);
221 vcpu
->arch
.cp15
[r
->reg
] = *vcpu_reg(vcpu
, p
->Rt1
);
223 vcpu
->arch
.cp15
[r
->reg
+ 1] = *vcpu_reg(vcpu
, p
->Rt2
);
225 kvm_toggle_cache(vcpu
, was_enabled
);
230 * We could trap ID_DFR0 and tell the guest we don't support performance
231 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
232 * NAKed, so it will read the PMCR anyway.
234 * Therefore we tell the guest we have 0 counters. Unfortunately, we
235 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
236 * all PM registers, which doesn't crash the guest kernel at least.
238 static bool pm_fake(struct kvm_vcpu
*vcpu
,
239 const struct coproc_params
*p
,
240 const struct coproc_reg
*r
)
243 return ignore_write(vcpu
, p
);
245 return read_zero(vcpu
, p
);
248 #define access_pmcr pm_fake
249 #define access_pmcntenset pm_fake
250 #define access_pmcntenclr pm_fake
251 #define access_pmovsr pm_fake
252 #define access_pmselr pm_fake
253 #define access_pmceid0 pm_fake
254 #define access_pmceid1 pm_fake
255 #define access_pmccntr pm_fake
256 #define access_pmxevtyper pm_fake
257 #define access_pmxevcntr pm_fake
258 #define access_pmuserenr pm_fake
259 #define access_pmintenset pm_fake
260 #define access_pmintenclr pm_fake
262 /* Architected CP15 registers.
263 * CRn denotes the primary register number, but is copied to the CRm in the
264 * user space API for 64-bit register access in line with the terminology used
266 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
267 * registers preceding 32-bit ones.
269 static const struct coproc_reg cp15_regs
[] = {
270 /* MPIDR: we use VMPIDR for guest access. */
271 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32
,
272 NULL
, reset_mpidr
, c0_MPIDR
},
274 /* CSSELR: swapped by interrupt.S. */
275 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32
,
276 NULL
, reset_unknown
, c0_CSSELR
},
278 /* ACTLR: trapped by HCR.TAC bit. */
279 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32
,
280 access_actlr
, reset_actlr
, c1_ACTLR
},
282 /* CPACR: swapped by interrupt.S. */
283 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32
,
284 NULL
, reset_val
, c1_CPACR
, 0x00000000 },
286 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
287 { CRm64( 2), Op1( 0), is64
, access_vm_reg
, reset_unknown64
, c2_TTBR0
},
288 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32
,
289 access_vm_reg
, reset_unknown
, c2_TTBR0
},
290 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32
,
291 access_vm_reg
, reset_unknown
, c2_TTBR1
},
292 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32
,
293 access_vm_reg
, reset_val
, c2_TTBCR
, 0x00000000 },
294 { CRm64( 2), Op1( 1), is64
, access_vm_reg
, reset_unknown64
, c2_TTBR1
},
297 /* DACR: swapped by interrupt.S. */
298 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32
,
299 access_vm_reg
, reset_unknown
, c3_DACR
},
301 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
302 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32
,
303 access_vm_reg
, reset_unknown
, c5_DFSR
},
304 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32
,
305 access_vm_reg
, reset_unknown
, c5_IFSR
},
306 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32
,
307 access_vm_reg
, reset_unknown
, c5_ADFSR
},
308 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32
,
309 access_vm_reg
, reset_unknown
, c5_AIFSR
},
311 /* DFAR/IFAR: swapped by interrupt.S. */
312 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32
,
313 access_vm_reg
, reset_unknown
, c6_DFAR
},
314 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32
,
315 access_vm_reg
, reset_unknown
, c6_IFAR
},
317 /* PAR swapped by interrupt.S */
318 { CRm64( 7), Op1( 0), is64
, NULL
, reset_unknown64
, c7_PAR
},
321 * DC{C,I,CI}SW operations:
323 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32
, access_dcsw
},
324 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32
, access_dcsw
},
325 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32
, access_dcsw
},
327 * L2CTLR access (guest wants to know #CPUs).
