irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / arch / powerpc / mm / hash_utils_64.c
blob7f9616f7c4797fb680ae21380516bdc4a70876e7
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
12 * Description:
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
21 #undef DEBUG
22 #undef DEBUG_LOW
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/mmu_context.h>
42 #include <asm/page.h>
43 #include <asm/types.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
46 #include <asm/prom.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/copro.h>
55 #include <asm/udbg.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
59 #include <asm/tm.h>
60 #include <asm/trace.h>
62 #ifdef DEBUG
63 #define DBG(fmt...) udbg_printf(fmt)
64 #else
65 #define DBG(fmt...)
66 #endif
68 #ifdef DEBUG_LOW
69 #define DBG_LOW(fmt...) udbg_printf(fmt)
70 #else
71 #define DBG_LOW(fmt...)
72 #endif
74 #define KB (1024)
75 #define MB (1024*KB)
76 #define GB (1024L*MB)
79 * Note: pte --> Linux PTE
80 * HPTE --> PowerPC Hashed Page Table Entry
82 * Execution context:
83 * htab_initialize is called with the MMU off (of course), but
84 * the kernel has been copied down to zero so it can directly
85 * reference global data. At this point it is very difficult
86 * to print debug info.
90 #ifdef CONFIG_U3_DART
91 extern unsigned long dart_tablebase;
92 #endif /* CONFIG_U3_DART */
94 static unsigned long _SDR1;
95 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
96 EXPORT_SYMBOL_GPL(mmu_psize_defs);
98 struct hash_pte *htab_address;
99 unsigned long htab_size_bytes;
100 unsigned long htab_hash_mask;
101 EXPORT_SYMBOL_GPL(htab_hash_mask);
102 int mmu_linear_psize = MMU_PAGE_4K;
103 EXPORT_SYMBOL_GPL(mmu_linear_psize);
104 int mmu_virtual_psize = MMU_PAGE_4K;
105 int mmu_vmalloc_psize = MMU_PAGE_4K;
106 #ifdef CONFIG_SPARSEMEM_VMEMMAP
107 int mmu_vmemmap_psize = MMU_PAGE_4K;
108 #endif
109 int mmu_io_psize = MMU_PAGE_4K;
110 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
111 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
112 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
113 u16 mmu_slb_size = 64;
114 EXPORT_SYMBOL_GPL(mmu_slb_size);
115 #ifdef CONFIG_PPC_64K_PAGES
116 int mmu_ci_restrictions;
117 #endif
118 #ifdef CONFIG_DEBUG_PAGEALLOC
119 static u8 *linear_map_hash_slots;
120 static unsigned long linear_map_hash_count;
121 static DEFINE_SPINLOCK(linear_map_hash_lock);
122 #endif /* CONFIG_DEBUG_PAGEALLOC */
124 /* There are definitions of page sizes arrays to be used when none
125 * is provided by the firmware.
128 /* Pre-POWER4 CPUs (4k pages only)
130 static struct mmu_psize_def mmu_psize_defaults_old[] = {
131 [MMU_PAGE_4K] = {
132 .shift = 12,
133 .sllp = 0,
134 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
135 .avpnm = 0,
136 .tlbiel = 0,
140 /* POWER4, GPUL, POWER5
142 * Support for 16Mb large pages
144 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
145 [MMU_PAGE_4K] = {
146 .shift = 12,
147 .sllp = 0,
148 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
149 .avpnm = 0,
150 .tlbiel = 1,
152 [MMU_PAGE_16M] = {
153 .shift = 24,
154 .sllp = SLB_VSID_L,
155 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
156 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
157 .avpnm = 0x1UL,
158 .tlbiel = 0,
162 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
164 unsigned long rflags = pteflags & 0x1fa;
166 /* _PAGE_EXEC -> NOEXEC */
167 if ((pteflags & _PAGE_EXEC) == 0)
168 rflags |= HPTE_R_N;
170 /* PP bits. PAGE_USER is already PP bit 0x2, so we only
171 * need to add in 0x1 if it's a read-only user page
173 if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
174 (pteflags & _PAGE_DIRTY)))
175 rflags |= 1;
177 * Always add "C" bit for perf. Memory coherence is always enabled
179 return rflags | HPTE_R_C | HPTE_R_M;
182 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
183 unsigned long pstart, unsigned long prot,
184 int psize, int ssize)
186 unsigned long vaddr, paddr;
187 unsigned int step, shift;
188 int ret = 0;
190 shift = mmu_psize_defs[psize].shift;
191 step = 1 << shift;
193 prot = htab_convert_pte_flags(prot);
195 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
196 vstart, vend, pstart, prot, psize, ssize);
198 for (vaddr = vstart, paddr = pstart; vaddr < vend;
199 vaddr += step, paddr += step) {
200 unsigned long hash, hpteg;
201 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
202 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
203 unsigned long tprot = prot;
206 * If we hit a bad address return error.
