irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / arch / mips / math-emu / cp1emu.c
blob32f0e19a0d7f71fef2bb693e0da7b7bbc6bc9af9
1 /*
2 * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8 * Copyright (C) 2000 MIPS Technologies, Inc.
10 * This program is free software; you can distribute it and/or modify it
11 * under the terms of the GNU General Public License (Version 2) as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 * for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
23 * A complete emulator for MIPS coprocessor 1 instructions. This is
24 * required for #float(switch) or #float(trap), where it catches all
25 * COP1 instructions via the "CoProcessor Unusable" exception.
27 * More surprisingly it is also required for #float(ieee), to help out
28 * the hardware FPU at the boundaries of the IEEE-754 representation
29 * (denormalised values, infinities, underflow, etc). It is made
30 * quite nasty because emulation of some non-COP1 instructions is
31 * required, e.g. in branch delay slots.
33 * Note if you know that you won't have an FPU, then you'll get much
34 * better performance by compiling with -msoft-float!
36 #include <linux/sched.h>
37 #include <linux/debugfs.h>
38 #include <linux/kconfig.h>
39 #include <linux/percpu-defs.h>
40 #include <linux/perf_event.h>
42 #include <asm/branch.h>
43 #include <asm/inst.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/uaccess.h>
48 #include <asm/cpu-info.h>
49 #include <asm/processor.h>
50 #include <asm/fpu_emulator.h>
51 #include <asm/fpu.h>
52 #include <asm/mips-r2-to-r6-emul.h>
54 #include "ieee754.h"
56 /* Function which emulates a floating point instruction. */
58 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
59 mips_instruction);
61 static int fpux_emu(struct pt_regs *,
62 struct mips_fpu_struct *, mips_instruction, void *__user *);
64 /* Control registers */
66 #define FPCREG_RID 0 /* $0 = revision id */
67 #define FPCREG_FCCR 25 /* $25 = fccr */
68 #define FPCREG_FEXR 26 /* $26 = fexr */
69 #define FPCREG_FENR 28 /* $28 = fenr */
70 #define FPCREG_CSR 31 /* $31 = csr */
72 /* convert condition code register number to csr bit */
73 const unsigned int fpucondbit[8] = {
74 FPU_CSR_COND,
75 FPU_CSR_COND1,
76 FPU_CSR_COND2,
77 FPU_CSR_COND3,
78 FPU_CSR_COND4,
79 FPU_CSR_COND5,
80 FPU_CSR_COND6,
81 FPU_CSR_COND7
84 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
85 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
86 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
87 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
88 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
91 * This functions translates a 32-bit microMIPS instruction
92 * into a 32-bit MIPS32 instruction. Returns 0 on success
93 * and SIGILL otherwise.
95 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
97 union mips_instruction insn = *insn_ptr;
98 union mips_instruction mips32_insn = insn;
99 int func, fmt, op;
101 switch (insn.mm_i_format.opcode) {
102 case mm_ldc132_op:
103 mips32_insn.mm_i_format.opcode = ldc1_op;
104 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
105 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
106 break;
107 case mm_lwc132_op:
108 mips32_insn.mm_i_format.opcode = lwc1_op;
109 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
110 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
111 break;
112 case mm_sdc132_op:
113 mips32_insn.mm_i_format.opcode = sdc1_op;
114 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
115 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
116 break;
117 case mm_swc132_op:
118 mips32_insn.mm_i_format.opcode = swc1_op;
119 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
120 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
121 break;
122 case mm_pool32i_op:
123 /* NOTE: offset is << by 1 if in microMIPS mode. */
124 if ((insn.mm_i_format.rt == mm_bc1f_op) ||
125 (insn.mm_i_format.rt == mm_bc1t_op)) {
126 mips32_insn.fb_format.opcode = cop1_op;
127 mips32_insn.fb_format.bc = bc_op;
128 mips32_insn.fb_format.flag =
129 (insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
130 } else
131 return SIGILL;
132 break;
133 case mm_pool32f_op:
134 switch (insn.mm_fp0_format.func) {
135 case mm_32f_01_op:
136 case mm_32f_11_op:
137 case mm_32f_02_op:
138 case mm_32f_12_op:
139 case mm_32f_41_op:
140 case mm_32f_51_op:
141 case mm_32f_42_op:
142 case mm_32f_52_op:
143 op = insn.mm_fp0_format.func;
144 if (op == mm_32f_01_op)
145 func = madd_s_op;
146 else if (op == mm_32f_11_op)
147 func = madd_d_op;
148 else if (op == mm_32f_02_op)
149 func = nmadd_s_op;
150 else if (op == mm_32f_12_op)
151 func = nmadd_d_op;
152 else if (op == mm_32f_41_op)
153 func = msub_s_op;
154 else if (op == mm_32f_51_op)
155 func = msub_d_op;
156 else if (op == mm_32f_42_op)
157 func = nmsub_s_op;
158 else
159 func = nmsub_d_op;
160 mips32_insn.fp6_format.opcode = cop1x_op;
161 mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
162 mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
163 mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
164 mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
165 mips32_insn.fp6_format.func = func;
166 break;
167 case mm_32f_10_op:
168 func = -1; /* Invalid */
169 op = insn.mm_fp5_format.op & 0x7;
170 if (op == mm_ldxc1_op)
171 func = ldxc1_op;
172 else if (op == mm_sdxc1_op)
173 func = sdxc1_op;
174 else if (op == mm_lwxc1_op)
175 func = lwxc1_op;
176 else if (op == mm_swxc1_op)
177 func = swxc1_op;
179 if (func != -1) {
180 mips32_insn.r_format.opcode = cop1x_op;
181 mips32_insn.r_format.rs =
182 insn.mm_fp5_format.base;
183 mips32_insn.r_format.rt =
184 insn.mm_fp5_format.index;
185 mips32_insn.r_format.rd = 0;
186 mips32_insn.r_format.re = insn.mm_fp5_format.fd;
187 mips32_insn.r_format.func = func;
188 } else
189 return SIGILL;
190 break;
191 case mm_32f_40_op:
192 op = -1; /* Invalid */
193 if (insn.mm_fp2_format.op == mm_fmovt_op)
194 op = 1;
195 else if (insn.mm_fp2_format.op == mm_fmovf_op)
196 op = 0;
197 if (op != -1) {
198 mips32_insn.fp0_format.opcode = cop1_op;
199 mips32_insn.fp0_format.fmt =
200 sdps_format[insn.mm_fp2_format.fmt];
201 mips32_insn.fp0_format.ft =
202 (insn.mm_fp2_format.cc<<2) + op;
203 mips32_insn.fp0_format.fs =
204 insn.mm_fp2_format.fs;
205 mips32_insn.fp0_format.fd =
206 insn.mm_fp2_format.fd;
207 mips32_insn.fp0_format.func = fmovc_op;
208 } else
209 return SIGILL;
210 break;
211 case mm_32f_60_op:
212 func = -1; /* Invalid */
213 if (insn.mm_fp0_format.op == mm_fadd_op)
214 func = fadd_op;
215 else if (insn.mm_fp0_format.op == mm_fsub_op)
216 func = fsub_op;
217 else if (insn.mm_fp0_format.op == mm_fmul_op)
218 func = fmul_op;
219 else if (insn.mm_fp0_format.op == mm_fdiv_op)
220 func = fdiv_op;
221 if (func != -1) {
222 mips32_insn.fp0_format.opcode = cop1_op;
223 mips32_insn.fp0_format.fmt =
224 sdps_format[insn.mm_fp0_format.fmt];
225 mips32_insn.fp0_format.ft =
226 insn.mm_fp0_format.ft;
227 mips32_insn.fp0_format.fs =
228 insn.mm_fp0_format.fs;
229 mips32_insn.fp0_format.fd =
230 insn.mm_fp0_format.fd;
231 mips32_insn.fp0_format.func = func;
232 } else
233 return SIGILL;
234 break;
235 case mm_32f_70_op:
236 func = -1; /* Invalid */
237 if (insn.mm_fp0_format.op == mm_fmovn_op)
238 func = fmovn_op;
239 else if (insn.mm_fp0_format.op == mm_fmovz_op)
240 func = fmovz_op;
241 if (func != -1) {
242 mips32_insn.fp0_format.opcode = cop1_op;
243 mips32_insn.fp0_format.fmt =
244 sdps_format[insn.mm_fp0_format.fmt];
245 mips32_insn.fp0_format.ft =
246 insn.mm_fp0_format.ft;
247 mips32_insn.fp0_format.fs =
248 insn.mm_fp0_format.fs;
249 mips32_insn.fp0_format.fd =
250 insn.mm_fp0_format.fd;
251 mips32_insn.fp0_format.func = func;
252 } else
253 return SIGILL;
254 break;
255 case mm_32f_73_op: /* POOL32FXF */
256 switch (insn.mm_fp1_format.op) {
257 case mm_movf0_op:
258 case mm_movf1_op:
259 case mm_movt0_op:
260 case mm_movt1_op:
261 if ((insn.mm_fp1_format.op & 0x7f) ==
262 mm_movf0_op)
263 op = 0;
264 else
265 op = 1;
266 mips32_insn.r_format.opcode = spec_op;
267 mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
