irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / arch / mips / mm / tlbex.c
blob32e0be27673fefbeca6839929e61a581c8980902
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
21 * (Condolences to Napoleon XIV)
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/cache.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu-type.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
38 static int mips_xpa_disabled;
40 static int __init xpa_disable(char *s)
42 mips_xpa_disabled = 1;
44 return 1;
47 __setup("noxpa", xpa_disable);
50 * TLB load/store/modify handlers.
52 * Only the fastpath gets synthesized at runtime, the slowpath for
53 * do_page_fault remains normal asm.
55 extern void tlb_do_page_fault_0(void);
56 extern void tlb_do_page_fault_1(void);
58 struct work_registers {
59 int r1;
60 int r2;
61 int r3;
64 struct tlb_reg_save {
65 unsigned long a;
66 unsigned long b;
67 } ____cacheline_aligned_in_smp;
69 static struct tlb_reg_save handler_reg_save[NR_CPUS];
71 static inline int r45k_bvahwbug(void)
73 /* XXX: We should probe for the presence of this bug, but we don't. */
74 return 0;
77 static inline int r4k_250MHZhwbug(void)
79 /* XXX: We should probe for the presence of this bug, but we don't. */
80 return 0;
83 static inline int __maybe_unused bcm1250_m3_war(void)
85 return BCM1250_M3_WAR;
88 static inline int __maybe_unused r10000_llsc_war(void)
90 return R10000_LLSC_WAR;
93 static int use_bbit_insns(void)
95 switch (current_cpu_type()) {
96 case CPU_CAVIUM_OCTEON:
97 case CPU_CAVIUM_OCTEON_PLUS:
98 case CPU_CAVIUM_OCTEON2:
99 case CPU_CAVIUM_OCTEON3:
100 return 1;
101 default:
102 return 0;
106 static int use_lwx_insns(void)
108 switch (current_cpu_type()) {
109 case CPU_CAVIUM_OCTEON2:
110 case CPU_CAVIUM_OCTEON3:
111 return 1;
112 default:
113 return 0;
116 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
117 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
118 static bool scratchpad_available(void)
120 return true;
122 static int scratchpad_offset(int i)
125 * CVMSEG starts at address -32768 and extends for
126 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
128 i += 1; /* Kernel use starts at the top and works down. */
129 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
131 #else
132 static bool scratchpad_available(void)
134 return false;
136 static int scratchpad_offset(int i)
138 BUG();
139 /* Really unreachable, but evidently some GCC want this. */
140 return 0;
142 #endif
144 * Found by experiment: At least some revisions of the 4kc throw under
145 * some circumstances a machine check exception, triggered by invalid
146 * values in the index register. Delaying the tlbp instruction until
147 * after the next branch, plus adding an additional nop in front of
148 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
149 * why; it's not an issue caused by the core RTL.
152 static int m4kc_tlbp_war(void)
154 return (current_cpu_data.processor_id & 0xffff00) ==
155 (PRID_COMP_MIPS | PRID_IMP_4KC);
158 /* Handle labels (which must be positive integers). */
159 enum label_id {
160 label_second_part = 1,
161 label_leave,
162 label_vmalloc,
163 label_vmalloc_done,
164 label_tlbw_hazard_0,
165 label_split = label_tlbw_hazard_0 + 8,
166 label_tlbl_goaround1,
167 label_tlbl_goaround2,
168 label_nopage_tlbl,
169 label_nopage_tlbs,
170 label_nopage_tlbm,
171 label_smp_pgtable_change,
172 label_r3000_write_probe_fail,
173 label_large_segbits_fault,
174 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
175 label_tlb_huge_update,
176 #endif
179 UASM_L_LA(_second_part)
180 UASM_L_LA(_leave)
181 UASM_L_LA(_vmalloc)
182 UASM_L_LA(_vmalloc_done)
183 /* _tlbw_hazard_x is handled differently. */
184 UASM_L_LA(_split)
185 UASM_L_LA(_tlbl_goaround1)
186 UASM_L_LA(_tlbl_goaround2)
187 UASM_L_LA(_nopage_tlbl)
188 UASM_L_LA(_nopage_tlbs)
189 UASM_L_LA(_nopage_tlbm)
190 UASM_L_LA(_smp_pgtable_change)
191 UASM_L_LA(_r3000_write_probe_fail)
192 UASM_L_LA(_large_segbits_fault)
193 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
194 UASM_L_LA(_tlb_huge_update)
195 #endif
197 static int hazard_instance;
199 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
201 switch (instance) {
202 case 0 ... 7:
203 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
204 return;
205 default:
206 BUG();
210 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
212 switch (instance) {
213 case 0 ... 7:
214 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
215 break;
216 default:
217 BUG();
222 * pgtable bits are assigned dynamically depending on processor feature
223 * and statically based on kernel configuration. This spits out the actual
224 * values the kernel is using. Required to make sense from disassembled
225 * TLB exception handlers.
227 static void output_pgtable_bits_defines(void)
229 #define pr_define(fmt, ...) \
230 pr_debug("#define " fmt, ##__VA_ARGS__)
232 pr_debug("#include <asm/asm.h>\n");
233 pr_debug("#include <asm/regdef.h>\n");
234 pr_debug("\n");
236 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
237 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
238 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
239 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
240 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
241 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
242 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
243 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
244 #endif
245 #ifdef CONFIG_CPU_MIPSR2
246 if (cpu_has_rixi) {
247 #ifdef _PAGE_NO_EXEC_SHIFT
248 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
249 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
250 #endif
252 #endif
253 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
254 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
255 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
256 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
257 pr_debug("\n");
260 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
262 int i;
264 pr_debug("LEAF(%s)\n", symbol);
266 pr_debug("\t.set push\n");
267 pr_debug("\t.set noreorder\n");
269 for (i = 0; i < count; i++)
270 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
272 pr_debug("\t.set\tpop\n");
274 pr_debug("\tEND(%s)\n", symbol);
277 /* The only general purpose registers allowed in TLB handlers. */
278 #define K0 26
279 #define K1 27
281 /* Some CP0 registers */
282 #define C0_INDEX 0, 0
283 #define C0_ENTRYLO0 2, 0
284 #define C0_TCBIND 2, 2
285 #define C0_ENTRYLO1 3, 0
286 #define C0_CONTEXT 4, 0
287 #define C0_PAGEMASK 5, 0
288 #define C0_BADVADDR 8, 0
289 #define C0_ENTRYHI 10, 0
290 #define C0_EPC 14, 0
291 #define C0_XCONTEXT 20, 0
293 #ifdef CONFIG_64BIT
294 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
295 #else
296 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
297 #endif
299 /* The worst case length of the handler is around 18 instructions for
300 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
301 * Maximum space available is 32 instructions for R3000 and 64
302 * instructions for R4000.
304 * We deliberately chose a buffer size of 128, so we won't scribble
305 * over anything important on overflow before we panic.
307 static u32 tlb_handler[128];
309 /* simply assume worst case size for labels and relocs */
310 static struct uasm_label labels[128];
311 static struct uasm_reloc relocs[128];
313 static int check_for_high_segbits;
314 static bool fill_includes_sw_bits;
316 static unsigned int kscratch_used_mask;
318 static inline int __maybe_unused c0_kscratch(void)
320 switch (current_cpu_type()) {
321 case CPU_XLP:
322 case CPU_XLR:
323 return 22;
324 default:
325 return 31;
329 static int allocate_kscratch(void)
331 int r;
332 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
334 r = ffs(a);
336 if (r == 0)
337 return -1;
339 r--; /* make it zero based */
341 kscratch_used_mask |= (1 << r);
343 return r;
346 static int scratch_reg;
347 static int pgd_reg;
348 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
350 static struct work_registers build_get_work_registers(u32 **p)
352 struct work_registers r;
354 if (scratch_reg >= 0) {
355 /* Save in CPU local C0_KScratch? */
356 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
357 r.r1 = K0;
358 r.r2 = K1;
359 r.r3 = 1;
360 return r;
363 if (num_possible_cpus() > 1) {
364 /* Get smp_processor_id */
365 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
366 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
368 /* handler_reg_save index in K0 */
369 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
371 UASM_i_LA(p, K1, (long)&handler_reg_save);
372 UASM_i_ADDU(p, K0, K0, K1);
373 } else {
374 UASM_i_LA(p, K0, (long)&handler_reg_save);
376 /* K0 now points to save area, save $1 and $2 */
377 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
378 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
380 r.r1 = K1;
381 r.r2 = 1;
382 r.r3 = 2;
383 return r;
386 static void build_restore_work_registers(u32 **p)
388 if (scratch_reg >= 0) {
389 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
390 return;
392 /* K0 already points to save area, restore $1 and $2 */
393 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
394 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
397 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
400 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
401 * we cannot do r3000 under these circumstances.
