irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / arch / powerpc / kernel / eeh.c
blob40e4d4a276635c304db839c5eb88002a386d712b
1 /*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/iommu.h>
31 #include <linux/proc_fs.h>
32 #include <linux/rbtree.h>
33 #include <linux/reboot.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/export.h>
37 #include <linux/of.h>
39 #include <linux/atomic.h>
40 #include <asm/debug.h>
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/iommu.h>
45 #include <asm/machdep.h>
46 #include <asm/ppc-pci.h>
47 #include <asm/rtas.h>
50 /** Overview:
51 * EEH, or "Extended Error Handling" is a PCI bridge technology for
52 * dealing with PCI bus errors that can't be dealt with within the
53 * usual PCI framework, except by check-stopping the CPU. Systems
54 * that are designed for high-availability/reliability cannot afford
55 * to crash due to a "mere" PCI error, thus the need for EEH.
56 * An EEH-capable bridge operates by converting a detected error
57 * into a "slot freeze", taking the PCI adapter off-line, making
58 * the slot behave, from the OS'es point of view, as if the slot
59 * were "empty": all reads return 0xff's and all writes are silently
60 * ignored. EEH slot isolation events can be triggered by parity
61 * errors on the address or data busses (e.g. during posted writes),
62 * which in turn might be caused by low voltage on the bus, dust,
63 * vibration, humidity, radioactivity or plain-old failed hardware.
65 * Note, however, that one of the leading causes of EEH slot
66 * freeze events are buggy device drivers, buggy device microcode,
67 * or buggy device hardware. This is because any attempt by the
68 * device to bus-master data to a memory address that is not
69 * assigned to the device will trigger a slot freeze. (The idea
70 * is to prevent devices-gone-wild from corrupting system memory).
71 * Buggy hardware/drivers will have a miserable time co-existing
72 * with EEH.
74 * Ideally, a PCI device driver, when suspecting that an isolation
75 * event has occurred (e.g. by reading 0xff's), will then ask EEH
76 * whether this is the case, and then take appropriate steps to
77 * reset the PCI slot, the PCI device, and then resume operations.
78 * However, until that day, the checking is done here, with the
79 * eeh_check_failure() routine embedded in the MMIO macros. If
80 * the slot is found to be isolated, an "EEH Event" is synthesized
81 * and sent out for processing.
84 /* If a device driver keeps reading an MMIO register in an interrupt
85 * handler after a slot isolation event, it might be broken.
86 * This sets the threshold for how many read attempts we allow
87 * before printing an error message.
89 #define EEH_MAX_FAILS 2100000
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
95 * EEH probe mode support, which is part of the flags,
96 * is to support multiple platforms for EEH. Some platforms
97 * like pSeries do PCI emunation based on device tree.
98 * However, other platforms like powernv probe PCI devices
99 * from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for
101 * particular OF node or PCI device so that the corresponding
102 * PE would be created there.
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
108 * EEH allowed maximal frozen times. If one particular PE's
109 * frozen count in last hour exceeds this limit, the PE will
110 * be forced to be offline permanently.
112 int eeh_max_freezes = 5;
114 /* Platform dependent EEH operations */
115 struct eeh_ops *eeh_ops = NULL;
117 /* Lock to avoid races due to multiple reports of an error */
118 DEFINE_RAW_SPINLOCK(confirm_error_lock);
120 /* Lock to protect passed flags */
121 static DEFINE_MUTEX(eeh_dev_mutex);
123 /* Buffer for reporting pci register dumps. Its here in BSS, and
124 * not dynamically alloced, so that it ends up in RMO where RTAS
125 * can access it.
127 #define EEH_PCI_REGS_LOG_LEN 8192
128 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
131 * The struct is used to maintain the EEH global statistic
132 * information. Besides, the EEH global statistics will be
133 * exported to user space through procfs
135 struct eeh_stats {
136 u64 no_device; /* PCI device not found */
137 u64 no_dn; /* OF node not found */
138 u64 no_cfg_addr; /* Config address not found */
139 u64 ignored_check; /* EEH check skipped */
140 u64 total_mmio_ffs; /* Total EEH checks */
141 u64 false_positives; /* Unnecessary EEH checks */
142 u64 slot_resets; /* PE reset */
145 static struct eeh_stats eeh_stats;
147 static int __init eeh_setup(char *str)
149 if (!strcmp(str, "off"))
150 eeh_add_flag(EEH_FORCE_DISABLED);
151 else if (!strcmp(str, "early_log"))
152 eeh_add_flag(EEH_EARLY_DUMP_LOG);
154 return 1;
156 __setup("eeh=", eeh_setup);
159 * This routine captures assorted PCI configuration space data
160 * for the indicated PCI device, and puts them into a buffer
161 * for RTAS error logging.