268 mips32_insn.r_format.rt =
269 (insn.mm_fp4_format.cc << 2) + op;
270 mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
271 mips32_insn.r_format.re = 0;
272 mips32_insn.r_format.func = movc_op;
273 break;
274 case mm_fcvtd0_op:
275 case mm_fcvtd1_op:
276 case mm_fcvts0_op:
277 case mm_fcvts1_op:
278 if ((insn.mm_fp1_format.op & 0x7f) ==
279 mm_fcvtd0_op) {
280 func = fcvtd_op;
281 fmt = swl_format[insn.mm_fp3_format.fmt];
282 } else {
283 func = fcvts_op;
284 fmt = dwl_format[insn.mm_fp3_format.fmt];
286 mips32_insn.fp0_format.opcode = cop1_op;
287 mips32_insn.fp0_format.fmt = fmt;
288 mips32_insn.fp0_format.ft = 0;
289 mips32_insn.fp0_format.fs =
290 insn.mm_fp3_format.fs;
291 mips32_insn.fp0_format.fd =
292 insn.mm_fp3_format.rt;
293 mips32_insn.fp0_format.func = func;
294 break;
295 case mm_fmov0_op:
296 case mm_fmov1_op:
297 case mm_fabs0_op:
298 case mm_fabs1_op:
299 case mm_fneg0_op:
300 case mm_fneg1_op:
301 if ((insn.mm_fp1_format.op & 0x7f) ==
302 mm_fmov0_op)
303 func = fmov_op;
304 else if ((insn.mm_fp1_format.op & 0x7f) ==
305 mm_fabs0_op)
306 func = fabs_op;
307 else
308 func = fneg_op;
309 mips32_insn.fp0_format.opcode = cop1_op;
310 mips32_insn.fp0_format.fmt =
311 sdps_format[insn.mm_fp3_format.fmt];
312 mips32_insn.fp0_format.ft = 0;
313 mips32_insn.fp0_format.fs =
314 insn.mm_fp3_format.fs;
315 mips32_insn.fp0_format.fd =
316 insn.mm_fp3_format.rt;
317 mips32_insn.fp0_format.func = func;
318 break;
319 case mm_ffloorl_op:
320 case mm_ffloorw_op:
321 case mm_fceill_op:
322 case mm_fceilw_op:
323 case mm_ftruncl_op:
324 case mm_ftruncw_op:
325 case mm_froundl_op:
326 case mm_froundw_op:
327 case mm_fcvtl_op:
328 case mm_fcvtw_op:
329 if (insn.mm_fp1_format.op == mm_ffloorl_op)
330 func = ffloorl_op;
331 else if (insn.mm_fp1_format.op == mm_ffloorw_op)
332 func = ffloor_op;
333 else if (insn.mm_fp1_format.op == mm_fceill_op)
334 func = fceill_op;
335 else if (insn.mm_fp1_format.op == mm_fceilw_op)
336 func = fceil_op;
337 else if (insn.mm_fp1_format.op == mm_ftruncl_op)
338 func = ftruncl_op;
339 else if (insn.mm_fp1_format.op == mm_ftruncw_op)
340 func = ftrunc_op;
341 else if (insn.mm_fp1_format.op == mm_froundl_op)
342 func = froundl_op;
343 else if (insn.mm_fp1_format.op == mm_froundw_op)
344 func = fround_op;
345 else if (insn.mm_fp1_format.op == mm_fcvtl_op)
346 func = fcvtl_op;
347 else
348 func = fcvtw_op;
349 mips32_insn.fp0_format.opcode = cop1_op;
350 mips32_insn.fp0_format.fmt =
351 sd_format[insn.mm_fp1_format.fmt];
352 mips32_insn.fp0_format.ft = 0;
353 mips32_insn.fp0_format.fs =
354 insn.mm_fp1_format.fs;
355 mips32_insn.fp0_format.fd =
356 insn.mm_fp1_format.rt;
357 mips32_insn.fp0_format.func = func;
358 break;
359 case mm_frsqrt_op:
360 case mm_fsqrt_op:
361 case mm_frecip_op:
362 if (insn.mm_fp1_format.op == mm_frsqrt_op)
363 func = frsqrt_op;
364 else if (insn.mm_fp1_format.op == mm_fsqrt_op)
365 func = fsqrt_op;
366 else
367 func = frecip_op;
368 mips32_insn.fp0_format.opcode = cop1_op;
369 mips32_insn.fp0_format.fmt =
370 sdps_format[insn.mm_fp1_format.fmt];
371 mips32_insn.fp0_format.ft = 0;
372 mips32_insn.fp0_format.fs =
373 insn.mm_fp1_format.fs;
374 mips32_insn.fp0_format.fd =
375 insn.mm_fp1_format.rt;
376 mips32_insn.fp0_format.func = func;
377 break;
378 case mm_mfc1_op:
379 case mm_mtc1_op:
380 case mm_cfc1_op:
381 case mm_ctc1_op:
382 case mm_mfhc1_op:
383 case mm_mthc1_op:
384 if (insn.mm_fp1_format.op == mm_mfc1_op)
385 op = mfc_op;
386 else if (insn.mm_fp1_format.op == mm_mtc1_op)
387 op = mtc_op;
388 else if (insn.mm_fp1_format.op == mm_cfc1_op)
389 op = cfc_op;
390 else if (insn.mm_fp1_format.op == mm_ctc1_op)
391 op = ctc_op;
392 else if (insn.mm_fp1_format.op == mm_mfhc1_op)
393 op = mfhc_op;
394 else
395 op = mthc_op;
396 mips32_insn.fp1_format.opcode = cop1_op;
397 mips32_insn.fp1_format.op = op;
398 mips32_insn.fp1_format.rt =
399 insn.mm_fp1_format.rt;
400 mips32_insn.fp1_format.fs =
401 insn.mm_fp1_format.fs;
402 mips32_insn.fp1_format.fd = 0;
403 mips32_insn.fp1_format.func = 0;
404 break;
405 default:
406 return SIGILL;
408 break;
409 case mm_32f_74_op: /* c.cond.fmt */
410 mips32_insn.fp0_format.opcode = cop1_op;
411 mips32_insn.fp0_format.fmt =
412 sdps_format[insn.mm_fp4_format.fmt];
413 mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
414 mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
415 mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
416 mips32_insn.fp0_format.func =
417 insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
418 break;
419 default:
420 return SIGILL;
422 break;
423 default:
424 return SIGILL;
427 *insn_ptr = mips32_insn;
428 return 0;
432 * Redundant with logic already in kernel/branch.c,
433 * embedded in compute_return_epc. At some point,
434 * a single subroutine should be used across both
435 * modules.
437 static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
438 unsigned long *contpc)
440 union mips_instruction insn = (union mips_instruction)dec_insn.insn;
441 unsigned int fcr31;
442 unsigned int bit = 0;
444 switch (insn.i_format.opcode) {
445 case spec_op:
446 switch (insn.r_format.func) {
447 case jalr_op:
448 regs->regs[insn.r_format.rd] =
449 regs->cp0_epc + dec_insn.pc_inc +
450 dec_insn.next_pc_inc;
451 /* Fall through */
452 case jr_op:
453 /* For R6, JR already emulated in jalr_op */
454 if (NO_R6EMU && insn.r_format.func == jr_op)
455 break;
456 *contpc = regs->regs[insn.r_format.rs];
457 return 1;
459 break;
460 case bcond_op:
461 switch (insn.i_format.rt) {
462 case bltzal_op:
463 case bltzall_op:
464 if (NO_R6EMU && (insn.i_format.rs ||
465 insn.i_format.rt == bltzall_op))
466 break;
468 regs->regs[31] = regs->cp0_epc +
469 dec_insn.pc_inc +
470 dec_insn.next_pc_inc;
471 /* Fall through */
472 case bltzl_op:
473 if (NO_R6EMU)
474 break;
475 case bltz_op:
476 if ((long)regs->regs[insn.i_format.rs] < 0)
477 *contpc = regs->cp0_epc +
478 dec_insn.pc_inc +
479 (insn.i_format.simmediate << 2);
480 else
481 *contpc = regs->cp0_epc +
482 dec_insn.pc_inc +
483 dec_insn.next_pc_inc;
484 return 1;
485 case bgezal_op:
486 case bgezall_op:
487 if (NO_R6EMU && (insn.i_format.rs ||
488 insn.i_format.rt == bgezall_op))
489 break;
491 regs->regs[31] = regs->cp0_epc +
492 dec_insn.pc_inc +
493 dec_insn.next_pc_inc;
494 /* Fall through */
495 case bgezl_op:
496 if (NO_R6EMU)
497 break;
498 case bgez_op:
499 if ((long)regs->regs[insn.i_format.rs] >= 0)
500 *contpc = regs->cp0_epc +
501 dec_insn.pc_inc +
502 (insn.i_format.simmediate << 2);
503 else
504 *contpc = regs->cp0_epc +
505 dec_insn.pc_inc +
506 dec_insn.next_pc_inc;
507 return 1;
509 break;
510 case jalx_op:
511 set_isa16_mode(bit);
512 case jal_op:
513 regs->regs[31] = regs->cp0_epc +
514 dec_insn.pc_inc +
515 dec_insn.next_pc_inc;
516 /* Fall through */
517 case j_op:
518 *contpc = regs->cp0_epc + dec_insn.pc_inc;
519 *contpc >>= 28;
520 *contpc <<= 28;
521 *contpc |= (insn.j_format.target << 2);
522 /* Set microMIPS mode bit: XOR for jalx. */
523 *contpc ^= bit;
524 return 1;
525 case beql_op:
526 if (NO_R6EMU)
527 break;
528 case beq_op:
529 if (regs->regs[insn.i_format.rs] ==
530 regs->regs[insn.i_format.rt])
531 *contpc = regs->cp0_epc +
532 dec_insn.pc_inc +
533 (insn.i_format.simmediate << 2);
534 else
535 *contpc = regs->cp0_epc +
536 dec_insn.pc_inc +
537 dec_insn.next_pc_inc;
538 return 1;
539 case bnel_op:
540 if (NO_R6EMU)
541 break;
542 case bne_op:
543 if (regs->regs[insn.i_format.rs] !=
544 regs->regs[insn.i_format.rt])
545 *contpc = regs->cp0_epc +
546 dec_insn.pc_inc +
547 (insn.i_format.simmediate << 2);
548 else
549 *contpc = regs->cp0_epc +
550 dec_insn.pc_inc +
551 dec_insn.next_pc_inc;
552 return 1;
553 case blezl_op:
554 if (!insn.i_format.rt && NO_R6EMU)
555 break;
556 case blez_op:
559 * Compact branches for R6 for the
560 * blez and blezl opcodes.
561 * BLEZ | rs = 0 | rt != 0 == BLEZALC
562 * BLEZ | rs = rt != 0 == BGEZALC
563 * BLEZ | rs != 0 | rt != 0 == BGEUC
564 * BLEZL | rs = 0 | rt != 0 == BLEZC
565 * BLEZL | rs = rt != 0 == BGEZC
566 * BLEZL | rs != 0 | rt != 0 == BGEC
568 * For real BLEZ{,L}, rt is always 0.