403 * Declare pgd_current here instead of including mmu_context.h to avoid type
404 * conflicts for tlbmiss_handler_setup_pgd
406 extern unsigned long pgd_current[];
409 * The R3000 TLB handler is simple.
411 static void build_r3000_tlb_refill_handler(void)
413 long pgdc = (long)pgd_current;
414 u32 *p;
416 memset(tlb_handler, 0, sizeof(tlb_handler));
417 p = tlb_handler;
419 uasm_i_mfc0(&p, K0, C0_BADVADDR);
420 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
421 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
422 uasm_i_srl(&p, K0, K0, 22); /* load delay */
423 uasm_i_sll(&p, K0, K0, 2);
424 uasm_i_addu(&p, K1, K1, K0);
425 uasm_i_mfc0(&p, K0, C0_CONTEXT);
426 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
427 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
428 uasm_i_addu(&p, K1, K1, K0);
429 uasm_i_lw(&p, K0, 0, K1);
430 uasm_i_nop(&p); /* load delay */
431 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
432 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
433 uasm_i_tlbwr(&p); /* cp0 delay */
434 uasm_i_jr(&p, K1);
435 uasm_i_rfe(&p); /* branch delay */
437 if (p > tlb_handler + 32)
438 panic("TLB refill handler space exceeded");
440 pr_debug("Wrote TLB refill handler (%u instructions).\n",
441 (unsigned int)(p - tlb_handler));
443 memcpy((void *)ebase, tlb_handler, 0x80);
444 local_flush_icache_range(ebase, ebase + 0x80);
446 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
448 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
451 * The R4000 TLB handler is much more complicated. We have two
452 * consecutive handler areas with 32 instructions space each.
453 * Since they aren't used at the same time, we can overflow in the
454 * other one.To keep things simple, we first assume linear space,
455 * then we relocate it to the final handler layout as needed.
457 static u32 final_handler[64];
460 * Hazards
462 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
463 * 2. A timing hazard exists for the TLBP instruction.
465 * stalling_instruction
466 * TLBP
468 * The JTLB is being read for the TLBP throughout the stall generated by the
469 * previous instruction. This is not really correct as the stalling instruction
470 * can modify the address used to access the JTLB. The failure symptom is that
471 * the TLBP instruction will use an address created for the stalling instruction
472 * and not the address held in C0_ENHI and thus report the wrong results.
474 * The software work-around is to not allow the instruction preceding the TLBP
475 * to stall - make it an NOP or some other instruction guaranteed not to stall.
477 * Errata 2 will not be fixed. This errata is also on the R5000.
479 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
481 static void __maybe_unused build_tlb_probe_entry(u32 **p)
483 switch (current_cpu_type()) {
484 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
485 case CPU_R4600:
486 case CPU_R4700:
487 case CPU_R5000:
488 case CPU_NEVADA:
489 uasm_i_nop(p);
490 uasm_i_tlbp(p);
491 break;
493 default:
494 uasm_i_tlbp(p);
495 break;
500 * Write random or indexed TLB entry, and care about the hazards from
501 * the preceding mtc0 and for the following eret.
503 enum tlb_write_entry { tlb_random, tlb_indexed };
505 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
506 struct uasm_reloc **r,
507 enum tlb_write_entry wmode)
509 void(*tlbw)(u32 **) = NULL;
511 switch (wmode) {
512 case tlb_random: tlbw = uasm_i_tlbwr; break;
513 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
516 if (cpu_has_mips_r2_r6) {
517 if (cpu_has_mips_r2_exec_hazard)
518 uasm_i_ehb(p);
519 tlbw(p);
520 return;
523 switch (current_cpu_type()) {
524 case CPU_R4000PC:
525 case CPU_R4000SC:
526 case CPU_R4000MC:
527 case CPU_R4400PC:
528 case CPU_R4400SC:
529 case CPU_R4400MC:
531 * This branch uses up a mtc0 hazard nop slot and saves
532 * two nops after the tlbw instruction.
534 uasm_bgezl_hazard(p, r, hazard_instance);
535 tlbw(p);
536 uasm_bgezl_label(l, p, hazard_instance);
537 hazard_instance++;
538 uasm_i_nop(p);
539 break;
541 case CPU_R4600:
542 case CPU_R4700:
543 uasm_i_nop(p);
544 tlbw(p);
545 uasm_i_nop(p);
546 break;
548 case CPU_R5000:
549 case CPU_NEVADA:
550 uasm_i_nop(p); /* QED specifies 2 nops hazard */
551 uasm_i_nop(p); /* QED specifies 2 nops hazard */
552 tlbw(p);
553 break;
555 case CPU_R4300:
556 case CPU_5KC:
557 case CPU_TX49XX:
558 case CPU_PR4450:
559 case CPU_XLR:
560 uasm_i_nop(p);
561 tlbw(p);
562 break;
564 case CPU_R10000:
565 case CPU_R12000:
566 case CPU_R14000:
567 case CPU_R16000:
568 case CPU_4KC:
569 case CPU_4KEC:
570 case CPU_M14KC:
571 case CPU_M14KEC:
572 case CPU_SB1:
573 case CPU_SB1A:
574 case CPU_4KSC:
575 case CPU_20KC:
576 case CPU_25KF:
577 case CPU_BMIPS32:
578 case CPU_BMIPS3300:
579 case CPU_BMIPS4350:
580 case CPU_BMIPS4380:
581 case CPU_BMIPS5000:
582 case CPU_LOONGSON2:
583 case CPU_LOONGSON3:
584 case CPU_R5500:
585 if (m4kc_tlbp_war())
586 uasm_i_nop(p);
587 case CPU_ALCHEMY:
588 tlbw(p);
589 break;
591 case CPU_RM7000:
592 uasm_i_nop(p);
593 uasm_i_nop(p);
594 uasm_i_nop(p);
595 uasm_i_nop(p);
596 tlbw(p);
597 break;
599 case CPU_VR4111:
600 case CPU_VR4121:
601 case CPU_VR4122:
602 case CPU_VR4181:
603 case CPU_VR4181A:
604 uasm_i_nop(p);
605 uasm_i_nop(p);
606 tlbw(p);
607 uasm_i_nop(p);
608 uasm_i_nop(p);
609 break;
611 case CPU_VR4131:
612 case CPU_VR4133:
613 case CPU_R5432:
614 uasm_i_nop(p);
615 uasm_i_nop(p);
616 tlbw(p);
617 break;
619 case CPU_JZRISC:
620 tlbw(p);
621 uasm_i_nop(p);
622 break;
624 default:
625 panic("No TLB refill handler yet (CPU type: %d)",
626 current_cpu_type());
627 break;
631 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
632 unsigned int reg)
634 if (cpu_has_rixi && _PAGE_NO_EXEC) {
635 if (fill_includes_sw_bits) {
636 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
637 } else {
638 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
639 UASM_i_ROTR(p, reg, reg,
640 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
642 } else {
643 #ifdef CONFIG_PHYS_ADDR_T_64BIT
644 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
645 #else
646 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
647 #endif
651 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
653 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
654 unsigned int tmp, enum label_id lid,
655 int restore_scratch)
657 if (restore_scratch) {
658 /* Reset default page size */
659 if (PM_DEFAULT_MASK >> 16) {
660 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
661 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
662 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
663 uasm_il_b(p, r, lid);
664 } else if (PM_DEFAULT_MASK) {
665 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
666 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
667 uasm_il_b(p, r, lid);
668 } else {
669 uasm_i_mtc0(p, 0, C0_PAGEMASK);
670 uasm_il_b(p, r, lid);
672 if (scratch_reg >= 0)
673 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
674 else
675 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
676 } else {
677 /* Reset default page size */
678 if (PM_DEFAULT_MASK >> 16) {
679 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
680 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
681 uasm_il_b(p, r, lid);
682 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
683 } else if (PM_DEFAULT_MASK) {
684 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
685 uasm_il_b(p, r, lid);
686 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
687 } else {
688 uasm_il_b(p, r, lid);
689 uasm_i_mtc0(p, 0, C0_PAGEMASK);
694 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
695 struct uasm_reloc **r,
696 unsigned int tmp,
697 enum tlb_write_entry wmode,
698 int restore_scratch)
700 /* Set huge page tlb entry size */
701 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
702 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
703 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
705 build_tlb_write_entry(p, l, r, wmode);
707 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
711 * Check if Huge PTE is present, if so then jump to LABEL.