329 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32
,
330 access_l2ctlr
, reset_l2ctlr
, c9_L2CTLR
},
331 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32
, access_l2ectlr
},
334 * Dummy performance monitor implementation.
336 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32
, access_pmcr
},
337 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32
, access_pmcntenset
},
338 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32
, access_pmcntenclr
},
339 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32
, access_pmovsr
},
340 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32
, access_pmselr
},
341 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32
, access_pmceid0
},
342 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32
, access_pmceid1
},
343 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32
, access_pmccntr
},
344 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32
, access_pmxevtyper
},
345 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32
, access_pmxevcntr
},
346 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32
, access_pmuserenr
},
347 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32
, access_pmintenset
},
348 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32
, access_pmintenclr
},
350 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
351 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32
,
352 access_vm_reg
, reset_unknown
, c10_PRRR
},
353 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32
,
354 access_vm_reg
, reset_unknown
, c10_NMRR
},
356 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
357 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32
,
358 access_vm_reg
, reset_unknown
, c10_AMAIR0
},
359 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32
,
360 access_vm_reg
, reset_unknown
, c10_AMAIR1
},
362 /* VBAR: swapped by interrupt.S. */
363 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32
,
364 NULL
, reset_val
, c12_VBAR
, 0x00000000 },
366 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
367 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32
,
368 access_vm_reg
, reset_val
, c13_CID
, 0x00000000 },
369 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32
,
370 NULL
, reset_unknown
, c13_TID_URW
},
371 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32
,
372 NULL
, reset_unknown
, c13_TID_URO
},
373 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32
,
374 NULL
, reset_unknown
, c13_TID_PRIV
},
376 /* CNTKCTL: swapped by interrupt.S. */
377 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32
,
378 NULL
, reset_val
, c14_CNTKCTL
, 0x00000000 },
380 /* The Configuration Base Address Register. */
381 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32
, access_cbar
},
384 /* Target specific emulation tables */
385 static struct kvm_coproc_target_table
*target_tables
[KVM_ARM_NUM_TARGETS
];
387 void kvm_register_target_coproc_table(struct kvm_coproc_target_table
*table
)
391 for (i
= 1; i
< table
->num
; i
++)
392 BUG_ON(cmp_reg(&table
->table
[i
-1],
393 &table
->table
[i
]) >= 0);
395 target_tables
[table
->target
] = table
;
398 /* Get specific register table for this target. */
399 static const struct coproc_reg
*get_target_table(unsigned target
, size_t *num
)
401 struct kvm_coproc_target_table
*table
;
403 table
= target_tables
[target
];
408 static const struct coproc_reg
*find_reg(const struct coproc_params
*params
,
409 const struct coproc_reg table
[],
414 for (i
= 0; i
< num
; i
++) {
415 const struct coproc_reg
*r
= &table
[i
];
417 if (params
->is_64bit
!= r
->is_64
)
419 if (params
->CRn
!= r
->CRn
)
421 if (params
->CRm
!= r
->CRm
)
423 if (params
->Op1
!= r
->Op1
)
425 if (params
->Op2
!= r
->Op2
)
433 static int emulate_cp15(struct kvm_vcpu
*vcpu
,
434 const struct coproc_params
*params
)
437 const struct coproc_reg
*table
, *r
;
439 trace_kvm_emulate_cp15_imp(params
->Op1
, params
->Rt1
, params
->CRn
,
440 params
->CRm
, params
->Op2
, params
->is_write
);
442 table
= get_target_table(vcpu
->arch
.target
, &num
);
