2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * KVM/MIPS: MIPS specific KVM APIs
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
18 #include <linux/bootmem.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
25 #include <linux/kvm_host.h>
27 #include "interrupt.h"
30 #define CREATE_TRACE_POINTS
34 #define VECTORSPACING 0x100 /* for EI/VI mode */
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries
[] = {
39 { "wait", VCPU_STAT(wait_exits
), KVM_STAT_VCPU
},
40 { "cache", VCPU_STAT(cache_exits
), KVM_STAT_VCPU
},
41 { "signal", VCPU_STAT(signal_exits
), KVM_STAT_VCPU
},
42 { "interrupt", VCPU_STAT(int_exits
), KVM_STAT_VCPU
},
43 { "cop_unsuable", VCPU_STAT(cop_unusable_exits
), KVM_STAT_VCPU
},
44 { "tlbmod", VCPU_STAT(tlbmod_exits
), KVM_STAT_VCPU
},
45 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits
), KVM_STAT_VCPU
},
46 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits
), KVM_STAT_VCPU
},
47 { "addrerr_st", VCPU_STAT(addrerr_st_exits
), KVM_STAT_VCPU
},
48 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits
), KVM_STAT_VCPU
},
49 { "syscall", VCPU_STAT(syscall_exits
), KVM_STAT_VCPU
},
50 { "resvd_inst", VCPU_STAT(resvd_inst_exits
), KVM_STAT_VCPU
},
51 { "break_inst", VCPU_STAT(break_inst_exits
), KVM_STAT_VCPU
},
52 { "trap_inst", VCPU_STAT(trap_inst_exits
), KVM_STAT_VCPU
},
53 { "msa_fpe", VCPU_STAT(msa_fpe_exits
), KVM_STAT_VCPU
},
54 { "fpe", VCPU_STAT(fpe_exits
), KVM_STAT_VCPU
},
55 { "msa_disabled", VCPU_STAT(msa_disabled_exits
), KVM_STAT_VCPU
},
56 { "flush_dcache", VCPU_STAT(flush_dcache_exits
), KVM_STAT_VCPU
},
57 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
), KVM_STAT_VCPU
},
58 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll
), KVM_STAT_VCPU
},
59 { "halt_wakeup", VCPU_STAT(halt_wakeup
), KVM_STAT_VCPU
},
63 static int kvm_mips_reset_vcpu(struct kvm_vcpu
*vcpu
)
67 for_each_possible_cpu(i
) {
68 vcpu
->arch
.guest_kernel_asid
[i
] = 0;
69 vcpu
->arch
.guest_user_asid
[i
] = 0;
76 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
77 * Config7, so we are "runnable" if interrupts are pending
79 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
81 return !!(vcpu
->arch
.pending_exceptions
);
84 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
89 int kvm_arch_hardware_enable(void)
94 int kvm_arch_hardware_setup(void)
99 void kvm_arch_check_processor_compat(void *rtn
)
104 static void kvm_mips_init_tlbs(struct kvm
*kvm
)
109 * Add a wired entry to the TLB, it is used to map the commpage to
112 wired
= read_c0_wired();
113 write_c0_wired(wired
+ 1);
115 kvm
->arch
.commpage_tlb
= wired
;
117 kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
118 kvm
->arch
.commpage_tlb
);
121 static void kvm_mips_init_vm_percpu(void *arg
)
123 struct kvm
*kvm
= (struct kvm
*)arg
;
125 kvm_mips_init_tlbs(kvm
);
126 kvm_mips_callbacks
->vm_init(kvm
);
130 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
132 if (atomic_inc_return(&kvm_mips_instance
) == 1) {
133 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
135 on_each_cpu(kvm_mips_init_vm_percpu
, kvm
, 1);
141 void kvm_mips_free_vcpus(struct kvm
*kvm
)
144 struct kvm_vcpu
*vcpu
;
146 /* Put the pages we reserved for the guest pmap */
147 for (i
= 0; i
< kvm
->arch
.guest_pmap_npages
; i
++) {
148 if (kvm
->arch
.guest_pmap
[i
] != KVM_INVALID_PAGE
)
149 kvm_mips_release_pfn_clean(kvm
->arch
.guest_pmap
[i
]);
151 kfree(kvm
->arch
.guest_pmap
);
153 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
154 kvm_arch_vcpu_free(vcpu
);
157 mutex_lock(&kvm
->lock
);
159 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
160 kvm
->vcpus
[i
] = NULL
;
162 atomic_set(&kvm
->online_vcpus
, 0);
164 mutex_unlock(&kvm
->lock
);
167 static void kvm_mips_uninit_tlbs(void *arg
)
169 /* Restore wired count */
172 /* Clear out all the TLBs */
173 kvm_local_flush_tlb_all();
176 void kvm_arch_destroy_vm(struct kvm
*kvm
)
178 kvm_mips_free_vcpus(kvm
);
180 /* If this is the last instance, restore wired count */
181 if (atomic_dec_return(&kvm_mips_instance
) == 0) {
182 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
184 on_each_cpu(kvm_mips_uninit_tlbs
, NULL
, 1);
188 long kvm_arch_dev_ioctl(struct file
*filp
, unsigned int ioctl
,
194 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
195 unsigned long npages
)
200 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
201 struct kvm_memory_slot
*memslot
,
202 const struct kvm_userspace_memory_region
*mem
,
203 enum kvm_mr_change change
)
208 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
209 const struct kvm_userspace_memory_region
*mem
,
210 const struct kvm_memory_slot
*old
,
211 const struct kvm_memory_slot
