2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
15 * This file handles the architecture-dependent parts of hardware exceptions
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
62 #include <asm/debug.h>
63 #include <sysdev/fsl_pci.h>
65 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
66 int (*__debugger
)(struct pt_regs
*regs
) __read_mostly
;
67 int (*__debugger_ipi
)(struct pt_regs
*regs
) __read_mostly
;
68 int (*__debugger_bpt
)(struct pt_regs
*regs
) __read_mostly
;
69 int (*__debugger_sstep
)(struct pt_regs
*regs
) __read_mostly
;
70 int (*__debugger_iabr_match
)(struct pt_regs
*regs
) __read_mostly
;
71 int (*__debugger_break_match
)(struct pt_regs
*regs
) __read_mostly
;
72 int (*__debugger_fault_handler
)(struct pt_regs
*regs
) __read_mostly
;
74 EXPORT_SYMBOL(__debugger
);
75 EXPORT_SYMBOL(__debugger_ipi
);
76 EXPORT_SYMBOL(__debugger_bpt
);
77 EXPORT_SYMBOL(__debugger_sstep
);
78 EXPORT_SYMBOL(__debugger_iabr_match
);
79 EXPORT_SYMBOL(__debugger_break_match
);
80 EXPORT_SYMBOL(__debugger_fault_handler
);
83 /* Transactional Memory trap debug */
85 #define TM_DEBUG(x...) printk(KERN_INFO x)
87 #define TM_DEBUG(x...) do { } while(0)
91 * Trap & Exception support
94 #ifdef CONFIG_PMAC_BACKLIGHT
95 static void pmac_backlight_unblank(void)
97 mutex_lock(&pmac_backlight_mutex
);
99 struct backlight_properties
*props
;
101 props
= &pmac_backlight
->props
;
102 props
->brightness
= props
->max_brightness
;
103 props
->power
= FB_BLANK_UNBLANK
;
104 backlight_update_status(pmac_backlight
);
106 mutex_unlock(&pmac_backlight_mutex
);
109 static inline void pmac_backlight_unblank(void) { }
112 static arch_spinlock_t die_lock
= __ARCH_SPIN_LOCK_UNLOCKED
;
113 static int die_owner
= -1;
114 static unsigned int die_nest_count
;
115 static int die_counter
;
117 static unsigned __kprobes
long oops_begin(struct pt_regs
*regs
)
127 /* racy, but better than risking deadlock. */
128 raw_local_irq_save(flags
);
129 cpu
= smp_processor_id();
130 if (!arch_spin_trylock(&die_lock
)) {
131 if (cpu
== die_owner
)
132 /* nested oops. should stop eventually */;
134 arch_spin_lock(&die_lock
);
140 if (machine_is(powermac
))
141 pmac_backlight_unblank();
145 static void __kprobes
oops_end(unsigned long flags
, struct pt_regs
*regs
,
150 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
155 /* Nest count reaches zero, release the lock. */
156 arch_spin_unlock(&die_lock
);
157 raw_local_irq_restore(flags
);
159 crash_fadump(regs
, "die oops");
162 * A system reset (0x100) is a request to dump, so we always send
163 * it through the crashdump code.
165 if (kexec_should_crash(current
) || (TRAP(regs
) == 0x100)) {
169 * We aren't the primary crash CPU. We need to send it
170 * to a holding pattern to avoid it ending up in the panic
173 crash_kexec_secondary(regs
);
180 * While our oops output is serialised by a spinlock, output
181 * from panic() called below can race and corrupt it. If we
182 * know we are going to panic, delay for 1 second so we have a
183 * chance to get clean backtraces from all CPUs that are oopsing.
185 if (in_interrupt() || panic_on_oops
|| !current
->pid
||
186 is_global_init(current
)) {
187 mdelay(MSEC_PER_SEC
);
191 panic("Fatal exception in interrupt");
193 panic("Fatal exception");
197 static int __kprobes
__die(const char *str
, struct pt_regs
*regs
, long err
)
199 printk("Oops: %s, sig: %ld [#%d]\n", str
, err
, ++die_counter
);
200 #ifdef CONFIG_PREEMPT
204 printk("SMP NR_CPUS=%d ", NR_CPUS
);
206 #ifdef CONFIG_DEBUG_PAGEALLOC
207 printk("DEBUG_PAGEALLOC ");
212 printk("%s\n", ppc_md
.name
? ppc_md
.name
: "");
214 if (notify_die(DIE_OOPS
, str
, regs
, err
, 255, SIGSEGV
) == NOTIFY_STOP
)
223 void die(const char *str
, struct pt_regs
*regs
, long err
)
225 unsigned long flags
= oops_begin(regs
);
227 if (__die(str
, regs
, err
))
229 oops_end(flags
, regs
, err
);
232 void user_single_step_siginfo(struct task_struct
*tsk
,
233 struct pt_regs
*regs
, siginfo_t
*info
)
235 memset(info
, 0, sizeof(*info
));
236 info
->si_signo
= SIGTRAP
;
237 info
->si_code
= TRAP_TRACE
;
238 info
->si_addr
= (void __user
*)regs
->nip
;
241 void _exception(int signr
, struct pt_regs
*regs
, int code
, unsigned long addr
)
244 const char fmt32
[] = KERN_INFO
"%s[%d]: unhandled signal %d " \
245 "at %08lx nip %08lx lr %08lx code %x\n";
246 const char fmt64
[] = KERN_INFO
"%s[%d]: unhandled signal %d " \
247 "at %016lx nip %016lx lr %016lx code %x\n";
249 if (!user_mode(regs
)) {
250 die("Exception in kernel mode", regs
, signr
);
254 if (show_unhandled_signals
&& unhandled_signal(current
, signr
)) {
255 printk_ratelimited(regs
->msr
& MSR_64BIT
? fmt64
: fmt32
,
256 current
->comm
, current
->pid
, signr
,
257 addr
, regs
->nip
, regs
->link
, code
);
260 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs
))
263 current
->thread
.trap_nr
= code
;
264 memset(&info
, 0, sizeof(info
));
265 info
.si_signo
= signr
;
267 info
.si_addr
= (void __user
*) addr
;
268 force_sig_info(signr
, &info
, current
);
272 void system_reset_exception(struct pt_regs
*regs
)
274 /* See if any machine dependent calls */
275 if (ppc_md
.system_reset_exception
) {
276 if (ppc_md
.system_reset_exception(regs
))
280 die("System Reset", regs
, SIGABRT
);
282 /* Must die if the interrupt is not recoverable */
283 if (!(regs
->msr
& MSR_RI
))
284 panic("Unrecoverable System Reset");
286 /* What should we do here? We could issue a shutdown or hard reset. */
290 * This function is called in real mode. Strictly no printk's please.
292 * regs->nip and regs->msr contains srr0 and ssr1.
294 long machine_check_early(struct pt_regs
*regs
)
298 __this_cpu_inc(irq_stat
.mce_exceptions
);
300 add_taint(TAINT_MACHINE_CHECK
, LOCKDEP_NOW_UNRELIABLE
);
302 if (cur_cpu_spec
&& cur_cpu_spec
->machine_check_early
)
303 handled
= cur_cpu_spec
->machine_check_early(regs
);
307 long hmi_exception_realmode(struct pt_regs
*regs
)
309 __this_cpu_inc(irq_stat
.hmi_exceptions
);
311 if (ppc_md
.hmi_exception_early
)
312 ppc_md
.hmi_exception_early(regs
);
320 * I/O accesses can cause machine checks on powermacs.