208 if (!vsid)
209 return -1;
210 /* Make kernel text executable */
211 if (overlaps_kernel_text(vaddr, vaddr + step))
212 tprot &= ~HPTE_R_N;
214 /* Make kvm guest trampolines executable */
215 if (overlaps_kvm_tmp(vaddr, vaddr + step))
216 tprot &= ~HPTE_R_N;
219 * If relocatable, check if it overlaps interrupt vectors that
220 * are copied down to real 0. For relocatable kernel
221 * (e.g. kdump case) we copy interrupt vectors down to real
222 * address 0. Mark that region as executable. This is
223 * because on p8 system with relocation on exception feature
224 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
225 * in order to execute the interrupt handlers in virtual
226 * mode the vector region need to be marked as executable.
228 if ((PHYSICAL_START > MEMORY_START) &&
229 overlaps_interrupt_vector_text(vaddr, vaddr + step))
230 tprot &= ~HPTE_R_N;
232 hash = hpt_hash(vpn, shift, ssize);
233 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
235 BUG_ON(!ppc_md.hpte_insert);
236 ret = ppc_md.hpte_insert(hpteg, vpn, paddr, tprot,
237 HPTE_V_BOLTED, psize, psize, ssize);
239 if (ret < 0)
240 break;
241 #ifdef CONFIG_DEBUG_PAGEALLOC
242 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
243 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
244 #endif /* CONFIG_DEBUG_PAGEALLOC */
246 return ret < 0 ? ret : 0;
249 #ifdef CONFIG_MEMORY_HOTPLUG
250 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
251 int psize, int ssize)
253 unsigned long vaddr;
254 unsigned int step, shift;
256 shift = mmu_psize_defs[psize].shift;
257 step = 1 << shift;
259 if (!ppc_md.hpte_removebolted) {
260 printk(KERN_WARNING "Platform doesn't implement "
261 "hpte_removebolted\n");
262 return -EINVAL;
265 for (vaddr = vstart; vaddr < vend; vaddr += step)
266 ppc_md.hpte_removebolted(vaddr, psize, ssize);
268 return 0;
270 #endif /* CONFIG_MEMORY_HOTPLUG */
272 static int __init htab_dt_scan_seg_sizes(unsigned long node,
273 const char *uname, int depth,
274 void *data)
276 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
277 const __be32 *prop;
278 int size = 0;
280 /* We are scanning "cpu" nodes only */
281 if (type == NULL || strcmp(type, "cpu") != 0)
282 return 0;
284 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
285 if (prop == NULL)
286 return 0;
287 for (; size >= 4; size -= 4, ++prop) {
288 if (be32_to_cpu(prop[0]) == 40) {
289 DBG("1T segment support detected\n");
290 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
291 return 1;
294 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
295 return 0;
298 static void __init htab_init_seg_sizes(void)
300 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
303 static int __init get_idx_from_shift(unsigned int shift)
305 int idx = -1;
307 switch (shift) {
308 case 0xc:
309 idx = MMU_PAGE_4K;
310 break;
311 case 0x10:
312 idx = MMU_PAGE_64K;
313 break;
314 case 0x14:
315 idx = MMU_PAGE_1M;
316 break;
317 case 0x18:
318 idx = MMU_PAGE_16M;
319 break;
320 case 0x22:
321 idx = MMU_PAGE_16G;
322 break;
324 return idx;
327 static int __init htab_dt_scan_page_sizes(unsigned long node,
328 const char *uname, int depth,
329 void *data)
331 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
332 const __be32 *prop;
333 int size = 0;
335 /* We are scanning "cpu" nodes only */
336 if (type == NULL || strcmp(type, "cpu") != 0)
337 return 0;
339 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
340 if (!prop)
341 return 0;
343 pr_info("Page sizes from device-tree:\n");
344 size /= 4;
345 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
346 while(size > 0) {
347 unsigned int base_shift = be32_to_cpu(prop[0]);
348 unsigned int slbenc = be32_to_cpu(prop[1]);
349 unsigned int lpnum = be32_to_cpu(prop[2]);
350 struct mmu_psize_def *def;
351 int idx, base_idx;
353 size -= 3; prop += 3;
354 base_idx = get_idx_from_shift(base_shift);
355 if (base_idx < 0) {
356 /* skip the pte encoding also */
357 prop += lpnum * 2; size -= lpnum * 2;
358 continue;
360 def = &mmu_psize_defs[base_idx];
361 if (base_idx == MMU_PAGE_16M)
362 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
364 def->shift = base_shift;
365 if (base_shift <= 23)
366 def->avpnm = 0;