*new,
212 enum kvm_mr_change change
)
214 unsigned long npages
= 0;
217 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
218 __func__
, kvm
, mem
->slot
, mem
->guest_phys_addr
,
219 mem
->memory_size
, mem
->userspace_addr
);
221 /* Setup Guest PMAP table */
222 if (!kvm
->arch
.guest_pmap
) {
224 npages
= mem
->memory_size
>> PAGE_SHIFT
;
227 kvm
->arch
.guest_pmap_npages
= npages
;
228 kvm
->arch
.guest_pmap
=
229 kzalloc(npages
* sizeof(unsigned long), GFP_KERNEL
);
231 if (!kvm
->arch
.guest_pmap
) {
232 kvm_err("Failed to allocate guest PMAP");
236 kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
237 npages
, kvm
->arch
.guest_pmap
);
239 /* Now setup the page table */
240 for (i
= 0; i
< npages
; i
++)
241 kvm
->arch
.guest_pmap
[i
] = KVM_INVALID_PAGE
;
246 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
, unsigned int id
)
248 int err
, size
, offset
;
252 struct kvm_vcpu
*vcpu
= kzalloc(sizeof(struct kvm_vcpu
), GFP_KERNEL
);
259 err
= kvm_vcpu_init(vcpu
, kvm
, id
);
264 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm
, id
, vcpu
);
267 * Allocate space for host mode exception handlers that handle
270 if (cpu_has_veic
|| cpu_has_vint
)
271 size
= 0x200 + VECTORSPACING
* 64;
275 /* Save Linux EBASE */
276 vcpu
->arch
.host_ebase
= (void *)read_c0_ebase();
278 gebase
= kzalloc(ALIGN(size
, PAGE_SIZE
), GFP_KERNEL
);
284 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
285 ALIGN(size
, PAGE_SIZE
), gebase
);
288 vcpu
->arch
.guest_ebase
= gebase
;
290 /* Copy L1 Guest Exception handler to correct offset */
292 /* TLB Refill, EXL = 0 */
293 memcpy(gebase
, mips32_exception
,
294 mips32_exceptionEnd
- mips32_exception
);
296 /* General Exception Entry point */
297 memcpy(gebase
+ 0x180, mips32_exception
,
298 mips32_exceptionEnd
- mips32_exception
);
300 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
301 for (i
= 0; i
< 8; i
++) {
302 kvm_debug("L1 Vectored handler @ %p\n",
303 gebase
+ 0x200 + (i
* VECTORSPACING
));
304 memcpy(gebase
+ 0x200 + (i
* VECTORSPACING
), mips32_exception
,
305 mips32_exceptionEnd
- mips32_exception
);
308 /* General handler, relocate to unmapped space for sanity's sake */
310 kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
312 mips32_GuestExceptionEnd
- mips32_GuestException
);
314 memcpy(gebase
+ offset
, mips32_GuestException
,
315 mips32_GuestExceptionEnd
- mips32_GuestException
);
317 /* Invalidate the icache for these ranges */
318 local_flush_icache_range((unsigned long)gebase
,
319 (unsigned long)gebase
+ ALIGN(size
, PAGE_SIZE
));
322 * Allocate comm page for guest kernel, a TLB will be reserved for
323 * mapping GVA @ 0xFFFF8000 to this page
325 vcpu
->arch
.kseg0_commpage
= kzalloc(PAGE_SIZE
<< 1, GFP_KERNEL
);
327 if (!vcpu
->arch
.kseg0_commpage
) {
329 goto out_free_gebase
;
332 kvm_debug("Allocated COMM page @ %p\n", vcpu
->arch
.kseg0_commpage
);
333 kvm_mips_commpage_init(vcpu
);
336 vcpu
->arch
.last_sched_cpu
= -1;
338 /* Start off the timer */
339 kvm_mips_init_count(vcpu
);
347 kvm_vcpu_uninit(vcpu
);
356 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
358 hrtimer_cancel(&vcpu
->arch
.comparecount_timer
);
360 kvm_vcpu_uninit(vcpu
);
362 kvm_mips_dump_stats(vcpu
);
364 kfree(vcpu
->arch
.guest_ebase
);
365 kfree(vcpu
->arch
.kseg0_commpage
);
369 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
371 kvm_arch_vcpu_free(vcpu
);
374 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
375 struct kvm_guest_debug
*dbg
)
380 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
385 if (vcpu
->sigset_active
)
386 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
388 if (vcpu
->mmio_needed
) {
389 if (!vcpu
->mmio_is_write
)
390 kvm_mips_complete_mmio_load(vcpu
, run
);
391 vcpu
->mmio_needed
= 0;
397 /* Check if we have any exceptions/interrupts pending */
398 kvm_mips_deliver_interrupts(vcpu
,
399 kvm_read_c0_guest_cause(vcpu
->arch
.cop0
));
403 /* Disable hardware page table walking while in guest */
406 r
= __kvm_mips_vcpu_run(run
, vcpu
);
408 /* Re-enable HTW before enabling interrupts */
414 if (vcpu
->sigset_active
)
415 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
420 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
421 struct kvm_mips_interrupt
*irq
)
423 int intr
= (int)irq
->irq
;
424 struct kvm_vcpu
*dvcpu
= NULL
;
426 if (intr
== 3 || intr
== -3 || intr
== 4 || intr
== -4)
427 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__
, irq
->cpu
,
433 dvcpu
= vcpu
->kvm
->vcpus
[irq
->cpu
];
435 if (intr
== 2 || intr
== 3 || intr
== 4) {
436 kvm_mips_callbacks
->queue_io_int(dvcpu
, irq
);
438 } else if (intr
== -2 || intr
== -3 || intr
== -4) {
439 kvm_mips_callbacks
