2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
15 #include <linux/compiler.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/irqflags.h>
20 #include <asm/addrspace.h>
22 #include <asm/byteorder.h>
24 #include <asm/cpu-features.h>
25 #include <asm-generic/iomap.h>
27 #include <asm/pgtable-bits.h>
28 #include <asm/processor.h>
29 #include <asm/string.h>
32 #include <mangle-port.h>
35 * Slowdown I/O port space accesses for antique hardware.
37 #undef CONF_SLOWDOWN_IO
40 * Raw operations are never swapped in software. OTOH values that raw
41 * operations are working on may or may not have been swapped by the bus
42 * hardware. An example use would be for flash memory that's used for
45 # define __raw_ioswabb(a, x) (x)
46 # define __raw_ioswabw(a, x) (x)
47 # define __raw_ioswabl(a, x) (x)
48 # define __raw_ioswabq(a, x) (x)
49 # define ____raw_ioswabq(a, x) (x)
51 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
53 #define IO_SPACE_LIMIT 0xffff
56 * On MIPS I/O ports are memory mapped, so we access them using normal
57 * load/store instructions. mips_io_port_base is the virtual address to
58 * which all ports are being mapped. For sake of efficiency some code
59 * assumes that this is an address that can be loaded with a single lui
60 * instruction, so the lower 16 bits must be zero. Should be true on
61 * on any sane architecture; generic code does not use this assumption.
63 extern const unsigned long mips_io_port_base
;
66 * Gcc will generate code to load the value of mips_io_port_base after each
67 * function call which may be fairly wasteful in some cases. So we don't
68 * play quite by the book. We tell gcc mips_io_port_base is a long variable
69 * which solves the code generation issue. Now we need to violate the
70 * aliasing rules a little to make initialization possible and finally we
71 * will need the barrier() to fight side effects of the aliasing chat.
72 * This trickery will eventually collapse under gcc's optimizer. Oh well.
74 static inline void set_io_port_base(unsigned long base
)
76 * (unsigned long *) &mips_io_port_base
= base
;
81 * Thanks to James van Artsdalen for a better timing-fix than
82 * the two short jumps: using outb's to a nonexistent port seems
83 * to guarantee better timings even on fast machines.
85 * On the other hand, I'd like to be sure of a non-existent port:
86 * I feel a bit unsafe about using 0x80 (should be safe, though)
92 #define __SLOW_DOWN_IO \
93 __asm__ __volatile__( \
95 : : "r" (mips_io_port_base));
97 #ifdef CONF_SLOWDOWN_IO
99 #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
101 #define SLOW_DOWN_IO __SLOW_DOWN_IO
108 * virt_to_phys - map virtual addresses to physical
109 * @address: address to remap
111 * The returned physical address is the physical (CPU) mapping for
112 * the memory address given. It is only valid to use this function on
113 * addresses directly mapped or allocated via kmalloc.
115 * This function does not give bus mappings for DMA transfers. In
116 * almost all conceivable cases a device driver should not be using
119 static inline unsigned long virt_to_phys(volatile const void *address
)
121 return __pa(address
);
125 * phys_to_virt - map physical address to virtual
126 * @address: address to remap
128 * The returned virtual address is a current CPU mapping for
129 * the memory address given. It is only valid to use this function on
130 * addresses that have a kernel mapping
132 * This function does not handle bus mappings for DMA transfers. In
133 * almost all conceivable cases a device driver should not be using
136 static inline void * phys_to_virt(unsigned long address
)
138 return (void *)(address
+ PAGE_OFFSET
- PHYS_OFFSET
);
142 * ISA I/O bus memory addresses are 1:1 with the physical address.
144 static inline unsigned long isa_virt_to_bus(volatile void * address
)
146 return (unsigned long)address
- PAGE_OFFSET
;
149 static inline void * isa_bus_to_virt(unsigned long address
)
151 return (void *)(address
+ PAGE_OFFSET
);
154 #define isa_page_to_bus page_to_phys
157 * However PCI ones are not necessarily 1:1 and therefore these interfaces
158 * are forbidden in portable PCI drivers.