570 if (cpu_has_mips_r6 && insn.i_format.rt) {
571 if ((insn.i_format.opcode == blez_op) &&
572 ((!insn.i_format.rs && insn.i_format.rt) ||
573 (insn.i_format.rs == insn.i_format.rt)))
574 regs->regs[31] = regs->cp0_epc +
575 dec_insn.pc_inc;
576 *contpc = regs->cp0_epc + dec_insn.pc_inc +
577 dec_insn.next_pc_inc;
579 return 1;
581 if ((long)regs->regs[insn.i_format.rs] <= 0)
582 *contpc = regs->cp0_epc +
583 dec_insn.pc_inc +
584 (insn.i_format.simmediate << 2);
585 else
586 *contpc = regs->cp0_epc +
587 dec_insn.pc_inc +
588 dec_insn.next_pc_inc;
589 return 1;
590 case bgtzl_op:
591 if (!insn.i_format.rt && NO_R6EMU)
592 break;
593 case bgtz_op:
595 * Compact branches for R6 for the
596 * bgtz and bgtzl opcodes.
597 * BGTZ | rs = 0 | rt != 0 == BGTZALC
598 * BGTZ | rs = rt != 0 == BLTZALC
599 * BGTZ | rs != 0 | rt != 0 == BLTUC
600 * BGTZL | rs = 0 | rt != 0 == BGTZC
601 * BGTZL | rs = rt != 0 == BLTZC
602 * BGTZL | rs != 0 | rt != 0 == BLTC
604 * *ZALC varint for BGTZ &&& rt != 0
605 * For real GTZ{,L}, rt is always 0.
607 if (cpu_has_mips_r6 && insn.i_format.rt) {
608 if ((insn.i_format.opcode == blez_op) &&
609 ((!insn.i_format.rs && insn.i_format.rt) ||
610 (insn.i_format.rs == insn.i_format.rt)))
611 regs->regs[31] = regs->cp0_epc +
612 dec_insn.pc_inc;
613 *contpc = regs->cp0_epc + dec_insn.pc_inc +
614 dec_insn.next_pc_inc;
616 return 1;
619 if ((long)regs->regs[insn.i_format.rs] > 0)
620 *contpc = regs->cp0_epc +
621 dec_insn.pc_inc +
622 (insn.i_format.simmediate << 2);
623 else
624 *contpc = regs->cp0_epc +
625 dec_insn.pc_inc +
626 dec_insn.next_pc_inc;
627 return 1;
628 case cbcond0_op:
629 case cbcond1_op:
630 if (!cpu_has_mips_r6)
631 break;
632 if (insn.i_format.rt && !insn.i_format.rs)
633 regs->regs[31] = regs->cp0_epc + 4;
634 *contpc = regs->cp0_epc + dec_insn.pc_inc +
635 dec_insn.next_pc_inc;
637 return 1;
638 #ifdef CONFIG_CPU_CAVIUM_OCTEON
639 case lwc2_op: /* This is bbit0 on Octeon */
640 if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
641 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
642 else
643 *contpc = regs->cp0_epc + 8;
644 return 1;
645 case ldc2_op: /* This is bbit032 on Octeon */
646 if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
647 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
648 else
649 *contpc = regs->cp0_epc + 8;
650 return 1;
651 case swc2_op: /* This is bbit1 on Octeon */
652 if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
653 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
654 else
655 *contpc = regs->cp0_epc + 8;
656 return 1;
657 case sdc2_op: /* This is bbit132 on Octeon */
658 if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
659 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
660 else
661 *contpc = regs->cp0_epc + 8;
662 return 1;
663 #else
664 case bc6_op:
666 * Only valid for MIPS R6 but we can still end up
667 * here from a broken userland so just tell emulator
668 * this is not a branch and let it break later on.
670 if (!cpu_has_mips_r6)
671 break;
672 *contpc = regs->cp0_epc + dec_insn.pc_inc +
673 dec_insn.next_pc_inc;
675 return 1;
676 case balc6_op:
677 if (!cpu_has_mips_r6)
678 break;
679 regs->regs[31] = regs->cp0_epc + 4;
680 *contpc = regs->cp0_epc + dec_insn.pc_inc +
681 dec_insn.next_pc_inc;
683 return 1;
684 case beqzcjic_op:
685 if (!cpu_has_mips_r6)
686 break;
687 *contpc = regs->cp0_epc + dec_insn.pc_inc +
688 dec_insn.next_pc_inc;
690 return 1;
691 case bnezcjialc_op:
692 if (!cpu_has_mips_r6)
693 break;
694 if (!insn.i_format.rs)
695 regs->regs[31] = regs->cp0_epc + 4;
696 *contpc = regs->cp0_epc + dec_insn.pc_inc +
697 dec_insn.next_pc_inc;
699 return 1;
700 #endif
701 case cop0_op:
702 case cop1_op:
703 /* Need to check for R6 bc1nez and bc1eqz branches */
704 if (cpu_has_mips_r6 &&
705 ((insn.i_format.rs == bc1eqz_op) ||
706 (insn.i_format.rs == bc1nez_op))) {
707 bit = 0;
708 switch (insn.i_format.rs) {
709 case bc1eqz_op:
710 if (get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1)
711 bit = 1;
712 break;
713 case bc1nez_op:
714 if (!(get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1))
715 bit = 1;
716 break;
718 if (bit)
719 *contpc = regs->cp0_epc +
720 dec_insn.pc_inc +
721 (insn.i_format.simmediate << 2);
722 else
723 *contpc = regs->cp0_epc +
724 dec_insn.pc_inc +
725 dec_insn.next_pc_inc;
727 return 1;
729 /* R2/R6 compatible cop1 instruction. Fall through */
730 case cop2_op:
731 case cop1x_op:
732 if (insn.i_format.rs == bc_op) {
733 preempt_disable();
734 if (is_fpu_owner())
735 fcr31 = read_32bit_cp1_register(CP1_STATUS);
736 else
737 fcr31 = current->thread.fpu.fcr31;
738 preempt_enable();
740 bit = (insn.i_format.rt >> 2);
741 bit += (bit != 0);
742 bit += 23;
743 switch (insn.i_format.rt & 3) {
744 case 0: /* bc1f */
745 case 2: /* bc1fl */
746 if (~fcr31 & (1 << bit))
747 *contpc = regs->cp0_epc +
748 dec_insn.pc_inc +
749 (insn.i_format.simmediate << 2);
750 else
751 *contpc = regs->cp0_epc +
752 dec_insn.pc_inc +
753 dec_insn.next_pc_inc;
754 return 1;
755 case 1: /* bc1t */
756 case 3: /* bc1tl */
757 if (fcr31 & (1 << bit))
758 *contpc = regs->cp0_epc +
759 dec_insn.pc_inc +
760 (insn.i_format.simmediate << 2);
761 else
762 *contpc = regs->cp0_epc +
763 dec_insn.pc_inc +
764 dec_insn.next_pc_inc;
765 return 1;
768 break;
770 return 0;
774 * In the Linux kernel, we support selection of FPR format on the
775 * basis of the Status.FR bit. If an FPU is not present, the FR bit
776 * is hardwired to zero, which would imply a 32-bit FPU even for
777 * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
778 * FPU emu is slow and bulky and optimizing this function offers fairly
779 * sizeable benefits so we try to be clever and make this function return
780 * a constant whenever possible, that is on 64-bit kernels without O32
781 * compatibility enabled and on 32-bit without 64-bit FPU support.
783 static inline int cop1_64bit(struct pt_regs *xcp)
785 if (config_enabled(CONFIG_64BIT) && !config_enabled(CONFIG_MIPS32_O32))
786 return 1;
787 else if (config_enabled(CONFIG_32BIT) &&
788 !config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT))
789 return 0;
791 return !test_thread_flag(TIF_32BIT_FPREGS);
794 static inline bool hybrid_fprs(void)
796 return test_thread_flag(TIF_HYBRID_FPREGS);
799 #define SIFROMREG(si, x) \
800 do { \
801 if (cop1_64bit(xcp) && !hybrid_fprs()) \
802 (si) = (int)get_fpr32(&ctx->fpr[x], 0); \
803 else \
804 (si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1); \
805 } while (0)
807 #define SITOREG(si, x) \
808 do { \
809 if (cop1_64bit(xcp) && !hybrid_fprs()) { \
810 unsigned i; \
811 set_fpr32(&ctx->fpr[x], 0, si); \
812 for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \
813 set_fpr32(&ctx->fpr[x], i, 0); \
814 } else { \
815 set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si); \
817 } while (0)
819 #define SIFROMHREG(si, x) ((si) = (int)get_fpr32(&ctx->fpr[x], 1))
821 #define SITOHREG(si, x) \
822 do { \
823 unsigned i; \
824 set_fpr32(&ctx->fpr[x], 1, si); \
825 for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \
826 set_fpr32(&ctx->fpr[x], i, 0); \
827 } while (0)
829 #define DIFROMREG(di, x) \
830 ((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0))
832 #define DITOREG(di, x) \
833 do { \
834 unsigned fpr, i; \
835 fpr = (x) & ~(cop1_64bit(xcp) == 0); \
836 set_fpr64(&ctx->fpr[fpr], 0, di); \
837 for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++) \
838 set_fpr64(&ctx->fpr[fpr], i, 0); \
839 } while (0)
841 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
842 #define SPTOREG(sp, x) SITOREG((sp).bits, x)
843 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x)
844 #define DPTOREG(dp, x) DITOREG((dp).bits, x)
847 * Emulate a CFC1 instruction.