321 * Check if the NIP corresponds to the address of a sync
322 * instruction for which there is an entry in the exception
324 * Note that the 601 only takes a machine check on TEA
325 * (transfer error ack) signal assertion, and does not
326 * set any of the top 16 bits of SRR1.
329 static inline int check_io_access(struct pt_regs
*regs
)
332 unsigned long msr
= regs
->msr
;
333 const struct exception_table_entry
*entry
;
334 unsigned int *nip
= (unsigned int *)regs
->nip
;
336 if (((msr
& 0xffff0000) == 0 || (msr
& (0x80000 | 0x40000)))
337 && (entry
= search_exception_tables(regs
->nip
)) != NULL
) {
339 * Check that it's a sync instruction, or somewhere
340 * in the twi; isync; nop sequence that inb/inw/inl uses.
341 * As the address is in the exception table
342 * we should be able to read the instr there.
343 * For the debug message, we look at the preceding
346 if (*nip
== 0x60000000) /* nop */
348 else if (*nip
== 0x4c00012c) /* isync */
350 if (*nip
== 0x7c0004ac || (*nip
>> 26) == 3) {
355 rb
= (*nip
>> 11) & 0x1f;
356 printk(KERN_DEBUG
"%s bad port %lx at %p\n",
357 (*nip
& 0x100)? "OUT to": "IN from",
358 regs
->gpr
[rb
] - _IO_BASE
, nip
);
360 regs
->nip
= entry
->fixup
;
364 #endif /* CONFIG_PPC32 */
368 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
369 /* On 4xx, the reason for the machine check or program exception
371 #define get_reason(regs) ((regs)->dsisr)
372 #ifndef CONFIG_FSL_BOOKE
373 #define get_mc_reason(regs) ((regs)->dsisr)
375 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
377 #define REASON_FP ESR_FP
378 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
379 #define REASON_PRIVILEGED ESR_PPR
380 #define REASON_TRAP ESR_PTR
382 /* single-step stuff */
383 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
384 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
387 /* On non-4xx, the reason for the machine check or program
388 exception is in the MSR. */
389 #define get_reason(regs) ((regs)->msr)
390 #define get_mc_reason(regs) ((regs)->msr)
391 #define REASON_TM 0x200000
392 #define REASON_FP 0x100000
393 #define REASON_ILLEGAL 0x80000
394 #define REASON_PRIVILEGED 0x40000
395 #define REASON_TRAP 0x20000
397 #define single_stepping(regs) ((regs)->msr & MSR_SE)
398 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
401 #if defined(CONFIG_4xx)
402 int machine_check_4xx(struct pt_regs
*regs
)
404 unsigned long reason
= get_mc_reason(regs
);
406 if (reason
& ESR_IMCP
) {
407 printk("Instruction");
408 mtspr(SPRN_ESR
, reason
& ~ESR_IMCP
);
411 printk(" machine check in kernel mode.\n");
416 int machine_check_440A(struct pt_regs
*regs
)
418 unsigned long reason
= get_mc_reason(regs
);
420 printk("Machine check in kernel mode.\n");
421 if (reason
& ESR_IMCP
){
422 printk("Instruction Synchronous Machine Check exception\n");
423 mtspr(SPRN_ESR
, reason
& ~ESR_IMCP
);
426 u32 mcsr
= mfspr(SPRN_MCSR
);
428 printk("Instruction Read PLB Error\n");
430 printk("Data Read PLB Error\n");
432 printk("Data Write PLB Error\n");
433 if (mcsr
& MCSR_TLBP
)
434 printk("TLB Parity Error\n");
435 if (mcsr
& MCSR_ICP
){
436 flush_instruction_cache();
437 printk("I-Cache Parity Error\n");
439 if (mcsr
& MCSR_DCSP
)
440 printk("D-Cache Search Parity Error\n");
441 if (mcsr
& MCSR_DCFP
)
442 printk("D-Cache Flush Parity Error\n");
443 if (mcsr
& MCSR_IMPE
)
444 printk("Machine Check exception is imprecise\n");
447 mtspr(SPRN_MCSR
, mcsr
);
452 int machine_check_47x(struct pt_regs
*regs
)
454 unsigned long reason
= get_mc_reason(regs
);
457 printk(KERN_ERR
"Machine check in kernel mode.\n");
458 if (reason
& ESR_IMCP
) {
460 "Instruction Synchronous Machine Check exception\n");
461 mtspr(SPRN_ESR
, reason
& ~ESR_IMCP
);
464 mcsr
= mfspr(SPRN_MCSR
);
466 printk(KERN_ERR
"Instruction Read PLB Error\n");
468 printk(KERN_ERR
"Data Read PLB Error\n");
470 printk(KERN_ERR
"Data Write PLB Error\n");
471 if (mcsr
& MCSR_TLBP
)
472 printk(KERN_ERR
"TLB Parity Error\n");
473 if (mcsr
& MCSR_ICP
) {
474 flush_instruction_cache();
475 printk(KERN_ERR
"I-Cache Parity Error\n");
477 if (mcsr
& MCSR_DCSP
)
478 printk(KERN_ERR
"D-Cache Search Parity Error\n");
479 if (mcsr
& PPC47x_MCSR_GPR
)
480 printk(KERN_ERR
"GPR Parity Error\n");
481 if (mcsr
& PPC47x_MCSR_FPR
)
482 printk(KERN_ERR
"FPR Parity Error\n");
483 if (mcsr
& PPC47x_MCSR_IPR
)
484 printk(KERN_ERR
"Machine Check exception is imprecise\n");
487 mtspr(SPRN_MCSR
, mcsr
);
491 #elif defined(CONFIG_E500)
492 int machine_check_e500mc(struct pt_regs
*regs
)
494 unsigned long mcsr
= mfspr(SPRN_MCSR
);
495 unsigned long reason
= mcsr
;
498 if (reason
& MCSR_LD
) {
499 recoverable
= fsl_rio_mcheck_exception(regs
);
500 if (recoverable
== 1)
504 printk("Machine check in kernel mode.\n");
505 printk("Caused by (from MCSR=%lx): ", reason
);
507 if (reason
& MCSR_MCP
)
508 printk("Machine Check Signal\n");
510 if (reason
& MCSR_ICPERR
) {
511 printk("Instruction Cache Parity Error\n");
514 * This is recoverable by invalidating the i-cache.
516 mtspr(SPRN_L1CSR1
, mfspr(SPRN_L1CSR1
) | L1CSR1_ICFI
);
517 while (mfspr(SPRN_L1CSR1
) & L1CSR1_ICFI
)
521 * This will generally be accompanied by an instruction
522 * fetch error report -- only treat MCSR_IF as fatal
523 * if it wasn't due to an L1 parity error.
528 if (reason
& MCSR_DCPERR_MC
) {
529 printk("Data Cache Parity Error\n");
532 * In write shadow mode we auto-recover from the error, but it
533 * may still get logged and cause a machine check. We should
534 * only treat the non-write shadow case as non-recoverable.