713 static void
714 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
715 unsigned int pmd, int lid)
717 UASM_i_LW(p, tmp, 0, pmd);
718 if (use_bbit_insns()) {
719 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
720 } else {
721 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
722 uasm_il_bnez(p, r, tmp, lid);
726 static void build_huge_update_entries(u32 **p, unsigned int pte,
727 unsigned int tmp)
729 int small_sequence;
732 * A huge PTE describes an area the size of the
733 * configured huge page size. This is twice the
734 * of the large TLB entry size we intend to use.
735 * A TLB entry half the size of the configured
736 * huge page size is configured into entrylo0
737 * and entrylo1 to cover the contiguous huge PTE
738 * address space.
740 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
742 /* We can clobber tmp. It isn't used after this.*/
743 if (!small_sequence)
744 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
746 build_convert_pte_to_entrylo(p, pte);
747 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
748 /* convert to entrylo1 */
749 if (small_sequence)
750 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
751 else
752 UASM_i_ADDU(p, pte, pte, tmp);
754 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
757 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
758 struct uasm_label **l,
759 unsigned int pte,
760 unsigned int ptr)
762 #ifdef CONFIG_SMP
763 UASM_i_SC(p, pte, 0, ptr);
764 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
765 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
766 #else
767 UASM_i_SW(p, pte, 0, ptr);
768 #endif
769 build_huge_update_entries(p, pte, ptr);
770 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
772 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
774 #ifdef CONFIG_64BIT
776 * TMP and PTR are scratch.
777 * TMP will be clobbered, PTR will hold the pmd entry.
779 static void
780 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
781 unsigned int tmp, unsigned int ptr)
783 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
784 long pgdc = (long)pgd_current;
785 #endif
787 * The vmalloc handling is not in the hotpath.
789 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
791 if (check_for_high_segbits) {
793 * The kernel currently implicitely assumes that the
794 * MIPS SEGBITS parameter for the processor is
795 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
796 * allocate virtual addresses outside the maximum
797 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
798 * that doesn't prevent user code from accessing the
799 * higher xuseg addresses. Here, we make sure that
800 * everything but the lower xuseg addresses goes down
801 * the module_alloc/vmalloc path.
803 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
804 uasm_il_bnez(p, r, ptr, label_vmalloc);
805 } else {
806 uasm_il_bltz(p, r, tmp, label_vmalloc);
808 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
810 if (pgd_reg != -1) {
811 /* pgd is in pgd_reg */
812 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
813 } else {
814 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
816 * &pgd << 11 stored in CONTEXT [23..63].
818 UASM_i_MFC0(p, ptr, C0_CONTEXT);
820 /* Clear lower 23 bits of context. */
821 uasm_i_dins(p, ptr, 0, 0, 23);
823 /* 1 0 1 0 1 << 6 xkphys cached */
824 uasm_i_ori(p, ptr, ptr, 0x540);
825 uasm_i_drotr(p, ptr, ptr, 11);
826 #elif defined(CONFIG_SMP)
827 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
828 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
829 UASM_i_LA_mostly(p, tmp, pgdc);
830 uasm_i_daddu(p, ptr, ptr, tmp);
831 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
832 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
833 #else
834 UASM_i_LA_mostly(p, ptr, pgdc);
835 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
836 #endif
839 uasm_l_vmalloc_done(l, *p);
841 /* get pgd offset in bytes */
842 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
844 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
845 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
846 #ifndef __PAGETABLE_PMD_FOLDED
847 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
848 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
849 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
850 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
851 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
852 #endif
856 * BVADDR is the faulting address, PTR is scratch.
857 * PTR will hold the pgd for vmalloc.
859 static void
860 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
861 unsigned int bvaddr, unsigned int ptr,
862 enum vmalloc64_mode mode)
864 long swpd = (long)swapper_pg_dir;
865 int single_insn_swpd;
866 int did_vmalloc_branch = 0;
868 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
870 uasm_l_vmalloc(l, *p);
872 if (mode != not_refill && check_for_high_segbits) {
873 if (single_insn_swpd) {
874 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
875 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
876 did_vmalloc_branch = 1;
877 /* fall through */
878 } else {
879 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
882 if (!did_vmalloc_branch) {
883 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
884 uasm_il_b(p, r, label_vmalloc_done);
885 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
886 } else {
887 UASM_i_LA_mostly(p, ptr, swpd);
888 uasm_il_b(p, r, label_vmalloc_done);
889 if (uasm_in_compat_space_p(swpd))
890 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
891 else
892 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
895 if (mode != not_refill && check_for_high_segbits) {
896 uasm_l_large_segbits_fault(l, *p);
898 * We get here if we are an xsseg address, or if we are
899 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
901 * Ignoring xsseg (assume disabled so would generate
902 * (address errors?), the only remaining possibility
903 * is the upper xuseg addresses. On processors with
904 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
905 * addresses would have taken an address error. We try
906 * to mimic that here by taking a load/istream page
907 * fault.
909 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
910 uasm_i_jr(p, ptr);
912 if (mode == refill_scratch) {
913 if (scratch_reg >= 0)
914 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
915 else
916 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
917 } else {
918 uasm_i_nop(p);
923 #else /* !CONFIG_64BIT */
926 * TMP and PTR are scratch.
927 * TMP will be clobbered, PTR will hold the pgd entry.
929 static void __maybe_unused
930 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
932 if (pgd_reg != -1) {
933 /* pgd is in pgd_reg */
934 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
935 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
936 } else {
937 long pgdc = (long)pgd_current;
939 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
940 #ifdef CONFIG_SMP
941 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
942 UASM_i_LA_mostly(p, tmp, pgdc);
943 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
944 uasm_i_addu(p, ptr, tmp, ptr);
945 #else
946 UASM_i_LA_mostly(p, ptr, pgdc);
947 #endif
948 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
949 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
951 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
952 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
953 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
956 #endif /* !CONFIG_64BIT */
958 static void build_adjust_context(u32 **p, unsigned int ctx)
960 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
961 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
963 switch (current_cpu_type()) {
964 case CPU_VR41XX:
965 case CPU_VR4111:
966 case CPU_VR4121:
967 case CPU_VR4122:
968 case CPU_VR4131:
969 case CPU_VR4181:
970 case CPU_VR4181A:
971 case CPU_VR4133:
972 shift += 2;
973 break;
975 default:
976 break;
979 if (shift)
980 UASM_i_SRL(p, ctx, ctx, shift);
981 uasm_i_andi(p, ctx, ctx, mask);
984 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
987 * Bug workaround for the Nevada. It seems as if under certain
988 * circumstances the move from cp0_context might produce a
989 * bogus result when the mfc0 instruction and its consumer are
990 * in a different cacheline or a load instruction, probably any
991 * memory reference, is between them.
993 switch (current_cpu_type()) {
994 case CPU_NEVADA:
995 UASM_i_LW(p, ptr, 0, ptr);
996 GET_CONTEXT(p, tmp); /* get context reg */
997 break;
999 default:
1000 GET_CONTEXT(p, tmp); /* get context reg */
1001 UASM_i_LW(p, ptr, 0, ptr);
1002 break;
1005 build_adjust_context(p, tmp);
1006 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1009 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1012 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1013 * Kernel is a special case. Only a few CPUs use it.