160 * Allow them for x86 for legacy drivers, though.
162 #define virt_to_bus virt_to_phys
163 #define bus_to_virt phys_to_virt
166 * Change "struct page" to physical address.
168 #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
170 extern void __iomem
* __ioremap(phys_addr_t offset
, phys_addr_t size
, unsigned long flags
);
171 extern void __iounmap(const volatile void __iomem
*addr
);
175 static inline void pci_iounmap(struct pci_dev
*dev
, void __iomem
*addr
) {}
178 static inline void __iomem
* __ioremap_mode(phys_addr_t offset
, unsigned long size
,
181 void __iomem
*addr
= plat_ioremap(offset
, size
, flags
);
186 #define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
188 if (cpu_has_64bit_addresses
) {
189 u64 base
= UNCAC_BASE
;
192 * R10000 supports a 2 bit uncached attribute therefore
193 * UNCAC_BASE may not equal IO_BASE.
195 if (flags
== _CACHE_UNCACHED
)
196 base
= (u64
) IO_BASE
;
197 return (void __iomem
*) (unsigned long) (base
+ offset
);
198 } else if (__builtin_constant_p(offset
) &&
199 __builtin_constant_p(size
) && __builtin_constant_p(flags
)) {
200 phys_addr_t phys_addr
, last_addr
;
202 phys_addr
= fixup_bigphys_addr(offset
, size
);
204 /* Don't allow wraparound or zero size. */
205 last_addr
= phys_addr
+ size
- 1;
206 if (!size
|| last_addr
< phys_addr
)
210 * Map uncached objects in the low 512MB of address
213 if (__IS_LOW512(phys_addr
) && __IS_LOW512(last_addr
) &&
214 flags
== _CACHE_UNCACHED
)
215 return (void __iomem
*)
216 (unsigned long)CKSEG1ADDR(phys_addr
);
219 return __ioremap(offset
, size
, flags
);
225 * ioremap - map bus memory into CPU space
226 * @offset: bus address of the memory
227 * @size: size of the resource to map
229 * ioremap performs a platform specific sequence of operations to
230 * make bus memory CPU accessible via the readb/readw/readl/writeb/
231 * writew/writel functions and the other mmio helpers. The returned
232 * address is not guaranteed to be usable directly as a virtual
235 #define ioremap(offset, size) \
236 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
239 * ioremap_nocache - map bus memory into CPU space
240 * @offset: bus address of the memory
241 * @size: size of the resource to map
243 * ioremap_nocache performs a platform specific sequence of operations to
244 * make bus memory CPU accessible via the readb/readw/readl/writeb/
245 * writew/writel functions and the other mmio helpers. The returned
246 * address is not guaranteed to be usable directly as a virtual
249 * This version of ioremap ensures that the memory is marked uncachable
250 * on the CPU as well as honouring existing caching rules from things like
251 * the PCI bus. Note that there are other caches and buffers on many
252 * busses. In particular driver authors should read up on PCI writes
254 * It's useful if some control registers are in such an area and
255 * write combining or read caching is not desirable:
257 #define ioremap_nocache(offset, size) \
258 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
259 #define ioremap_uc ioremap_nocache
262 * ioremap_cachable - map bus memory into CPU space
263 * @offset: bus address of the memory
264 * @size: size of the resource to map
266 * ioremap_nocache performs a platform specific sequence of operations to
267 * make bus memory CPU accessible via the readb/readw/readl/writeb/
268 * writew/writel functions and the other mmio helpers. The returned
269 * address is not guaranteed to be usable directly as a virtual
272 * This version of ioremap ensures that the memory is marked cachable by
273 * the CPU. Also enables full write-combining. Useful for some
274 * memory-like regions on I/O busses.