536 if (!(mfspr(SPRN_L1CSR2
) & L1CSR2_DCWS
))
540 if (reason
& MCSR_L2MMU_MHIT
) {
541 printk("Hit on multiple TLB entries\n");
545 if (reason
& MCSR_NMI
)
546 printk("Non-maskable interrupt\n");
548 if (reason
& MCSR_IF
) {
549 printk("Instruction Fetch Error Report\n");
553 if (reason
& MCSR_LD
) {
554 printk("Load Error Report\n");
558 if (reason
& MCSR_ST
) {
559 printk("Store Error Report\n");
563 if (reason
& MCSR_LDG
) {
564 printk("Guarded Load Error Report\n");
568 if (reason
& MCSR_TLBSYNC
)
569 printk("Simultaneous tlbsync operations\n");
571 if (reason
& MCSR_BSL2_ERR
) {
572 printk("Level 2 Cache Error\n");
576 if (reason
& MCSR_MAV
) {
579 addr
= mfspr(SPRN_MCAR
);
580 addr
|= (u64
)mfspr(SPRN_MCARU
) << 32;
582 printk("Machine Check %s Address: %#llx\n",
583 reason
& MCSR_MEA
? "Effective" : "Physical", addr
);
587 mtspr(SPRN_MCSR
, mcsr
);
588 return mfspr(SPRN_MCSR
) == 0 && recoverable
;
591 int machine_check_e500(struct pt_regs
*regs
)
593 unsigned long reason
= get_mc_reason(regs
);
595 if (reason
& MCSR_BUS_RBERR
) {
596 if (fsl_rio_mcheck_exception(regs
))
598 if (fsl_pci_mcheck_exception(regs
))
602 printk("Machine check in kernel mode.\n");
603 printk("Caused by (from MCSR=%lx): ", reason
);
605 if (reason
& MCSR_MCP
)
606 printk("Machine Check Signal\n");
607 if (reason
& MCSR_ICPERR
)
608 printk("Instruction Cache Parity Error\n");
609 if (reason
& MCSR_DCP_PERR
)
610 printk("Data Cache Push Parity Error\n");
611 if (reason
& MCSR_DCPERR
)
612 printk("Data Cache Parity Error\n");
613 if (reason
& MCSR_BUS_IAERR
)
614 printk("Bus - Instruction Address Error\n");
615 if (reason
& MCSR_BUS_RAERR
)
616 printk("Bus - Read Address Error\n");
617 if (reason
& MCSR_BUS_WAERR
)
618 printk("Bus - Write Address Error\n");
619 if (reason
& MCSR_BUS_IBERR
)
620 printk("Bus - Instruction Data Error\n");
621 if (reason
& MCSR_BUS_RBERR
)
622 printk("Bus - Read Data Bus Error\n");
623 if (reason
& MCSR_BUS_WBERR
)
624 printk("Bus - Write Data Bus Error\n");
625 if (reason
& MCSR_BUS_IPERR
)
626 printk("Bus - Instruction Parity Error\n");
627 if (reason
& MCSR_BUS_RPERR
)
628 printk("Bus - Read Parity Error\n");
633 int machine_check_generic(struct pt_regs
*regs
)
637 #elif defined(CONFIG_E200)
638 int machine_check_e200(struct pt_regs
*regs
)
640 unsigned long reason
= get_mc_reason(regs
);
642 printk("Machine check in kernel mode.\n");
643 printk("Caused by (from MCSR=%lx): ", reason
);
645 if (reason
& MCSR_MCP
)
646 printk("Machine Check Signal\n");
647 if (reason
& MCSR_CP_PERR
)
648 printk("Cache Push Parity Error\n");
649 if (reason
& MCSR_CPERR
)
650 printk("Cache Parity Error\n");
651 if (reason
& MCSR_EXCP_ERR
)
652 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
653 if (reason
& MCSR_BUS_IRERR
)
654 printk("Bus - Read Bus Error on instruction fetch\n");
655 if (reason
& MCSR_BUS_DRERR
)
656 printk("Bus - Read Bus Error on data load\n");
657 if (reason
& MCSR_BUS_WRERR
)
658 printk("Bus - Write Bus Error on buffered store or cache line push\n");
663 int machine_check_generic(struct pt_regs
*regs
)
665 unsigned long reason
= get_mc_reason(regs
);
667 printk("Machine check in kernel mode.\n");
668 printk("Caused by (from SRR1=%lx): ", reason
);
669 switch (reason
& 0x601F0000) {
671 printk("Machine check signal\n");
673 case 0: /* for 601 */
675 case 0x140000: /* 7450 MSS error and TEA */
676 printk("Transfer error ack signal\n");
679 printk("Data parity error signal\n");
682 printk("Address parity error signal\n");
685 printk("L1 Data Cache error\n");
688 printk("L1 Instruction Cache error\n");
691 printk("L2 data cache parity error\n");
694 printk("Unknown values in msr\n");
698 #endif /* everything else */
700 void machine_check_exception(struct pt_regs
*regs
)
702 enum ctx_state prev_state
= exception_enter();
705 __this_cpu_inc(irq_stat
.mce_exceptions
);
707 /* See if any machine dependent calls. In theory, we would want
708 * to call the CPU first, and call the ppc_md. one if the CPU
709 * one returns a positive number. However there is existing code
710 * that assumes the board gets a first chance, so let's keep it
711 * that way for now and fix things later. --BenH.
713 if (ppc_md
.machine_check_exception
)
714 recover
= ppc_md
.machine_check_exception(regs
);
715 else if (cur_cpu_spec
->machine_check
)
716 recover
= cur_cpu_spec
->machine_check(regs
);
721 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
722 /* the qspan pci read routines can cause machine checks -- Cort
724 * yuck !!! that totally needs to go away ! There are better ways
725 * to deal with that than having a wart in the mcheck handler.
728 bad_page_fault(regs
, regs
->dar
, SIGBUS
);
732 if (debugger_fault_handler(regs
))
735 if (check_io_access(regs
))
738 die("Machine check", regs
, SIGBUS
);
740 /* Must die if the interrupt is not recoverable */
741 if (!(regs
->msr
& MSR_RI
))
742 panic("Unrecoverable Machine check");
745 exception_exit(prev_state
);
748 void SMIException(struct pt_regs
*regs
)
750 die("System Management Interrupt", regs
, SIGABRT
);
753 void handle_hmi_exception(struct pt_regs
*regs
)
755 struct pt_regs
*old_regs
;
757 old_regs
= set_irq_regs(regs
);
760 if (ppc_md
.handle_hmi_exception
)
761 ppc_md
.handle_hmi_exception(regs
);
764 set_irq_regs(old_regs
);
767 void unknown_exception(struct pt_regs
*regs
)
769 enum ctx_state prev_state
= exception_enter();
771 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
772 regs
->nip
, regs
->msr
, regs
->trap
);
774 _exception(SIGTRAP
, regs
, 0, 0);
776 exception_exit(prev_state
);
779 void instruction_breakpoint_exception(struct pt_regs
*regs
)
781 enum ctx_state prev_state
= exception_enter();
783 if (notify_die(DIE_IABR_MATCH
, "iabr_match", regs
, 5,
784 5, SIGTRAP
) == NOTIFY_STOP
)
786 if (debugger_iabr_match(regs
))
788 _exception(SIGTRAP
, regs
, TRAP_BRKPT
, regs
->nip
);
791 exception_exit(prev_state
);
794 void RunModeException(struct pt_regs
*regs
)
796 _exception(SIGTRAP
, regs
, 0, 0);
799 void __kprobes
single_step_exception(struct pt_regs
*regs
)
801 enum ctx_state prev_state
= exception_enter();
803 clear_single_step(regs
);
805 if (notify_die(DIE_SSTEP
, "single_step", regs
, 5,
806 5, SIGTRAP
) == NOTIFY_STOP
)
808 if (debugger_sstep(regs
))
811 _exception(SIGTRAP
, regs
, TRAP_TRACE
, regs
->nip
);
814 exception_exit(prev_state
);
818 * After we have successfully emulated an instruction, we have to
819 * check if the instruction was being single-stepped, and if so,
820 * pretend we got a single-step exception. This was pointed out
821 * by Kumar Gala. -- paulus
823 static void emulate_single_step(struct pt_regs
*regs
)
825 if (single_stepping(regs
))
826 single_step_exception(regs
);
829 static inline int __parse_fpscr(unsigned long fpscr
)
833 /* Invalid operation */
834 if ((fpscr
& FPSCR_VE
) && (fpscr
& FPSCR_VX
))
838 else if ((fpscr
& FPSCR_OE
) && (fpscr
& FPSCR_OX
))
842 else if ((fpscr
& FPSCR_UE
) && (fpscr
& FPSCR_UX
))
846 else if ((fpscr
& FPSCR_ZE
) && (fpscr
& FPSCR_ZX
))
850 else if ((fpscr
& FPSCR_XE
) && (fpscr
& FPSCR_XX
))
856 static void parse_fpe(struct pt_regs
*regs
)
860 flush_fp_to_thread(current
);
862 code
= __parse_fpscr(current
->thread
.fp_state
.fpscr
);
864 _exception(SIGFPE
, regs
, code
, regs
->nip
);
868 * Illegal instruction emulation support. Originally written to
869 * provide the PVR to user applications using the mfspr rd, PVR.