->dequeue_io_int(dvcpu
, irq
);
441 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__
,
446 dvcpu
->arch
.wait
= 0;
448 if (waitqueue_active(&dvcpu
->wq
))
449 wake_up_interruptible(&dvcpu
->wq
);
454 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
455 struct kvm_mp_state
*mp_state
)
460 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
461 struct kvm_mp_state
*mp_state
)
466 static u64 kvm_mips_get_one_regs
[] = {
504 KVM_REG_MIPS_CP0_INDEX
,
505 KVM_REG_MIPS_CP0_CONTEXT
,
506 KVM_REG_MIPS_CP0_USERLOCAL
,
507 KVM_REG_MIPS_CP0_PAGEMASK
,
508 KVM_REG_MIPS_CP0_WIRED
,
509 KVM_REG_MIPS_CP0_HWRENA
,
510 KVM_REG_MIPS_CP0_BADVADDR
,
511 KVM_REG_MIPS_CP0_COUNT
,
512 KVM_REG_MIPS_CP0_ENTRYHI
,
513 KVM_REG_MIPS_CP0_COMPARE
,
514 KVM_REG_MIPS_CP0_STATUS
,
515 KVM_REG_MIPS_CP0_CAUSE
,
516 KVM_REG_MIPS_CP0_EPC
,
517 KVM_REG_MIPS_CP0_PRID
,
518 KVM_REG_MIPS_CP0_CONFIG
,
519 KVM_REG_MIPS_CP0_CONFIG1
,
520 KVM_REG_MIPS_CP0_CONFIG2
,
521 KVM_REG_MIPS_CP0_CONFIG3
,
522 KVM_REG_MIPS_CP0_CONFIG4
,
523 KVM_REG_MIPS_CP0_CONFIG5
,
524 KVM_REG_MIPS_CP0_CONFIG7
,
525 KVM_REG_MIPS_CP0_ERROREPC
,
527 KVM_REG_MIPS_COUNT_CTL
,
528 KVM_REG_MIPS_COUNT_RESUME
,
529 KVM_REG_MIPS_COUNT_HZ
,
532 static int kvm_mips_get_reg(struct kvm_vcpu
*vcpu
,
533 const struct kvm_one_reg
*reg
)
535 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
536 struct mips_fpu_struct
*fpu
= &vcpu
->arch
.fpu
;
543 /* General purpose registers */
544 case KVM_REG_MIPS_R0
... KVM_REG_MIPS_R31
:
545 v
= (long)vcpu
->arch
.gprs
[reg
->id
- KVM_REG_MIPS_R0
];
547 case KVM_REG_MIPS_HI
:
548 v
= (long)vcpu
->arch
.hi
;
550 case KVM_REG_MIPS_LO
:
551 v
= (long)vcpu
->arch
.lo
;
553 case KVM_REG_MIPS_PC
:
554 v
= (long)vcpu
->arch
.pc
;
557 /* Floating point registers */
558 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
559 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
561 idx
= reg
->id
- KVM_REG_MIPS_FPR_32(0);
562 /* Odd singles in top of even double when FR=0 */
563 if (kvm_read_c0_guest_status(cop0
) & ST0_FR
)
564 v
= get_fpr32(&fpu
->fpr
[idx
], 0);
566 v
= get_fpr32(&fpu
->fpr
[idx
& ~1], idx
& 1);
568 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
569 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
571 idx
= reg
->id
- KVM_REG_MIPS_FPR_64(0);
572 /* Can't access odd doubles in FR=0 mode */
573 if (idx
& 1 && !(kvm_read_c0_guest_status(cop0
) & ST0_FR
))
575 v
= get_fpr64(&fpu
->fpr
[idx
], 0);
577 case KVM_REG_MIPS_FCR_IR
:
578 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
580 v
= boot_cpu_data
.fpu_id
;
582 case KVM_REG_MIPS_FCR_CSR
:
583 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
588 /* MIPS SIMD Architecture (MSA) registers */
589 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
590 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
592 /* Can't access MSA registers in FR=0 mode */
593 if (!(kvm_read_c0_guest_status(cop0
) & ST0_FR
))
595 idx
= reg
->id
- KVM_REG_MIPS_VEC_128(0);
596 #ifdef CONFIG_CPU_LITTLE_ENDIAN
597 /* least significant byte first */
598 vs
[0] = get_fpr64(&fpu
->fpr
[idx
], 0);
599 vs
[1] = get_fpr64(&fpu
->fpr
[idx
], 1);
601 /* most significant byte first */
602 vs
[0] = get_fpr64(&fpu
->fpr
[idx
], 1);
603 vs
[1] = get_fpr64(&fpu
->fpr
[idx
], 0);
606 case KVM_REG_MIPS_MSA_IR
:
607 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
609 v
= boot_cpu_data
.msa_id
;
611 case KVM_REG_MIPS_MSA_CSR
:
612 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
617 /* Co-processor 0 registers */
618 case KVM_REG_MIPS_CP0_INDEX
:
619 v
= (long)kvm_read_c0_guest_index(cop0
);
621 case KVM_REG_MIPS_CP0_CONTEXT
:
622 v
= (long)kvm_read_c0_guest_context(cop0
);
624 case KVM_REG_MIPS_CP0_USERLOCAL
:
625 v
= (long)kvm_read_c0_guest_userlocal(cop0
);
627 case KVM_REG_MIPS_CP0_PAGEMASK
:
628 v
= (long)kvm_read_c0_guest_pagemask(cop0
);
630 case KVM_REG_MIPS_CP0_WIRED
:
631 v
= (long)kvm_read_c0_guest_wired(cop0
);
633 case KVM_REG_MIPS_CP0_HWRENA
:
634 v
= (long)kvm_read_c0_guest_hwrena(cop0
);
636 case KVM_REG_MIPS_CP0_BADVADDR
:
637 v
= (long)kvm_read_c0_guest_badvaddr(cop0
);
639 case KVM_REG_MIPS_CP0_ENTRYHI
:
640 v
= (long)kvm_read_c0_guest_entryhi(cop0
);
642 case KVM_REG_MIPS_CP0_COMPARE
:
643 v
= (long)kvm_read_c0_guest_compare(cop0
);
645 case KVM_REG_MIPS_CP0_STATUS
:
646 v
= (long)kvm_read_c0_guest_status(cop0
);
648 case KVM_REG_MIPS_CP0_CAUSE
:
649 v
= (long)kvm_read_c0_guest_cause(cop0
);
651 case KVM_REG_MIPS_CP0_EPC
:
652 v
= (long)kvm_read_c0_guest_epc(cop0
);
654 case KVM_REG_MIPS_CP0_PRID
:
655 v
= (long)kvm_read_c0_guest_prid(cop0
);
657 case KVM_REG_MIPS_CP0_CONFIG
:
658 v
= (long)kvm_read_c0_guest_config(cop0
);
660 case KVM_REG_MIPS_CP0_CONFIG1
:
661 v
= (long)kvm_read_c0_guest_config1(cop0
);
663 case KVM_REG_MIPS_CP0_CONFIG2
:
664 v
= (long)kvm_read_c0_guest_config2(cop0
);
666 case KVM_REG_MIPS_CP0_CONFIG3
:
667 v
= (long)kvm_read_c0_guest_config3(cop0
);
669 case KVM_REG_MIPS_CP0_CONFIG4
:
670 v
= (long)kvm_read_c0_guest_config4(cop0
);
672 case KVM_REG_MIPS_CP0_CONFIG5
:
673 v
= (long)kvm_read_c0_guest_config5(cop0
);
675 case KVM_REG_MIPS_CP0_CONFIG7
:
676 v
= (long)kvm_read_c0_guest_config7(cop0
);
678 case KVM_REG_MIPS_CP0_ERROREPC
:
679 v
= (long)kvm_read_c0_guest_errorepc(cop0
);
681 /* registers to be handled specially */
682 case KVM_REG_MIPS_CP0_COUNT
:
683 case KVM_REG_MIPS_COUNT_CTL
:
684 case KVM_REG_MIPS_COUNT_RESUME
:
685 case KVM_REG_MIPS_COUNT_HZ
:
686 ret
= kvm_mips_callbacks
->get_one_reg(vcpu
, reg
, &v
);
693 if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
) {
694 u64 __user
*uaddr64
= (u64 __user
*)(long)reg
->addr
;
696 return put_user(v
, uaddr64
);
697 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U32
) {
698 u32 __user
*uaddr32
= (u32 __user
*)(long)reg
->addr
;
701 return put_user(v32
, uaddr32
);
702 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U128
) {
703 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
705 return copy_to_user(uaddr
, vs
, 16);
711 static int kvm_mips_set_reg(struct kvm_vcpu
*vcpu
,
712 const struct kvm_one_reg
*reg
)
714 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
715 struct mips_fpu_struct
*fpu
= &vcpu
->arch
.fpu
;
720 if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
) {
721 u64 __user
*uaddr64
= (u64 __user
*)(long)reg
->addr
;
723 if (get_user(v
, uaddr64
) != 0)
725 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U32
) {
726 u32 __user
*uaddr32
= (u32 __user
*)(long)reg
->addr
;
729 if (get_user(v32
, uaddr32
) != 0)
732 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U128
) {
733 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
735 return copy_from_user(vs
, uaddr
, 16);
741 /* General purpose registers */
742 case KVM_REG_MIPS_R0
:
743 /* Silently ignore requests to set $0 */
745 case KVM_REG_MIPS_R1
... KVM_REG_MIPS_R31
:
746 vcpu
->arch
.gprs
[reg
->id
- KVM_REG_MIPS_R0
] = v
;
748 case KVM_REG_MIPS_HI
:
751 case KVM_REG_MIPS_LO
:
754 case KVM_REG_MIPS_PC
:
758 /* Floating point registers */
759 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
760 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
762 idx
= reg
->id
- KVM_REG_MIPS_FPR_32(0);
763 /* Odd singles in top of even double when FR=0 */
764 if (kvm_read_c0_guest_status(cop0
) & ST0_FR
)
765 set_fpr32(&fpu
->fpr
[idx
], 0, v
);
767 set_fpr32(&fpu
->fpr
[idx
& ~1], idx
& 1, v
);
769 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
770 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
772 idx
= reg
->id
- KVM_REG_MIPS_FPR_64(0);
773 /* Can't access odd doubles in FR=0 mode */
774 if (idx
& 1 && !(kvm_read_c0_guest_status(cop0
) & ST0_FR
))
776 set_fpr64(&fpu
->fpr
[idx
], 0, v
);
778 case KVM_REG_MIPS_FCR_IR
:
779 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
783 case KVM_REG_MIPS_FCR_CSR
:
784 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
789 /* MIPS SIMD Architecture (MSA) registers */
790 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
791 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
793 idx
= reg
->id
- KVM_REG_MIPS_VEC_128(0);
794 #ifdef CONFIG_CPU_LITTLE_ENDIAN
795 /* least significant byte first */
796 set_fpr64(&fpu
->fpr
[idx
], 0, vs
[0]);
797 set_fpr64(&fpu
->fpr
[idx
], 1, vs
[1]);
799 /* most significant byte first */
800 set_fpr64(&fpu
->fpr
[idx
], 1, vs
[0]);
801 set_fpr64(&fpu
->fpr
[idx
], 0, vs
[1]);
804 case KVM_REG_MIPS_MSA_IR
:
805 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
809 case KVM_REG_MIPS_MSA_CSR
:
810 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
815 /* Co-processor 0 registers */
816 case KVM_REG_MIPS_CP0_INDEX
:
817 kvm_write_c0_guest_index(cop0
, v
);
819 case KVM_REG_MIPS_CP0_CONTEXT
:
820 kvm_write_c0_guest_context(cop0
, v
);
822 case KVM_REG_MIPS_CP0_USERLOCAL
:
823 kvm_write_c0_guest_userlocal(cop0
, v
);
825 case KVM_REG_MIPS_CP0_PAGEMASK
:
826 kvm_write_c0_guest_pagemask(cop0
, v
);
828 case KVM_REG_MIPS_CP0_WIRED
:
829 kvm_write_c0_guest_wired(cop0
, v
);
831 case KVM_REG_MIPS_CP0_HWRENA
:
832 kvm_write_c0_guest_hwrena(cop0
, v
);
834 case KVM_REG_MIPS_CP0_BADVADDR
:
835 kvm_write_c0_guest_badvaddr(cop0
, v
);
837 case KVM_REG_MIPS_CP0_ENTRYHI
:
838 kvm_write_c0_guest_entryhi(cop0
, v
);
840 case KVM_REG_MIPS_CP0_STATUS
:
841 kvm_write_c0_guest_status(cop0
, v
);
843 case KVM_REG_MIPS_CP0_EPC
:
844 kvm_write_c0_guest_epc(cop0
, v
);
846 case KVM_REG_MIPS_CP0_PRID
:
847 kvm_write_c0_guest_prid(cop0
, v
);
849 case KVM_REG_MIPS_CP0_ERROREPC
:
850 kvm_write_c0_guest_errorepc(cop0
, v
);
852 /* registers to be handled specially */
853 case KVM_REG_MIPS_CP0_COUNT
:
854 case KVM_REG_MIPS_CP0_COMPARE
:
855 case KVM_REG_MIPS_CP0_CAUSE
:
856 case KVM_REG_MIPS_CP0_CONFIG
:
857 case KVM_REG_MIPS_CP0_CONFIG1
:
858 case KVM_REG_MIPS_CP0_CONFIG2
:
859 case KVM_REG_MIPS_CP0_CONFIG3
:
860 case KVM_REG_MIPS_CP0_CONFIG4
:
861 case KVM_REG_MIPS_CP0_CONFIG5
:
862 case KVM_REG_MIPS_COUNT_CTL
:
863 case KVM_REG_MIPS_COUNT_RESUME
:
864 case KVM_REG_MIPS_COUNT_HZ
:
865 return kvm_mips_callbacks
->set_one_reg(vcpu
, reg
, v
);
872 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
873 struct kvm_enable_cap
*cap
)
877 if (!kvm_vm_ioctl_check_extension(vcpu
->kvm
, cap
->cap
))
885 case KVM_CAP_MIPS_FPU
:
886 vcpu
->arch
.fpu_enabled
= true;
888 case KVM_CAP_MIPS_MSA
:
889 vcpu
->arch
.msa_enabled
= true;
899 long kvm_arch_vcpu_ioctl(struct file
*filp
, unsigned int ioctl
,
902 struct kvm_vcpu
*vcpu
= filp
->private_data
;
903 void __user
*argp
= (void __user
*)arg
;
907 case KVM_SET_ONE_REG
:
908 case KVM_GET_ONE_REG
: {
909 struct kvm_one_reg reg
;
911 if (copy_from_user(®
, argp
, sizeof(reg
)))
913 if (ioctl
== KVM_SET_ONE_REG
)
914 return kvm_mips_set_reg(vcpu
, ®
);
916 return kvm_mips_get_reg(vcpu
, ®
);
918 case KVM_GET_REG_LIST
: {
919 struct kvm_reg_list __user
*user_list
= argp
;
920 u64 __user
*reg_dest
;
921 struct kvm_reg_list reg_list
;
924 if (copy_from_user(®_list
, user_list
, sizeof(reg_list
)))
927 reg_list
.n
= ARRAY_SIZE(kvm_mips_get_one_regs
);
928 if (copy_to_user(user_list
, ®_list
, sizeof(reg_list
)))
932 reg_dest
= user_list
->reg
;
933 if (copy_to_user(reg_dest
, kvm_mips_get_one_regs
,
934 sizeof(kvm_mips_get_one_regs
)))
939 /* Treat the NMI as a CPU reset */
940 r
= kvm_mips_reset_vcpu(vcpu
);
944 struct kvm_mips_interrupt irq
;
947 if (copy_from_user(&irq
, argp
, sizeof(irq
)))
950 kvm_debug("[%d] %s: irq: %d\n", vcpu
->vcpu_id
, __func__
,
953 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
956 case KVM_ENABLE_CAP
: {
957 struct kvm_enable_cap cap
;
960 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
962 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
973 /* Get (and clear) the dirty memory log for a memory slot. */
974 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
976 struct kvm_memslots
*slots
;
977 struct kvm_memory_slot
*memslot
;
978 unsigned long ga
, ga_end
;
983 mutex_lock(&kvm
->slots_lock
);
985 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
989 /* If nothing is dirty, don't bother messing with page tables. */
991 slots
= kvm_memslots(kvm
);
992 memslot
= id_to_memslot(slots
, log
->slot
);
994 ga
= memslot
->base_gfn
<< PAGE_SHIFT
;
995 ga_end
= ga
+ (memslot
->npages
<< PAGE_SHIFT
);
997 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__
, ga
,
1000 n
= kvm_dirty_bitmap_bytes(memslot
);
1001 memset(memslot
->dirty_bitmap
, 0, n
);
1006 mutex_unlock(&kvm
->slots_lock
);
1011 long kvm_arch_vm_ioctl(struct file
*filp
, unsigned int ioctl
, unsigned long arg
)
1023 int kvm_arch_init(void *opaque
)
1025 if (kvm_mips_callbacks
) {
1026 kvm_err("kvm: module already exists\n");
1030 return kvm_mips_emulation_init(&kvm_mips_callbacks
);
1033 void kvm_arch_exit(void)
1035 kvm_mips_callbacks
= NULL
;
1038 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
1039 struct kvm_sregs
*sregs
)
1041 return -ENOIOCTLCMD
;
1044 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
1045 struct kvm_sregs
*sregs
)
1047 return -ENOIOCTLCMD
;
1050 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
1054 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
1056 return -ENOIOCTLCMD
;
1059 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
1061 return -ENOIOCTLCMD
;
1064 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
1066 return VM_FAULT_SIGBUS
;
1069 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
1074 case KVM_CAP_ONE_REG
:
1075 case KVM_CAP_ENABLE_CAP
:
1078 case KVM_CAP_COALESCED_MMIO
:
1079 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
1081 case KVM_CAP_MIPS_FPU
:
1084 case KVM_CAP_MIPS_MSA
:
1086 * We don't support MSA vector partitioning yet:
1087 * 1) It would require explicit support which can't be tested
1088 * yet due to lack of support in current hardware.
1089 * 2) It extends the state that would need to be saved/restored
1090 * by e.g. QEMU for migration.
1092 * When vector partitioning hardware becomes available, support
1093 * could be added by requiring a flag when enabling
1094 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1095 * to save/restore the appropriate extra state.