849 static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
850 mips_instruction ir)
852 u32 fcr31 = ctx->fcr31;
853 u32 value = 0;
855 switch (MIPSInst_RD(ir)) {
856 case FPCREG_CSR:
857 value = fcr31;
858 pr_debug("%p gpr[%d]<-csr=%08x\n",
859 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
860 break;
862 case FPCREG_FENR:
863 if (!cpu_has_mips_r)
864 break;
865 value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
866 MIPS_FENR_FS;
867 value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM);
868 pr_debug("%p gpr[%d]<-enr=%08x\n",
869 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
870 break;
872 case FPCREG_FEXR:
873 if (!cpu_has_mips_r)
874 break;
875 value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
876 pr_debug("%p gpr[%d]<-exr=%08x\n",
877 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
878 break;
880 case FPCREG_FCCR:
881 if (!cpu_has_mips_r)
882 break;
883 value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
884 MIPS_FCCR_COND0;
885 value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
886 (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0);
887 pr_debug("%p gpr[%d]<-ccr=%08x\n",
888 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
889 break;
891 case FPCREG_RID:
892 value = boot_cpu_data.fpu_id;
893 break;
895 default:
896 break;
899 if (MIPSInst_RT(ir))
900 xcp->regs[MIPSInst_RT(ir)] = value;
904 * Emulate a CTC1 instruction.
906 static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
907 mips_instruction ir)
909 u32 fcr31 = ctx->fcr31;
910 u32 value;
911 u32 mask;
913 if (MIPSInst_RT(ir) == 0)
914 value = 0;
915 else
916 value = xcp->regs[MIPSInst_RT(ir)];
918 switch (MIPSInst_RD(ir)) {
919 case FPCREG_CSR:
920 pr_debug("%p gpr[%d]->csr=%08x\n",
921 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
923 /* Preserve read-only bits. */
924 mask = boot_cpu_data.fpu_msk31;
925 fcr31 = (value & ~mask) | (fcr31 & mask);
926 break;
928 case FPCREG_FENR:
929 if (!cpu_has_mips_r)
930 break;
931 pr_debug("%p gpr[%d]->enr=%08x\n",
932 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
933 fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM);
934 fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
935 FPU_CSR_FS;
936 fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM);
937 break;
939 case FPCREG_FEXR:
940 if (!cpu_has_mips_r)
941 break;
942 pr_debug("%p gpr[%d]->exr=%08x\n",
943 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
944 fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S);
945 fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
946 break;
948 case FPCREG_FCCR:
949 if (!cpu_has_mips_r)
950 break;
951 pr_debug("%p gpr[%d]->ccr=%08x\n",
952 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
953 fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND);
954 fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
955 FPU_CSR_COND;
956 fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
957 FPU_CSR_CONDX;
958 break;
960 default:
961 break;
964 ctx->fcr31 = fcr31;
968 * Emulate the single floating point instruction pointed at by EPC.
969 * Two instructions if the instruction is in a branch delay slot.
972 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
973 struct mm_decoded_insn dec_insn, void *__user *fault_addr)
975 unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
976 unsigned int cond, cbit;
977 mips_instruction ir;
978 int likely, pc_inc;
979 u32 __user *wva;
980 u64 __user *dva;
981 u32 wval;
982 u64 dval;
983 int sig;
986 * These are giving gcc a gentle hint about what to expect in
987 * dec_inst in order to do better optimization.
989 if (!cpu_has_mmips && dec_insn.micro_mips_mode)
990 unreachable();
992 /* XXX NEC Vr54xx bug workaround */
993 if (delay_slot(xcp)) {
994 if (dec_insn.micro_mips_mode) {
995 if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
996 clear_delay_slot(xcp);
997 } else {
998 if (!isBranchInstr(xcp, dec_insn, &contpc))
999 clear_delay_slot(xcp);
1003 if (delay_slot(xcp)) {
1005 * The instruction to be emulated is in a branch delay slot
1006 * which means that we have to emulate the branch instruction
1007 * BEFORE we do the cop1 instruction.
1009 * This branch could be a COP1 branch, but in that case we
1010 * would have had a trap for that instruction, and would not
1011 * come through this route.
1013 * Linux MIPS branch emulator operates on context, updating the
1014 * cp0_epc.
1016 ir = dec_insn.next_insn; /* process delay slot instr */
1017 pc_inc = dec_insn.next_pc_inc;
1018 } else {
1019 ir = dec_insn.insn; /* process current instr */
1020 pc_inc = dec_insn.pc_inc;
1024 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
1025 * instructions, we want to convert microMIPS FPU instructions
1026 * into MIPS32 instructions so that we could reuse all of the
1027 * FPU emulation code.
1029 * NOTE: We cannot do this for branch instructions since they
1030 * are not a subset. Example: Cannot emulate a 16-bit
1031 * aligned target address with a MIPS32 instruction.
1033 if (dec_insn.micro_mips_mode) {
1035 * If next instruction is a 16-bit instruction, then it
1036 * it cannot be a FPU instruction. This could happen
1037 * since we can be called for non-FPU instructions.
1039 if ((pc_inc == 2) ||
1040 (microMIPS32_to_MIPS32((union mips_instruction *)&ir)
1041 == SIGILL))
1042 return SIGILL;
1045 emul:
1046 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
1047 MIPS_FPU_EMU_INC_STATS(emulated);
1048 switch (MIPSInst_OPCODE(ir)) {
1049 case ldc1_op:
1050 dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1051 MIPSInst_SIMM(ir));
1052 MIPS_FPU_EMU_INC_STATS(loads);
1054 if (!access_ok(VERIFY_READ, dva, sizeof(u64))) {
1055 MIPS_FPU_EMU_INC_STATS(errors);
1056 *fault_addr = dva;
1057 return SIGBUS;
1059 if (__get_user(dval, dva)) {
1060 MIPS_FPU_EMU_INC_STATS(errors);
1061 *fault_addr = dva;
1062 return SIGSEGV;
1064 DITOREG(dval, MIPSInst_RT(ir));
1065 break;
1067 case sdc1_op:
1068 dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1069 MIPSInst_SIMM(ir));
1070 MIPS_FPU_EMU_INC_STATS(stores);
1071 DIFROMREG(dval, MIPSInst_RT(ir));
1072 if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) {
1073 MIPS_FPU_EMU_INC_STATS(errors);
1074 *fault_addr = dva;
1075 return SIGBUS;
1077 if (__put_user(dval, dva)) {
1078 MIPS_FPU_EMU_INC_STATS(errors);
1079 *fault_addr = dva;
1080 return SIGSEGV;
1082 break;
1084 case lwc1_op:
1085 wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1086 MIPSInst_SIMM(ir));
1087 MIPS_FPU_EMU_INC_STATS(loads);
1088 if (!access_ok(VERIFY_READ, wva, sizeof(u32))) {
1089 MIPS_FPU_EMU_INC_STATS(errors);
1090 *fault_addr = wva;
1091 return SIGBUS;
1093 if (__get_user(wval, wva)) {
1094 MIPS_FPU_EMU_INC_STATS(errors);
1095 *fault_addr = wva;
1096 return SIGSEGV;
1098 SITOREG(wval, MIPSInst_RT(ir));
1099 break;
1101 case swc1_op:
1102 wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1103 MIPSInst_SIMM(ir));
1104 MIPS_FPU_EMU_INC_STATS(stores);
1105 SIFROMREG(wval, MIPSInst_RT(ir));
1106 if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) {
1107 MIPS_FPU_EMU_INC_STATS(errors);
1108 *fault_addr = wva;
1109 return SIGBUS;
1111 if (__put_user(wval, wva)) {
1112 MIPS_FPU_EMU_INC_STATS(errors);
1113 *fault_addr = wva;
1114 return SIGSEGV;
1116 break;
1118 case cop1_op:
1119 switch (MIPSInst_RS(ir)) {
1120 case dmfc_op:
1121 if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1122 return SIGILL;
1124 /* copregister fs -> gpr[rt] */
1125 if (MIPSInst_RT(ir) != 0) {
1126 DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1127 MIPSInst_RD(ir));
1129 break;
1131 case dmtc_op:
1132 if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1133 return SIGILL;
1135 /* copregister fs <- rt */
1136 DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1137 break;
1139 case mfhc_op:
1140 if (!cpu_has_mips_r2_r6)
1141 goto sigill;
1143 /* copregister rd -> gpr[rt] */
1144 if (MIPSInst_RT(ir) != 0) {
1145 SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
1146 MIPSInst_RD(ir));
1148 break;
1150 case mthc_op:
1151 if (!cpu_has_mips_r2_r6)
1152 goto sigill;
1154 /* copregister rd <- gpr[rt] */
1155 SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1156 break;
1158 case mfc_op:
1159 /* copregister rd -> gpr[rt] */
1160 if (MIPSInst_RT(ir) != 0) {
1161 SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1162 MIPSInst_RD(ir));
1164 break;
1166 case mtc_op:
1167 /* copregister rd <- rt */
1168 SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1169 break;
1171 case cfc_op:
1172 /* cop control register rd -> gpr[rt] */
1173 cop1_cfc(xcp, ctx, ir);
1174 break;
1176 case ctc_op:
1177 /* copregister rd <- rt */
1178 cop1_ctc(xcp, ctx, ir);
1179 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1180 return SIGFPE;
1182 break;
1184 case bc1eqz_op:
1185 case bc1nez_op:
1186 if (!cpu_has_mips_r6 || delay_slot(xcp))
1187 return SIGILL;
1189 cond = likely = 0;
1190 switch (MIPSInst_RS(ir)) {
1191 case bc1eqz_op:
1192 if (get_fpr32(&current->thread.fpu.fpr[MIPSInst_RT(ir)], 0) & 0x1)
1193 cond = 1;
1194 break;
1195 case bc1nez_op:
1196 if (!(get_fpr32(&current->thread.fpu.fpr[MIPSInst_RT(ir)], 0) & 0x1))
1197 cond = 1;
1198 break;
1200 goto branch_common;
1202 case bc_op:
1203 if (delay_slot(xcp))
1204 return SIGILL;
1206 if (cpu_has_mips_4_5_r)
1207 cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
1208 else
1209 cbit = FPU_CSR_COND;
1210 cond = ctx->fcr31 & cbit;
1212 likely = 0;
1213 switch (MIPSInst_RT(ir) & 3) {
1214 case bcfl_op:
1215 if (cpu_has_mips_2_3_4_5_r)
1216 likely = 1;
1217 /* Fall through */
1218 case bcf_op:
1219 cond = !cond;
1220 break;
1221 case bctl_op:
1222 if (cpu_has_mips_2_3_4_5_r)
1223 likely = 1;
1224 /* Fall through */
1225 case bct_op:
1226 break;
1228 branch_common:
1229 set_delay_slot(xcp);
1230 if (cond) {
1232 * Branch taken: emulate dslot instruction
1234 unsigned long bcpc;
1237 * Remember EPC at the branch to point back
1238 * at so that any delay-slot instruction
1239 * signal is not silently ignored.