444 /* Search target-specific then generic table. */
445 r
= find_reg(params
, table
, num
);
447 r
= find_reg(params
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
450 /* If we don't have an accessor, we should never get here! */
453 if (likely(r
->access(vcpu
, params
, r
))) {
454 /* Skip instruction, since it was emulated */
455 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
458 /* If access function fails, it should complain. */
460 kvm_err("Unsupported guest CP15 access at: %08lx\n",
462 print_cp_instr(params
);
464 kvm_inject_undefined(vcpu
);
469 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
470 * @vcpu: The VCPU pointer
471 * @run: The kvm_run struct
473 int kvm_handle_cp15_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
475 struct coproc_params params
;
477 params
.CRn
= (kvm_vcpu_get_hsr(vcpu
) >> 1) & 0xf;
478 params
.Rt1
= (kvm_vcpu_get_hsr(vcpu
) >> 5) & 0xf;
479 params
.is_write
= ((kvm_vcpu_get_hsr(vcpu
) & 1) == 0);
480 params
.is_64bit
= true;
482 params
.Op1
= (kvm_vcpu_get_hsr(vcpu
) >> 16) & 0xf;
484 params
.Rt2
= (kvm_vcpu_get_hsr(vcpu
) >> 10) & 0xf;
487 return emulate_cp15(vcpu
, ¶ms
);
490 static void reset_coproc_regs(struct kvm_vcpu
*vcpu
,
491 const struct coproc_reg
*table
, size_t num
)
495 for (i
= 0; i
< num
; i
++)
497 table
[i
].reset(vcpu
, &table
[i
]);
501 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
502 * @vcpu: The VCPU pointer
503 * @run: The kvm_run struct
505 int kvm_handle_cp15_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
507 struct coproc_params params
;
509 params
.CRm
= (kvm_vcpu_get_hsr(vcpu
) >> 1) & 0xf;
510 params
.Rt1
= (kvm_vcpu_get_hsr(vcpu
) >> 5) & 0xf;
511 params
.is_write
= ((kvm_vcpu_get_hsr(vcpu
) & 1) == 0);
512 params
.is_64bit
= false;
514 params
.CRn
= (kvm_vcpu_get_hsr(vcpu
) >> 10) & 0xf;
515 params
.Op1
= (kvm_vcpu_get_hsr(vcpu
) >> 14) & 0x7;
516 params
.Op2
= (kvm_vcpu_get_hsr(vcpu
) >> 17) & 0x7;
519 return emulate_cp15(vcpu
, ¶ms
);
522 /******************************************************************************
524 *****************************************************************************/
526 static bool index_to_params(u64 id
, struct coproc_params
*params
)
528 switch (id
& KVM_REG_SIZE_MASK
) {
529 case KVM_REG_SIZE_U32
:
530 /* Any unused index bits means it's not valid. */
531 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
532 | KVM_REG_ARM_COPROC_MASK
533 | KVM_REG_ARM_32_CRN_MASK
534 | KVM_REG_ARM_CRM_MASK
535 | KVM_REG_ARM_OPC1_MASK
536 | KVM_REG_ARM_32_OPC2_MASK
))
539 params
->is_64bit
= false;
540 params
->CRn
= ((id
& KVM_REG_ARM_32_CRN_MASK
)
541 >> KVM_REG_ARM_32_CRN_SHIFT
);
542 params
->CRm
= ((id
& KVM_REG_ARM_CRM_MASK
)
543 >> KVM_REG_ARM_CRM_SHIFT
);
544 params
->Op1
= ((id
& KVM_REG_ARM_OPC1_MASK
)
545 >> KVM_REG_ARM_OPC1_SHIFT
);
546 params
->Op2
= ((id
& KVM_REG_ARM_32_OPC2_MASK
)
547 >> KVM_REG_ARM_32_OPC2_SHIFT
);
549 case KVM_REG_SIZE_U64
:
550 /* Any unused index bits means it's not valid. */
551 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
552 | KVM_REG_ARM_COPROC_MASK
553 | KVM_REG_ARM_CRM_MASK
554 | KVM_REG_ARM_OPC1_MASK
))
556 params
->is_64bit
= true;
557 /* CRm to CRn: see cp15_to_index for details */
558 params
->CRn
= ((id
& KVM_REG_ARM_CRM_MASK
)
559 >> KVM_REG_ARM_CRM_SHIFT
);
560 params
->Op1
= ((id
& KVM_REG_ARM_OPC1_MASK
)
561 >> KVM_REG_ARM_OPC1_SHIFT
);
570 /* Decode an index value, and find the cp15 coproc_reg entry. */
571 static const struct coproc_reg
*index_to_coproc_reg(struct kvm_vcpu
*vcpu
,
575 const struct coproc_reg
*table
, *r
;
576 struct coproc_params params
;
578 /* We only do cp15 for now. */
579 if ((id
& KVM_REG_ARM_COPROC_MASK
) >> KVM_REG_ARM_COPROC_SHIFT
!= 15)
582 if (!index_to_params(id
, ¶ms
))
585 table
= get_target_table(vcpu
->arch
.target
, &num
);
586 r
= find_reg(¶ms
, table
, num
);
588 r
= find_reg(¶ms
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
590 /* Not saved in the cp15 array? */
598 * These are the invariant cp15 registers: we let the guest see the host
599 * versions of these, so they're part of the guest state.