870 * Return non-zero if we can't emulate, or -EFAULT if the associated
871 * memory access caused an access fault. Return zero on success.
873 * There are a couple of ways to do this, either "decode" the instruction
874 * or directly match lots of bits. In this case, matching lots of
875 * bits is faster and easier.
878 static int emulate_string_inst(struct pt_regs
*regs
, u32 instword
)
880 u8 rT
= (instword
>> 21) & 0x1f;
881 u8 rA
= (instword
>> 16) & 0x1f;
882 u8 NB_RB
= (instword
>> 11) & 0x1f;
887 /* Early out if we are an invalid form of lswx */
888 if ((instword
& PPC_INST_STRING_MASK
) == PPC_INST_LSWX
)
889 if ((rT
== rA
) || (rT
== NB_RB
))
892 EA
= (rA
== 0) ? 0 : regs
->gpr
[rA
];
894 switch (instword
& PPC_INST_STRING_MASK
) {
898 num_bytes
= regs
->xer
& 0x7f;
902 num_bytes
= (NB_RB
== 0) ? 32 : NB_RB
;
908 while (num_bytes
!= 0)
911 u32 shift
= 8 * (3 - (pos
& 0x3));
913 /* if process is 32-bit, clear upper 32 bits of EA */
914 if ((regs
->msr
& MSR_64BIT
) == 0)
917 switch ((instword
& PPC_INST_STRING_MASK
)) {
920 if (get_user(val
, (u8 __user
*)EA
))
922 /* first time updating this reg,
926 regs
->gpr
[rT
] |= val
<< shift
;
930 val
= regs
->gpr
[rT
] >> shift
;
931 if (put_user(val
, (u8 __user
*)EA
))
935 /* move EA to next address */
939 /* manage our position within the register */
950 static int emulate_popcntb_inst(struct pt_regs
*regs
, u32 instword
)
955 ra
= (instword
>> 16) & 0x1f;
956 rs
= (instword
>> 21) & 0x1f;
959 tmp
= tmp
- ((tmp
>> 1) & 0x5555555555555555ULL
);
960 tmp
= (tmp
& 0x3333333333333333ULL
) + ((tmp
>> 2) & 0x3333333333333333ULL
);
961 tmp
= (tmp
+ (tmp
>> 4)) & 0x0f0f0f0f0f0f0f0fULL
;
967 static int emulate_isel(struct pt_regs
*regs
, u32 instword
)
969 u8 rT
= (instword
>> 21) & 0x1f;
970 u8 rA
= (instword
>> 16) & 0x1f;
971 u8 rB
= (instword
>> 11) & 0x1f;
972 u8 BC
= (instword
>> 6) & 0x1f;
976 tmp
= (rA
== 0) ? 0 : regs
->gpr
[rA
];
977 bit
= (regs
->ccr
>> (31 - BC
)) & 0x1;
979 regs
->gpr
[rT
] = bit
? tmp
: regs
->gpr
[rB
];
984 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
985 static inline bool tm_abort_check(struct pt_regs
*regs
, int cause
)
987 /* If we're emulating a load/store in an active transaction, we cannot
988 * emulate it as the kernel operates in transaction suspended context.
989 * We need to abort the transaction. This creates a persistent TM
990 * abort so tell the user what caused it with a new code.
992 if (MSR_TM_TRANSACTIONAL(regs
->msr
)) {
1000 static inline bool tm_abort_check(struct pt_regs
*regs
, int reason
)
1006 static int emulate_instruction(struct pt_regs
*regs
)
1011 if (!user_mode(regs
))
1013 CHECK_FULL_REGS(regs
);
1015 if (get_user(instword
, (u32 __user
*)(regs
->nip
)))
1018 /* Emulate the mfspr rD, PVR. */
1019 if ((instword
& PPC_INST_MFSPR_PVR_MASK
) == PPC_INST_MFSPR_PVR
) {
1020 PPC_WARN_EMULATED(mfpvr
, regs
);
1021 rd
= (instword
>> 21) & 0x1f;
1022 regs
->gpr
[rd
] = mfspr(SPRN_PVR
);
1026 /* Emulating the dcba insn is just a no-op. */
1027 if ((instword
& PPC_INST_DCBA_MASK
) == PPC_INST_DCBA
) {
1028 PPC_WARN_EMULATED(dcba
, regs
);
1032 /* Emulate the mcrxr insn. */
1033 if ((instword
& PPC_INST_MCRXR_MASK
) == PPC_INST_MCRXR
) {
1034 int shift
= (instword
>> 21) & 0x1c;
1035 unsigned long msk
= 0xf0000000UL
>> shift
;
1037 PPC_WARN_EMULATED(mcrxr
, regs
);
1038 regs
->ccr
= (regs
->ccr
& ~msk
) | ((regs
->xer
>> shift
) & msk
);
1039 regs
->xer
&= ~0xf0000000UL
;
1043 /* Emulate load/store string insn. */
1044 if ((instword
& PPC_INST_STRING_GEN_MASK
) == PPC_INST_STRING
) {
1045 if (tm_abort_check(regs
,
1046 TM_CAUSE_EMULATE
| TM_CAUSE_PERSISTENT
))
1048 PPC_WARN_EMULATED(string
, regs
);
1049 return emulate_string_inst(regs
, instword
);
1052 /* Emulate the popcntb (Population Count Bytes) instruction. */
1053 if ((instword
& PPC_INST_POPCNTB_MASK
) == PPC_INST_POPCNTB
) {
1054 PPC_WARN_EMULATED(popcntb
, regs
);
1055 return emulate_popcntb_inst(regs
, instword
);
1058 /* Emulate isel (Integer Select) instruction */
1059 if ((instword
& PPC_INST_ISEL_MASK
) == PPC_INST_ISEL
) {
1060 PPC_WARN_EMULATED(isel
, regs
);
1061 return emulate_isel(regs
, instword
);
1064 /* Emulate sync instruction variants */
1065 if ((instword
& PPC_INST_SYNC_MASK
) == PPC_INST_SYNC
) {
1066 PPC_WARN_EMULATED(sync
, regs
);
1067 asm volatile("sync");
1072 /* Emulate the mfspr rD, DSCR. */
1073 if ((((instword
& PPC_INST_MFSPR_DSCR_USER_MASK
) ==
1074 PPC_INST_MFSPR_DSCR_USER
) ||
1075 ((instword
& PPC_INST_MFSPR_DSCR_MASK
) ==
1076 PPC_INST_MFSPR_DSCR
)) &&
1077 cpu_has_feature(CPU_FTR_DSCR