1241 bcpc = xcp->cp0_epc;
1242 xcp->cp0_epc += dec_insn.pc_inc;
1244 contpc = MIPSInst_SIMM(ir);
1245 ir = dec_insn.next_insn;
1246 if (dec_insn.micro_mips_mode) {
1247 contpc = (xcp->cp0_epc + (contpc << 1));
1249 /* If 16-bit instruction, not FPU. */
1250 if ((dec_insn.next_pc_inc == 2) ||
1251 (microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1254 * Since this instruction will
1255 * be put on the stack with
1256 * 32-bit words, get around
1257 * this problem by putting a
1258 * NOP16 as the second one.
1260 if (dec_insn.next_pc_inc == 2)
1261 ir = (ir & (~0xffff)) | MM_NOP16;
1264 * Single step the non-CP1
1265 * instruction in the dslot.
1267 sig = mips_dsemul(xcp, ir,
1268 contpc);
1269 if (sig)
1270 xcp->cp0_epc = bcpc;
1272 * SIGILL forces out of
1273 * the emulation loop.
1275 return sig ? sig : SIGILL;
1277 } else
1278 contpc = (xcp->cp0_epc + (contpc << 2));
1280 switch (MIPSInst_OPCODE(ir)) {
1281 case lwc1_op:
1282 case swc1_op:
1283 goto emul;
1285 case ldc1_op:
1286 case sdc1_op:
1287 if (cpu_has_mips_2_3_4_5_r)
1288 goto emul;
1290 goto bc_sigill;
1292 case cop1_op:
1293 goto emul;
1295 case cop1x_op:
1296 if (cpu_has_mips_4_5_64_r2_r6)
1297 /* its one of ours */
1298 goto emul;
1300 goto bc_sigill;
1302 case spec_op:
1303 switch (MIPSInst_FUNC(ir)) {
1304 case movc_op:
1305 if (cpu_has_mips_4_5_r)
1306 goto emul;
1308 goto bc_sigill;
1310 break;
1312 bc_sigill:
1313 xcp->cp0_epc = bcpc;
1314 return SIGILL;
1318 * Single step the non-cp1
1319 * instruction in the dslot
1321 sig = mips_dsemul(xcp, ir, contpc);
1322 if (sig)
1323 xcp->cp0_epc = bcpc;
1324 /* SIGILL forces out of the emulation loop. */
1325 return sig ? sig : SIGILL;
1326 } else if (likely) { /* branch not taken */
1328 * branch likely nullifies
1329 * dslot if not taken
1331 xcp->cp0_epc += dec_insn.pc_inc;
1332 contpc += dec_insn.pc_inc;
1334 * else continue & execute
1335 * dslot as normal insn
1338 break;
1340 default:
1341 if (!(MIPSInst_RS(ir) & 0x10))
1342 return SIGILL;
1344 /* a real fpu computation instruction */
1345 if ((sig = fpu_emu(xcp, ctx, ir)))
1346 return sig;
1348 break;
1350 case cop1x_op:
1351 if (!cpu_has_mips_4_5_64_r2_r6)
1352 return SIGILL;
1354 sig = fpux_emu(xcp, ctx, ir, fault_addr);
1355 if (sig)
1356 return sig;
1357 break;
1359 case spec_op:
1360 if (!cpu_has_mips_4_5_r)
1361 return SIGILL;
1363 if (MIPSInst_FUNC(ir) != movc_op)
1364 return SIGILL;
1365 cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1366 if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1367 xcp->regs[MIPSInst_RD(ir)] =
1368 xcp->regs[MIPSInst_RS(ir)];
1369 break;
1370 default:
1371 sigill:
1372 return SIGILL;
1375 /* we did it !! */
1376 xcp->cp0_epc = contpc;
1377 clear_delay_slot(xcp);
1379 return 0;
1383 * Conversion table from MIPS compare ops 48-63
1384 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1386 static const unsigned char cmptab[8] = {
1387 0, /* cmp_0 (sig) cmp_sf */
1388 IEEE754_CUN, /* cmp_un (sig) cmp_ngle */
1389 IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */
1390 IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */
1391 IEEE754_CLT, /* cmp_olt (sig) cmp_lt */
1392 IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */
1393 IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */
1394 IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */
1397 static const unsigned char negative_cmptab[8] = {
1398 0, /* Reserved */
1399 IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ,
1400 IEEE754_CLT | IEEE754_CGT | IEEE754_CUN,
1401 IEEE754_CLT | IEEE754_CGT,
1402 /* Reserved */
1407 * Additional MIPS4 instructions
1410 #define DEF3OP(name, p, f1, f2, f3) \
1411 static union ieee754##p fpemu_##p##_##name(union ieee754##p r, \
1412 union ieee754##p s, union ieee754##p t) \
1414 struct _ieee754_csr ieee754_csr_save; \
1415 s = f1(s, t); \
1416 ieee754_csr_save = ieee754_csr; \
1417 s = f2(s, r); \
1418 ieee754_csr_save.cx |= ieee754_csr.cx; \
1419 ieee754_csr_save.sx |= ieee754_csr.sx; \
1420 s = f3(s); \
1421 ieee754_csr.cx |= ieee754_csr_save.cx; \
1422 ieee754_csr.sx |= ieee754_csr_save.sx; \
1423 return s; \
1426 static union ieee754dp fpemu_dp_recip(union ieee754dp d)
1428 return ieee754dp_div(ieee754dp_one(0), d);
1431 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
1433 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1436 static union ieee754sp fpemu_sp_recip(union ieee754sp s)
1438 return ieee754sp_div(ieee754sp_one(0), s);
1441 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
1443 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1446 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1447 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1448 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1449 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1450 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1451 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1452 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1453 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1455 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1456 mips_instruction ir, void *__user *fault_addr)
1458 unsigned rcsr = 0; /* resulting csr */
1460 MIPS_FPU_EMU_INC_STATS(cp1xops);
1462 switch (MIPSInst_FMA_FFMT(ir)) {
1463 case s_fmt:{ /* 0 */
1465 union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
1466 union ieee754sp fd, fr, fs, ft;
1467 u32 __user *va;
1468 u32 val;
1470 switch (MIPSInst_FUNC(ir)) {
1471 case lwxc1_op:
1472 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1473 xcp->regs[MIPSInst_FT(ir)]);
1475 MIPS_FPU_EMU_INC_STATS(loads);
1476 if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1477 MIPS_FPU_EMU_INC_STATS(errors);
1478 *fault_addr = va;
1479 return SIGBUS;
1481 if (__get_user(val, va)) {
1482 MIPS_FPU_EMU_INC_STATS(errors);
1483 *fault_addr = va;
1484 return SIGSEGV;
1486 SITOREG(val, MIPSInst_FD(ir));
1487 break;
1489 case swxc1_op:
1490 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1491 xcp->regs[MIPSInst_FT(ir)]);
1493 MIPS_FPU_EMU_INC_STATS(stores);
1495 SIFROMREG(val, MIPSInst_FS(ir));
1496 if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1497 MIPS_FPU_EMU_INC_STATS(errors);
1498 *fault_addr = va;
1499 return SIGBUS;
1501 if (put_user(val, va)) {
1502 MIPS_FPU_EMU_INC_STATS(errors);
1503 *fault_addr = va;
1504 return SIGSEGV;
1506 break;
1508 case madd_s_op:
1509 handler = fpemu_sp_madd;
1510 goto scoptop;
1511 case msub_s_op:
1512 handler = fpemu_sp_msub;
1513 goto scoptop;
1514 case nmadd_s_op:
1515 handler = fpemu_sp_nmadd;
1516 goto scoptop;
1517 case nmsub_s_op:
1518 handler = fpemu_sp_nmsub;
1519 goto scoptop;
1521 scoptop:
1522 SPFROMREG(fr, MIPSInst_FR(ir));
1523 SPFROMREG(fs, MIPSInst_FS(ir));
1524 SPFROMREG(ft, MIPSInst_FT(ir));
1525 fd = (*handler) (fr, fs, ft);
1526 SPTOREG(fd, MIPSInst_FD(ir));
1528 copcsr:
1529 if (ieee754_cxtest(IEEE754_INEXACT)) {
1530 MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1531 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1533 if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1534 MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1535 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1537 if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1538 MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1539 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1541 if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1542 MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1543 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1546 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1547 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1548 /*printk ("SIGFPE: FPU csr = %08x\n",
1549 ctx->fcr31); */
1550 return SIGFPE;
1553 break;
1555 default:
1556 return SIGILL;
1558 break;
1561 case d_fmt:{ /* 1 */
1562 union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
1563 union ieee754dp fd, fr, fs, ft;
1564 u64 __user *va;
1565 u64 val;
1567 switch (MIPSInst_FUNC(ir)) {
1568 case ldxc1_op:
1569 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1570 xcp->regs[MIPSInst_FT(ir)]);
1572 MIPS_FPU_EMU_INC_STATS(loads);
1573 if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1574 MIPS_FPU_EMU_INC_STATS(errors);
1575 *fault_addr = va;
1576 return SIGBUS;
1578 if (__get_user(val, va)) {
1579 MIPS_FPU_EMU_INC_STATS(errors);
1580 *fault_addr = va;
1581 return SIGSEGV;
1583 DITOREG(val, MIPSInst_FD(ir));
1584 break;
1586 case sdxc1_op:
1587 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1588 xcp->regs[MIPSInst_FT(ir)]);
1590 MIPS_FPU_EMU_INC_STATS(stores);
1591 DIFROMREG(val, MIPSInst_FS(ir));
1592 if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1593 MIPS_FPU_EMU_INC_STATS(errors);
1594 *fault_addr = va;
1595 return SIGBUS;
1597 if (__put_user(val, va)) {
1598 MIPS_FPU_EMU_INC_STATS(errors);
1599 *fault_addr = va;
1600 return SIGSEGV;
1602 break;
1604 case madd_d_op:
1605 handler = fpemu_dp_madd;
1606 goto dcoptop;
1607 case msub_d_op:
1608 handler = fpemu_dp_msub;
1609 goto dcoptop;
1610 case nmadd_d_op:
1611 handler = fpemu_dp_nmadd;
1612 goto dcoptop;
1613 case nmsub_d_op:
1614 handler = fpemu_dp_nmsub;
1615 goto dcoptop;
1617 dcoptop:
1618 DPFROMREG(fr, MIPSInst_FR(ir));
1619 DPFROMREG(fs, MIPSInst_FS(ir));
1620 DPFROMREG(ft, MIPSInst_FT(ir));
1621 fd = (*handler) (fr, fs, ft);
1622 DPTOREG(fd, MIPSInst_FD(ir));
1623 goto copcsr;
1625 default:
1626 return SIGILL;
1628 break;
1631 case 0x3:
1632 if (MIPSInst_FUNC(ir) != pfetch_op)
1633 return SIGILL;
1635 /* ignore prefx operation */
1636 break;
1638 default:
1639 return SIGILL;
1642 return 0;
1648 * Emulate a single COP1 arithmetic instruction.