367 else
368 def->avpnm = (1 << (base_shift - 23)) - 1;
369 def->sllp = slbenc;
371 * We don't know for sure what's up with tlbiel, so
372 * for now we only set it for 4K and 64K pages
374 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
375 def->tlbiel = 1;
376 else
377 def->tlbiel = 0;
379 while (size > 0 && lpnum) {
380 unsigned int shift = be32_to_cpu(prop[0]);
381 int penc = be32_to_cpu(prop[1]);
383 prop += 2; size -= 2;
384 lpnum--;
386 idx = get_idx_from_shift(shift);
387 if (idx < 0)
388 continue;
390 if (penc == -1)
391 pr_err("Invalid penc for base_shift=%d "
392 "shift=%d\n", base_shift, shift);
394 def->penc[idx] = penc;
395 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
396 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
397 base_shift, shift, def->sllp,
398 def->avpnm, def->tlbiel, def->penc[idx]);
402 return 1;
405 #ifdef CONFIG_HUGETLB_PAGE
406 /* Scan for 16G memory blocks that have been set aside for huge pages
407 * and reserve those blocks for 16G huge pages.
409 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
410 const char *uname, int depth,
411 void *data) {
412 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
413 const __be64 *addr_prop;
414 const __be32 *page_count_prop;
415 unsigned int expected_pages;
416 long unsigned int phys_addr;
417 long unsigned int block_size;
419 /* We are scanning "memory" nodes only */
420 if (type == NULL || strcmp(type, "memory") != 0)
421 return 0;
423 /* This property is the log base 2 of the number of virtual pages that
424 * will represent this memory block. */
425 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
426 if (page_count_prop == NULL)
427 return 0;
428 expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
429 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
430 if (addr_prop == NULL)
431 return 0;
432 phys_addr = be64_to_cpu(addr_prop[0]);
433 block_size = be64_to_cpu(addr_prop[1]);
434 if (block_size != (16 * GB))
435 return 0;
436 printk(KERN_INFO "Huge page(16GB) memory: "
437 "addr = 0x%lX size = 0x%lX pages = %d\n",
438 phys_addr, block_size, expected_pages);
439 if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
440 memblock_reserve(phys_addr, block_size * expected_pages);
441 add_gpage(phys_addr, block_size, expected_pages);
443 return 0;
445 #endif /* CONFIG_HUGETLB_PAGE */
447 static void mmu_psize_set_default_penc(void)
449 int bpsize, apsize;
450 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
451 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
452 mmu_psize_defs[bpsize].penc[apsize] = -1;
455 #ifdef CONFIG_PPC_64K_PAGES
457 static bool might_have_hea(void)
460 * The HEA ethernet adapter requires awareness of the
461 * GX bus. Without that awareness we can easily assume
462 * we will never see an HEA ethernet device.
464 #ifdef CONFIG_IBMEBUS
465 return !cpu_has_feature(CPU_FTR_ARCH_207S);
466 #else
467 return false;
468 #endif
471 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
473 static void __init htab_init_page_sizes(void)
475 int rc;
477 /* se the invalid penc to -1 */
478 mmu_psize_set_default_penc();
480 /* Default to 4K pages only */
481 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
482 sizeof(mmu_psize_defaults_old));
485 * Try to find the available page sizes in the device-tree
487 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
488 if (rc != 0) /* Found */
489 goto found;
492 * Not in the device-tree, let's fallback on known size
493 * list for 16M capable GP & GR
495 if (mmu_has_feature(MMU_FTR_16M_PAGE))
496 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
497 sizeof(mmu_psize_defaults_gp));
498 found:
499 #ifndef CONFIG_DEBUG_PAGEALLOC
501 * Pick a size for the linear mapping. Currently, we only support
502 * 16M, 1M and 4K which is the default
504 if (mmu_psize_defs[MMU_PAGE_16M].shift)
505 mmu_linear_psize = MMU_PAGE_16M;
506 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
507 mmu_linear_psize = MMU_PAGE_1M;
508 #endif /* CONFIG_DEBUG_PAGEALLOC */
510 #ifdef CONFIG_PPC_64K_PAGES
512 * Pick a size for the ordinary pages. Default is 4K, we support
513 * 64K for user mappings and vmalloc if supported by the processor.