)) {
1078 PPC_WARN_EMULATED(mfdscr
, regs
);
1079 rd
= (instword
>> 21) & 0x1f;
1080 regs
->gpr
[rd
] = mfspr(SPRN_DSCR
);
1083 /* Emulate the mtspr DSCR, rD. */
1084 if ((((instword
& PPC_INST_MTSPR_DSCR_USER_MASK
) ==
1085 PPC_INST_MTSPR_DSCR_USER
) ||
1086 ((instword
& PPC_INST_MTSPR_DSCR_MASK
) ==
1087 PPC_INST_MTSPR_DSCR
)) &&
1088 cpu_has_feature(CPU_FTR_DSCR
)) {
1089 PPC_WARN_EMULATED(mtdscr
, regs
);
1090 rd
= (instword
>> 21) & 0x1f;
1091 current
->thread
.dscr
= regs
->gpr
[rd
];
1092 current
->thread
.dscr_inherit
= 1;
1093 mtspr(SPRN_DSCR
, current
->thread
.dscr
);
1101 int is_valid_bugaddr(unsigned long addr
)
1103 return is_kernel_addr(addr
);
1106 #ifdef CONFIG_MATH_EMULATION
1107 static int emulate_math(struct pt_regs
*regs
)
1110 extern int do_mathemu(struct pt_regs
*regs
);
1112 ret
= do_mathemu(regs
);
1114 PPC_WARN_EMULATED(math
, regs
);
1118 emulate_single_step(regs
);
1122 code
= __parse_fpscr(current
->thread
.fp_state
.fpscr
);
1123 _exception(SIGFPE
, regs
, code
, regs
->nip
);
1127 _exception(SIGSEGV
, regs
, SEGV_MAPERR
, regs
->nip
);
1134 static inline int emulate_math(struct pt_regs
*regs
) { return -1; }
1137 void __kprobes
program_check_exception(struct pt_regs
*regs
)
1139 enum ctx_state prev_state
= exception_enter();
1140 unsigned int reason
= get_reason(regs
);
1142 /* We can now get here via a FP Unavailable exception if the core
1143 * has no FPU, in that case the reason flags will be 0 */
1145 if (reason
& REASON_FP
) {
1146 /* IEEE FP exception */
1150 if (reason
& REASON_TRAP
) {
1151 /* Debugger is first in line to stop recursive faults in
1152 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1153 if (debugger_bpt(regs
))
1156 /* trap exception */
1157 if (notify_die(DIE_BPT
, "breakpoint", regs
, 5, 5, SIGTRAP
)
1161 if (!(regs
->msr
& MSR_PR
) && /* not user-mode */
1162 report_bug(regs
->nip
, regs
) == BUG_TRAP_TYPE_WARN
) {
1166 _exception(SIGTRAP
, regs
, TRAP_BRKPT
, regs
->nip
);
1169 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1170 if (reason
& REASON_TM
) {
1171 /* This is a TM "Bad Thing Exception" program check.
1173 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1174 * transition in TM states.
1175 * - A trechkpt is attempted when transactional.
1176 * - A treclaim is attempted when non transactional.
1177 * - A tend is illegally attempted.
1178 * - writing a TM SPR when transactional.
1180 if (!user_mode(regs
) &&
1181 report_bug(regs
->nip
, regs
) == BUG_TRAP_TYPE_WARN
) {
1185 /* If usermode caused this, it's done something illegal and
1186 * gets a SIGILL slap on the wrist. We call it an illegal
1187 * operand to distinguish from the instruction just being bad
1188 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1189 * illegal /placement/ of a valid instruction.
1191 if (user_mode(regs
)) {
1192 _exception(SIGILL
, regs
, ILL_ILLOPN
, regs
->nip
);
1195 printk(KERN_EMERG
"Unexpected TM Bad Thing exception "
1196 "at %lx (msr 0x%x)\n", regs
->nip
, reason
);
1197 die("Unrecoverable exception", regs
, SIGABRT
);
1203 * If we took the program check in the kernel skip down to sending a
1204 * SIGILL. The subsequent cases all relate to emulating instructions
1205 * which we should only do for userspace. We also do not want to enable
1206 * interrupts for kernel faults because that might lead to further
1207 * faults, and loose the context of the original exception.
1209 if (!user_mode(regs
))
1212 /* We restore the interrupt state now */
1213 if (!arch_irq_disabled_regs(regs
))
1216 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1217 * but there seems to be a hardware bug on the 405GP (RevD)
1218 * that means ESR is sometimes set incorrectly - either to
1219 * ESR_DST (!?) or 0. In the process of chasing this with the
1220 * hardware people - not sure if it can happen on any illegal
1221 * instruction or only on FP instructions, whether there is a
1222 * pattern to occurrences etc. -dgibson 31/Mar/2003
1224 if (!emulate_math(regs
))
1227 /* Try to emulate it if we should. */
1228 if (reason
& (REASON_ILLEGAL
| REASON_PRIVILEGED
)) {
1229 switch (emulate_instruction(regs
)) {
1232 emulate_single_step(regs
);
1235 _exception(SIGSEGV
, regs
, SEGV_MAPERR
, regs
->nip
);
1241 if (reason
& REASON_PRIVILEGED
)
1242 _exception(SIGILL
, regs
, ILL_PRVOPC
, regs
->nip
);
1244 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1247 exception_exit(prev_state
);
1251 * This occurs when running in hypervisor mode on POWER6 or later
1252 * and an illegal instruction is encountered.