1650 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1651 mips_instruction ir)
1653 int rfmt; /* resulting format */
1654 unsigned rcsr = 0; /* resulting csr */
1655 unsigned int oldrm;
1656 unsigned int cbit;
1657 unsigned cond;
1658 union {
1659 union ieee754dp d;
1660 union ieee754sp s;
1661 int w;
1662 s64 l;
1663 } rv; /* resulting value */
1664 u64 bits;
1666 MIPS_FPU_EMU_INC_STATS(cp1ops);
1667 switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1668 case s_fmt: { /* 0 */
1669 union {
1670 union ieee754sp(*b) (union ieee754sp, union ieee754sp);
1671 union ieee754sp(*u) (union ieee754sp);
1672 } handler;
1673 union ieee754sp fs, ft;
1675 switch (MIPSInst_FUNC(ir)) {
1676 /* binary ops */
1677 case fadd_op:
1678 handler.b = ieee754sp_add;
1679 goto scopbop;
1680 case fsub_op:
1681 handler.b = ieee754sp_sub;
1682 goto scopbop;
1683 case fmul_op:
1684 handler.b = ieee754sp_mul;
1685 goto scopbop;
1686 case fdiv_op:
1687 handler.b = ieee754sp_div;
1688 goto scopbop;
1690 /* unary ops */
1691 case fsqrt_op:
1692 if (!cpu_has_mips_2_3_4_5_r)
1693 return SIGILL;
1695 handler.u = ieee754sp_sqrt;
1696 goto scopuop;
1699 * Note that on some MIPS IV implementations such as the
1700 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1701 * achieve full IEEE-754 accuracy - however this emulator does.
1703 case frsqrt_op:
1704 if (!cpu_has_mips_4_5_64_r2_r6)
1705 return SIGILL;
1707 handler.u = fpemu_sp_rsqrt;
1708 goto scopuop;
1710 case frecip_op:
1711 if (!cpu_has_mips_4_5_64_r2_r6)
1712 return SIGILL;
1714 handler.u = fpemu_sp_recip;
1715 goto scopuop;
1717 case fmovc_op:
1718 if (!cpu_has_mips_4_5_r)
1719 return SIGILL;
1721 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1722 if (((ctx->fcr31 & cond) != 0) !=
1723 ((MIPSInst_FT(ir) & 1) != 0))
1724 return 0;
1725 SPFROMREG(rv.s, MIPSInst_FS(ir));
1726 break;
1728 case fmovz_op:
1729 if (!cpu_has_mips_4_5_r)
1730 return SIGILL;
1732 if (xcp->regs[MIPSInst_FT(ir)] != 0)
1733 return 0;
1734 SPFROMREG(rv.s, MIPSInst_FS(ir));
1735 break;
1737 case fmovn_op:
1738 if (!cpu_has_mips_4_5_r)
1739 return SIGILL;
1741 if (xcp->regs[MIPSInst_FT(ir)] == 0)
1742 return 0;
1743 SPFROMREG(rv.s, MIPSInst_FS(ir));
1744 break;
1746 case fseleqz_op:
1747 if (!cpu_has_mips_r6)
1748 return SIGILL;
1750 SPFROMREG(rv.s, MIPSInst_FT(ir));
1751 if (rv.w & 0x1)
1752 rv.w = 0;
1753 else
1754 SPFROMREG(rv.s, MIPSInst_FS(ir));
1755 break;
1757 case fselnez_op:
1758 if (!cpu_has_mips_r6)
1759 return SIGILL;
1761 SPFROMREG(rv.s, MIPSInst_FT(ir));
1762 if (rv.w & 0x1)
1763 SPFROMREG(rv.s, MIPSInst_FS(ir));
1764 else
1765 rv.w = 0;
1766 break;
1768 case fmaddf_op: {
1769 union ieee754sp ft, fs, fd;
1771 if (!cpu_has_mips_r6)
1772 return SIGILL;
1774 SPFROMREG(ft, MIPSInst_FT(ir));
1775 SPFROMREG(fs, MIPSInst_FS(ir));
1776 SPFROMREG(fd, MIPSInst_FD(ir));
1777 rv.s = ieee754sp_maddf(fd, fs, ft);
1778 break;
1781 case fmsubf_op: {
1782 union ieee754sp ft, fs, fd;
1784 if (!cpu_has_mips_r6)
1785 return SIGILL;
1787 SPFROMREG(ft, MIPSInst_FT(ir));
1788 SPFROMREG(fs, MIPSInst_FS(ir));
1789 SPFROMREG(fd, MIPSInst_FD(ir));
1790 rv.s = ieee754sp_msubf(fd, fs, ft);
1791 break;
1794 case frint_op: {
1795 union ieee754sp fs;
1797 if (!cpu_has_mips_r6)
1798 return SIGILL;
1800 SPFROMREG(fs, MIPSInst_FS(ir));
1801 rv.l = ieee754sp_tlong(fs);
1802 rv.s = ieee754sp_flong(rv.l);
1803 goto copcsr;
1806 case fclass_op: {
1807 union ieee754sp fs;
1809 if (!cpu_has_mips_r6)
1810 return SIGILL;
1812 SPFROMREG(fs, MIPSInst_FS(ir));
1813 rv.w = ieee754sp_2008class(fs);
1814 rfmt = w_fmt;
1815 break;
1818 case fmin_op: {
1819 union ieee754sp fs, ft;
1821 if (!cpu_has_mips_r6)
1822 return SIGILL;
1824 SPFROMREG(ft, MIPSInst_FT(ir));
1825 SPFROMREG(fs, MIPSInst_FS(ir));
1826 rv.s = ieee754sp_fmin(fs, ft);
1827 break;
1830 case fmina_op: {
1831 union ieee754sp fs, ft;
1833 if (!cpu_has_mips_r6)
1834 return SIGILL;
1836 SPFROMREG(ft, MIPSInst_FT(ir));
1837 SPFROMREG(fs, MIPSInst_FS(ir));
1838 rv.s = ieee754sp_fmina(fs, ft);
1839 break;
1842 case fmax_op: {
1843 union ieee754sp fs, ft;
1845 if (!cpu_has_mips_r6)
1846 return SIGILL;
1848 SPFROMREG(ft, MIPSInst_FT(ir));
1849 SPFROMREG(fs, MIPSInst_FS(ir));
1850 rv.s = ieee754sp_fmax(fs, ft);
1851 break;
1854 case fmaxa_op: {
1855 union ieee754sp fs, ft;
1857 if (!cpu_has_mips_r6)
1858 return SIGILL;
1860 SPFROMREG(ft, MIPSInst_FT(ir));
1861 SPFROMREG(fs, MIPSInst_FS(ir));
1862 rv.s = ieee754sp_fmaxa(fs, ft);
1863 break;
1866 case fabs_op:
1867 handler.u = ieee754sp_abs;
1868 goto scopuop;
1870 case fneg_op:
1871 handler.u = ieee754sp_neg;
1872 goto scopuop;
1874 case fmov_op:
1875 /* an easy one */
1876 SPFROMREG(rv.s, MIPSInst_FS(ir));
1877 goto copcsr;
1879 /* binary op on handler */
1880 scopbop:
1881 SPFROMREG(fs, MIPSInst_FS(ir));
1882 SPFROMREG(ft, MIPSInst_FT(ir));
1884 rv.s = (*handler.b) (fs, ft);
1885 goto copcsr;
1886 scopuop:
1887 SPFROMREG(fs, MIPSInst_FS(ir));
1888 rv.s = (*handler.u) (fs);
1889 goto copcsr;
1890 copcsr:
1891 if (ieee754_cxtest(IEEE754_INEXACT)) {
1892 MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1893 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1895 if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1896 MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1897 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1899 if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1900 MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1901 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1903 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
1904 MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
1905 rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1907 if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1908 MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1909 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1911 break;
1913 /* unary conv ops */
1914 case fcvts_op:
1915 return SIGILL; /* not defined */
1917 case fcvtd_op:
1918 SPFROMREG(fs, MIPSInst_FS(ir));
1919 rv.d = ieee754dp_fsp(fs);
1920 rfmt = d_fmt;
1921 goto copcsr;
1923 case fcvtw_op:
1924 SPFROMREG(fs, MIPSInst_FS(ir));
1925 rv.w = ieee754sp_tint(fs);
1926 rfmt = w_fmt;
1927 goto copcsr;
1929 case fround_op:
1930 case ftrunc_op:
1931 case fceil_op:
1932 case ffloor_op:
1933 if (!cpu_has_mips_2_3_4_5_r)
1934 return SIGILL;
1936 oldrm = ieee754_csr.rm;
1937 SPFROMREG(fs, MIPSInst_FS(ir));
1938 ieee754_csr.rm = MIPSInst_FUNC(ir);
1939 rv.w = ieee754sp_tint(fs);
1940 ieee754_csr.rm = oldrm;
1941 rfmt = w_fmt;
1942 goto copcsr;
1944 case fcvtl_op:
1945 if (!cpu_has_mips_3_4_5_64_r2_r6)
1946 return SIGILL;
1948 SPFROMREG(fs, MIPSInst_FS(ir));
1949 rv.l = ieee754sp_tlong(fs);
1950 rfmt = l_fmt;
1951 goto copcsr;
1953 case froundl_op:
1954 case ftruncl_op:
1955 case fceill_op:
1956 case ffloorl_op:
1957 if (!cpu_has_mips_3_4_5_64_r2_r6)
1958 return SIGILL;
1960 oldrm = ieee754_csr.rm;
1961 SPFROMREG(fs, MIPSInst_FS(ir));
1962 ieee754_csr.rm = MIPSInst_FUNC(ir);
1963 rv.l = ieee754sp_tlong(fs);
1964 ieee754_csr.rm = oldrm;
1965 rfmt = l_fmt;
1966 goto copcsr;
1968 default:
1969 if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
1970 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1971 union ieee754sp fs, ft;
1973 SPFROMREG(fs, MIPSInst_FS(ir));
1974 SPFROMREG(ft, MIPSInst_FT(ir));
1975 rv.w = ieee754sp_cmp(fs, ft,
1976 cmptab[cmpop & 0x7], cmpop & 0x8);
1977 rfmt = -1;
1978 if ((cmpop & 0x8) && ieee754_cxtest
1979 (IEEE754_INVALID_OPERATION))
1980 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1981 else
1982 goto copcsr;
1984 } else
1985 return SIGILL;
1986 break;
1988 break;
1991 case d_fmt: {
1992 union ieee754dp fs, ft;
1993 union {
1994 union ieee754dp(*b) (union ieee754dp, union ieee754dp);
1995 union ieee754dp(*u) (union ieee754dp);
1996 } handler;
1998 switch (MIPSInst_FUNC(ir)) {
1999 /* binary ops */
2000 case fadd_op:
2001 handler.b = ieee754dp_add;
2002 goto dcopbop;
2003 case fsub_op:
2004 handler.b = ieee754dp_sub;
2005 goto dcopbop;
2006 case fmul_op:
2007 handler.b = ieee754dp_mul;
2008 goto dcopbop;
2009 case fdiv_op:
2010 handler.b = ieee754dp_div;
2011 goto dcopbop;
2013 /* unary ops */
2014 case fsqrt_op:
2015 if (!cpu_has_mips_2_3_4_5_r)
2016 return SIGILL;
2018 handler.u = ieee754dp_sqrt;
2019 goto dcopuop;
2021 * Note that on some MIPS IV implementations such as the
2022 * R5000 and R8000 the FSQRT and FRECIP instructions do not
2023 * achieve full IEEE-754 accuracy - however this emulator does.