1015 if (config_enabled(CONFIG_PHYS_ADDR_T_64BIT) && !cpu_has_64bits) {
1016 int pte_off_even = sizeof(pte_t) / 2;
1017 int pte_off_odd = pte_off_even + sizeof(pte_t);
1018 #ifdef CONFIG_XPA
1019 const int scratch = 1; /* Our extra working register */
1021 uasm_i_addu(p, scratch, 0, ptep);
1022 #endif
1023 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1024 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* odd pte */
1025 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1026 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1027 UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1028 UASM_i_MTC0(p, ptep, C0_ENTRYLO1);
1029 #ifdef CONFIG_XPA
1030 uasm_i_lw(p, tmp, 0, scratch);
1031 uasm_i_lw(p, ptep, sizeof(pte_t), scratch);
1032 uasm_i_lui(p, scratch, 0xff);
1033 uasm_i_ori(p, scratch, scratch, 0xffff);
1034 uasm_i_and(p, tmp, scratch, tmp);
1035 uasm_i_and(p, ptep, scratch, ptep);
1036 uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1037 uasm_i_mthc0(p, ptep, C0_ENTRYLO1);
1038 #endif
1039 return;
1042 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1043 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1044 if (r45k_bvahwbug())
1045 build_tlb_probe_entry(p);
1046 build_convert_pte_to_entrylo(p, tmp);
1047 if (r4k_250MHZhwbug())
1048 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1049 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1050 build_convert_pte_to_entrylo(p, ptep);
1051 if (r45k_bvahwbug())
1052 uasm_i_mfc0(p, tmp, C0_INDEX);
1053 if (r4k_250MHZhwbug())
1054 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1055 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1058 struct mips_huge_tlb_info {
1059 int huge_pte;
1060 int restore_scratch;
1061 bool need_reload_pte;
1064 static struct mips_huge_tlb_info
1065 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1066 struct uasm_reloc **r, unsigned int tmp,
1067 unsigned int ptr, int c0_scratch_reg)
1069 struct mips_huge_tlb_info rv;
1070 unsigned int even, odd;
1071 int vmalloc_branch_delay_filled = 0;
1072 const int scratch = 1; /* Our extra working register */
1074 rv.huge_pte = scratch;
1075 rv.restore_scratch = 0;
1076 rv.need_reload_pte = false;
1078 if (check_for_high_segbits) {
1079 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1081 if (pgd_reg != -1)
1082 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1083 else
1084 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1086 if (c0_scratch_reg >= 0)
1087 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1088 else
1089 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1091 uasm_i_dsrl_safe(p, scratch, tmp,
1092 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1093 uasm_il_bnez(p, r, scratch, label_vmalloc);
1095 if (pgd_reg == -1) {
1096 vmalloc_branch_delay_filled = 1;
1097 /* Clear lower 23 bits of context. */
1098 uasm_i_dins(p, ptr, 0, 0, 23);
1100 } else {
1101 if (pgd_reg != -1)
1102 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1103 else
1104 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1106 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1108 if (c0_scratch_reg >= 0)
1109 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1110 else
1111 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1113 if (pgd_reg == -1)
1114 /* Clear lower 23 bits of context. */
1115 uasm_i_dins(p, ptr, 0, 0, 23);
1117 uasm_il_bltz(p, r, tmp, label_vmalloc);
1120 if (pgd_reg == -1) {
1121 vmalloc_branch_delay_filled = 1;
1122 /* 1 0 1 0 1 << 6 xkphys cached */
1123 uasm_i_ori(p, ptr, ptr, 0x540);
1124 uasm_i_drotr(p, ptr, ptr, 11);
1127 #ifdef __PAGETABLE_PMD_FOLDED
1128 #define LOC_PTEP scratch
1129 #else
1130 #define LOC_PTEP ptr
1131 #endif
1133 if (!vmalloc_branch_delay_filled)
1134 /* get pgd offset in bytes */
1135 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1137 uasm_l_vmalloc_done(l, *p);
1140 * tmp ptr
1141 * fall-through case = badvaddr *pgd_current
1142 * vmalloc case = badvaddr swapper_pg_dir
1145 if (vmalloc_branch_delay_filled)
1146 /* get pgd offset in bytes */
1147 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1149 #ifdef __PAGETABLE_PMD_FOLDED
1150 GET_CONTEXT(p, tmp); /* get context reg */
1151 #endif
1152 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1154 if (use_lwx_insns()) {
1155 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1156 } else {
1157 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1158 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1161 #ifndef __PAGETABLE_PMD_FOLDED
1162 /* get pmd offset in bytes */
1163 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1164 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1165 GET_CONTEXT(p, tmp); /* get context reg */
1167 if (use_lwx_insns()) {
1168 UASM_i_LWX(p, scratch, scratch, ptr);
1169 } else {
1170 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1171 UASM_i_LW(p, scratch, 0, ptr);
1173 #endif
1174 /* Adjust the context during the load latency. */
1175 build_adjust_context(p, tmp);
1177 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1178 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1180 * The in the LWX case we don't want to do the load in the
1181 * delay slot. It cannot issue in the same cycle and may be
1182 * speculative and unneeded.
1184 if (use_lwx_insns())
1185 uasm_i_nop(p);
1186 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1189 /* build_update_entries */
1190 if (use_lwx_insns()) {
1191 even = ptr;
1192 odd = tmp;
1193 UASM_i_LWX(p, even, scratch, tmp);
1194 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1195 UASM_i_LWX(p, odd, scratch, tmp);
1196 } else {
1197 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1198 even = tmp;
1199 odd = ptr;
1200 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1201 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1203 if (cpu_has_rixi) {
1204 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1205 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1206 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1207 } else {
1208 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1209 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1210 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1212 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1214 if (c0_scratch_reg >= 0) {
1215 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1216 build_tlb_write_entry(p, l, r, tlb_random);
1217 uasm_l_leave(l, *p);
1218 rv.restore_scratch = 1;
1219 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1220 build_tlb_write_entry(p, l, r, tlb_random);
1221 uasm_l_leave(l, *p);
1222 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1223 } else {
1224 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1225 build_tlb_write_entry(p, l, r, tlb_random);
1226 uasm_l_leave(l, *p);
1227 rv.restore_scratch = 1;
1230 uasm_i_eret(p); /* return from trap */
1232 return rv;
1236 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1237 * because EXL == 0. If we wrap, we can also use the 32 instruction
1238 * slots before the XTLB refill exception handler which belong to the
1239 * unused TLB refill exception.
1241 #define MIPS64_REFILL_INSNS 32
1243 static void build_r4000_tlb_refill_handler(void)
1245 u32 *p = tlb_handler;
1246 struct uasm_label *l = labels;
1247 struct uasm_reloc *r = relocs;
1248 u32 *f;
1249 unsigned int final_len;
1250 struct mips_huge_tlb_info htlb_info __maybe_unused;
1251 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1253 memset(tlb_handler, 0, sizeof(tlb_handler));
1254 memset(labels, 0, sizeof(labels));
1255 memset(relocs, 0, sizeof(relocs));
1256 memset(final_handler, 0, sizeof(final_handler));
1258 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1259 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1260 scratch_reg);
1261 vmalloc_mode = refill_scratch;
1262 } else {
1263 htlb_info.huge_pte = K0;
1264 htlb_info.restore_scratch = 0;
1265 htlb_info.need_reload_pte = true;
1266 vmalloc_mode = refill_noscratch;
1268 * create the plain linear handler
1270 if (bcm1250_m3_war()) {
1271 unsigned int segbits = 44;
1273 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1274 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1275 uasm_i_xor(&p, K0, K0, K1);
1276 uasm_i_dsrl_safe(&p, K1, K0, 62);
1277 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1278 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1279 uasm_i_or(&p, K0, K0, K1);
1280 uasm_il_bnez(&p, &r, K0, label_leave);
1281 /* No need for uasm_i_nop */
1284 #ifdef CONFIG_64BIT
1285 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1286 #else
1287 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1288 #endif
1290 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1291 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1292 #endif
1294 build_get_ptep(&p, K0, K1);
1295 build_update_entries(&p, K0, K1);
1296 build_tlb_write_entry(&p, &l, &r, tlb_random);
1297 uasm_l_leave(&l, p);
1298 uasm_i_eret(&p); /* return from trap */
1300 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1301 uasm_l_tlb_huge_update(&l, p);
1302 if (htlb_info.need_reload_pte)
1303 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1304 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1305 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1306 htlb_info.restore_scratch);
1307 #endif
1309 #ifdef CONFIG_64BIT
1310 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1311 #endif
1314 * Overflow check: For the 64bit handler, we need at least one
1315 * free instruction slot for the wrap-around branch. In worst
1316 * case, if the intended insertion point is a delay slot, we
1317 * need three, with the second nop'ed and the third being
1318 * unused.