1097 r
= cpu_has_msa
&& !(boot_cpu_data
.msa_id
& MSA_IR_WRPF
);
1106 int kvm_cpu_has_pending_timer(struct kvm_vcpu
*vcpu
)
1108 return kvm_mips_pending_timer(vcpu
);
1111 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu
*vcpu
)
1114 struct mips_coproc
*cop0
;
1119 kvm_debug("VCPU Register Dump:\n");
1120 kvm_debug("\tpc = 0x%08lx\n", vcpu
->arch
.pc
);
1121 kvm_debug("\texceptions: %08lx\n", vcpu
->arch
.pending_exceptions
);
1123 for (i
= 0; i
< 32; i
+= 4) {
1124 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i
,
1126 vcpu
->arch
.gprs
[i
+ 1],
1127 vcpu
->arch
.gprs
[i
+ 2], vcpu
->arch
.gprs
[i
+ 3]);
1129 kvm_debug("\thi: 0x%08lx\n", vcpu
->arch
.hi
);
1130 kvm_debug("\tlo: 0x%08lx\n", vcpu
->arch
.lo
);
1132 cop0
= vcpu
->arch
.cop0
;
1133 kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1134 kvm_read_c0_guest_status(cop0
),
1135 kvm_read_c0_guest_cause(cop0
));
1137 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0
));
1142 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
1146 for (i
= 1; i
< ARRAY_SIZE(vcpu
->arch
.gprs
); i
++)
1147 vcpu
->arch
.gprs
[i
] = regs
->gpr
[i
];
1148 vcpu
->arch
.gprs
[0] = 0; /* zero is special, and cannot be set. */
1149 vcpu
->arch
.hi
= regs
->hi
;
1150 vcpu
->arch
.lo
= regs
->lo
;
1151 vcpu
->arch
.pc
= regs
->pc
;
1156 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
1160 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.gprs
); i
++)
1161 regs
->gpr
[i
] = vcpu
->arch
.gprs
[i
];
1163 regs
->hi
= vcpu
->arch
.hi
;
1164 regs
->lo
= vcpu
->arch
.lo
;
1165 regs
->pc
= vcpu
->arch
.pc
;
1170 static void kvm_mips_comparecount_func(unsigned long data
)
1172 struct kvm_vcpu
*vcpu
= (struct kvm_vcpu
*)data
;
1174 kvm_mips_callbacks
->queue_timer_int(vcpu
);
1176 vcpu
->arch
.wait
= 0;
1177 if (waitqueue_active(&vcpu
->wq
))
1178 wake_up_interruptible(&vcpu
->wq
);
1181 /* low level hrtimer wake routine */
1182 static enum hrtimer_restart
kvm_mips_comparecount_wakeup(struct hrtimer
*timer
)
1184 struct kvm_vcpu
*vcpu
;
1186 vcpu
= container_of(timer
, struct kvm_vcpu
, arch
.comparecount_timer
);
1187 kvm_mips_comparecount_func((unsigned long) vcpu
);
1188 return kvm_mips_count_timeout(vcpu
);
1191 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
1193 kvm_mips_callbacks
->vcpu_init(vcpu
);
1194 hrtimer_init(&vcpu
->arch
.comparecount_timer
, CLOCK_MONOTONIC
,
1196 vcpu
->arch
.comparecount_timer
.function
= kvm_mips_comparecount_wakeup
;
1200 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
1201 struct kvm_translation
*tr
)
1206 /* Initial guest state */
1207 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
1209 return kvm_mips_callbacks
->vcpu_setup(vcpu
);
1212 static void kvm_mips_set_c0_status(void)
1214 uint32_t status
= read_c0_status();
1219 write_c0_status(status
);
1224 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1226 int kvm_mips_handle_exit(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
)
1228 uint32_t cause
= vcpu
->arch
.host_cp0_cause
;
1229 uint32_t exccode
= (cause
>> CAUSEB_EXCCODE
) & 0x1f;
1230 uint32_t __user
*opc
= (uint32_t __user
*) vcpu
->arch
.pc
;
1231 unsigned long badvaddr
= vcpu
->arch
.host_cp0_badvaddr
;
1232 enum emulation_result er
= EMULATE_DONE
;
1233 int ret
= RESUME_GUEST
;
1235 /* re-enable HTW before enabling interrupts */
1238 /* Set a default exit reason */
1239 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
1240 run
->ready_for_interrupt_injection
= 1;
1243 * Set the appropriate status bits based on host CPU features,
1244 * before we hit the scheduler
1246 kvm_mips_set_c0_status();
1250 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1251 cause
, opc
, run
, vcpu
);
1254 * Do a privilege check, if in UM most of these exit conditions end up
1255 * causing an exception to be delivered to the Guest Kernel
1257 er
= kvm_mips_check_privilege(cause
, opc
, run
, vcpu
);
1258 if (er
== EMULATE_PRIV_FAIL
) {
1260 } else if (er
== EMULATE_FAIL
) {
1261 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1268 kvm_debug("[%d]T_INT @ %p\n", vcpu
->vcpu_id
, opc
);
1270 ++vcpu
->stat
.int_exits
;
1271 trace_kvm_exit(vcpu
, INT_EXITS
);
1279 case T_COP_UNUSABLE
:
1280 kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc
);
1282 ++vcpu
->stat
.cop_unusable_exits
;
1283 trace_kvm_exit(vcpu
, COP_UNUSABLE_EXITS
);
1284 ret
= kvm_mips_callbacks
->handle_cop_unusable(vcpu
);
1285 /* XXXKYMA: Might need to return to user space */
1286 if (run
->exit_reason
== KVM_EXIT_IRQ_WINDOW_OPEN
)
1291 ++vcpu
->stat
.tlbmod_exits
;
1292 trace_kvm_exit(vcpu
, TLBMOD_EXITS
);
1293 ret
= kvm_mips_callbacks
->handle_tlb_mod(vcpu
);
1297 kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1298 cause
, kvm_read_c0_guest_status(vcpu
->arch
.cop0
), opc
,
1301 ++vcpu
->stat
.tlbmiss_st_exits
;