2025 case frsqrt_op:
2026 if (!cpu_has_mips_4_5_64_r2_r6)
2027 return SIGILL;
2029 handler.u = fpemu_dp_rsqrt;
2030 goto dcopuop;
2031 case frecip_op:
2032 if (!cpu_has_mips_4_5_64_r2_r6)
2033 return SIGILL;
2035 handler.u = fpemu_dp_recip;
2036 goto dcopuop;
2037 case fmovc_op:
2038 if (!cpu_has_mips_4_5_r)
2039 return SIGILL;
2041 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
2042 if (((ctx->fcr31 & cond) != 0) !=
2043 ((MIPSInst_FT(ir) & 1) != 0))
2044 return 0;
2045 DPFROMREG(rv.d, MIPSInst_FS(ir));
2046 break;
2047 case fmovz_op:
2048 if (!cpu_has_mips_4_5_r)
2049 return SIGILL;
2051 if (xcp->regs[MIPSInst_FT(ir)] != 0)
2052 return 0;
2053 DPFROMREG(rv.d, MIPSInst_FS(ir));
2054 break;
2055 case fmovn_op:
2056 if (!cpu_has_mips_4_5_r)
2057 return SIGILL;
2059 if (xcp->regs[MIPSInst_FT(ir)] == 0)
2060 return 0;
2061 DPFROMREG(rv.d, MIPSInst_FS(ir));
2062 break;
2064 case fseleqz_op:
2065 if (!cpu_has_mips_r6)
2066 return SIGILL;
2068 DPFROMREG(rv.d, MIPSInst_FT(ir));
2069 if (rv.l & 0x1)
2070 rv.l = 0;
2071 else
2072 DPFROMREG(rv.d, MIPSInst_FS(ir));
2073 break;
2075 case fselnez_op:
2076 if (!cpu_has_mips_r6)
2077 return SIGILL;
2079 DPFROMREG(rv.d, MIPSInst_FT(ir));
2080 if (rv.l & 0x1)
2081 DPFROMREG(rv.d, MIPSInst_FS(ir));
2082 else
2083 rv.l = 0;
2084 break;
2086 case fmaddf_op: {
2087 union ieee754dp ft, fs, fd;
2089 if (!cpu_has_mips_r6)
2090 return SIGILL;
2092 DPFROMREG(ft, MIPSInst_FT(ir));
2093 DPFROMREG(fs, MIPSInst_FS(ir));
2094 DPFROMREG(fd, MIPSInst_FD(ir));
2095 rv.d = ieee754dp_maddf(fd, fs, ft);
2096 break;
2099 case fmsubf_op: {
2100 union ieee754dp ft, fs, fd;
2102 if (!cpu_has_mips_r6)
2103 return SIGILL;
2105 DPFROMREG(ft, MIPSInst_FT(ir));
2106 DPFROMREG(fs, MIPSInst_FS(ir));
2107 DPFROMREG(fd, MIPSInst_FD(ir));
2108 rv.d = ieee754dp_msubf(fd, fs, ft);
2109 break;
2112 case frint_op: {
2113 union ieee754dp fs;
2115 if (!cpu_has_mips_r6)
2116 return SIGILL;
2118 DPFROMREG(fs, MIPSInst_FS(ir));
2119 rv.l = ieee754dp_tlong(fs);
2120 rv.d = ieee754dp_flong(rv.l);
2121 goto copcsr;
2124 case fclass_op: {
2125 union ieee754dp fs;
2127 if (!cpu_has_mips_r6)
2128 return SIGILL;
2130 DPFROMREG(fs, MIPSInst_FS(ir));
2131 rv.w = ieee754dp_2008class(fs);
2132 rfmt = w_fmt;
2133 break;
2136 case fmin_op: {
2137 union ieee754dp fs, ft;
2139 if (!cpu_has_mips_r6)
2140 return SIGILL;
2142 DPFROMREG(ft, MIPSInst_FT(ir));
2143 DPFROMREG(fs, MIPSInst_FS(ir));
2144 rv.d = ieee754dp_fmin(fs, ft);
2145 break;
2148 case fmina_op: {
2149 union ieee754dp fs, ft;
2151 if (!cpu_has_mips_r6)
2152 return SIGILL;
2154 DPFROMREG(ft, MIPSInst_FT(ir));
2155 DPFROMREG(fs, MIPSInst_FS(ir));
2156 rv.d = ieee754dp_fmina(fs, ft);
2157 break;
2160 case fmax_op: {
2161 union ieee754dp fs, ft;
2163 if (!cpu_has_mips_r6)
2164 return SIGILL;
2166 DPFROMREG(ft, MIPSInst_FT(ir));
2167 DPFROMREG(fs, MIPSInst_FS(ir));
2168 rv.d = ieee754dp_fmax(fs, ft);
2169 break;
2172 case fmaxa_op: {
2173 union ieee754dp fs, ft;
2175 if (!cpu_has_mips_r6)
2176 return SIGILL;
2178 DPFROMREG(ft, MIPSInst_FT(ir));
2179 DPFROMREG(fs, MIPSInst_FS(ir));
2180 rv.d = ieee754dp_fmaxa(fs, ft);
2181 break;
2184 case fabs_op:
2185 handler.u = ieee754dp_abs;
2186 goto dcopuop;
2188 case fneg_op:
2189 handler.u = ieee754dp_neg;
2190 goto dcopuop;
2192 case fmov_op:
2193 /* an easy one */
2194 DPFROMREG(rv.d, MIPSInst_FS(ir));
2195 goto copcsr;
2197 /* binary op on handler */
2198 dcopbop:
2199 DPFROMREG(fs, MIPSInst_FS(ir));
2200 DPFROMREG(ft, MIPSInst_FT(ir));
2202 rv.d = (*handler.b) (fs, ft);
2203 goto copcsr;
2204 dcopuop:
2205 DPFROMREG(fs, MIPSInst_FS(ir));
2206 rv.d = (*handler.u) (fs);
2207 goto copcsr;
2210 * unary conv ops
2212 case fcvts_op:
2213 DPFROMREG(fs, MIPSInst_FS(ir));
2214 rv.s = ieee754sp_fdp(fs);
2215 rfmt = s_fmt;
2216 goto copcsr;
2218 case fcvtd_op:
2219 return SIGILL; /* not defined */
2221 case fcvtw_op:
2222 DPFROMREG(fs, MIPSInst_FS(ir));
2223 rv.w = ieee754dp_tint(fs); /* wrong */
2224 rfmt = w_fmt;
2225 goto copcsr;
2227 case fround_op:
2228 case ftrunc_op:
2229 case fceil_op:
2230 case ffloor_op:
2231 if (!cpu_has_mips_2_3_4_5_r)
2232 return SIGILL;
2234 oldrm = ieee754_csr.rm;
2235 DPFROMREG(fs, MIPSInst_FS(ir));
2236 ieee754_csr.rm = MIPSInst_FUNC(ir);
2237 rv.w = ieee754dp_tint(fs);
2238 ieee754_csr.rm = oldrm;
2239 rfmt = w_fmt;
2240 goto copcsr;
2242 case fcvtl_op:
2243 if (!cpu_has_mips_3_4_5_64_r2_r6)
2244 return SIGILL;
2246 DPFROMREG(fs, MIPSInst_FS(ir));
2247 rv.l = ieee754dp_tlong(fs);
2248 rfmt = l_fmt;
2249 goto copcsr;
2251 case froundl_op:
2252 case ftruncl_op:
2253 case fceill_op:
2254 case ffloorl_op:
2255 if (!cpu_has_mips_3_4_5_64_r2_r6)
2256 return SIGILL;
2258 oldrm = ieee754_csr.rm;
2259 DPFROMREG(fs, MIPSInst_FS(ir));
2260 ieee754_csr.rm = MIPSInst_FUNC(ir);
2261 rv.l = ieee754dp_tlong(fs);
2262 ieee754_csr.rm = oldrm;
2263 rfmt = l_fmt;
2264 goto copcsr;
2266 default:
2267 if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
2268 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
2269 union ieee754dp fs, ft;
2271 DPFROMREG(fs, MIPSInst_FS(ir));
2272 DPFROMREG(ft, MIPSInst_FT(ir));
2273 rv.w = ieee754dp_cmp(fs, ft,
2274 cmptab[cmpop & 0x7], cmpop & 0x8);
2275 rfmt = -1;
2276 if ((cmpop & 0x8)
2278 ieee754_cxtest
2279 (IEEE754_INVALID_OPERATION))
2280 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2281 else
2282 goto copcsr;
2285 else {
2286 return SIGILL;
2288 break;
2290 break;
2293 case w_fmt: {
2294 union ieee754dp fs;
2296 switch (MIPSInst_FUNC(ir)) {
2297 case fcvts_op:
2298 /* convert word to single precision real */
2299 SPFROMREG(fs, MIPSInst_FS(ir));
2300 rv.s = ieee754sp_fint(fs.bits);
2301 rfmt = s_fmt;
2302 goto copcsr;
2303 case fcvtd_op:
2304 /* convert word to double precision real */
2305 SPFROMREG(fs, MIPSInst_FS(ir));
2306 rv.d = ieee754dp_fint(fs.bits);
2307 rfmt = d_fmt;
2308 goto copcsr;
2309 default: {
2310 /* Emulating the new CMP.condn.fmt R6 instruction */
2311 #define CMPOP_MASK 0x7
2312 #define SIGN_BIT (0x1 << 3)
2313 #define PREDICATE_BIT (0x1 << 4)
2315 int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2316 int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2317 union ieee754sp fs, ft;
2319 /* This is an R6 only instruction */
2320 if (!cpu_has_mips_r6 ||
2321 (MIPSInst_FUNC(ir) & 0x20))
2322 return SIGILL;
2324 /* fmt is w_fmt for single precision so fix it */
2325 rfmt = s_fmt;
2326 /* default to false */
2327 rv.w = 0;
2329 /* CMP.condn.S */
2330 SPFROMREG(fs, MIPSInst_FS(ir));