601 * A future CPU may provide a mechanism to present different values to
602 * the guest, or a future kvm may trap them.
604 /* Unfortunately, there's no register-argument for mrc, so generate. */
605 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
606 static void get_##name(struct kvm_vcpu *v, \
607 const struct coproc_reg *r) \
611 asm volatile("mrc p15, " __stringify(op1) \
612 ", %0, c" __stringify(crn) \
613 ", c" __stringify(crm) \
614 ", " __stringify(op2) "\n" : "=r" (val)); \
615 ((struct coproc_reg *)r)->val = val; \
618 FUNCTION_FOR32(0, 0, 0, 0, MIDR
)
619 FUNCTION_FOR32(0, 0, 0, 1, CTR
)
620 FUNCTION_FOR32(0, 0, 0, 2, TCMTR
)
621 FUNCTION_FOR32(0, 0, 0, 3, TLBTR
)
622 FUNCTION_FOR32(0, 0, 0, 6, REVIDR
)
623 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0
)
624 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1
)
625 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0
)
626 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0
)
627 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0
)
628 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1
)
629 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2
)
630 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3
)
631 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0
)
632 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1
)
633 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2
)
634 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3
)
635 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4
)
636 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5
)
637 FUNCTION_FOR32(0, 0, 1, 1, CLIDR
)
638 FUNCTION_FOR32(0, 0, 1, 7, AIDR
)
640 /* ->val is filled in by kvm_invariant_coproc_table_init() */
641 static struct coproc_reg invariant_cp15
[] = {
642 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32
, NULL
, get_MIDR
},
643 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32
, NULL
, get_CTR
},
644 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32
, NULL
, get_TCMTR
},
645 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32
, NULL
, get_TLBTR
},
646 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32
, NULL
, get_REVIDR
},
648 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32
, NULL
, get_ID_PFR0
},
649 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32
, NULL
, get_ID_PFR1
},
650 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32
, NULL
, get_ID_DFR0
},
651 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32
, NULL
, get_ID_AFR0
},
652 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32
, NULL
, get_ID_MMFR0
},
653 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32
, NULL
, get_ID_MMFR1
},
654 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32
, NULL
, get_ID_MMFR2
},
655 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32
, NULL
, get_ID_MMFR3
},
657 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32
, NULL
, get_ID_ISAR0
},
658 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32
, NULL
, get_ID_ISAR1
},
659 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32
, NULL
, get_ID_ISAR2
},
660 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32
, NULL
, get_ID_ISAR3
},
661 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32
, NULL
, get_ID_ISAR4
},
662 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32
, NULL
, get_ID_ISAR5
},
664 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32
, NULL
, get_CLIDR
},
665 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32
, NULL
, get_AIDR
},
669 * Reads a register value from a userspace address to a kernel
670 * variable. Make sure that register size matches sizeof(*__val).