1254 void __kprobes
emulation_assist_interrupt(struct pt_regs
*regs
)
1256 regs
->msr
|= REASON_ILLEGAL
;
1257 program_check_exception(regs
);
1260 void alignment_exception(struct pt_regs
*regs
)
1262 enum ctx_state prev_state
= exception_enter();
1263 int sig
, code
, fixed
= 0;
1265 /* We restore the interrupt state now */
1266 if (!arch_irq_disabled_regs(regs
))
1269 if (tm_abort_check(regs
, TM_CAUSE_ALIGNMENT
| TM_CAUSE_PERSISTENT
))
1272 /* we don't implement logging of alignment exceptions */
1273 if (!(current
->thread
.align_ctl
& PR_UNALIGN_SIGBUS
))
1274 fixed
= fix_alignment(regs
);
1277 regs
->nip
+= 4; /* skip over emulated instruction */
1278 emulate_single_step(regs
);
1282 /* Operand address was bad */
1283 if (fixed
== -EFAULT
) {
1290 if (user_mode(regs
))
1291 _exception(sig
, regs
, code
, regs
->dar
);
1293 bad_page_fault(regs
, regs
->dar
, sig
);
1296 exception_exit(prev_state
);
1299 void StackOverflow(struct pt_regs
*regs
)
1301 printk(KERN_CRIT
"Kernel stack overflow in process %p, r1=%lx\n",
1302 current
, regs
->gpr
[1]);
1305 panic("kernel stack overflow");
1308 void nonrecoverable_exception(struct pt_regs
*regs
)
1310 printk(KERN_ERR
"Non-recoverable exception at PC=%lx MSR=%lx\n",
1311 regs
->nip
, regs
->msr
);
1313 die("nonrecoverable exception", regs
, SIGKILL
);
1316 void trace_syscall(struct pt_regs
*regs
)
1318 printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld %s\n",
1319 current
, task_pid_nr(current
), regs
->nip
, regs
->link
, regs
->gpr
[0],
1320 regs
->ccr
&0x10000000?"Error=":"", regs
->gpr
[3], print_tainted());
1323 void kernel_fp_unavailable_exception(struct pt_regs
*regs
)
1325 enum ctx_state prev_state
= exception_enter();
1327 printk(KERN_EMERG
"Unrecoverable FP Unavailable Exception "
1328 "%lx at %lx\n", regs
->trap
, regs
->nip
);
1329 die("Unrecoverable FP Unavailable Exception", regs
, SIGABRT
);
1331 exception_exit(prev_state
);
1334 void altivec_unavailable_exception(struct pt_regs
*regs
)
1336 enum ctx_state prev_state
= exception_enter();
1338 if (user_mode(regs
)) {
1339 /* A user program has executed an altivec instruction,
1340 but this kernel doesn't support altivec. */
1341 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1345 printk(KERN_EMERG
"Unrecoverable VMX/Altivec Unavailable Exception "
1346 "%lx at %lx\n", regs
->trap
, regs
->nip
);
1347 die("Unrecoverable VMX/Altivec Unavailable Exception", regs
, SIGABRT
);
1350 exception_exit(prev_state
);
1353 void vsx_unavailable_exception(struct pt_regs
*regs
)
1355 if (user_mode(regs
)) {
1356 /* A user program has executed an vsx instruction,
1357 but this kernel doesn't support vsx. */
1358 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1362 printk(KERN_EMERG
"Unrecoverable VSX Unavailable Exception "
1363 "%lx at %lx\n", regs
->trap
, regs
->nip
);
1364 die("Unrecoverable VSX Unavailable Exception", regs
, SIGABRT
);
1368 void facility_unavailable_exception(struct pt_regs
*regs
)
1370 static char *facility_strings
[] = {
1371 [FSCR_FP_LG
] = "FPU",
1372 [FSCR_VECVSX_LG
] = "VMX/VSX",
1373 [FSCR_DSCR_LG
] = "DSCR",
1374 [FSCR_PM_LG
] = "PMU SPRs",
1375 [FSCR_BHRB_LG
] = "BHRB",
1376 [FSCR_TM_LG
] = "TM",
1377 [FSCR_EBB_LG
] = "EBB",
1378 [FSCR_TAR_LG
] = "TAR",
1380 char *facility
= "unknown";
1386 hv
= (regs
->trap
== 0xf80);
1388 value
= mfspr(SPRN_HFSCR
);
1390 value
= mfspr(SPRN_FSCR
);
1392 status
= value
>> 56;
1393 if (status
== FSCR_DSCR_LG
) {
1395 * User is accessing the DSCR register using the problem
1396 * state only SPR number (0x03) either through a mfspr or
1397 * a mtspr instruction. If it is a write attempt through
1398 * a mtspr, then we set the inherit bit. This also allows
1399 * the user to write or read the register directly in the
1400 * future by setting via the FSCR DSCR bit. But in case it
1401 * is a read DSCR attempt through a mfspr instruction, we
1402 * just emulate the instruction instead. This code path will
1403 * always emulate all the mfspr instructions till the user
1404 * has attempted atleast one mtspr instruction. This way it
1405 * preserves the same behaviour when the user is accessing
1406 * the DSCR through privilege level only SPR number (0x11)
1407 * which is emulated through illegal instruction exception.
1408 * We always leave HFSCR DSCR set.
1410 if (get_user(instword
, (u32 __user
*)(regs
->nip
))) {
1411 pr_err("Failed to fetch the user instruction\n");
1415 /* Write into DSCR (mtspr 0x03, RS) */
1416 if ((instword
& PPC_INST_MTSPR_DSCR_USER_MASK
)
1417 == PPC_INST_MTSPR_DSCR_USER
) {
1418 rd
= (instword
>> 21) & 0x1f;
1419 current
->thread
.dscr
= regs
->gpr
[rd
];
1420 current
->thread
.dscr_inherit
= 1;
1421 mtspr(SPRN_FSCR
, value
| FSCR_DSCR
);
1424 /* Read from DSCR (mfspr RT, 0x03) */
1425 if ((instword
& PPC_INST_MFSPR_DSCR_USER_MASK
)
1426 == PPC_INST_MFSPR_DSCR_USER
) {
1427 if (emulate_instruction(regs
)) {
1428 pr_err("DSCR based mfspr emulation failed\n");
1432 emulate_single_step(regs
);
1437 if ((status
< ARRAY_SIZE(facility_strings
)) &&
1438 facility_strings
[status
])
1439 facility
= facility_strings
[status
];
1441 /* We restore the interrupt state now */
1442 if (!arch_irq_disabled_regs(regs
))
1446 "%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1447 hv
? "Hypervisor " : "", facility
, regs
->nip
, regs
->msr
);
1449 if (user_mode(regs
)) {
1450 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1454 die("Unexpected facility unavailable exception", regs
, SIGABRT
);
1458 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1460 void fp_unavailable_tm(struct pt_regs
*regs
)
1462 /* Note: This does not handle any kind of FP laziness. */
1464 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1465 regs
->nip
, regs
->msr
);
1467 /* We can only have got here if the task started using FP after
1468 * beginning the transaction. So, the transactional regs are just a
1469 * copy of the checkpointed ones. But, we still need to recheckpoint
1470 * as we're enabling FP for the process; it will return, abort the
1471 * transaction, and probably retry but now with FP enabled. So the
1472 * checkpointed FP registers need to be loaded.
1474 tm_reclaim_current(TM_CAUSE_FAC_UNAV
);
1475 /* Reclaim didn't save out any FPRs to transact_fprs. */
1477 /* Enable FP for the task: */
1478 regs
->msr
|= (MSR_FP
| current
->thread
.fpexc_mode
);
1480 /* This loads and recheckpoints the FP registers from
1481 * thread.fpr[]. They will remain in registers after the
1482 * checkpoint so we don't need to reload them after.
1483 * If VMX is in use, the VRs now hold checkpointed values,
1484 * so we don't want to load the VRs from the thread_struct.
1486 tm_recheckpoint(¤t
->thread
, MSR_FP
);
1488 /* If VMX is in use, get the transactional values back */
1489 if (regs
->msr
& MSR_VEC
) {
1490 do_load_up_transact_altivec(¤t
->thread
);
1491 /* At this point all the VSX state is loaded, so enable it */
1492 regs
->msr
|= MSR_VSX
;
1496 void altivec_unavailable_tm(struct pt_regs
*regs
)
1498 /* See the comments in fp_unavailable_tm(). This function operates
1502 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1504 regs
->nip
, regs
->msr
);
1505 tm_reclaim_current(TM_CAUSE_FAC_UNAV
);
1506 regs
->msr
|= MSR_VEC
;
1507 tm_recheckpoint(¤t
->thread
, MSR_VEC
);
1508 current
->thread
.used_vr
= 1;
1510 if (regs
->msr
& MSR_FP
) {
1511 do_load_up_transact_fpu(¤t
->thread
);
1512 regs
->msr
|= MSR_VSX
;
1516 void vsx_unavailable_tm(struct pt_regs
*regs
)
1518 unsigned long orig_msr
= regs
->msr
;
1520 /* See the comments in fp_unavailable_tm(). This works similarly,
1521 * though we're loading both FP and VEC registers in here.