2331 SPFROMREG(ft, MIPSInst_FT(ir));
2333 /* positive predicates */
2334 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2335 if (ieee754sp_cmp(fs, ft, cmptab[cmpop],
2336 sig))
2337 rv.w = -1; /* true, all 1s */
2338 if ((sig) &&
2339 ieee754_cxtest(IEEE754_INVALID_OPERATION))
2340 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2341 else
2342 goto copcsr;
2343 } else {
2344 /* negative predicates */
2345 switch (cmpop) {
2346 case 1:
2347 case 2:
2348 case 3:
2349 if (ieee754sp_cmp(fs, ft,
2350 negative_cmptab[cmpop],
2351 sig))
2352 rv.w = -1; /* true, all 1s */
2353 if (sig &&
2354 ieee754_cxtest(IEEE754_INVALID_OPERATION))
2355 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2356 else
2357 goto copcsr;
2358 break;
2359 default:
2360 /* Reserved R6 ops */
2361 pr_err("Reserved MIPS R6 CMP.condn.S operation\n");
2362 return SIGILL;
2365 break;
2370 case l_fmt:
2372 if (!cpu_has_mips_3_4_5_64_r2_r6)
2373 return SIGILL;
2375 DIFROMREG(bits, MIPSInst_FS(ir));
2377 switch (MIPSInst_FUNC(ir)) {
2378 case fcvts_op:
2379 /* convert long to single precision real */
2380 rv.s = ieee754sp_flong(bits);
2381 rfmt = s_fmt;
2382 goto copcsr;
2383 case fcvtd_op:
2384 /* convert long to double precision real */
2385 rv.d = ieee754dp_flong(bits);
2386 rfmt = d_fmt;
2387 goto copcsr;
2388 default: {
2389 /* Emulating the new CMP.condn.fmt R6 instruction */
2390 int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2391 int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2392 union ieee754dp fs, ft;
2394 if (!cpu_has_mips_r6 ||
2395 (MIPSInst_FUNC(ir) & 0x20))
2396 return SIGILL;
2398 /* fmt is l_fmt for double precision so fix it */
2399 rfmt = d_fmt;
2400 /* default to false */
2401 rv.l = 0;
2403 /* CMP.condn.D */
2404 DPFROMREG(fs, MIPSInst_FS(ir));
2405 DPFROMREG(ft, MIPSInst_FT(ir));
2407 /* positive predicates */
2408 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2409 if (ieee754dp_cmp(fs, ft,
2410 cmptab[cmpop], sig))
2411 rv.l = -1LL; /* true, all 1s */
2412 if (sig &&
2413 ieee754_cxtest(IEEE754_INVALID_OPERATION))
2414 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2415 else
2416 goto copcsr;
2417 } else {
2418 /* negative predicates */
2419 switch (cmpop) {
2420 case 1:
2421 case 2:
2422 case 3:
2423 if (ieee754dp_cmp(fs, ft,
2424 negative_cmptab[cmpop],
2425 sig))
2426 rv.l = -1LL; /* true, all 1s */
2427 if (sig &&
2428 ieee754_cxtest(IEEE754_INVALID_OPERATION))
2429 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2430 else
2431 goto copcsr;
2432 break;
2433 default:
2434 /* Reserved R6 ops */
2435 pr_err("Reserved MIPS R6 CMP.condn.D operation\n");
2436 return SIGILL;
2439 break;
2442 default:
2443 return SIGILL;
2447 * Update the fpu CSR register for this operation.
2448 * If an exception is required, generate a tidy SIGFPE exception,
2449 * without updating the result register.
2450 * Note: cause exception bits do not accumulate, they are rewritten
2451 * for each op; only the flag/sticky bits accumulate.
2453 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
2454 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
2455 /*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
2456 return SIGFPE;
2460 * Now we can safely write the result back to the register file.
2462 switch (rfmt) {
2463 case -1:
2465 if (cpu_has_mips_4_5_r)
2466 cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
2467 else
2468 cbit = FPU_CSR_COND;
2469 if (rv.w)
2470 ctx->fcr31 |= cbit;
2471 else
2472 ctx->fcr31 &= ~cbit;
2473 break;
2475 case d_fmt:
2476 DPTOREG(rv.d, MIPSInst_FD(ir));
2477 break;
2478 case s_fmt:
2479 SPTOREG(rv.s, MIPSInst_FD(ir));
2480 break;
2481 case w_fmt:
2482 SITOREG(rv.w, MIPSInst_FD(ir));
2483 break;
2484 case l_fmt:
2485 if (!cpu_has_mips_3_4_5_64_r2_r6)
2486 return SIGILL;
2488 DITOREG(rv.l, MIPSInst_FD(ir));
2489 break;
2490 default:
2491 return SIGILL;
2494 return 0;
2497 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2498 int has_fpu, void *__user *fault_addr)
2500 unsigned long oldepc, prevepc;
2501 struct mm_decoded_insn dec_insn;
2502 u16 instr[4];
2503 u16 *instr_ptr;
2504 int sig = 0;
2506 oldepc = xcp->cp0_epc;
2507 do {
2508 prevepc = xcp->cp0_epc;
2510 if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2512 * Get next 2 microMIPS instructions and convert them
2513 * into 32-bit instructions.
2515 if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2516 (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2517 (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2518 (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2519 MIPS_FPU_EMU_INC_STATS(errors);
2520 return SIGBUS;
2522 instr_ptr = instr;
2524 /* Get first instruction. */
2525 if (mm_insn_16bit(*instr_ptr)) {
2526 /* Duplicate the half-word. */
2527 dec_insn.insn = (*instr_ptr << 16) |
2528 (*instr_ptr);
2529 /* 16-bit instruction. */
2530 dec_insn.pc_inc = 2;
2531 instr_ptr += 1;
2532 } else {
2533 dec_insn.insn = (*instr_ptr << 16) |
2534 *(instr_ptr+1);
2535 /* 32-bit instruction. */
2536 dec_insn.pc_inc = 4;
2537 instr_ptr += 2;
2539 /* Get second instruction. */
2540 if (mm_insn_16bit(*instr_ptr)) {
2541 /* Duplicate the half-word. */
2542 dec_insn.next_insn = (*instr_ptr << 16) |
2543 (*instr_ptr);
2544 /* 16-bit instruction. */
2545 dec_insn.next_pc_inc = 2;
2546 } else {
2547 dec_insn.next_insn = (*instr_ptr << 16) |
2548 *(instr_ptr+1);
2549 /* 32-bit instruction. */
2550 dec_insn.next_pc_inc = 4;
2552 dec_insn.micro_mips_mode = 1;
2553 } else {
2554 if ((get_user(dec_insn.insn,
2555 (mips_instruction __user *) xcp->cp0_epc)) ||
2556 (get_user(dec_insn.next_insn,
2557 (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2558 MIPS_FPU_EMU_INC_STATS(errors);
2559 return SIGBUS;
2561 dec_insn.pc_inc = 4;
2562 dec_insn.next_pc_inc = 4;
2563 dec_insn.micro_mips_mode = 0;
2566 if ((dec_insn.insn == 0) ||
2567 ((dec_insn.pc_inc == 2) &&
2568 ((dec_insn.insn & 0xffff) == MM_NOP16)))
2569 xcp->cp0_epc += dec_insn.pc_inc; /* Skip NOPs */
2570 else {
2572 * The 'ieee754_csr' is an alias of ctx->fcr31.
2573 * No need to copy ctx->fcr31 to ieee754_csr.
2575 sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2578 if (has_fpu)
2579 break;
2580 if (sig)
2581 break;
2583 cond_resched();
2584 } while (xcp->cp0_epc > prevepc);
2586 /* SIGILL indicates a non-fpu instruction */
2587 if (sig == SIGILL && xcp->cp0_epc != oldepc)
2588 /* but if EPC has advanced, then ignore it */
2589 sig = 0;
2591 return sig;