163 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
165 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
166 u32 cfg;
167 int cap, i;
168 int n = 0, l = 0;
169 char buffer[128];
171 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x:%01x\n",
172 edev->phb->global_number, pdn->busno,
173 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
174 pr_warn("EEH: of node=%04x:%02x:%02x:%01x\n",
175 edev->phb->global_number, pdn->busno,
176 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
178 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
179 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
180 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
182 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
183 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
184 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
186 /* Gather bridge-specific registers */
187 if (edev->mode & EEH_DEV_BRIDGE) {
188 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
189 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
190 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
192 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
193 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
194 pr_warn("EEH: Bridge control: %04x\n", cfg);
197 /* Dump out the PCI-X command and status regs */
198 cap = edev->pcix_cap;
199 if (cap) {
200 eeh_ops->read_config(pdn, cap, 4, &cfg);
201 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
202 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
204 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
205 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
206 pr_warn("EEH: PCI-X status: %08x\n", cfg);
209 /* If PCI-E capable, dump PCI-E cap 10 */
210 cap = edev->pcie_cap;
211 if (cap) {
212 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
213 pr_warn("EEH: PCI-E capabilities and status follow:\n");
215 for (i=0; i<=8; i++) {
216 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
217 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
219 if ((i % 4) == 0) {
220 if (i != 0)
221 pr_warn("%s\n", buffer);
223 l = scnprintf(buffer, sizeof(buffer),
224 "EEH: PCI-E %02x: %08x ",
225 4*i, cfg);
226 } else {
227 l += scnprintf(buffer+l, sizeof(buffer)-l,
228 "%08x ", cfg);
233 pr_warn("%s\n", buffer);
236 /* If AER capable, dump it */
237 cap = edev->aer_cap;
238 if (cap) {
239 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
240 pr_warn("EEH: PCI-E AER capability register set follows:\n");
242 for (i=0; i<=13; i++) {
243 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
244 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
246 if ((i % 4) == 0) {
247 if (i != 0)
248 pr_warn("%s\n", buffer);
250 l = scnprintf(buffer, sizeof(buffer),
251 "EEH: PCI-E AER %02x: %08x ",
252 4*i, cfg);
253 } else {
254 l += scnprintf(buffer+l, sizeof(buffer)-l,
255 "%08x ", cfg);
259 pr_warn("%s\n", buffer);
262 return n;
265 static void *eeh_dump_pe_log(void *data, void *flag)
267 struct eeh_pe *pe = data;
268 struct eeh_dev *edev, *tmp;
269 size_t *plen = flag;
271 /* If the PE's config space is blocked, 0xFF's will be
272 * returned. It's pointless to collect the log in this
273 * case.
275 if (pe->state & EEH_PE_CFG_BLOCKED)
276 return NULL;
278 eeh_pe_for_each_dev(pe, edev, tmp)
279 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
280 EEH_PCI_REGS_LOG_LEN - *plen);
282 return NULL;
286 * eeh_slot_error_detail - Generate combined log including driver log and error log
287 * @pe: EEH PE
288 * @severity: temporary or permanent error log
290 * This routine should be called to generate the combined log, which
291 * is comprised of driver log and error log. The driver log is figured
292 * out from the config space of the corresponding PCI device, while
293 * the error log is fetched through platform dependent function call.
295 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
297 size_t loglen = 0;
300 * When the PHB is fenced or dead, it's pointless to collect
301 * the data from PCI config space because it should return
302 * 0xFF's. For ER, we still retrieve the data from the PCI
303 * config space.
305 * For pHyp, we have to enable IO for log retrieval. Otherwise,
306 * 0xFF's is always returned from PCI config space.
308 if (!(pe->type & EEH_PE_PHB)) {
309 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
310 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
313 * The config space of some PCI devices can't be accessed
314 * when their PEs are in frozen state. Otherwise, fenced
315 * PHB might be seen. Those PEs are identified with flag
316 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
317 * is set automatically when the PE is put to EEH_PE_ISOLATED.
319 * Restoring BARs possibly triggers PCI config access in
320 * (OPAL) firmware and then causes fenced PHB. If the
321 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
322 * pointless to restore BARs and dump config space.
324 eeh_ops->configure_bridge(pe);
325 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
326 eeh_pe_restore_bars(pe);
328 pci_regs_buf[0] = 0;
329 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
333 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
337 * eeh_token_to_phys - Convert EEH address token to phys address
338 * @token: I/O token, should be address in the form 0xA....
340 * This routine should be called to convert virtual I/O address
341 * to physical one.
343 static inline unsigned long eeh_token_to_phys(unsigned long token)
345 pte_t *ptep;
346 unsigned long pa;
347 int hugepage_shift;
350 * We won't find hugepages here(this is iomem). Hence we are not
351 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
352 * page table free, because of init_mm.
354 ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token,
355 NULL, &hugepage_shift);
356 if (!ptep)
357 return token;
358 WARN_ON(hugepage_shift);
359 pa = pte_pfn(*ptep) << PAGE_SHIFT;
361 return pa | (token & (PAGE_SIZE-1));
365 * On PowerNV platform, we might already have fenced PHB there.
366 * For that case, it's meaningless to recover frozen PE. Intead,
367 * We have to handle fenced PHB firstly.
369 static int eeh_phb_check_failure(struct eeh_pe *pe)
371 struct eeh_pe *phb_pe;
372 unsigned long flags;
373 int ret;
375 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
376 return -EPERM;
378 /* Find the PHB PE */
379 phb_pe = eeh_phb_pe_get(pe->phb);
380 if (!phb_pe) {
381 pr_warn("%s Can't find PE for PHB#%d\n",
382 __func__, pe->phb->global_number);
383 return -EEXIST;
386 /* If the PHB has been in problematic state */
387 eeh_serialize_lock(&flags);
388 if (phb_pe->state & EEH_PE_ISOLATED) {
389 ret = 0;
390 goto out;
393 /* Check PHB state */
394 ret = eeh_ops->get_state(phb_pe, NULL);
395 if ((ret < 0) ||
396 (ret == EEH_STATE_NOT_SUPPORT) ||
397 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
398 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
399 ret = 0;
400 goto out;
403 /* Isolate the PHB and send event */
404 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
405 eeh_serialize_unlock(flags);
407 pr_err("EEH: PHB#%x failure detected, location: %s\n",
408 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
409 dump_stack();
410 eeh_send_failure_event(phb_pe);
412 return 1;
413 out:
414 eeh_serialize_unlock(flags);
415 return ret;
419 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
420 * @edev: eeh device
422 * Check for an EEH failure for the given device node. Call this
423 * routine if the result of a read was all 0xff's and you want to
424 * find out if this is due to an EEH slot freeze. This routine
425 * will query firmware for the EEH status.
427 * Returns 0 if there has not been an EEH error; otherwise returns
428 * a non-zero value and queues up a slot isolation event notification.
430 * It is safe to call this routine in an interrupt context.