514 * We only use 64k for ioremap if the processor
515 * (and firmware) support cache-inhibited large pages.
516 * If not, we use 4k and set mmu_ci_restrictions so that
517 * hash_page knows to switch processes that use cache-inhibited
518 * mappings to 4k pages.
520 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
521 mmu_virtual_psize = MMU_PAGE_64K;
522 mmu_vmalloc_psize = MMU_PAGE_64K;
523 if (mmu_linear_psize == MMU_PAGE_4K)
524 mmu_linear_psize = MMU_PAGE_64K;
525 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
527 * When running on pSeries using 64k pages for ioremap
528 * would stop us accessing the HEA ethernet. So if we
529 * have the chance of ever seeing one, stay at 4k.
531 if (!might_have_hea() || !machine_is(pseries))
532 mmu_io_psize = MMU_PAGE_64K;
533 } else
534 mmu_ci_restrictions = 1;
536 #endif /* CONFIG_PPC_64K_PAGES */
538 #ifdef CONFIG_SPARSEMEM_VMEMMAP
539 /* We try to use 16M pages for vmemmap if that is supported
540 * and we have at least 1G of RAM at boot
542 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
543 memblock_phys_mem_size() >= 0x40000000)
544 mmu_vmemmap_psize = MMU_PAGE_16M;
545 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
546 mmu_vmemmap_psize = MMU_PAGE_64K;
547 else
548 mmu_vmemmap_psize = MMU_PAGE_4K;
549 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
551 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
552 "virtual = %d, io = %d"
553 #ifdef CONFIG_SPARSEMEM_VMEMMAP
554 ", vmemmap = %d"
555 #endif
556 "\n",
557 mmu_psize_defs[mmu_linear_psize].shift,
558 mmu_psize_defs[mmu_virtual_psize].shift,
559 mmu_psize_defs[mmu_io_psize].shift
560 #ifdef CONFIG_SPARSEMEM_VMEMMAP
561 ,mmu_psize_defs[mmu_vmemmap_psize].shift
562 #endif
565 #ifdef CONFIG_HUGETLB_PAGE
566 /* Reserve 16G huge page memory sections for huge pages */
567 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
568 #endif /* CONFIG_HUGETLB_PAGE */
571 static int __init htab_dt_scan_pftsize(unsigned long node,
572 const char *uname, int depth,
573 void *data)
575 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
576 const __be32 *prop;
578 /* We are scanning "cpu" nodes only */
579 if (type == NULL || strcmp(type, "cpu") != 0)
580 return 0;
582 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
583 if (prop != NULL) {
584 /* pft_size[0] is the NUMA CEC cookie */
585 ppc64_pft_size = be32_to_cpu(prop[1]);
586 return 1;
588 return 0;
591 static unsigned long __init htab_get_table_size(void)
593 unsigned long mem_size, rnd_mem_size, pteg_count, psize;
595 /* If hash size isn't already provided by the platform, we try to
596 * retrieve it from the device-tree. If it's not there neither, we
597 * calculate it now based on the total RAM size
599 if (ppc64_pft_size == 0)
600 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
601 if (ppc64_pft_size)
602 return 1UL << ppc64_pft_size;
604 /* round mem_size up to next power of 2 */
605 mem_size = memblock_phys_mem_size();
606 rnd_mem_size = 1UL << __ilog2(mem_size);
607 if (rnd_mem_size < mem_size)
608 rnd_mem_size <<= 1;
610 /* # pages / 2 */
611 psize = mmu_psize_defs[mmu_virtual_psize].shift;
612 pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