1302 trace_kvm_exit(vcpu
, TLBMISS_ST_EXITS
);
1303 ret
= kvm_mips_callbacks
->handle_tlb_st_miss(vcpu
);
1307 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1308 cause
, opc
, badvaddr
);
1310 ++vcpu
->stat
.tlbmiss_ld_exits
;
1311 trace_kvm_exit(vcpu
, TLBMISS_LD_EXITS
);
1312 ret
= kvm_mips_callbacks
->handle_tlb_ld_miss(vcpu
);
1316 ++vcpu
->stat
.addrerr_st_exits
;
1317 trace_kvm_exit(vcpu
, ADDRERR_ST_EXITS
);
1318 ret
= kvm_mips_callbacks
->handle_addr_err_st(vcpu
);
1322 ++vcpu
->stat
.addrerr_ld_exits
;
1323 trace_kvm_exit(vcpu
, ADDRERR_LD_EXITS
);
1324 ret
= kvm_mips_callbacks
->handle_addr_err_ld(vcpu
);
1328 ++vcpu
->stat
.syscall_exits
;
1329 trace_kvm_exit(vcpu
, SYSCALL_EXITS
);
1330 ret
= kvm_mips_callbacks
->handle_syscall(vcpu
);
1334 ++vcpu
->stat
.resvd_inst_exits
;
1335 trace_kvm_exit(vcpu
, RESVD_INST_EXITS
);
1336 ret
= kvm_mips_callbacks
->handle_res_inst(vcpu
);
1340 ++vcpu
->stat
.break_inst_exits
;
1341 trace_kvm_exit(vcpu
, BREAK_INST_EXITS
);
1342 ret
= kvm_mips_callbacks
->handle_break(vcpu
);
1346 ++vcpu
->stat
.trap_inst_exits
;
1347 trace_kvm_exit(vcpu
, TRAP_INST_EXITS
);
1348 ret
= kvm_mips_callbacks
->handle_trap(vcpu
);
1352 ++vcpu
->stat
.msa_fpe_exits
;
1353 trace_kvm_exit(vcpu
, MSA_FPE_EXITS
);
1354 ret
= kvm_mips_callbacks
->handle_msa_fpe(vcpu
);
1358 ++vcpu
->stat
.fpe_exits
;
1359 trace_kvm_exit(vcpu
, FPE_EXITS
);
1360 ret
= kvm_mips_callbacks
->handle_fpe(vcpu
);
1364 ++vcpu
->stat
.msa_disabled_exits
;
1365 trace_kvm_exit(vcpu
, MSA_DISABLED_EXITS
);
1366 ret
= kvm_mips_callbacks
->handle_msa_disabled(vcpu
);
1370 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
1371 exccode
, opc
, kvm_get_inst(opc
, vcpu
), badvaddr
,
1372 kvm_read_c0_guest_status(vcpu
->arch
.cop0
));
1373 kvm_arch_vcpu_dump_regs(vcpu
);
1374 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1381 local_irq_disable();
1383 if (er
== EMULATE_DONE
&& !(ret
& RESUME_HOST
))
1384 kvm_mips_deliver_interrupts(vcpu
, cause
);
1386 if (!(ret
& RESUME_HOST
)) {
1387 /* Only check for signals if not already exiting to userspace */
1388 if (signal_pending(current
)) {
1389 run
->exit_reason
= KVM_EXIT_INTR
;
1390 ret
= (-EINTR
<< 2) | RESUME_HOST
;
1391 ++vcpu
->stat
.signal_exits
;
1392 trace_kvm_exit(vcpu
, SIGNAL_EXITS
);
1396 if (ret
== RESUME_GUEST
) {
1398 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1399 * is live), restore FCR31 / MSACSR.
1401 * This should be before returning to the guest exception
1402 * vector, as it may well cause an [MSA] FP exception if there
1403 * are pending exception bits unmasked. (see
1404 * kvm_mips_csr_die_notifier() for how that is handled).
1406 if (kvm_mips_guest_has_fpu(&vcpu
->arch
) &&
1407 read_c0_status() & ST0_CU1
)
1408 __kvm_restore_fcsr(&vcpu
->arch
);
1410 if (kvm_mips_guest_has_msa(&vcpu
->arch
) &&
1411 read_c0_config5() & MIPS_CONF5_MSAEN
)
1412 __kvm_restore_msacsr(&vcpu
->arch
);
1415 /* Disable HTW before returning to guest or host */
1421 /* Enable FPU for guest and restore context */
1422 void kvm_own_fpu(struct kvm_vcpu
*vcpu
)
1424 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1425 unsigned int sr
, cfg5
;
1429 sr
= kvm_read_c0_guest_status(cop0
);
1432 * If MSA state is already live, it is undefined how it interacts with
1433 * FR=0 FPU state, and we don't want to hit reserved instruction
1434 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1435 * play it safe and save it first.
1437 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1438 * get called when guest CU1 is set, however we can't trust the guest
1439 * not to clobber the status register directly via the commpage.
1441 if (cpu_has_msa
&& sr
& ST0_CU1
&& !(sr
& ST0_FR
) &&
1442 vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_MSA
)
1446 * Enable FPU for guest
1447 * We set FR and FRE according to guest context
1449 change_c0_status(ST0_CU1
| ST0_FR
, sr
);
1451 cfg5
= kvm_read_c0_guest_config5(cop0
);
1452 change_c0_config5(MIPS_CONF5_FRE
, cfg5
);
1454 enable_fpu_hazard();
1456 /* If guest FPU state not active, restore it now */
1457 if (!(vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_FPU
)) {
1458 __kvm_restore_fpu(&vcpu
->arch
);
1459 vcpu
->arch
.fpu_inuse
|= KVM_MIPS_FPU_FPU
;
1465 #ifdef CONFIG_CPU_HAS_MSA
1466 /* Enable MSA for guest and restore context */
1467 void kvm_own_msa(struct kvm_vcpu
*vcpu
)
1469 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1470 unsigned int sr
, cfg5
;
1475 * Enable FPU if enabled in guest, since we're restoring FPU context
1476 * anyway. We set FR and FRE according to guest context.
1478 if (kvm_mips_guest_has_fpu(&vcpu
->arch
)) {
1479 sr
= kvm_read_c0_guest_status(cop0
);
1482 * If FR=0 FPU state is already live, it is undefined how it
1483 * interacts with MSA state, so play it safe and save it first.