1523 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1524 * regs. Either way, set MSR_VSX.
1527 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1529 regs
->nip
, regs
->msr
);
1531 current
->thread
.used_vsr
= 1;
1533 /* If FP and VMX are already loaded, we have all the state we need */
1534 if ((orig_msr
& (MSR_FP
| MSR_VEC
)) == (MSR_FP
| MSR_VEC
)) {
1535 regs
->msr
|= MSR_VSX
;
1539 /* This reclaims FP and/or VR regs if they're already enabled */
1540 tm_reclaim_current(TM_CAUSE_FAC_UNAV
);
1542 regs
->msr
|= MSR_VEC
| MSR_FP
| current
->thread
.fpexc_mode
|
1545 /* This loads & recheckpoints FP and VRs; but we have
1546 * to be sure not to overwrite previously-valid state.
1548 tm_recheckpoint(¤t
->thread
, regs
->msr
& ~orig_msr
);
1550 if (orig_msr
& MSR_FP
)
1551 do_load_up_transact_fpu(¤t
->thread
);
1552 if (orig_msr
& MSR_VEC
)
1553 do_load_up_transact_altivec(¤t
->thread
);
1555 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1557 void performance_monitor_exception(struct pt_regs
*regs
)
1559 __this_cpu_inc(irq_stat
.pmu_irqs
);
1565 void SoftwareEmulation(struct pt_regs
*regs
)
1567 CHECK_FULL_REGS(regs
);
1569 if (!user_mode(regs
)) {
1571 die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1575 if (!emulate_math(regs
))
1578 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1580 #endif /* CONFIG_8xx */
1582 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1583 static void handle_debug(struct pt_regs
*regs
, unsigned long debug_status
)
1587 * Determine the cause of the debug event, clear the
1588 * event flags and send a trap to the handler. Torez
1590 if (debug_status
& (DBSR_DAC1R
| DBSR_DAC1W
)) {
1591 dbcr_dac(current
) &= ~(DBCR_DAC1R
| DBCR_DAC1W
);
1592 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1593 current
->thread
.debug
.dbcr2
&= ~DBCR2_DAC12MODE
;
1595 do_send_trap(regs
, mfspr(SPRN_DAC1
), debug_status
, TRAP_HWBKPT
,
1598 } else if (debug_status
& (DBSR_DAC2R
| DBSR_DAC2W
)) {
1599 dbcr_dac(current
) &= ~(DBCR_DAC2R
| DBCR_DAC2W
);
1600 do_send_trap(regs
, mfspr(SPRN_DAC2
), debug_status
, TRAP_HWBKPT
,
1603 } else if (debug_status
& DBSR_IAC1
) {
1604 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC1
;
1605 dbcr_iac_range(current
) &= ~DBCR_IAC12MODE
;
1606 do_send_trap(regs
, mfspr(SPRN_IAC1
), debug_status
, TRAP_HWBKPT
,
1609 } else if (debug_status
& DBSR_IAC2
) {
1610 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC2
;
1611 do_send_trap(regs
, mfspr(SPRN_IAC2
), debug_status
, TRAP_HWBKPT
,
1614 } else if (debug_status
& DBSR_IAC3
) {
1615 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC3
;
1616 dbcr_iac_range(current
) &= ~DBCR_IAC34MODE
;
1617 do_send_trap(regs
, mfspr(SPRN_IAC3
), debug_status
, TRAP_HWBKPT
,
1620 } else if (debug_status
& DBSR_IAC4
) {
1621 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC4
;
1622 do_send_trap(regs
, mfspr(SPRN_IAC4
), debug_status
, TRAP_HWBKPT
,
1627 * At the point this routine was called, the MSR(DE) was turned off.
1628 * Check all other debug flags and see if that bit needs to be turned
1631 if (DBCR_ACTIVE_EVENTS(current
->thread
.debug
.dbcr0
,
1632 current
->thread
.debug
.dbcr1
))
1633 regs
->msr
|= MSR_DE
;
1635 /* Make sure the IDM flag is off */
1636 current
->thread
.debug
.dbcr0
&= ~DBCR0_IDM
;
1639 mtspr(SPRN_DBCR0
, current
->thread
.debug
.dbcr0
);
1642 void __kprobes
DebugException(struct pt_regs
*regs
, unsigned long debug_status
)
1644 current
->thread
.debug
.dbsr
= debug_status
;
1646 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1647 * on server, it stops on the target of the branch. In order to simulate
1648 * the server behaviour, we thus restart right away with a single step
1649 * instead of stopping here when hitting a BT
1651 if (debug_status
& DBSR_BT
) {
1652 regs
->msr
&= ~MSR_DE
;
1655 mtspr(SPRN_DBCR0
, mfspr(SPRN_DBCR0
) & ~DBCR0_BT
);
1656 /* Clear the BT event */
1657 mtspr(SPRN_DBSR
, DBSR_BT
);
1659 /* Do the single step trick only when coming from userspace */
1660 if (user_mode(regs
)) {
1661 current
->thread
.debug
.dbcr0
&= ~DBCR0_BT
;
1662 current
->thread
.debug
.dbcr0
|= DBCR0_IDM
| DBCR0_IC
;
1663 regs
->msr
|= MSR_DE
;
1667 if (notify_die(DIE_SSTEP
, "block_step", regs
, 5,
1668 5, SIGTRAP
) == NOTIFY_STOP
) {
1671 if (debugger_sstep(regs
))
1673 } else if (debug_status
& DBSR_IC
) { /* Instruction complete */
1674 regs
->msr
&= ~MSR_DE
;
1676 /* Disable instruction completion */
1677 mtspr(SPRN_DBCR0
, mfspr(SPRN_DBCR0
) & ~DBCR0_IC
);
1678 /* Clear the instruction completion event */
1679 mtspr(SPRN_DBSR
, DBSR_IC
);
1681 if (notify_die(DIE_SSTEP
, "single_step", regs
, 5,
1682 5, SIGTRAP
) == NOTIFY_STOP
) {
1686 if (debugger_sstep(regs
))
1689 if (user_mode(regs
)) {
1690 current
->thread
.debug
.dbcr0
&= ~DBCR0_IC
;
1691 if (DBCR_ACTIVE_EVENTS(current
->thread
.debug
.dbcr0
,
1692 current
->thread
.debug
.dbcr1
))
1693 regs
->msr
|= MSR_DE
;
1695 /* Make sure the IDM bit is off */
1696 current
->thread
.debug
.dbcr0
&= ~DBCR0_IDM
;
1699 _exception(SIGTRAP
, regs
, TRAP_TRACE
, regs
->nip
);
1701 handle_debug(regs
, debug_status
);
1703 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1705 #if !defined(CONFIG_TAU_INT)
1706 void TAUException(struct pt_regs
*regs
)
1708 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1709 regs
->nip
, regs
->msr
, regs
->trap
, print_tainted());
1711 #endif /* CONFIG_INT_TAU */
1713 #ifdef CONFIG_ALTIVEC
1714 void altivec_assist_exception(struct pt_regs
*regs
)
1718 if (!user_mode(regs
)) {
1719 printk(KERN_EMERG
"VMX/Altivec assist exception in kernel mode"
1720 " at %lx\n", regs
->nip
);
1721 die("Kernel VMX/Altivec assist exception", regs
, SIGILL
);
1724 flush_altivec_to_thread(current
);
1726 PPC_WARN_EMULATED(altivec
, regs
);
1727 err