1320 switch (boot_cpu_type()) {
1321 default:
1322 if (sizeof(long) == 4) {
1323 case CPU_LOONGSON2:
1324 /* Loongson2 ebase is different than r4k, we have more space */
1325 if ((p - tlb_handler) > 64)
1326 panic("TLB refill handler space exceeded");
1328 * Now fold the handler in the TLB refill handler space.
1330 f = final_handler;
1331 /* Simplest case, just copy the handler. */
1332 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1333 final_len = p - tlb_handler;
1334 break;
1335 } else {
1336 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1337 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1338 && uasm_insn_has_bdelay(relocs,
1339 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1340 panic("TLB refill handler space exceeded");
1342 * Now fold the handler in the TLB refill handler space.
1344 f = final_handler + MIPS64_REFILL_INSNS;
1345 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1346 /* Just copy the handler. */
1347 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1348 final_len = p - tlb_handler;
1349 } else {
1350 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1351 const enum label_id ls = label_tlb_huge_update;
1352 #else
1353 const enum label_id ls = label_vmalloc;
1354 #endif
1355 u32 *split;
1356 int ov = 0;
1357 int i;
1359 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1361 BUG_ON(i == ARRAY_SIZE(labels));
1362 split = labels[i].addr;
1365 * See if we have overflown one way or the other.
1367 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1368 split < p - MIPS64_REFILL_INSNS)
1369 ov = 1;
1371 if (ov) {
1373 * Split two instructions before the end. One
1374 * for the branch and one for the instruction
1375 * in the delay slot.
1377 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1380 * If the branch would fall in a delay slot,
1381 * we must back up an additional instruction
1382 * so that it is no longer in a delay slot.
1384 if (uasm_insn_has_bdelay(relocs, split - 1))
1385 split--;
1387 /* Copy first part of the handler. */
1388 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1389 f += split - tlb_handler;
1391 if (ov) {
1392 /* Insert branch. */
1393 uasm_l_split(&l, final_handler);
1394 uasm_il_b(&f, &r, label_split);
1395 if (uasm_insn_has_bdelay(relocs, split))
1396 uasm_i_nop(&f);
1397 else {
1398 uasm_copy_handler(relocs, labels,
1399 split, split + 1, f);
1400 uasm_move_labels(labels, f, f + 1, -1);
1401 f++;
1402 split++;
1406 /* Copy the rest of the handler. */
1407 uasm_copy_handler(relocs, labels, split, p, final_handler);
1408 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1409 (p - split);
1412 break;
1415 uasm_resolve_relocs(relocs, labels);
1416 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1417 final_len);
1419 memcpy((void *)ebase, final_handler, 0x100);
1420 local_flush_icache_range(ebase, ebase + 0x100);
1422 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1425 extern u32 handle_tlbl[], handle_tlbl_end[];
1426 extern u32 handle_tlbs[], handle_tlbs_end[];
1427 extern u32 handle_tlbm[], handle_tlbm_end[];
1428 extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1429 extern u32 tlbmiss_handler_setup_pgd_end[];
1431 static void build_setup_pgd(void)
1433 const int a0 = 4;
1434 const int __maybe_unused a1 = 5;
1435 const int __maybe_unused a2 = 6;
1436 u32 *p = tlbmiss_handler_setup_pgd_start;
1437 const int tlbmiss_handler_setup_pgd_size =
1438 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1439 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1440 long pgdc = (long)pgd_current;
1441 #endif
1443 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1444 sizeof(tlbmiss_handler_setup_pgd[0]));
1445 memset(labels, 0, sizeof(labels));
1446 memset(relocs, 0, sizeof(relocs));
1447 pgd_reg = allocate_kscratch();
1448 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1449 if (pgd_reg == -1) {
1450 struct uasm_label *l = labels;
1451 struct uasm_reloc *r = relocs;
1453 /* PGD << 11 in c0_Context */
1455 * If it is a ckseg0 address, convert to a physical
1456 * address. Shifting right by 29 and adding 4 will
1457 * result in zero for these addresses.
1460 UASM_i_SRA(&p, a1, a0, 29);
1461 UASM_i_ADDIU(&p, a1, a1, 4);
1462 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1463 uasm_i_nop(&p);
1464 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1465 uasm_l_tlbl_goaround1(&l, p);
1466 UASM_i_SLL(&p, a0, a0, 11);
1467 uasm_i_jr(&p, 31);
1468 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1469 } else {
1470 /* PGD in c0_KScratch */
1471 uasm_i_jr(&p, 31);
1472 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1474 #else
1475 #ifdef CONFIG_SMP
1476 /* Save PGD to pgd_current[smp_processor_id()] */
1477 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1478 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1479 UASM_i_LA_mostly(&p, a2, pgdc);
1480 UASM_i_ADDU(&p, a2, a2, a1);
1481 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1482 #else
1483 UASM_i_LA_mostly(&p, a2, pgdc);
1484 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1485 #endif /* SMP */
1486 uasm_i_jr(&p, 31);
1488 /* if pgd_reg is allocated, save PGD also to scratch register */
1489 if (pgd_reg != -1)
1490 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1491 else
1492 uasm_i_nop(&p);
1493 #endif
1494 if (p >= tlbmiss_handler_setup_pgd_end)
1495 panic("tlbmiss_handler_setup_pgd space exceeded");
1497 uasm_resolve_relocs(relocs, labels);
1498 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1499 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1501 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1502 tlbmiss_handler_setup_pgd_size);
1505 static void
1506 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1508 #ifdef CONFIG_SMP
1509 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1510 if (cpu_has_64bits)
1511 uasm_i_lld(p, pte, 0, ptr);
1512 else
1513 # endif
1514 UASM_i_LL(p, pte, 0, ptr);
1515 #else
1516 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1517 if (cpu_has_64bits)
1518 uasm_i_ld(p, pte, 0, ptr);
1519 else
1520 # endif
1521 UASM_i_LW(p, pte, 0, ptr);
1522 #endif
1525 static void
1526 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1527 unsigned int mode)
1529 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1530 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1532 if (!cpu_has_64bits) {
1533 const int scratch = 1; /* Our extra working register */
1535 uasm_i_lui(p, scratch, (mode >> 16));
1536 uasm_i_or(p, pte, pte, scratch);
1537 } else
1538 #endif
1539 uasm_i_ori(p, pte, pte, mode);
1540 #ifdef CONFIG_SMP
1541 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1542 if (cpu_has_64bits)
1543 uasm_i_scd(p, pte, 0, ptr);
1544 else
1545 # endif
1546 UASM_i_SC(p, pte, 0, ptr);
1548 if (r10000_llsc_war())
1549 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1550 else
1551 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1553 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1554 if (!cpu_has_64bits) {
1555 /* no uasm_i_nop needed */
1556 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1557 uasm_i_ori(p, pte, pte, hwmode);
1558 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1559 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1560 /* no uasm_i_nop needed */
1561 uasm_i_lw(p, pte, 0, ptr);
1562 } else
1563 uasm_i_nop(p);
1564 # else
1565 uasm_i_nop(p);
1566 # endif
1567 #else
1568 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1569 if (cpu_has_64bits)
1570 uasm_i_sd(p, pte, 0, ptr);
1571 else
1572 # endif
1573 UASM_i_SW(p, pte, 0, ptr);
1575 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1576 if (!cpu_has_64bits) {
1577 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1578 uasm_i_ori(p, pte, pte, hwmode);
1579 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1580 uasm_i_lw(p, pte, 0, ptr);
1582 # endif
1583 #endif
1587 * Check if PTE is present, if not then jump to LABEL. PTR points to
1588 * the page table where this PTE is located, PTE will be re-loaded
1589 * with it's original value.