432 int eeh_dev_check_failure(struct eeh_dev *edev)
434 int ret;
435 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
436 unsigned long flags;
437 struct pci_dn *pdn;
438 struct pci_dev *dev;
439 struct eeh_pe *pe, *parent_pe, *phb_pe;
440 int rc = 0;
441 const char *location = NULL;
443 eeh_stats.total_mmio_ffs++;
445 if (!eeh_enabled())
446 return 0;
448 if (!edev) {
449 eeh_stats.no_dn++;
450 return 0;
452 dev = eeh_dev_to_pci_dev(edev);
453 pe = eeh_dev_to_pe(edev);
455 /* Access to IO BARs might get this far and still not want checking. */
456 if (!pe) {
457 eeh_stats.ignored_check++;
458 pr_debug("EEH: Ignored check for %s\n",
459 eeh_pci_name(dev));
460 return 0;
463 if (!pe->addr && !pe->config_addr) {
464 eeh_stats.no_cfg_addr++;
465 return 0;
469 * On PowerNV platform, we might already have fenced PHB
470 * there and we need take care of that firstly.
472 ret = eeh_phb_check_failure(pe);
473 if (ret > 0)
474 return ret;
477 * If the PE isn't owned by us, we shouldn't check the
478 * state. Instead, let the owner handle it if the PE has
479 * been frozen.
481 if (eeh_pe_passed(pe))
482 return 0;
484 /* If we already have a pending isolation event for this
485 * slot, we know it's bad already, we don't need to check.
486 * Do this checking under a lock; as multiple PCI devices
487 * in one slot might report errors simultaneously, and we
488 * only want one error recovery routine running.
490 eeh_serialize_lock(&flags);
491 rc = 1;
492 if (pe->state & EEH_PE_ISOLATED) {
493 pe->check_count++;
494 if (pe->check_count % EEH_MAX_FAILS == 0) {
495 pdn = eeh_dev_to_pdn(edev);
496 if (pdn->node)
497 location = of_get_property(pdn->node, "ibm,loc-code", NULL);
498 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
499 "location=%s driver=%s pci addr=%s\n",
500 pe->check_count,
501 location ? location : "unknown",
502 eeh_driver_name(dev), eeh_pci_name(dev));
503 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
504 eeh_driver_name(dev));
505 dump_stack();
507 goto dn_unlock;
511 * Now test for an EEH failure. This is VERY expensive.
512 * Note that the eeh_config_addr may be a parent device
513 * in the case of a device behind a bridge, or it may be
514 * function zero of a multi-function device.
515 * In any case they must share a common PHB.
517 ret = eeh_ops->get_state(pe, NULL);
519 /* Note that config-io to empty slots may fail;
520 * they are empty when they don't have children.
521 * We will punt with the following conditions: Failure to get
522 * PE's state, EEH not support and Permanently unavailable
523 * state, PE is in good state.
525 if ((ret < 0) ||
526 (ret == EEH_STATE_NOT_SUPPORT) ||
527 ((ret & active_flags) == active_flags)) {
528 eeh_stats.false_positives++;
529 pe->false_positives++;
530 rc = 0;
531 goto dn_unlock;
535 * It should be corner case that the parent PE has been
536 * put into frozen state as well. We should take care
537 * that at first.
539 parent_pe = pe->parent;
540 while (parent_pe) {
541 /* Hit the ceiling ? */
542 if (parent_pe->type & EEH_PE_PHB)
543 break;
545 /* Frozen parent PE ? */
546 ret = eeh_ops->get_state(parent_pe, NULL);
547 if (ret > 0 &&
548 (ret & active_flags) != active_flags)
549 pe = parent_pe;
551 /* Next parent level */
552 parent_pe = parent_pe->parent;
555 eeh_stats.slot_resets++;
557 /* Avoid repeated reports of this failure, including problems
558 * with other functions on this device, and functions under
559 * bridges.
561 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
562 eeh_serialize_unlock(flags);
564 /* Most EEH events are due to device driver bugs. Having
565 * a stack trace will help the device-driver authors figure
566 * out what happened. So print that out.
568 phb_pe = eeh_phb_pe_get(pe->phb);
569 pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
570 pe->phb->global_number, pe->addr);
571 pr_err("EEH: PE location: %s, PHB location: %s\n",
572 eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
573 dump_stack();
575 eeh_send_failure_event(pe);
577 return 1;
579 dn_unlock:
580 eeh_serialize_unlock(flags);
581 return rc;
584 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
587 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
588 * @token: I/O address
590 * Check for an EEH failure at the given I/O address. Call this
591 * routine if the result of a read was all 0xff's and you want to
592 * find out if this is due to an EEH slot freeze event. This routine
593 * will query firmware for the EEH status.
595 * Note this routine is safe to call in an interrupt context.
597 int eeh_check_failure(const volatile void __iomem *token)
599 unsigned long addr;
600 struct eeh_dev *edev;
602 /* Finding the phys addr + pci device; this is pretty quick. */
603 addr = eeh_token_to_phys((unsigned long __force) token);
604 edev = eeh_addr_cache_get_dev(addr);
605 if (!edev) {
606 eeh_stats.no_device++;
607 return 0;
610 return eeh_dev_check_failure(edev);
612 EXPORT_SYMBOL(eeh_check_failure);
616 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
617 * @pe: EEH PE
619 * This routine should be called to reenable frozen MMIO or DMA
620 * so that it would work correctly again. It's useful while doing
621 * recovery or log collection on the indicated device.
623 int eeh_pci_enable(struct eeh_pe *pe, int function)
625 int active_flag, rc;
628 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
629 * Also, it's pointless to enable them on unfrozen PE. So
630 * we have to check before enabling IO or DMA.
632 switch (function) {
633 case EEH_OPT_THAW_MMIO:
634 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
635 break;
636 case EEH_OPT_THAW_DMA:
637 active_flag = EEH_STATE_DMA_ACTIVE;
638 break;
639 case EEH_OPT_DISABLE:
640 case EEH_OPT_ENABLE:
641 case EEH_OPT_FREEZE_PE:
642 active_flag = 0;
643 break;
644 default:
645 pr_warn("%s: Invalid function %d\n",
646 __func__, function);
647 return -EINVAL;
651 * Check if IO or DMA has been enabled before
652 * enabling them.