672 static int reg_from_user(void *val
, const void __user
*uaddr
, u64 id
)
674 if (copy_from_user(val
, uaddr
, KVM_REG_SIZE(id
)) != 0)
680 * Writes a register value to a userspace address from a kernel variable.
681 * Make sure that register size matches sizeof(*__val).
683 static int reg_to_user(void __user
*uaddr
, const void *val
, u64 id
)
685 if (copy_to_user(uaddr
, val
, KVM_REG_SIZE(id
)) != 0)
690 static int get_invariant_cp15(u64 id
, void __user
*uaddr
)
692 struct coproc_params params
;
693 const struct coproc_reg
*r
;
696 if (!index_to_params(id
, ¶ms
))
699 r
= find_reg(¶ms
, invariant_cp15
, ARRAY_SIZE(invariant_cp15
));
704 if (KVM_REG_SIZE(id
) == 4) {
707 ret
= reg_to_user(uaddr
, &val
, id
);
708 } else if (KVM_REG_SIZE(id
) == 8) {
709 ret
= reg_to_user(uaddr
, &r
->val
, id
);
714 static int set_invariant_cp15(u64 id
, void __user
*uaddr
)
716 struct coproc_params params
;
717 const struct coproc_reg
*r
;
721 if (!index_to_params(id
, ¶ms
))
723 r
= find_reg(¶ms
, invariant_cp15
, ARRAY_SIZE(invariant_cp15
));
728 if (KVM_REG_SIZE(id
) == 4) {
731 err
= reg_from_user(&val32
, uaddr
, id
);
734 } else if (KVM_REG_SIZE(id
) == 8) {
735 err
= reg_from_user(&val
, uaddr
, id
);
740 /* This is what we mean by invariant: you can't change it. */
747 static bool is_valid_cache(u32 val
)
751 if (val
>= CSSELR_MAX
)
754 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
756 ctype
= (cache_levels
>> (level
* 3)) & 7;
759 case 0: /* No cache */
761 case 1: /* Instruction cache only */
763 case 2: /* Data cache only */
764 case 4: /* Unified cache */
766 case 3: /* Separate instruction and data caches */
768 default: /* Reserved: we can't know instruction or data. */
773 /* Which cache CCSIDR represents depends on CSSELR value. */
774 static u32
get_ccsidr(u32 csselr
)
778 /* Make sure noone else changes CSSELR during this! */
780 /* Put value into CSSELR */
781 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr
));
783 /* Read result out of CCSIDR */
784 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr
));
790 static int demux_c15_get(u64 id
, void __user
*uaddr
)
793 u32 __user
*uval
= uaddr
;
795 /* Fail if we have unknown bits set. */
796 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
797 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
800 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
801 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
802 if (KVM_REG_SIZE(id
) != 4)
804 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
805 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
806 if (!is_valid_cache(val
))
809 return put_user(get_ccsidr(val
), uval
);
815 static int demux_c15_set(u64 id
, void __user
*uaddr
)
818 u32 __user
*uval
= uaddr
;
820 /* Fail if we have unknown bits set. */
821 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
822 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
825 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
826 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
827 if (KVM_REG_SIZE(id
) != 4)
829 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
830 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
831 if (!is_valid_cache(val
))
834 if (get_user(newval
, uval
))
837 /* This is also invariant: you can't change it. */