1591 static void
1592 build_pte_present(u32 **p, struct uasm_reloc **r,
1593 int pte, int ptr, int scratch, enum label_id lid)
1595 int t = scratch >= 0 ? scratch : pte;
1596 int cur = pte;
1598 if (cpu_has_rixi) {
1599 if (use_bbit_insns()) {
1600 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1601 uasm_i_nop(p);
1602 } else {
1603 if (_PAGE_PRESENT_SHIFT) {
1604 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1605 cur = t;
1607 uasm_i_andi(p, t, cur, 1);
1608 uasm_il_beqz(p, r, t, lid);
1609 if (pte == t)
1610 /* You lose the SMP race :-(*/
1611 iPTE_LW(p, pte, ptr);
1613 } else {
1614 if (_PAGE_PRESENT_SHIFT) {
1615 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1616 cur = t;
1618 uasm_i_andi(p, t, cur,
1619 (_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT);
1620 uasm_i_xori(p, t, t,
1621 (_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT);
1622 uasm_il_bnez(p, r, t, lid);
1623 if (pte == t)
1624 /* You lose the SMP race :-(*/
1625 iPTE_LW(p, pte, ptr);
1629 /* Make PTE valid, store result in PTR. */
1630 static void
1631 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1632 unsigned int ptr)
1634 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1636 iPTE_SW(p, r, pte, ptr, mode);
1640 * Check if PTE can be written to, if not branch to LABEL. Regardless
1641 * restore PTE with value from PTR when done.
1643 static void
1644 build_pte_writable(u32 **p, struct uasm_reloc **r,
1645 unsigned int pte, unsigned int ptr, int scratch,
1646 enum label_id lid)
1648 int t = scratch >= 0 ? scratch : pte;
1649 int cur = pte;
1651 if (_PAGE_PRESENT_SHIFT) {
1652 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1653 cur = t;
1655 uasm_i_andi(p, t, cur,
1656 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1657 uasm_i_xori(p, t, t,
1658 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1659 uasm_il_bnez(p, r, t, lid);
1660 if (pte == t)
1661 /* You lose the SMP race :-(*/
1662 iPTE_LW(p, pte, ptr);
1663 else
1664 uasm_i_nop(p);
1667 /* Make PTE writable, update software status bits as well, then store
1668 * at PTR.
1670 static void
1671 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1672 unsigned int ptr)
1674 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1675 | _PAGE_DIRTY);
1677 iPTE_SW(p, r, pte, ptr, mode);
1681 * Check if PTE can be modified, if not branch to LABEL. Regardless
1682 * restore PTE with value from PTR when done.
1684 static void
1685 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1686 unsigned int pte, unsigned int ptr, int scratch,
1687 enum label_id lid)
1689 if (use_bbit_insns()) {
1690 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1691 uasm_i_nop(p);
1692 } else {
1693 int t = scratch >= 0 ? scratch : pte;
1694 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1695 uasm_i_andi(p, t, t, 1);
1696 uasm_il_beqz(p, r, t, lid);
1697 if (pte == t)
1698 /* You lose the SMP race :-(*/
1699 iPTE_LW(p, pte, ptr);
1703 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1707 * R3000 style TLB load/store/modify handlers.
1711 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1712 * Then it returns.
1714 static void
1715 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1717 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1718 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1719 uasm_i_tlbwi(p);
1720 uasm_i_jr(p, tmp);
1721 uasm_i_rfe(p); /* branch delay */
1725 * This places the pte into ENTRYLO0 and writes it with tlbwi
1726 * or tlbwr as appropriate. This is because the index register
1727 * may have the probe fail bit set as a result of a trap on a
1728 * kseg2 access, i.e. without refill. Then it returns.
1730 static void
1731 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1732 struct uasm_reloc **r, unsigned int pte,
1733 unsigned int tmp)
1735 uasm_i_mfc0(p, tmp, C0_INDEX);
1736 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1737 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1738 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1739 uasm_i_tlbwi(p); /* cp0 delay */
1740 uasm_i_jr(p, tmp);
1741 uasm_i_rfe(p); /* branch delay */
1742 uasm_l_r3000_write_probe_fail(l, *p);
1743 uasm_i_tlbwr(p); /* cp0 delay */
1744 uasm_i_jr(p, tmp);
1745 uasm_i_rfe(p); /* branch delay */
1748 static void
1749 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1750 unsigned int ptr)
1752 long pgdc = (long)pgd_current;
1754 uasm_i_mfc0(p, pte, C0_BADVADDR);
1755 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1756 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1757 uasm_i_srl(p, pte, pte, 22); /* load delay */
1758 uasm_i_sll(p, pte, pte, 2);
1759 uasm_i_addu(p, ptr, ptr, pte);
1760 uasm_i_mfc0(p, pte, C0_CONTEXT);
1761 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1762 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1763 uasm_i_addu(p, ptr, ptr, pte);
1764 uasm_i_lw(p, pte, 0, ptr);
1765 uasm_i_tlbp(p); /* load delay */
1768 static void build_r3000_tlb_load_handler(void)
1770 u32 *p = handle_tlbl;
1771 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1772 struct uasm_label *l = labels;
1773 struct uasm_reloc *r = relocs;
1775 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1776 memset(labels, 0, sizeof(labels));
1777 memset(relocs, 0, sizeof(relocs));
1779 build_r3000_tlbchange_handler_head(&p, K0, K1);
1780 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1781 uasm_i_nop(&p); /* load delay */
1782 build_make_valid(&p, &r, K0, K1);
1783 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1785 uasm_l_nopage_tlbl(&l, p);
1786 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1787 uasm_i_nop(&p);
1789 if (p >= handle_tlbl_end)
1790 panic("TLB load handler fastpath space exceeded");
1792 uasm_resolve_relocs(relocs, labels);
1793 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1794 (unsigned int)(p - handle_tlbl));
1796 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1799 static void build_r3000_tlb_store_handler(void)
1801 u32 *p = handle_tlbs;
1802 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1803 struct uasm_label *l = labels;
1804 struct uasm_reloc *r = relocs;
1806 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1807 memset(labels, 0, sizeof(labels));
1808 memset(relocs, 0, sizeof(relocs));
1810 build_r3000_tlbchange_handler_head(&p, K0, K1);
1811 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1812 uasm_i_nop(&p); /* load delay */
1813 build_make_write(&p, &r, K0, K1);
1814 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1816 uasm_l_nopage_tlbs(&l, p);
1817 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1818 uasm_i_nop(&p);
1820 if (p >= handle_tlbs_end)
1821 panic("TLB store handler fastpath space exceeded");
1823 uasm_resolve_relocs(relocs, labels);
1824 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1825 (unsigned int)(p - handle_tlbs));
1827 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1830 static void build_r3000_tlb_modify_handler(void)
1832 u32 *p = handle_tlbm;
1833 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1834 struct uasm_label *l = labels;
1835 struct uasm_reloc *r = relocs;
1837 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1838 memset(labels, 0, sizeof(labels));
1839 memset(relocs, 0, sizeof(relocs));
1841 build_r3000_tlbchange_handler_head(&p, K0, K1);
1842 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1843 uasm_i_nop(&p); /* load delay */
1844 build_make_write(&p, &r, K0, K1);
1845 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1847 uasm_l_nopage_tlbm(&l, p);
1848 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1849 uasm_i_nop(&p);
1851 if (p >= handle_tlbm_end)
1852 panic("TLB modify handler fastpath space exceeded");
1854 uasm_resolve_relocs(relocs, labels);
1855 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1856 (unsigned int)(p - handle_tlbm));
1858 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1860 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1863 * R4000 style TLB load/store/modify handlers.