654 if (active_flag) {
655 rc = eeh_ops->get_state(pe, NULL);
656 if (rc < 0)
657 return rc;
659 /* Needn't enable it at all */
660 if (rc == EEH_STATE_NOT_SUPPORT)
661 return 0;
663 /* It's already enabled */
664 if (rc & active_flag)
665 return 0;
669 /* Issue the request */
670 rc = eeh_ops->set_option(pe, function);
671 if (rc)
672 pr_warn("%s: Unexpected state change %d on "
673 "PHB#%d-PE#%x, err=%d\n",
674 __func__, function, pe->phb->global_number,
675 pe->addr, rc);
677 /* Check if the request is finished successfully */
678 if (active_flag) {
679 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
680 if (rc <= 0)
681 return rc;
683 if (rc & active_flag)
684 return 0;
686 return -EIO;
689 return rc;
692 static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
694 struct eeh_dev *edev = data;
695 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
696 struct pci_dev *dev = userdata;
699 * The caller should have disabled and saved the
700 * state for the specified device
702 if (!pdev || pdev == dev)
703 return NULL;
705 /* Ensure we have D0 power state */
706 pci_set_power_state(pdev, PCI_D0);
708 /* Save device state */
709 pci_save_state(pdev);
712 * Disable device to avoid any DMA traffic and
713 * interrupt from the device
715 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
717 return NULL;
720 static void *eeh_restore_dev_state(void *data, void *userdata)
722 struct eeh_dev *edev = data;
723 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
724 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
725 struct pci_dev *dev = userdata;
727 if (!pdev)
728 return NULL;
730 /* Apply customization from firmware */
731 if (pdn && eeh_ops->restore_config)
732 eeh_ops->restore_config(pdn);
734 /* The caller should restore state for the specified device */
735 if (pdev != dev)
736 pci_restore_state(pdev);
738 return NULL;
742 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
743 * @dev: pci device struct
744 * @state: reset state to enter
746 * Return value:
747 * 0 if success
749 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
751 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
752 struct eeh_pe *pe = eeh_dev_to_pe(edev);
754 if (!pe) {
755 pr_err("%s: No PE found on PCI device %s\n",
756 __func__, pci_name(dev));
757 return -EINVAL;
760 switch (state) {
761 case pcie_deassert_reset:
762 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
763 eeh_unfreeze_pe(pe, false);
764 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
765 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
766 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
767 break;
768 case pcie_hot_reset:
769 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
770 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
771 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
772 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
773 eeh_ops->reset(pe, EEH_RESET_HOT);
774 break;
775 case pcie_warm_reset:
776 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
777 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
778 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
779 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
780 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
781 break;
782 default:
783 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
784 return -EINVAL;
787 return 0;
791 * eeh_set_pe_freset - Check the required reset for the indicated device
792 * @data: EEH device
793 * @flag: return value
795 * Each device might have its preferred reset type: fundamental or
796 * hot reset. The routine is used to collected the information for
797 * the indicated device and its children so that the bunch of the
798 * devices could be reset properly.
800 static void *eeh_set_dev_freset(void *data, void *flag)
802 struct pci_dev *dev;
803 unsigned int *freset = (unsigned int *)flag;
804 struct eeh_dev *edev = (struct eeh_dev *)data;
806 dev = eeh_dev_to_pci_dev(edev);
807 if (dev)
808 *freset |= dev->needs_freset;
810 return NULL;
814 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
815 * @pe: EEH PE
817 * Assert the PCI #RST line for 1/4 second.
819 static void eeh_reset_pe_once(struct eeh_pe *pe)
821 unsigned int freset = 0;
823 /* Determine type of EEH reset required for
824 * Partitionable Endpoint, a hot-reset (1)
825 * or a fundamental reset (3).
826 * A fundamental reset required by any device under
827 * Partitionable Endpoint trumps hot-reset.
829 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
831 if (freset)
832 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
833 else
834 eeh_ops->reset(pe, EEH_RESET_HOT);
836 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
840 * eeh_reset_pe - Reset the indicated PE
841 * @pe: EEH PE
843 * This routine should be called to reset indicated device, including
844 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
845 * might be involved as well.
847 int eeh_reset_pe(struct eeh_pe *pe)
849 int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
850 int i, state, ret;
852 /* Mark as reset and block config space */
853 eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
855 /* Take three shots at resetting the bus */
856 for (i = 0; i < 3; i++) {
857 eeh_reset_pe_once(pe);
860 * EEH_PE_ISOLATED is expected to be removed after
861 * BAR restore.
863 state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
864 if ((state & flags) == flags) {
865 ret = 0;
866 goto out;
869 if (state < 0) {
870 pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
871 __func__, pe->phb->global_number, pe->addr);
872 ret = -ENOTRECOVERABLE;
873 goto out;
876 /* We might run out of credits */
877 ret = -EIO;
878 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
879 __func__, state, pe->phb->global_number, pe->addr, (i + 1));
882 out:
883 eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
884 return ret;
888 * eeh_save_bars - Save device bars
889 * @edev: PCI device associated EEH device
891 * Save the values of the device bars. Unlike the restore
892 * routine, this routine is *not* recursive. This is because
893 * PCI devices are added individually; but, for the restore,
894 * an entire slot is reset at a time.
896 void eeh_save_bars(struct eeh_dev *edev)
898 struct pci_dn *pdn;
899 int i;
901 pdn = eeh_dev_to_pdn(edev);
902 if (!pdn)
903 return;
905 for (i = 0; i < 16; i++)
906 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
909 * For PCI bridges including root port, we need enable bus
910 * master explicitly. Otherwise, it can't fetch IODA table
911 * entries correctly. So we cache the bit in advance so that
912 * we can restore it after reset, either PHB range or PE range.