1485 if (!(sr
& ST0_FR
) &&
1486 (vcpu
->arch
.fpu_inuse
& (KVM_MIPS_FPU_FPU
|
1487 KVM_MIPS_FPU_MSA
)) == KVM_MIPS_FPU_FPU
)
1490 change_c0_status(ST0_CU1
| ST0_FR
, sr
);
1491 if (sr
& ST0_CU1
&& cpu_has_fre
) {
1492 cfg5
= kvm_read_c0_guest_config5(cop0
);
1493 change_c0_config5(MIPS_CONF5_FRE
, cfg5
);
1497 /* Enable MSA for guest */
1498 set_c0_config5(MIPS_CONF5_MSAEN
);
1499 enable_fpu_hazard();
1501 switch (vcpu
->arch
.fpu_inuse
& (KVM_MIPS_FPU_FPU
| KVM_MIPS_FPU_MSA
)) {
1502 case KVM_MIPS_FPU_FPU
:
1504 * Guest FPU state already loaded, only restore upper MSA state
1506 __kvm_restore_msa_upper(&vcpu
->arch
);
1507 vcpu
->arch
.fpu_inuse
|= KVM_MIPS_FPU_MSA
;
1510 /* Neither FPU or MSA already active, restore full MSA state */
1511 __kvm_restore_msa(&vcpu
->arch
);
1512 vcpu
->arch
.fpu_inuse
|= KVM_MIPS_FPU_MSA
;
1513 if (kvm_mips_guest_has_fpu(&vcpu
->arch
))
1514 vcpu
->arch
.fpu_inuse
|= KVM_MIPS_FPU_FPU
;
1524 /* Drop FPU & MSA without saving it */
1525 void kvm_drop_fpu(struct kvm_vcpu
*vcpu
)
1528 if (cpu_has_msa
&& vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_MSA
) {
1530 vcpu
->arch
.fpu_inuse
&= ~KVM_MIPS_FPU_MSA
;
1532 if (vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_FPU
) {
1533 clear_c0_status(ST0_CU1
| ST0_FR
);
1534 vcpu
->arch
.fpu_inuse
&= ~KVM_MIPS_FPU_FPU
;
1539 /* Save and disable FPU & MSA */
1540 void kvm_lose_fpu(struct kvm_vcpu
*vcpu
)
1543 * FPU & MSA get disabled in root context (hardware) when it is disabled
1544 * in guest context (software), but the register state in the hardware
1545 * may still be in use. This is why we explicitly re-enable the hardware
1550 if (cpu_has_msa
&& vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_MSA
) {
1551 set_c0_config5(MIPS_CONF5_MSAEN
);
1552 enable_fpu_hazard();
1554 __kvm_save_msa(&vcpu
->arch
);
1556 /* Disable MSA & FPU */
1558 if (vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_FPU
)
1559 clear_c0_status(ST0_CU1
| ST0_FR
);
1560 vcpu
->arch
.fpu_inuse
&= ~(KVM_MIPS_FPU_FPU
| KVM_MIPS_FPU_MSA
);
1561 } else if (vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_FPU
) {
1562 set_c0_status(ST0_CU1
);
1563 enable_fpu_hazard();
1565 __kvm_save_fpu(&vcpu
->arch
);
1566 vcpu
->arch
.fpu_inuse
&= ~KVM_MIPS_FPU_FPU
;
1569 clear_c0_status(ST0_CU1
| ST0_FR
);
1575 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1576 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1577 * exception if cause bits are set in the value being written.
1579 static int kvm_mips_csr_die_notify(struct notifier_block
*self
,
1580 unsigned long cmd
, void *ptr
)
1582 struct die_args
*args
= (struct die_args
*)ptr
;
1583 struct pt_regs
*regs
= args
->regs
;
1586 /* Only interested in FPE and MSAFPE */
1587 if (cmd
!= DIE_FP
&& cmd
!= DIE_MSAFP
)
1590 /* Return immediately if guest context isn't active */
1591 if (!(current
->flags
& PF_VCPU
))
1594 /* Should never get here from user mode */
1595 BUG_ON(user_mode(regs
));
1597 pc
= instruction_pointer(regs
);
1600 /* match 2nd instruction in __kvm_restore_fcsr */
1601 if (pc
!= (unsigned long)&__kvm_restore_fcsr
+ 4)
1605 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1607 pc
< (unsigned long)&__kvm_restore_msacsr
+ 4 ||
1608 pc
> (unsigned long)&__kvm_restore_msacsr
+ 8)
1613 /* Move PC forward a little and continue executing */
1614 instruction_pointer(regs
) += 4;
1619 static struct notifier_block kvm_mips_csr_die_notifier
= {
1620 .notifier_call
= kvm_mips_csr_die_notify
,
1623 int __init
kvm_mips_init(void)
1627 ret
= kvm_init(NULL
, sizeof(struct kvm_vcpu
), 0, THIS_MODULE
);
1632 register_die_notifier(&kvm_mips_csr_die_notifier
);
1635 * On MIPS, kernel modules are executed from "mapped space", which
1636 * requires TLBs. The TLB handling code is statically linked with
1637 * the rest of the kernel (tlb.c) to avoid the possibility of
1638 * double faulting. The issue is that the TLB code references
1639 * routines that are part of the the KVM module, which are only
1640 * available once the module is loaded.
1642 kvm_mips_gfn_to_pfn
= gfn_to_pfn
;
1643 kvm_mips_release_pfn_clean
= kvm_release_pfn_clean
;
1644 kvm_mips_is_error_pfn
= is_error_pfn
;
1649 void __exit
kvm_mips_exit(void)
1653 kvm_mips_gfn_to_pfn
= NULL
;
1654 kvm_mips_release_pfn_clean
= NULL
;
1655 kvm_mips_is_error_pfn
= NULL
;
1657 unregister_die_notifier(&kvm_mips_csr_die_notifier
);
1660 module_init(kvm_mips_init
);
1661 module_exit(kvm_mips_exit
);
1663 EXPORT_TRACEPOINT_SYMBOL(kvm_exit
);