1865 static struct work_registers
1866 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1867 struct uasm_reloc **r)
1869 struct work_registers wr = build_get_work_registers(p);
1871 #ifdef CONFIG_64BIT
1872 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1873 #else
1874 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1875 #endif
1877 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1879 * For huge tlb entries, pmd doesn't contain an address but
1880 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1881 * see if we need to jump to huge tlb processing.
1883 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1884 #endif
1886 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1887 UASM_i_LW(p, wr.r2, 0, wr.r2);
1888 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1889 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1890 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1892 #ifdef CONFIG_SMP
1893 uasm_l_smp_pgtable_change(l, *p);
1894 #endif
1895 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1896 if (!m4kc_tlbp_war()) {
1897 build_tlb_probe_entry(p);
1898 if (cpu_has_htw) {
1899 /* race condition happens, leaving */
1900 uasm_i_ehb(p);
1901 uasm_i_mfc0(p, wr.r3, C0_INDEX);
1902 uasm_il_bltz(p, r, wr.r3, label_leave);
1903 uasm_i_nop(p);
1906 return wr;
1909 static void
1910 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1911 struct uasm_reloc **r, unsigned int tmp,
1912 unsigned int ptr)
1914 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1915 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1916 build_update_entries(p, tmp, ptr);
1917 build_tlb_write_entry(p, l, r, tlb_indexed);
1918 uasm_l_leave(l, *p);
1919 build_restore_work_registers(p);
1920 uasm_i_eret(p); /* return from trap */
1922 #ifdef CONFIG_64BIT
1923 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1924 #endif
1927 static void build_r4000_tlb_load_handler(void)
1929 u32 *p = handle_tlbl;
1930 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1931 struct uasm_label *l = labels;
1932 struct uasm_reloc *r = relocs;
1933 struct work_registers wr;
1935 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1936 memset(labels, 0, sizeof(labels));
1937 memset(relocs, 0, sizeof(relocs));
1939 if (bcm1250_m3_war()) {
1940 unsigned int segbits = 44;
1942 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1943 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1944 uasm_i_xor(&p, K0, K0, K1);
1945 uasm_i_dsrl_safe(&p, K1, K0, 62);
1946 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1947 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1948 uasm_i_or(&p, K0, K0, K1);
1949 uasm_il_bnez(&p, &r, K0, label_leave);
1950 /* No need for uasm_i_nop */
1953 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1954 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1955 if (m4kc_tlbp_war())
1956 build_tlb_probe_entry(&p);
1958 if (cpu_has_rixi && !cpu_has_rixiex) {
1960 * If the page is not _PAGE_VALID, RI or XI could not
1961 * have triggered it. Skip the expensive test..
1963 if (use_bbit_insns()) {
1964 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1965 label_tlbl_goaround1);
1966 } else {
1967 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1968 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1970 uasm_i_nop(&p);
1972 uasm_i_tlbr(&p);
1974 switch (current_cpu_type()) {
1975 default:
1976 if (cpu_has_mips_r2_exec_hazard) {
1977 uasm_i_ehb(&p);
1979 case CPU_CAVIUM_OCTEON:
1980 case CPU_CAVIUM_OCTEON_PLUS:
1981 case CPU_CAVIUM_OCTEON2:
1982 break;
1986 /* Examine entrylo 0 or 1 based on ptr. */
1987 if (use_bbit_insns()) {
1988 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1989 } else {
1990 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1991 uasm_i_beqz(&p, wr.r3, 8);
1993 /* load it in the delay slot*/
1994 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1995 /* load it if ptr is odd */
1996 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1998 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1999 * XI must have triggered it.
2001 if (use_bbit_insns()) {
2002 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2003 uasm_i_nop(&p);
2004 uasm_l_tlbl_goaround1(&l, p);
2005 } else {
2006 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2007 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2008 uasm_i_nop(&p);
2010 uasm_l_tlbl_goaround1(&l, p);
2012 build_make_valid(&p, &r, wr.r1, wr.r2);
2013 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2015 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2017 * This is the entry point when build_r4000_tlbchange_handler_head
2018 * spots a huge page.
2020 uasm_l_tlb_huge_update(&l, p);
2021 iPTE_LW(&p, wr.r1, wr.r2);
2022 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2023 build_tlb_probe_entry(&p);
2025 if (cpu_has_rixi && !cpu_has_rixiex) {
2027 * If the page is not _PAGE_VALID, RI or XI could not
2028 * have triggered it. Skip the expensive test..
2030 if (use_bbit_insns()) {
2031 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2032 label_tlbl_goaround2);
2033 } else {
2034 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2035 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2037 uasm_i_nop(&p);
2039 uasm_i_tlbr(&p);
2041 switch (current_cpu_type()) {
2042 default:
2043 if (cpu_has_mips_r2_exec_hazard) {
2044 uasm_i_ehb(&p);
2046 case CPU_CAVIUM_OCTEON:
2047 case CPU_CAVIUM_OCTEON_PLUS:
2048 case CPU_CAVIUM_OCTEON2:
2049 break;
2053 /* Examine entrylo 0 or 1 based on ptr. */
2054 if (use_bbit_insns()) {
2055 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2056 } else {
2057 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2058 uasm_i_beqz(&p, wr.r3, 8);
2060 /* load it in the delay slot*/
2061 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2062 /* load it if ptr is odd */
2063 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2065 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2066 * XI must have triggered it.
2068 if (use_bbit_insns()) {
2069 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2070 } else {
2071 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2072 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2074 if (PM_DEFAULT_MASK == 0)
2075 uasm_i_nop(&p);
2077 * We clobbered C0_PAGEMASK, restore it. On the other branch
2078 * it is restored in build_huge_tlb_write_entry.
2080 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2082 uasm_l_tlbl_goaround2(&l, p);
2084 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2085 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2086 #endif
2088 uasm_l_nopage_tlbl(&l, p);
2089 build_restore_work_registers(&p);
2090 #ifdef CONFIG_CPU_MICROMIPS
2091 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2092 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2093 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2094 uasm_i_jr(&p, K0);
2095 } else
2096 #endif
2097 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2098 uasm_i_nop(&p);
2100 if (p >= handle_tlbl_end)
2101 panic("TLB load handler fastpath space exceeded");
2103 uasm_resolve_relocs(relocs, labels);
2104 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2105 (unsigned int)(p - handle_tlbl));
2107 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2110 static void build_r4000_tlb_store_handler(void)
2112 u32 *p = handle_tlbs;
2113 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2114 struct uasm_label *l = labels;
2115 struct uasm_reloc *r = relocs;
2116 struct work_registers wr;
2118 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2119 memset(labels, 0, sizeof(labels));
2120 memset(relocs, 0, sizeof(relocs));
2122 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2123 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2124 if (m4kc_tlbp_war())
2125 build_tlb_probe_entry(&p);
2126 build_make_write(&p, &r, wr.r1, wr.r2);
2127 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2129 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2131 * This is the entry point when
2132 * build_r4000_tlbchange_handler_head spots a huge page.
2134 uasm_l_tlb_huge_update(&l, p);
2135 iPTE_LW(&p, wr.r1, wr.r2);
2136 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2137 build_tlb_probe_entry(&p);
2138 uasm_i_ori(&p, wr.r1, wr.r1,
2139 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2140 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2141 #endif
2143 uasm_l_nopage_tlbs(&l, p);
2144 build_restore_work_registers(&p);
2145 #ifdef CONFIG_CPU_MICROMIPS
2146 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2147 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2148 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2149 uasm_i_jr(&p, K0);
2150 } else
2151 #endif
2152 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2153 uasm_i_nop(&p);
2155 if (p >= handle_tlbs_end)
2156 panic("TLB store handler fastpath space exceeded");
2158 uasm_resolve_relocs(relocs, labels);
2159 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2160 (unsigned int)(p - handle_tlbs));
2162 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2165 static void build_r4000_tlb_modify_handler(void)
2167 u32 *p = handle_tlbm;
2168 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2169 struct uasm_label *l = labels;
2170 struct uasm_reloc *r = relocs;
2171 struct work_registers wr;
2173 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2174 memset(labels, 0, sizeof(labels));
2175 memset(relocs, 0, sizeof(relocs));
2177 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2178 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2179 if (m4kc_tlbp_war())
2180 build_tlb_probe_entry(&p);
2181 /* Present and writable bits set, set accessed and dirty bits. */
2182 build_make_write(&p, &r, wr.r1, wr.r2);
2183 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2185 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2187 * This is the entry point when
2188 * build_r4000_tlbchange_handler_head spots a huge page.