914 if (edev->mode & EEH_DEV_BRIDGE)
915 edev->config_space[1] |= PCI_COMMAND_MASTER;
919 * eeh_ops_register - Register platform dependent EEH operations
920 * @ops: platform dependent EEH operations
922 * Register the platform dependent EEH operation callback
923 * functions. The platform should call this function before
924 * any other EEH operations.
926 int __init eeh_ops_register(struct eeh_ops *ops)
928 if (!ops->name) {
929 pr_warn("%s: Invalid EEH ops name for %p\n",
930 __func__, ops);
931 return -EINVAL;
934 if (eeh_ops && eeh_ops != ops) {
935 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
936 __func__, eeh_ops->name, ops->name);
937 return -EEXIST;
940 eeh_ops = ops;
942 return 0;
946 * eeh_ops_unregister - Unreigster platform dependent EEH operations
947 * @name: name of EEH platform operations
949 * Unregister the platform dependent EEH operation callback
950 * functions.
952 int __exit eeh_ops_unregister(const char *name)
954 if (!name || !strlen(name)) {
955 pr_warn("%s: Invalid EEH ops name\n",
956 __func__);
957 return -EINVAL;
960 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
961 eeh_ops = NULL;
962 return 0;
965 return -EEXIST;
968 static int eeh_reboot_notifier(struct notifier_block *nb,
969 unsigned long action, void *unused)
971 eeh_clear_flag(EEH_ENABLED);
972 return NOTIFY_DONE;
975 static struct notifier_block eeh_reboot_nb = {
976 .notifier_call = eeh_reboot_notifier,
980 * eeh_init - EEH initialization
982 * Initialize EEH by trying to enable it for all of the adapters in the system.
983 * As a side effect we can determine here if eeh is supported at all.
984 * Note that we leave EEH on so failed config cycles won't cause a machine
985 * check. If a user turns off EEH for a particular adapter they are really
986 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
987 * grant access to a slot if EEH isn't enabled, and so we always enable
988 * EEH for all slots/all devices.
990 * The eeh-force-off option disables EEH checking globally, for all slots.
991 * Even if force-off is set, the EEH hardware is still enabled, so that
992 * newer systems can boot.
994 int eeh_init(void)
996 struct pci_controller *hose, *tmp;
997 struct pci_dn *pdn;
998 static int cnt = 0;
999 int ret = 0;
1002 * We have to delay the initialization on PowerNV after
1003 * the PCI hierarchy tree has been built because the PEs
1004 * are figured out based on PCI devices instead of device
1005 * tree nodes
1007 if (machine_is(powernv) && cnt++ <= 0)
1008 return ret;
1010 /* Register reboot notifier */
1011 ret = register_reboot_notifier(&eeh_reboot_nb);
1012 if (ret) {
1013 pr_warn("%s: Failed to register notifier (%d)\n",
1014 __func__, ret);
1015 return ret;
1018 /* call platform initialization function */
1019 if (!eeh_ops) {
1020 pr_warn("%s: Platform EEH operation not found\n",
1021 __func__);
1022 return -EEXIST;
1023 } else if ((ret = eeh_ops->init()))
1024 return ret;
1026 /* Initialize EEH event */
1027 ret = eeh_event_init();
1028 if (ret)
1029 return ret;
1031 /* Enable EEH for all adapters */
1032 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1033 pdn = hose->pci_data;
1034 traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1038 * Call platform post-initialization. Actually, It's good chance
1039 * to inform platform that EEH is ready to supply service if the
1040 * I/O cache stuff has been built up.
1042 if (eeh_ops->post_init) {
1043 ret = eeh_ops->post_init();
1044 if (ret)
1045 return ret;
1048 if (eeh_enabled())
1049 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1050 else
1051 pr_warn("EEH: No capable adapters found\n");
1053 return ret;
1056 core_initcall_sync(eeh_init);
1059 * eeh_add_device_early - Enable EEH for the indicated device node
1060 * @pdn: PCI device node for which to set up EEH
1062 * This routine must be used to perform EEH initialization for PCI
1063 * devices that were added after system boot (e.g. hotplug, dlpar).
1064 * This routine must be called before any i/o is performed to the
1065 * adapter (inluding any config-space i/o).
1066 * Whether this actually enables EEH or not for this device depends
1067 * on the CEC architecture, type of the device, on earlier boot
1068 * command-line arguments & etc.
1070 void eeh_add_device_early(struct pci_dn *pdn)
1072 struct pci_controller *phb;
1073 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1075 if (!edev || !eeh_enabled())
1076 return;
1078 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1079 return;
1081 /* USB Bus children of PCI devices will not have BUID's */
1082 phb = edev->phb;
1083 if (NULL == phb ||
1084 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1085 return;
1087 eeh_ops->probe(pdn, NULL);
1091 * eeh_add_device_tree_early - Enable EEH for the indicated device
1092 * @pdn: PCI device node
1094 * This routine must be used to perform EEH initialization for the
1095 * indicated PCI device that was added after system boot (e.g.
1096 * hotplug, dlpar).
1098 void eeh_add_device_tree_early(struct pci_dn *pdn)
1100 struct pci_dn *n;
1102 if (!pdn)
1103 return;
1105 list_for_each_entry(n, &pdn->child_list, list)
1106 eeh_add_device_tree_early(n);
1107 eeh_add_device_early(pdn);
1109 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1112 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1113 * @dev: pci device for which to set up EEH
1115 * This routine must be used to complete EEH initialization for PCI
1116 * devices that were added after system boot (e.g. hotplug, dlpar).
1118 void eeh_add_device_late(struct pci_dev *dev)
1120 struct pci_dn *pdn;
1121 struct eeh_dev *edev;
1123 if (!dev || !eeh_enabled())
1124 return;
1126 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1128 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1129 edev = pdn_to_eeh_dev(pdn);
1130 if (edev->pdev == dev) {
1131 pr_debug("EEH: Already referenced !\n");
1132 return;
1136 * The EEH cache might not be removed correctly because of
1137 * unbalanced kref to the device during unplug time, which
1138 * relies on pcibios_release_device(). So we have to remove
1139 * that here explicitly.