614 return pteg_count << 7;
617 #ifdef CONFIG_MEMORY_HOTPLUG
618 int create_section_mapping(unsigned long start, unsigned long end)
620 return htab_bolt_mapping(start, end, __pa(start),
621 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
622 mmu_kernel_ssize);
625 int remove_section_mapping(unsigned long start, unsigned long end)
627 return htab_remove_mapping(start, end, mmu_linear_psize,
628 mmu_kernel_ssize);
630 #endif /* CONFIG_MEMORY_HOTPLUG */
632 extern u32 htab_call_hpte_insert1[];
633 extern u32 htab_call_hpte_insert2[];
634 extern u32 htab_call_hpte_remove[];
635 extern u32 htab_call_hpte_updatepp[];
636 extern u32 ht64_call_hpte_insert1[];
637 extern u32 ht64_call_hpte_insert2[];
638 extern u32 ht64_call_hpte_remove[];
639 extern u32 ht64_call_hpte_updatepp[];
641 static void __init htab_finish_init(void)
643 #ifdef CONFIG_PPC_64K_PAGES
644 patch_branch(ht64_call_hpte_insert1,
645 ppc_function_entry(ppc_md.hpte_insert),
646 BRANCH_SET_LINK);
647 patch_branch(ht64_call_hpte_insert2,
648 ppc_function_entry(ppc_md.hpte_insert),
649 BRANCH_SET_LINK);
650 patch_branch(ht64_call_hpte_remove,
651 ppc_function_entry(ppc_md.hpte_remove),
652 BRANCH_SET_LINK);
653 patch_branch(ht64_call_hpte_updatepp,
654 ppc_function_entry(ppc_md.hpte_updatepp),
655 BRANCH_SET_LINK);
656 #endif /* CONFIG_PPC_64K_PAGES */
658 patch_branch(htab_call_hpte_insert1,
659 ppc_function_entry(ppc_md.hpte_insert),
660 BRANCH_SET_LINK);
661 patch_branch(htab_call_hpte_insert2,
662 ppc_function_entry(ppc_md.hpte_insert),
663 BRANCH_SET_LINK);
664 patch_branch(htab_call_hpte_remove,
665 ppc_function_entry(ppc_md.hpte_remove),
666 BRANCH_SET_LINK);
667 patch_branch(htab_call_hpte_updatepp,
668 ppc_function_entry(ppc_md.hpte_updatepp),
669 BRANCH_SET_LINK);
672 static void __init htab_initialize(void)
674 unsigned long table;
675 unsigned long pteg_count;
676 unsigned long prot;
677 unsigned long base = 0, size = 0, limit;
678 struct memblock_region *reg;
680 DBG(" -> htab_initialize()\n");
682 /* Initialize segment sizes */
683 htab_init_seg_sizes();
685 /* Initialize page sizes */
686 htab_init_page_sizes();
688 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
689 mmu_kernel_ssize = MMU_SEGSIZE_1T;
690 mmu_highuser_ssize = MMU_SEGSIZE_1T;
691 printk(KERN_INFO "Using 1TB segments\n");
695 * Calculate the required size of the htab. We want the number of
696 * PTEGs to equal one half the number of real pages.
698 htab_size_bytes = htab_get_table_size();
699 pteg_count = htab_size_bytes >> 7;
701 htab_hash_mask = pteg_count - 1;
703 if (firmware_has_feature(FW_FEATURE_LPAR)) {
704 /* Using a hypervisor which owns the htab */
705 htab_address = NULL;
706 _SDR1 = 0;
707 #ifdef CONFIG_FA_DUMP
709 * If firmware assisted dump is active firmware preserves
710 * the contents of htab along with entire partition memory.
711 * Clear the htab if firmware assisted dump is active so
712 * that we dont end up using old mappings.
714 if (is_fadump_active() && ppc_md.hpte_clear_all)
715 ppc_md.hpte_clear_all();
716 #endif
717 } else {
718 /* Find storage for the HPT. Must be contiguous in
719 * the absolute address space. On cell we want it to be
720 * in the first 2 Gig so we can use it for IOMMU hacks.