2190 uasm_l_tlb_huge_update(&l, p);
2191 iPTE_LW(&p, wr.r1, wr.r2);
2192 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2193 build_tlb_probe_entry(&p);
2194 uasm_i_ori(&p, wr.r1, wr.r1,
2195 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2196 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2197 #endif
2199 uasm_l_nopage_tlbm(&l, p);
2200 build_restore_work_registers(&p);
2201 #ifdef CONFIG_CPU_MICROMIPS
2202 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2203 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2204 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2205 uasm_i_jr(&p, K0);
2206 } else
2207 #endif
2208 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2209 uasm_i_nop(&p);
2211 if (p >= handle_tlbm_end)
2212 panic("TLB modify handler fastpath space exceeded");
2214 uasm_resolve_relocs(relocs, labels);
2215 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2216 (unsigned int)(p - handle_tlbm));
2218 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2221 static void flush_tlb_handlers(void)
2223 local_flush_icache_range((unsigned long)handle_tlbl,
2224 (unsigned long)handle_tlbl_end);
2225 local_flush_icache_range((unsigned long)handle_tlbs,
2226 (unsigned long)handle_tlbs_end);
2227 local_flush_icache_range((unsigned long)handle_tlbm,
2228 (unsigned long)handle_tlbm_end);
2229 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2230 (unsigned long)tlbmiss_handler_setup_pgd_end);
2233 static void print_htw_config(void)
2235 unsigned long config;
2236 unsigned int pwctl;
2237 const int field = 2 * sizeof(unsigned long);
2239 config = read_c0_pwfield();
2240 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2241 field, config,
2242 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2243 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2244 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2245 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2246 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2248 config = read_c0_pwsize();
2249 pr_debug("PWSize (0x%0*lx): GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2250 field, config,
2251 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2252 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2253 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2254 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2255 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2257 pwctl = read_c0_pwctl();
2258 pr_debug("PWCtl (0x%x): PWEn: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2259 pwctl,
2260 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2261 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2262 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2263 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2266 static void config_htw_params(void)
2268 unsigned long pwfield, pwsize, ptei;
2269 unsigned int config;
2272 * We are using 2-level page tables, so we only need to
2273 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2274 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2275 * write values less than 0xc in these fields because the entire
2276 * write will be dropped. As a result of which, we must preserve
2277 * the original reset values and overwrite only what we really want.
2280 pwfield = read_c0_pwfield();
2281 /* re-initialize the GDI field */
2282 pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2283 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2284 /* re-initialize the PTI field including the even/odd bit */
2285 pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2286 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2287 if (CONFIG_PGTABLE_LEVELS >= 3) {
2288 pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2289 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2291 /* Set the PTEI right shift */
2292 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2293 pwfield |= ptei;
2294 write_c0_pwfield(pwfield);
2295 /* Check whether the PTEI value is supported */
2296 back_to_back_c0_hazard();
2297 pwfield = read_c0_pwfield();
2298 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2299 != ptei) {
2300 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2301 ptei);
2303 * Drop option to avoid HTW being enabled via another path
2304 * (eg htw_reset())
2306 current_cpu_data.options &= ~MIPS_CPU_HTW;
2307 return;
2310 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2311 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2312 if (CONFIG_PGTABLE_LEVELS >= 3)
2313 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2315 /* If XPA has been enabled, PTEs are 64-bit in size. */
2316 if (config_enabled(CONFIG_64BITS) || (read_c0_pagegrain() & PG_ELPA))
2317 pwsize |= 1;
2319 write_c0_pwsize(pwsize);
2321 /* Make sure everything is set before we enable the HTW */
2322 back_to_back_c0_hazard();
2324 /* Enable HTW and disable the rest of the pwctl fields */
2325 config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2326 write_c0_pwctl(config);
2327 pr_info("Hardware Page Table Walker enabled\n");
2329 print_htw_config();
2332 static void config_xpa_params(void)
2334 #ifdef CONFIG_XPA
2335 unsigned int pagegrain;
2337 if (mips_xpa_disabled) {
2338 pr_info("Extended Physical Addressing (XPA) disabled\n");
2339 return;
2342 pagegrain = read_c0_pagegrain();
2343 write_c0_pagegrain(pagegrain | PG_ELPA);
2344 back_to_back_c0_hazard();
2345 pagegrain = read_c0_pagegrain();
2347 if (pagegrain & PG_ELPA)
2348 pr_info("Extended Physical Addressing (XPA) enabled\n");
2349 else
2350 panic("Extended Physical Addressing (XPA) disabled");
2351 #endif
2354 static void check_pabits(void)
2356 unsigned long entry;
2357 unsigned pabits, fillbits;
2359 if (!cpu_has_rixi || !_PAGE_NO_EXEC) {
2361 * We'll only be making use of the fact that we can rotate bits
2362 * into the fill if the CPU supports RIXI, so don't bother
2363 * probing this for CPUs which don't.
2365 return;
2368 write_c0_entrylo0(~0ul);
2369 back_to_back_c0_hazard();
2370 entry = read_c0_entrylo0();
2372 /* clear all non-PFN bits */
2373 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2374 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2376 /* find a lower bound on PABITS, and upper bound on fill bits */
2377 pabits = fls_long(entry) + 6;
2378 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2380 /* minus the RI & XI bits */
2381 fillbits -= min_t(unsigned, fillbits, 2);
2383 if (fillbits >= ilog2(_PAGE_NO_EXEC))
2384 fill_includes_sw_bits = true;
2386 pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2389 void build_tlb_refill_handler(void)
2392 * The refill handler is generated per-CPU, multi-node systems
2393 * may have local storage for it. The other handlers are only
2394 * needed once.
2396 static int run_once = 0;
2398 output_pgtable_bits_defines();
2399 check_pabits();
2401 #ifdef CONFIG_64BIT
2402 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2403 #endif
2405 switch (current_cpu_type()) {
2406 case CPU_R2000:
2407 case CPU_R3000:
2408 case CPU_R3000A:
2409 case CPU_R3081E:
2410 case CPU_TX3912:
2411 case CPU_TX3922:
2412 case CPU_TX3927:
2413 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2414 if (cpu_has_local_ebase)
2415 build_r3000_tlb_refill_handler();
2416 if (!run_once) {
2417 if (!cpu_has_local_ebase)
2418 build_r3000_tlb_refill_handler();
2419 build_setup_pgd();
2420 build_r3000_tlb_load_handler();
2421 build_r3000_tlb_store_handler();
2422 build_r3000_tlb_modify_handler();
2423 flush_tlb_handlers();
2424 run_once++;
2426 #else
2427 panic("No R3000 TLB refill handler");
2428 #endif
2429 break;
2431 case CPU_R6000:
2432 case CPU_R6000A:
2433 panic("No R6000 TLB refill handler yet");
2434 break;
2436 case CPU_R8000:
2437 panic("No R8000 TLB refill handler yet");
2438 break;
2440 default:
2441 if (!run_once) {
2442 scratch_reg = allocate_kscratch();
2443 build_setup_pgd();
2444 build_r4000_tlb_load_handler();
2445 build_r4000_tlb_store_handler();
2446 build_r4000_tlb_modify_handler();
2447 if (!cpu_has_local_ebase)
2448 build_r4000_tlb_refill_handler();
2449 flush_tlb_handlers();
2450 run_once++;
2452 if (cpu_has_local_ebase)
2453 build_r4000_tlb_refill_handler();
2454 if (cpu_has_xpa)
2455 config_xpa_params();
2456 if (cpu_has_htw)
2457 config_htw_params();