1141 if (edev->pdev) {
1142 eeh_rmv_from_parent_pe(edev);
1143 eeh_addr_cache_rmv_dev(edev->pdev);
1144 eeh_sysfs_remove_device(edev->pdev);
1145 edev->mode &= ~EEH_DEV_SYSFS;
1148 * We definitely should have the PCI device removed
1149 * though it wasn't correctly. So we needn't call
1150 * into error handler afterwards.
1152 edev->mode |= EEH_DEV_NO_HANDLER;
1154 edev->pdev = NULL;
1155 dev->dev.archdata.edev = NULL;
1158 if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1159 eeh_ops->probe(pdn, NULL);
1161 edev->pdev = dev;
1162 dev->dev.archdata.edev = edev;
1164 eeh_addr_cache_insert_dev(dev);
1168 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1169 * @bus: PCI bus
1171 * This routine must be used to perform EEH initialization for PCI
1172 * devices which are attached to the indicated PCI bus. The PCI bus
1173 * is added after system boot through hotplug or dlpar.
1175 void eeh_add_device_tree_late(struct pci_bus *bus)
1177 struct pci_dev *dev;
1179 list_for_each_entry(dev, &bus->devices, bus_list) {
1180 eeh_add_device_late(dev);
1181 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1182 struct pci_bus *subbus = dev->subordinate;
1183 if (subbus)
1184 eeh_add_device_tree_late(subbus);
1188 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1191 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1192 * @bus: PCI bus
1194 * This routine must be used to add EEH sysfs files for PCI
1195 * devices which are attached to the indicated PCI bus. The PCI bus
1196 * is added after system boot through hotplug or dlpar.
1198 void eeh_add_sysfs_files(struct pci_bus *bus)
1200 struct pci_dev *dev;
1202 list_for_each_entry(dev, &bus->devices, bus_list) {
1203 eeh_sysfs_add_device(dev);
1204 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1205 struct pci_bus *subbus = dev->subordinate;
1206 if (subbus)
1207 eeh_add_sysfs_files(subbus);
1211 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1214 * eeh_remove_device - Undo EEH setup for the indicated pci device
1215 * @dev: pci device to be removed
1217 * This routine should be called when a device is removed from
1218 * a running system (e.g. by hotplug or dlpar). It unregisters
1219 * the PCI device from the EEH subsystem. I/O errors affecting
1220 * this device will no longer be detected after this call; thus,
1221 * i/o errors affecting this slot may leave this device unusable.
1223 void eeh_remove_device(struct pci_dev *dev)
1225 struct eeh_dev *edev;
1227 if (!dev || !eeh_enabled())
1228 return;
1229 edev = pci_dev_to_eeh_dev(dev);
1231 /* Unregister the device with the EEH/PCI address search system */
1232 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1234 if (!edev || !edev->pdev || !edev->pe) {
1235 pr_debug("EEH: Not referenced !\n");
1236 return;
1240 * During the hotplug for EEH error recovery, we need the EEH
1241 * device attached to the parent PE in order for BAR restore
1242 * a bit later. So we keep it for BAR restore and remove it
1243 * from the parent PE during the BAR resotre.
1245 edev->pdev = NULL;
1246 dev->dev.archdata.edev = NULL;
1247 if (!(edev->pe->state & EEH_PE_KEEP))
1248 eeh_rmv_from_parent_pe(edev);
1249 else
1250 edev->mode |= EEH_DEV_DISCONNECTED;
1253 * We're removing from the PCI subsystem, that means
1254 * the PCI device driver can't support EEH or not
1255 * well. So we rely on hotplug completely to do recovery
1256 * for the specific PCI device.
1258 edev->mode |= EEH_DEV_NO_HANDLER;
1260 eeh_addr_cache_rmv_dev(dev);
1261 eeh_sysfs_remove_device(dev);
1262 edev->mode &= ~EEH_DEV_SYSFS;
1265 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1267 int ret;
1269 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1270 if (ret) {
1271 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1272 __func__, ret, pe->phb->global_number, pe->addr);
1273 return ret;
1276 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1277 if (ret) {
1278 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1279 __func__, ret, pe->phb->global_number, pe->addr);
1280 return ret;
1283 /* Clear software isolated state */
1284 if (sw_state && (pe->state & EEH_PE_ISOLATED))
1285 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1287 return ret;
1291 static struct pci_device_id eeh_reset_ids[] = {
1292 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1293 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1294 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1295 { 0 }
1298 static int eeh_pe_change_owner(struct eeh_pe *pe)
1300 struct eeh_dev *edev, *tmp;
1301 struct pci_dev *pdev;
1302 struct pci_device_id *id;
1303 int flags, ret;
1305 /* Check PE state */
1306 flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1307 ret = eeh_ops->get_state(pe, NULL);
1308 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1309 return 0;
1311 /* Unfrozen PE, nothing to do */
1312 if ((ret & flags) == flags)
1313 return 0;
1315 /* Frozen PE, check if it needs PE level reset */
1316 eeh_pe_for_each_dev(pe, edev, tmp) {
1317 pdev = eeh_dev_to_pci_dev(edev);
1318 if (!pdev)
1319 continue;
1321 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1322 if (id->vendor != PCI_ANY_ID &&
1323 id->vendor != pdev->vendor)
1324 continue;
1325 if (id->device != PCI_ANY_ID &&
1326 id->device != pdev->device)
1327 continue;
1328 if (id->subvendor != PCI_ANY_ID &&
1329 id->subvendor != pdev->subsystem_vendor)
1330 continue;
1331 if (id->subdevice != PCI_ANY_ID &&
1332 id->subdevice != pdev->subsystem_device)
1333 continue;
1335 goto reset;
1339 return eeh_unfreeze_pe(pe, true);
1341 reset:
1342 return eeh_pe_reset_and_recover(pe);
1346 * eeh_dev_open - Increase count of pass through devices for PE
1347 * @pdev: PCI device
1349 * Increase count of passed through devices for the indicated
1350 * PE. In the result, the EEH errors detected on the PE won't be
1351 * reported. The PE owner will be responsible for detection
1352 * and recovery.