722 if (machine_is(cell))
723 limit = 0x80000000;
724 else
725 limit = MEMBLOCK_ALLOC_ANYWHERE;
727 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
729 DBG("Hash table allocated at %lx, size: %lx\n", table,
730 htab_size_bytes);
732 htab_address = __va(table);
734 /* htab absolute addr + encoded htabsize */
735 _SDR1 = table + __ilog2(pteg_count) - 11;
737 /* Initialize the HPT with no entries */
738 memset((void *)table, 0, htab_size_bytes);
740 /* Set SDR1 */
741 mtspr(SPRN_SDR1, _SDR1);
744 prot = pgprot_val(PAGE_KERNEL);
746 #ifdef CONFIG_DEBUG_PAGEALLOC
747 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
748 linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
749 1, ppc64_rma_size));
750 memset(linear_map_hash_slots, 0, linear_map_hash_count);
751 #endif /* CONFIG_DEBUG_PAGEALLOC */
753 /* On U3 based machines, we need to reserve the DART area and
754 * _NOT_ map it to avoid cache paradoxes as it's remapped non
755 * cacheable later on
758 /* create bolted the linear mapping in the hash table */
759 for_each_memblock(memory, reg) {
760 base = (unsigned long)__va(reg->base);
761 size = reg->size;
763 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
764 base, size, prot);
766 #ifdef CONFIG_U3_DART
767 /* Do not map the DART space. Fortunately, it will be aligned
768 * in such a way that it will not cross two memblock regions and
769 * will fit within a single 16Mb page.
770 * The DART space is assumed to be a full 16Mb region even if
771 * we only use 2Mb of that space. We will use more of it later
772 * for AGP GART. We have to use a full 16Mb large page.
774 DBG("DART base: %lx\n", dart_tablebase);
776 if (dart_tablebase != 0 && dart_tablebase >= base
777 && dart_tablebase < (base + size)) {
778 unsigned long dart_table_end = dart_tablebase + 16 * MB;
779 if (base != dart_tablebase)
780 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
781 __pa(base), prot,
782 mmu_linear_psize,
783 mmu_kernel_ssize));
784 if ((base + size) > dart_table_end)
785 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
786 base + size,
787 __pa(dart_table_end),
788 prot,
789 mmu_linear_psize,
790 mmu_kernel_ssize));
791 continue;
793 #endif /* CONFIG_U3_DART */
794 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
795 prot, mmu_linear_psize, mmu_kernel_ssize));
797 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
800 * If we have a memory_limit and we've allocated TCEs then we need to
801 * explicitly map the TCE area at the top of RAM. We also cope with the
802 * case that the TCEs start below memory_limit.
803 * tce_alloc_start/end are 16MB aligned so the mapping should work
804 * for either 4K or 16MB pages.
806 if (tce_alloc_start) {
807 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
808 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
810 if (base + size >= tce_alloc_start)
811 tce_alloc_start = base + size + 1;
813 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
814 __pa(tce_alloc_start), prot,
815 mmu_linear_psize, mmu_kernel_ssize));
818 htab_finish_init();
820 DBG(" <- htab_initialize()\n");
822 #undef KB
823 #undef MB
825 void __init early_init_mmu(void)
827 /* Initialize the MMU Hash table and create the linear mapping
828 * of memory. Has to be done before SLB initialization as this is
829 * currently where the page size encoding is obtained.
831 htab_initialize();
833 /* Initialize SLB management */
834 slb_initialize();
837 #ifdef CONFIG_SMP
838 void early_init_mmu_secondary(void)
840 /* Initialize hash table for that CPU */
841 if (!firmware_has_feature(FW_FEATURE_LPAR))
842 mtspr(SPRN_SDR1, _SDR1);
844 /* Initialize SLB */
845 slb_initialize();
847 #endif /* CONFIG_SMP */
850 * Called by asm hashtable.S for doing lazy icache flush
852 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
854 struct page *page;
856 if (!pfn_valid(pte_pfn(pte)))
857 return pp;
859 page = pte_page(pte);
861 /* page is dirty */
862 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
863 if (trap == 0x400) {
864 flush_dcache_icache_page(page);
865 set_bit(PG_arch_1, &page->flags);
866 } else
867 pp |= HPTE_R_N;
869 return pp;
872 #ifdef CONFIG_PPC_MM_SLICES
873 static unsigned int get_paca_psize(unsigned long addr)
875 u64 lpsizes;
876 unsigned char *hpsizes;
877 unsigned long index, mask_index;
879 if (addr < SLICE_LOW_TOP) {
880 lpsizes = get_paca()->context.low_slices_psize;
881 index = GET_LOW_SLICE_INDEX(addr);
882 return (lpsizes >> (index * 4)) & 0xF;
884 hpsizes = get_paca()->context.high_slices_psize;
885 index = GET_HIGH_SLICE_INDEX(addr);
886 mask_index = index & 0x1;
887 return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
890 #else
891 unsigned int get_paca_psize(unsigned long addr)
893 return get_paca()->context.user_psize;
895 #endif
898 * Demote a segment to using 4k pages.