838 if (newval
!= get_ccsidr(val
))
847 static const int vfp_sysregs
[] = { KVM_REG_ARM_VFP_FPEXC
,
848 KVM_REG_ARM_VFP_FPSCR
,
849 KVM_REG_ARM_VFP_FPINST
,
850 KVM_REG_ARM_VFP_FPINST2
,
851 KVM_REG_ARM_VFP_MVFR0
,
852 KVM_REG_ARM_VFP_MVFR1
,
853 KVM_REG_ARM_VFP_FPSID
};
855 static unsigned int num_fp_regs(void)
857 if (((fmrx(MVFR0
) & MVFR0_A_SIMD_MASK
) >> MVFR0_A_SIMD_BIT
) == 2)
863 static unsigned int num_vfp_regs(void)
865 /* Normal FP regs + control regs. */
866 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs
);
869 static int copy_vfp_regids(u64 __user
*uindices
)
872 const u64 u32reg
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
;
873 const u64 u64reg
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
875 for (i
= 0; i
< num_fp_regs(); i
++) {
876 if (put_user((u64reg
| KVM_REG_ARM_VFP_BASE_REG
) + i
,
882 for (i
= 0; i
< ARRAY_SIZE(vfp_sysregs
); i
++) {
883 if (put_user(u32reg
| vfp_sysregs
[i
], uindices
))
888 return num_vfp_regs();
891 static int vfp_get_reg(const struct kvm_vcpu
*vcpu
, u64 id
, void __user
*uaddr
)
893 u32 vfpid
= (id
& KVM_REG_ARM_VFP_MASK
);
896 /* Fail if we have unknown bits set. */
897 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
898 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
901 if (vfpid
< num_fp_regs()) {
902 if (KVM_REG_SIZE(id
) != 8)
904 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpregs
[vfpid
],
908 /* FP control registers are all 32 bit. */
909 if (KVM_REG_SIZE(id
) != 4)
913 case KVM_REG_ARM_VFP_FPEXC
:
914 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpexc
, id
);
915 case KVM_REG_ARM_VFP_FPSCR
:
916 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpscr
, id
);
917 case KVM_REG_ARM_VFP_FPINST
:
918 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpinst
, id
);
919 case KVM_REG_ARM_VFP_FPINST2
:
920 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpinst2
, id
);
921 case KVM_REG_ARM_VFP_MVFR0
:
923 return reg_to_user(uaddr
, &val
, id
);
924 case KVM_REG_ARM_VFP_MVFR1
:
926 return reg_to_user(uaddr
, &val
, id
);
927 case KVM_REG_ARM_VFP_FPSID
:
929 return reg_to_user(uaddr
, &val
, id
);
935 static int vfp_set_reg(struct kvm_vcpu
*vcpu
, u64 id
, const void __user
*uaddr
)
937 u32 vfpid
= (id
& KVM_REG_ARM_VFP_MASK
);
940 /* Fail if we have unknown bits set. */
941 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
942 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
945 if (vfpid
< num_fp_regs()) {
946 if (KVM_REG_SIZE(id
) != 8)
948 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpregs
[vfpid
],
952 /* FP control registers are all 32 bit. */
953 if (KVM_REG_SIZE(id
) != 4)
957 case KVM_REG_ARM_VFP_FPEXC
:
958 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpexc
, uaddr
, id
);
959 case KVM_REG_ARM_VFP_FPSCR
:
960 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpscr
, uaddr
, id
);
961 case KVM_REG_ARM_VFP_FPINST
:
962 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpinst
, uaddr
, id
);
963 case KVM_REG_ARM_VFP_FPINST2
:
964 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpinst2
, uaddr
, id
);
965 /* These are invariant. */
966 case KVM_REG_ARM_VFP_MVFR0
:
967 if (reg_from_user(&val
, uaddr
, id
))
969 if (val
!= fmrx(MVFR0
))
972 case KVM_REG_ARM_VFP_MVFR1
:
973 if (reg_from_user(&val