276 #define ioremap_cachable(offset, size) \
277 __ioremap_mode((offset), (size), _page_cachable_default)
280 * These two are MIPS specific ioremap variant. ioremap_cacheable_cow
281 * requests a cachable mapping, ioremap_uncached_accelerated requests a
282 * mapping using the uncached accelerated mode which isn't supported on
285 #define ioremap_cacheable_cow(offset, size) \
286 __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
287 #define ioremap_uncached_accelerated(offset, size) \
288 __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
290 static inline void iounmap(const volatile void __iomem
*addr
)
292 if (plat_iounmap(addr
))
295 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
297 if (cpu_has_64bit_addresses
||
298 (__builtin_constant_p(addr
) && __IS_KSEG1(addr
)))
306 #ifdef CONFIG_CPU_CAVIUM_OCTEON
307 #define war_octeon_io_reorder_wmb() wmb()
309 #define war_octeon_io_reorder_wmb() do { } while (0)
312 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \
314 static inline void pfx##write##bwlq(type val, \
315 volatile void __iomem *mem) \
317 volatile type *__mem; \
320 war_octeon_io_reorder_wmb(); \
322 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
324 __val = pfx##ioswab##bwlq(__mem, val); \
326 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
328 else if (cpu_has_64bits) { \
329 unsigned long __flags; \
333 local_irq_save(__flags); \
334 __asm__ __volatile__( \
335 ".set arch=r4000" "\t\t# __writeq""\n\t" \
336 "dsll32 %L0, %L0, 0" "\n\t" \
337 "dsrl32 %L0, %L0, 0" "\n\t" \
338 "dsll32 %M0, %M0, 0" "\n\t" \
339 "or %L0, %L0, %M0" "\n\t" \
340 "sd %L0, %2" "\n\t" \
343 : "0" (__val), "m" (*__mem)); \
345 local_irq_restore(__flags); \
350 static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
352 volatile type *__mem; \
355 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
357 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
359 else if (cpu_has_64bits) { \
360 unsigned long __flags; \
363 local_irq_save(__flags); \
364 __asm__ __volatile__( \
365 ".set arch=r4000" "\t\t# __readq" "\n\t" \
366 "ld %L0, %1" "\n\t" \
367 "dsra32 %M0, %L0, 0" "\n\t" \
368 "sll %L0, %L0, 0" "\n\t" \
373 local_irq_restore(__flags); \
379 return pfx##ioswab##bwlq(__mem, __val); \
382 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
384 static inline void pfx##out##bwlq##p(type val, unsigned long port) \
386 volatile type *__addr; \
389 war_octeon_io_reorder_wmb(); \
391 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
393 __val = pfx##ioswab##bwlq(__addr, val); \
395 /* Really, we want this to be atomic */ \
396 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
402 static inline type pfx##in##bwlq##p(unsigned long port) \
404 volatile type *__addr; \
407 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
409 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
414 return pfx##ioswab##bwlq(__addr, __val); \
417 #define __BUILD_MEMORY_PFX(bus, bwlq, type) \
419 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
421 #define BUILDIO_MEM(bwlq, type) \
423 __BUILD_MEMORY_PFX(__raw_, bwlq, type) \
424 __BUILD_MEMORY_PFX(, bwlq, type) \
425 __BUILD_MEMORY_PFX(__mem_, bwlq, type) \
432 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \
433 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
434 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
436 #define BUILDIO_IOPORT(bwlq, type) \
437 __BUILD_IOPORT_PFX(, bwlq, type) \
438 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
440 BUILDIO_IOPORT(b
, u8
)
441 BUILDIO_IOPORT(w
, u16
)
442 BUILDIO_IOPORT(l
, u32
)
444 BUILDIO_IOPORT(q
, u64
)
447 #define __BUILDIO(bwlq, type) \
449 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
453 #define readb_relaxed readb
454 #define readw_relaxed readw
455 #define readl_relaxed readl
456 #define readq_relaxed readq
458 #define writeb_relaxed writeb
459 #define writew_relaxed writew
460 #define writel_relaxed writel
461 #define writeq_relaxed writeq
463 #define readb_be(addr) \
464 __raw_readb((__force unsigned *)(addr))
465 #define readw_be(addr) \
466 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
467 #define readl_be(addr) \
468 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
469 #define readq_be(addr) \
470 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
472 #define writeb_be(val, addr) \