= emulate_altivec(regs
);
1729 regs
->nip
+= 4; /* skip emulated instruction */
1730 emulate_single_step(regs
);
1734 if (err
== -EFAULT
) {
1735 /* got an error reading the instruction */
1736 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, regs
->nip
);
1738 /* didn't recognize the instruction */
1739 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1740 printk_ratelimited(KERN_ERR
"Unrecognized altivec instruction "
1741 "in %s at %lx\n", current
->comm
, regs
->nip
);
1742 current
->thread
.vr_state
.vscr
.u
[3] |= 0x10000;
1745 #endif /* CONFIG_ALTIVEC */
1747 #ifdef CONFIG_FSL_BOOKE
1748 void CacheLockingException(struct pt_regs
*regs
, unsigned long address
,
1749 unsigned long error_code
)
1751 /* We treat cache locking instructions from the user
1752 * as priv ops, in the future we could try to do
1755 if (error_code
& (ESR_DLK
|ESR_ILK
))
1756 _exception(SIGILL
, regs
, ILL_PRVOPC
, regs
->nip
);
1759 #endif /* CONFIG_FSL_BOOKE */
1762 void SPEFloatingPointException(struct pt_regs
*regs
)
1764 extern int do_spe_mathemu(struct pt_regs
*regs
);
1765 unsigned long spefscr
;
1770 flush_spe_to_thread(current
);
1772 spefscr
= current
->thread
.spefscr
;
1773 fpexc_mode
= current
->thread
.fpexc_mode
;
1775 if ((spefscr
& SPEFSCR_FOVF
) && (fpexc_mode
& PR_FP_EXC_OVF
)) {
1778 else if ((spefscr
& SPEFSCR_FUNF
) && (fpexc_mode
& PR_FP_EXC_UND
)) {
1781 else if ((spefscr
& SPEFSCR_FDBZ
) && (fpexc_mode
& PR_FP_EXC_DIV
))
1783 else if ((spefscr
& SPEFSCR_FINV
) && (fpexc_mode
& PR_FP_EXC_INV
)) {
1786 else if ((spefscr
& (SPEFSCR_FG
| SPEFSCR_FX
)) && (fpexc_mode
& PR_FP_EXC_RES
))
1789 err
= do_spe_mathemu(regs
);
1791 regs
->nip
+= 4; /* skip emulated instruction */
1792 emulate_single_step(regs
);
1796 if (err
== -EFAULT
) {
1797 /* got an error reading the instruction */
1798 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, regs
->nip
);
1799 } else if (err
== -EINVAL
) {
1800 /* didn't recognize the instruction */
1801 printk(KERN_ERR
"unrecognized spe instruction "
1802 "in %s at %lx\n", current
->comm
, regs
->nip
);
1804 _exception(SIGFPE
, regs
, code
, regs
->nip
);
1810 void SPEFloatingPointRoundException(struct pt_regs
*regs
)
1812 extern int speround_handler(struct pt_regs
*regs
);
1816 if (regs
->msr
& MSR_SPE
)
1817 giveup_spe(current
);
1821 err
= speround_handler(regs
);
1823 regs
->nip
+= 4; /* skip emulated instruction */
1824 emulate_single_step(regs
);
1828 if (err
== -EFAULT
) {
1829 /* got an error reading the instruction */
1830 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, regs
->nip
);
1831 } else if (err
== -EINVAL
) {
1832 /* didn't recognize the instruction */
1833 printk(KERN_ERR
"unrecognized spe instruction "
1834 "in %s at %lx\n", current
->comm
, regs
->nip
);
1836 _exception(SIGFPE
, regs
, 0, regs
->nip
);
1843 * We enter here if we get an unrecoverable exception, that is, one
1844 * that happened at a point where the RI (recoverable interrupt) bit
1845 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1846 * we therefore lost state by taking this exception.
1848 void unrecoverable_exception(struct pt_regs
*regs
)
1850 printk(KERN_EMERG
"Unrecoverable exception %lx at %lx\n",
1851 regs
->trap
, regs
->nip
);
1852 die("Unrecoverable exception", regs
, SIGABRT
);
1855 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1857 * Default handler for a Watchdog exception,
1858 * spins until a reboot occurs
1860 void __attribute__ ((weak
)) WatchdogHandler(struct pt_regs
*regs
)
1862 /* Generic WatchdogHandler, implement your own */
1863 mtspr(SPRN_TCR
, mfspr(SPRN_TCR
)&(~TCR_WIE
));
1867 void WatchdogException(struct pt_regs
*regs
)
1869 printk (KERN_EMERG
"PowerPC Book-E Watchdog Exception\n");
1870 WatchdogHandler(regs
);
1875 * We enter here if we discover during exception entry that we are
1876 * running in supervisor mode with a userspace value in the stack pointer.
1878 void kernel_bad_stack(struct pt_regs
*regs
)
1880 printk(KERN_EMERG
"Bad kernel stack pointer %lx at %lx\n",
1881 regs
->gpr
[1], regs
->nip
);
1882 die("Bad kernel stack pointer", regs
, SIGABRT
);
1885 void __init
trap_init(void)
1890 #ifdef CONFIG_PPC_EMULATED_STATS
1892 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1894 struct ppc_emulated ppc_emulated
= {
1895 #ifdef CONFIG_ALTIVEC
1896 WARN_EMULATED_SETUP(altivec
),
1898 WARN_EMULATED_SETUP(dcba
),
1899 WARN_EMULATED_SETUP(dcbz
),
1900 WARN_EMULATED_SETUP(fp_pair
),
1901 WARN_EMULATED_SETUP(isel
),
1902 WARN_EMULATED_SETUP(mcrxr
),
1903 WARN_EMULATED_SETUP(mfpvr
),
1904 WARN_EMULATED_SETUP(multiple
),
1905 WARN_EMULATED_SETUP(popcntb
),
1906 WARN_EMULATED_SETUP(spe
),
1907 WARN_EMULATED_SETUP(string
),
1908 WARN_EMULATED_SETUP(sync
),
1909 WARN_EMULATED_SETUP(unaligned
),
1910 #ifdef CONFIG_MATH_EMULATION
1911 WARN_EMULATED_SETUP(math
),
1914 WARN_EMULATED_SETUP(vsx
),
1917 WARN_EMULATED_SETUP(mfdscr
),
1918 WARN_EMULATED_SETUP(mtdscr
),
1919 WARN_EMULATED_SETUP(lq_stq
),
1923 u32 ppc_warn_emulated
;
1925 void ppc_warn_emulated_print(const char *type
)
1927 pr_warn_ratelimited("%s used emulated %s instruction\n", current
->comm
,
1931 static int __init
ppc_warn_emulated_init(void)
1933 struct dentry
*dir
, *d
;
1935 struct ppc_emulated_entry
*entries
= (void *)&ppc_emulated
;
1937 if (!powerpc_debugfs_root
)
1940 dir
= debugfs_create_dir("emulated_instructions",
1941 powerpc_debugfs_root
);
1945 d
= debugfs_create_u32("do_warn", S_IRUGO
| S_IWUSR
, dir
,
1946 &ppc_warn_emulated
);
1950 for (i
= 0; i
< sizeof(ppc_emulated
)/sizeof(*entries
); i
++) {
1951 d
= debugfs_create_u32(entries
[i
].name
, S_IRUGO
| S_IWUSR
, dir
,
1952 (u32
*)&entries
[i
].val
.counter
);
1960 debugfs_remove_recursive(dir
);
1964 device_initcall(ppc_warn_emulated_init
);
1966 #endif /* CONFIG_PPC_EMULATED_STATS */