1354 int eeh_dev_open(struct pci_dev *pdev)
1356 struct eeh_dev *edev;
1357 int ret = -ENODEV;
1359 mutex_lock(&eeh_dev_mutex);
1361 /* No PCI device ? */
1362 if (!pdev)
1363 goto out;
1365 /* No EEH device or PE ? */
1366 edev = pci_dev_to_eeh_dev(pdev);
1367 if (!edev || !edev->pe)
1368 goto out;
1371 * The PE might have been put into frozen state, but we
1372 * didn't detect that yet. The passed through PCI devices
1373 * in frozen PE won't work properly. Clear the frozen state
1374 * in advance.
1376 ret = eeh_pe_change_owner(edev->pe);
1377 if (ret)
1378 goto out;
1380 /* Increase PE's pass through count */
1381 atomic_inc(&edev->pe->pass_dev_cnt);
1382 mutex_unlock(&eeh_dev_mutex);
1384 return 0;
1385 out:
1386 mutex_unlock(&eeh_dev_mutex);
1387 return ret;
1389 EXPORT_SYMBOL_GPL(eeh_dev_open);
1392 * eeh_dev_release - Decrease count of pass through devices for PE
1393 * @pdev: PCI device
1395 * Decrease count of pass through devices for the indicated PE. If
1396 * there is no passed through device in PE, the EEH errors detected
1397 * on the PE will be reported and handled as usual.
1399 void eeh_dev_release(struct pci_dev *pdev)
1401 struct eeh_dev *edev;
1403 mutex_lock(&eeh_dev_mutex);
1405 /* No PCI device ? */
1406 if (!pdev)
1407 goto out;
1409 /* No EEH device ? */
1410 edev = pci_dev_to_eeh_dev(pdev);
1411 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1412 goto out;
1414 /* Decrease PE's pass through count */
1415 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1416 eeh_pe_change_owner(edev->pe);
1417 out:
1418 mutex_unlock(&eeh_dev_mutex);
1420 EXPORT_SYMBOL(eeh_dev_release);
1422 #ifdef CONFIG_IOMMU_API
1424 static int dev_has_iommu_table(struct device *dev, void *data)
1426 struct pci_dev *pdev = to_pci_dev(dev);
1427 struct pci_dev **ppdev = data;
1429 if (!dev)
1430 return 0;
1432 if (dev->iommu_group) {
1433 *ppdev = pdev;
1434 return 1;
1437 return 0;
1441 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1442 * @group: IOMMU group
1444 * The routine is called to convert IOMMU group to EEH PE.
1446 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1448 struct pci_dev *pdev = NULL;
1449 struct eeh_dev *edev;
1450 int ret;
1452 /* No IOMMU group ? */
1453 if (!group)
1454 return NULL;
1456 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1457 if (!ret || !pdev)
1458 return NULL;
1460 /* No EEH device or PE ? */
1461 edev = pci_dev_to_eeh_dev(pdev);
1462 if (!edev || !edev->pe)
1463 return NULL;
1465 return edev->pe;
1467 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1469 #endif /* CONFIG_IOMMU_API */
1472 * eeh_pe_set_option - Set options for the indicated PE
1473 * @pe: EEH PE
1474 * @option: requested option
1476 * The routine is called to enable or disable EEH functionality
1477 * on the indicated PE, to enable IO or DMA for the frozen PE.
1479 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1481 int ret = 0;
1483 /* Invalid PE ? */
1484 if (!pe)
1485 return -ENODEV;
1488 * EEH functionality could possibly be disabled, just
1489 * return error for the case. And the EEH functinality
1490 * isn't expected to be disabled on one specific PE.
1492 switch (option) {
1493 case EEH_OPT_ENABLE:
1494 if (eeh_enabled()) {
1495 ret = eeh_pe_change_owner(pe);
1496 break;
1498 ret = -EIO;
1499 break;
1500 case EEH_OPT_DISABLE:
1501 break;
1502 case EEH_OPT_THAW_MMIO:
1503 case EEH_OPT_THAW_DMA:
1504 if (!eeh_ops || !eeh_ops->set_option) {
1505 ret = -ENOENT;
1506 break;
1509 ret = eeh_pci_enable(pe, option);
1510 break;
1511 default:
1512 pr_debug("%s: Option %d out of range (%d, %d)\n",
1513 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1514 ret = -EINVAL;
1517 return ret;
1519 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1522 * eeh_pe_get_state - Retrieve PE's state
1523 * @pe: EEH PE
1525 * Retrieve the PE's state, which includes 3 aspects: enabled
1526 * DMA, enabled IO and asserted reset.
1528 int eeh_pe_get_state(struct eeh_pe *pe)
1530 int result, ret = 0;
1531 bool rst_active, dma_en, mmio_en;
1533 /* Existing PE ? */
1534 if (!pe)
1535 return -ENODEV;
1537 if (!eeh_ops || !eeh_ops->get_state)
1538 return -ENOENT;
1540 result = eeh_ops->get_state(pe, NULL);
1541 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1542 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1543 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1545 if (rst_active)
1546 ret = EEH_PE_STATE_RESET;
1547 else if (dma_en && mmio_en)
1548 ret = EEH_PE_STATE_NORMAL;
1549 else if (!dma_en && !mmio_en)
1550 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1551 else if (!dma_en && mmio_en)
1552 ret = EEH_PE_STATE_STOPPED_DMA;
1553 else
1554 ret = EEH_PE_STATE_UNAVAIL;
1556 return ret;
1558 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1560 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1562 struct eeh_dev *edev, *tmp;
1563 struct pci_dev *pdev;
1564 int ret = 0;
1566 /* Restore config space */
1567 eeh_pe_restore_bars(pe);
1570 * Reenable PCI devices as the devices passed
1571 * through are always enabled before the reset.