, uaddr
, id
))
975 if (val
!= fmrx(MVFR1
))
978 case KVM_REG_ARM_VFP_FPSID
:
979 if (reg_from_user(&val
, uaddr
, id
))
981 if (val
!= fmrx(FPSID
))
988 #else /* !CONFIG_VFPv3 */
989 static unsigned int num_vfp_regs(void)
994 static int copy_vfp_regids(u64 __user
*uindices
)
999 static int vfp_get_reg(const struct kvm_vcpu
*vcpu
, u64 id
, void __user
*uaddr
)
1004 static int vfp_set_reg(struct kvm_vcpu
*vcpu
, u64 id
, const void __user
*uaddr
)
1008 #endif /* !CONFIG_VFPv3 */
1010 int kvm_arm_coproc_get_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
1012 const struct coproc_reg
*r
;
1013 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
1016 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
1017 return demux_c15_get(reg
->id
, uaddr
);
1019 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_VFP
)
1020 return vfp_get_reg(vcpu
, reg
->id
, uaddr
);
1022 r
= index_to_coproc_reg(vcpu
, reg
->id
);
1024 return get_invariant_cp15(reg
->id
, uaddr
);
1027 if (KVM_REG_SIZE(reg
->id
) == 8) {
1030 val
= vcpu_cp15_reg64_get(vcpu
, r
);
1031 ret
= reg_to_user(uaddr
, &val
, reg
->id
);
1032 } else if (KVM_REG_SIZE(reg
->id
) == 4) {
1033 ret
= reg_to_user(uaddr
, &vcpu
->arch
.cp15
[r
->reg
], reg
->id
);
1039 int kvm_arm_coproc_set_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
1041 const struct coproc_reg
*r
;
1042 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
1045 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
1046 return demux_c15_set(reg
->id
, uaddr
);
1048 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_VFP
)
1049 return vfp_set_reg(vcpu
, reg
->id
, uaddr
);
1051 r
= index_to_coproc_reg(vcpu
, reg
->id
);
1053 return set_invariant_cp15(reg
->id
, uaddr
);
1056 if (KVM_REG_SIZE(reg
->id
) == 8) {
1059 ret
= reg_from_user(&val
, uaddr
, reg
->id
);
1061 vcpu_cp15_reg64_set(vcpu
, r
, val
);
1062 } else if (KVM_REG_SIZE(reg
->id
) == 4) {
1063 ret
= reg_from_user(&vcpu
->arch
.cp15
[r
->reg
], uaddr
, reg
->id
);
1069 static unsigned int num_demux_regs(void)
1071 unsigned int i
, count
= 0;
1073 for (i
= 0; i
< CSSELR_MAX
; i
++)
1074 if (is_valid_cache(i
))
1080 static int write_demux_regids(u64 __user
*uindices
)
1082 u64 val
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_DEMUX
;
1085 val
|= KVM_REG_ARM_DEMUX_ID_CCSIDR
;
1086 for (i
= 0; i
< CSSELR_MAX
; i
++) {
1087 if (!is_valid_cache(i
))
1089 if (put_user(val
| i
, uindices
))
1096 static u64
cp15_to_index(const struct coproc_reg
*reg
)
1098 u64 val
= KVM_REG_ARM
| (15 << KVM_REG_ARM_COPROC_SHIFT
);
1100 val
|= KVM_REG_SIZE_U64
;
1101 val
|= (reg
->Op1
<< KVM_REG_ARM_OPC1_SHIFT
);
1103 * CRn always denotes the primary coproc. reg. nr. for the
1104 * in-kernel representation, but the user space API uses the
1105 * CRm for the encoding, because it is modelled after the
1106 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1109 val
|= (reg
->CRn
<< KVM_REG_ARM_CRM_SHIFT
);
1111 val
|= KVM_REG_SIZE_U32
;
1112 val
|= (reg
->Op1
<< KVM_REG_ARM_OPC1_SHIFT
);
1113 val
|= (reg
->Op2
<< KVM_REG_ARM_32_OPC2_SHIFT
);
1114 val
|= (reg
->CRm
<< KVM_REG_ARM_CRM_SHIFT
);
1115 val
|= (reg
->CRn
<< KVM_REG_ARM_32_CRN_SHIFT
);
1120 static bool copy_reg_to_user(const struct coproc_reg
*reg
, u64 __user
**uind
)