473 __raw_writeb((val), (__force unsigned *)(addr))
474 #define writew_be(val, addr) \
475 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
476 #define writel_be(val, addr) \
477 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
478 #define writeq_be(val, addr) \
479 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
482 * Some code tests for these symbols
485 #define writeq writeq
487 #define __BUILD_MEMORY_STRING(bwlq, type) \
489 static inline void writes##bwlq(volatile void __iomem *mem, \
490 const void *addr, unsigned int count) \
492 const volatile type *__addr = addr; \
495 __mem_write##bwlq(*__addr, mem); \
500 static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
501 unsigned int count) \
503 volatile type *__addr = addr; \
506 *__addr = __mem_read##bwlq(mem); \
511 #define __BUILD_IOPORT_STRING(bwlq, type) \
513 static inline void outs##bwlq(unsigned long port, const void *addr, \
514 unsigned int count) \
516 const volatile type *__addr = addr; \
519 __mem_out##bwlq(*__addr, port); \
524 static inline void ins##bwlq(unsigned long port, void *addr, \
525 unsigned int count) \
527 volatile type *__addr = addr; \
530 *__addr = __mem_in##bwlq(port); \
535 #define BUILDSTRING(bwlq, type) \
537 __BUILD_MEMORY_STRING(bwlq, type) \
538 __BUILD_IOPORT_STRING(bwlq, type)
548 #ifdef CONFIG_CPU_CAVIUM_OCTEON
549 #define mmiowb() wmb()
551 /* Depends on MIPS II instruction set */
552 #define mmiowb() asm volatile ("sync" ::: "memory")
555 static inline void memset_io(volatile void __iomem
*addr
, unsigned char val
, int count
)
557 memset((void __force
*) addr
, val
, count
);
559 static inline void memcpy_fromio(void *dst
, const volatile void __iomem
*src
, int count
)
561 memcpy(dst
, (void __force
*) src
, count
);
563 static inline void memcpy_toio(volatile void __iomem
*dst
, const void *src
, int count
)
565 memcpy((void __force
*) dst
, src
, count
);
569 * The caches on some architectures aren't dma-coherent and have need to
570 * handle this in software. There are three types of operations that
571 * can be applied to dma buffers.
573 * - dma_cache_wback_inv(start, size) makes caches and coherent by
574 * writing the content of the caches back to memory, if necessary.
575 * The function also invalidates the affected part of the caches as
576 * necessary before DMA transfers from outside to memory.
577 * - dma_cache_wback(start, size) makes caches and coherent by
578 * writing the content of the caches back to memory, if necessary.
579 * The function also invalidates the affected part of the caches as
580 * necessary before DMA transfers from outside to memory.
581 * - dma_cache_inv(start, size) invalidates the affected parts of the
582 * caches. Dirty lines of the caches may be written back or simply
583 * be discarded. This operation is necessary before dma operations
586 * This API used to be exported; it now is for arch code internal use only.
588 #if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
590 extern void (*_dma_cache_wback_inv
)(unsigned long start
, unsigned long size
);
591 extern void (*_dma_cache_wback
)(unsigned long start
, unsigned long size
);
592 extern void (*_dma_cache_inv
)(unsigned long start
, unsigned long size
);
594 #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
595 #define dma_cache_wback(start, size) _dma_cache_wback(start, size)
596 #define dma_cache_inv(start, size) _dma_cache_inv(start, size)
598 #else /* Sane hardware */
600 #define dma_cache_wback_inv(start,size) \
601 do { (void) (start); (void) (size); } while (0)
602 #define dma_cache_wback(start,size) \
603 do { (void) (start); (void) (size); } while (0)
604 #define dma_cache_inv(start,size) \
605 do { (void) (start); (void) (size); } while (0)
607 #endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
610 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
611 * Avoid interrupt mucking, just adjust the address for 4-byte access.
612 * Assume the addresses are 8-byte aligned.
615 #define __CSR_32_ADJUST 4
617 #define __CSR_32_ADJUST 0
620 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
621 #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
624 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
627 #define xlate_dev_mem_ptr(p) __va(p)
630 * Convert a virtual cached pointer to an uncached pointer
632 #define xlate_dev_kmem_ptr(p) p
634 #endif /* _ASM_IO_H */