1573 eeh_pe_for_each_dev(pe, edev, tmp) {
1574 pdev = eeh_dev_to_pci_dev(edev);
1575 if (!pdev)
1576 continue;
1578 ret = pci_reenable_device(pdev);
1579 if (ret) {
1580 pr_warn("%s: Failure %d reenabling %s\n",
1581 __func__, ret, pci_name(pdev));
1582 return ret;
1586 /* The PE is still in frozen state */
1587 return eeh_unfreeze_pe(pe, true);
1591 * eeh_pe_reset - Issue PE reset according to specified type
1592 * @pe: EEH PE
1593 * @option: reset type
1595 * The routine is called to reset the specified PE with the
1596 * indicated type, either fundamental reset or hot reset.
1597 * PE reset is the most important part for error recovery.
1599 int eeh_pe_reset(struct eeh_pe *pe, int option)
1601 int ret = 0;
1603 /* Invalid PE ? */
1604 if (!pe)
1605 return -ENODEV;
1607 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1608 return -ENOENT;
1610 switch (option) {
1611 case EEH_RESET_DEACTIVATE:
1612 ret = eeh_ops->reset(pe, option);
1613 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1614 if (ret)
1615 break;
1617 ret = eeh_pe_reenable_devices(pe);
1618 break;
1619 case EEH_RESET_HOT:
1620 case EEH_RESET_FUNDAMENTAL:
1622 * Proactively freeze the PE to drop all MMIO access
1623 * during reset, which should be banned as it's always
1624 * cause recursive EEH error.
1626 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1628 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1629 ret = eeh_ops->reset(pe, option);
1630 break;
1631 default:
1632 pr_debug("%s: Unsupported option %d\n",
1633 __func__, option);
1634 ret = -EINVAL;
1637 return ret;
1639 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1642 * eeh_pe_configure - Configure PCI bridges after PE reset
1643 * @pe: EEH PE
1645 * The routine is called to restore the PCI config space for
1646 * those PCI devices, especially PCI bridges affected by PE
1647 * reset issued previously.
1649 int eeh_pe_configure(struct eeh_pe *pe)
1651 int ret = 0;
1653 /* Invalid PE ? */
1654 if (!pe)
1655 return -ENODEV;
1657 return ret;
1659 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1662 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1663 * @pe: the indicated PE
1664 * @type: error type
1665 * @function: error function
1666 * @addr: address
1667 * @mask: address mask
1669 * The routine is called to inject the specified PCI error, which
1670 * is determined by @type and @function, to the indicated PE for
1671 * testing purpose.
1673 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1674 unsigned long addr, unsigned long mask)
1676 /* Invalid PE ? */
1677 if (!pe)
1678 return -ENODEV;
1680 /* Unsupported operation ? */
1681 if (!eeh_ops || !eeh_ops->err_inject)
1682 return -ENOENT;
1684 /* Check on PCI error type */
1685 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1686 return -EINVAL;
1688 /* Check on PCI error function */
1689 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1690 return -EINVAL;
1692 return eeh_ops->err_inject(pe, type, func, addr, mask);
1694 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1696 static int proc_eeh_show(struct seq_file *m, void *v)
1698 if (!eeh_enabled()) {
1699 seq_printf(m, "EEH Subsystem is globally disabled\n");
1700 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1701 } else {
1702 seq_printf(m, "EEH Subsystem is enabled\n");
1703 seq_printf(m,
1704 "no device=%llu\n"
1705 "no device node=%llu\n"
1706 "no config address=%llu\n"
1707 "check not wanted=%llu\n"
1708 "eeh_total_mmio_ffs=%llu\n"
1709 "eeh_false_positives=%llu\n"
1710 "eeh_slot_resets=%llu\n",
1711 eeh_stats.no_device,
1712 eeh_stats.no_dn,
1713 eeh_stats.no_cfg_addr,
1714 eeh_stats.ignored_check,
1715 eeh_stats.total_mmio_ffs,
1716 eeh_stats.false_positives,
1717 eeh_stats.slot_resets);
1720 return 0;
1723 static int proc_eeh_open(struct inode *inode, struct file *file)
1725 return single_open(file, proc_eeh_show, NULL);
1728 static const struct file_operations proc_eeh_operations = {
1729 .open = proc_eeh_open,
1730 .read = seq_read,
1731 .llseek = seq_lseek,
1732 .release = single_release,
1735 #ifdef CONFIG_DEBUG_FS
1736 static int eeh_enable_dbgfs_set(void *data, u64 val)
1738 if (val)
1739 eeh_clear_flag(EEH_FORCE_DISABLED);
1740 else
1741 eeh_add_flag(EEH_FORCE_DISABLED);
1743 /* Notify the backend */
1744 if (eeh_ops->post_init)
1745 eeh_ops->post_init();
1747 return 0;
1750 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1752 if (eeh_enabled())
1753 *val = 0x1ul;
1754 else
1755 *val = 0x0ul;
1756 return 0;
1759 static int eeh_freeze_dbgfs_set(void *data, u64 val)
1761 eeh_max_freezes = val;
1762 return 0;
1765 static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1767 *val = eeh_max_freezes;
1768 return 0;
1771 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1772 eeh_enable_dbgfs_set, "0x%llx\n");
1773 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1774 eeh_freeze_dbgfs_set, "0x%llx\n");
1775 #endif
1777 static int __init eeh_init_proc(void)
1779 if (machine_is(pseries) || machine_is(powernv)) {
1780 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1781 #ifdef CONFIG_DEBUG_FS
1782 debugfs_create_file("eeh_enable", 0600,
1783 powerpc_debugfs_root, NULL,
1784 &eeh_enable_dbgfs_ops);
1785 debugfs_create_file("eeh_max_freezes", 0600,
1786 powerpc_debugfs_root, NULL,
1787 &eeh_freeze_dbgfs_ops);
1788 #endif
1791 return 0;
1793 __initcall(eeh_init_proc);