1125 if (put_user(cp15_to_index(reg
), *uind
))
1132 /* Assumed ordered tables, see kvm_coproc_table_init. */
1133 static int walk_cp15(struct kvm_vcpu
*vcpu
, u64 __user
*uind
)
1135 const struct coproc_reg
*i1
, *i2
, *end1
, *end2
;
1136 unsigned int total
= 0;
1139 /* We check for duplicates here, to allow arch-specific overrides. */
1140 i1
= get_target_table(vcpu
->arch
.target
, &num
);
1143 end2
= cp15_regs
+ ARRAY_SIZE(cp15_regs
);
1145 BUG_ON(i1
== end1
|| i2
== end2
);
1147 /* Walk carefully, as both tables may refer to the same register. */
1149 int cmp
= cmp_reg(i1
, i2
);
1150 /* target-specific overrides generic entry. */
1152 /* Ignore registers we trap but don't save. */
1154 if (!copy_reg_to_user(i1
, &uind
))
1159 /* Ignore registers we trap but don't save. */
1161 if (!copy_reg_to_user(i2
, &uind
))
1167 if (cmp
<= 0 && ++i1
== end1
)
1169 if (cmp
>= 0 && ++i2
== end2
)
1175 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu
*vcpu
)
1177 return ARRAY_SIZE(invariant_cp15
)
1180 + walk_cp15(vcpu
, (u64 __user
*)NULL
);
1183 int kvm_arm_copy_coproc_indices(struct kvm_vcpu
*vcpu
, u64 __user
*uindices
)
1188 /* Then give them all the invariant registers' indices. */
1189 for (i
= 0; i
< ARRAY_SIZE(invariant_cp15
); i
++) {
1190 if (put_user(cp15_to_index(&invariant_cp15
[i
]), uindices
))
1195 err
= walk_cp15(vcpu
, uindices
);
1200 err
= copy_vfp_regids(uindices
);
1205 return write_demux_regids(uindices
);
1208 void kvm_coproc_table_init(void)
1212 /* Make sure tables are unique and in order. */
1213 for (i
= 1; i
< ARRAY_SIZE(cp15_regs
); i
++)
1214 BUG_ON(cmp_reg(&cp15_regs
[i
-1], &cp15_regs
[i
]) >= 0);
1216 /* We abuse the reset function to overwrite the table itself. */
1217 for (i
= 0; i
< ARRAY_SIZE(invariant_cp15
); i
++)
1218 invariant_cp15
[i
].reset(NULL
, &invariant_cp15
[i
]);
1221 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1223 * If software reads the Cache Type fields from Ctype1
1224 * upwards, once it has seen a value of 0b000, no caches
1225 * exist at further-out levels of the hierarchy. So, for
1226 * example, if Ctype3 is the first Cache Type field with a
1227 * value of 0b000, the values of Ctype4 to Ctype7 must be
1230 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels
));
1231 for (i
= 0; i
< 7; i
++)
1232 if (((cache_levels
>> (i
*3)) & 7) == 0)
1234 /* Clear all higher bits. */
1235 cache_levels
&= (1 << (i
*3))-1;
1239 * kvm_reset_coprocs - sets cp15 registers to reset value
1240 * @vcpu: The VCPU pointer
1242 * This function finds the right table above and sets the registers on the
1243 * virtual CPU struct to their architecturally defined reset values.
1245 void kvm_reset_coprocs(struct kvm_vcpu
*vcpu
)
1248 const struct coproc_reg
*table
;
1250 /* Catch someone adding a register without putting in reset entry. */
1251 memset(vcpu
->arch
.cp15
, 0x42, sizeof(vcpu
->arch
.cp15
));
1253 /* Generic chip reset first (so target could override). */
1254 reset_coproc_regs(vcpu
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
1256 table
= get_target_table(vcpu
->arch
.target
, &num
);
1257 reset_coproc_regs(vcpu
, table
, num
);
1259 for (num
= 1; num
< NR_CP15_REGS
; num
++)
1260 if (vcpu
->arch
.cp15
[num
] == 0x42424242)
1261 panic("Didn't reset vcpu->arch.cp15[%zi]", num
);