899 * For now this makes the whole process use 4k pages.
901 #ifdef CONFIG_PPC_64K_PAGES
902 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
904 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
905 return;
906 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
907 copro_flush_all_slbs(mm);
908 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
909 get_paca()->context = mm->context;
910 slb_flush_and_rebolt();
913 #endif /* CONFIG_PPC_64K_PAGES */
915 #ifdef CONFIG_PPC_SUBPAGE_PROT
917 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
918 * Userspace sets the subpage permissions using the subpage_prot system call.
920 * Result is 0: full permissions, _PAGE_RW: read-only,
921 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
923 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
925 struct subpage_prot_table *spt = &mm->context.spt;
926 u32 spp = 0;
927 u32 **sbpm, *sbpp;
929 if (ea >= spt->maxaddr)
930 return 0;
931 if (ea < 0x100000000UL) {
932 /* addresses below 4GB use spt->low_prot */
933 sbpm = spt->low_prot;
934 } else {
935 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
936 if (!sbpm)
937 return 0;
939 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
940 if (!sbpp)
941 return 0;
942 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
944 /* extract 2-bit bitfield for this 4k subpage */
945 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
947 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
948 spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
949 return spp;
952 #else /* CONFIG_PPC_SUBPAGE_PROT */
953 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
955 return 0;
957 #endif
959 void hash_failure_debug(unsigned long ea, unsigned long access,
960 unsigned long vsid, unsigned long trap,
961 int ssize, int psize, int lpsize, unsigned long pte)
963 if (!printk_ratelimit())
964 return;
965 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
966 ea, access, current->comm);
967 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
968 trap, vsid, ssize, psize, lpsize, pte);
971 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
972 int psize, bool user_region)
974 if (user_region) {
975 if (psize != get_paca_psize(ea)) {
976 get_paca()->context = mm->context;
977 slb_flush_and_rebolt();
979 } else if (get_paca()->vmalloc_sllp !=
980 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
981 get_paca()->vmalloc_sllp =
982 mmu_psize_defs[mmu_vmalloc_psize].sllp;
983 slb_vmalloc_update();
987 /* Result code is:
988 * 0 - handled
989 * 1 - normal page fault
990 * -1 - critical hash insertion error
991 * -2 - access not permitted by subpage protection mechanism
993 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
994 unsigned long access, unsigned long trap,
995 unsigned long flags)
997 bool is_thp;
998 enum ctx_state prev_state = exception_enter();
999 pgd_t *pgdir;
1000 unsigned long vsid;
1001 pte_t *ptep;
1002 unsigned hugeshift;
1003 const struct cpumask *tmp;
1004 int rc, user_region = 0;
1005 int psize, ssize;
1007 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1008 ea, access, trap);
1009 trace_hash_fault(ea, access, trap);
1011 /* Get region & vsid */
1012 switch (REGION_ID(ea)) {
1013 case USER_REGION_ID:
1014 user_region = 1;
1015 if (! mm) {
1016 DBG_LOW(" user region with no mm !\n");
1017 rc = 1;
1018 goto bail;
1020 psize = get_slice_psize(mm, ea);
1021 ssize = user_segment_size(ea);
1022 vsid = get_vsid(mm->context.id, ea, ssize);
1023 break;
1024 case VMALLOC_REGION_ID:
1025 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1026 if (ea < VMALLOC_END)
1027 psize = mmu_vmalloc_psize;
1028 else
1029 psize = mmu_io_psize;
1030 ssize = mmu_kernel_ssize;
1031 break;
1032 default:
1033 /* Not a valid range
1034 * Send the problem up to do_page_fault
1036 rc = 1;
1037 goto bail;
1039 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1041 /* Bad address. */
1042 if (!vsid) {
1043 DBG_LOW("Bad address!\n");
1044 rc = 1;
1045 goto bail;
1047 /* Get pgdir */
1048 pgdir = mm->pgd;
1049 if (pgdir == NULL) {
1050 rc = 1;
1051 goto bail;
1054 /* Check CPU locality */
1055 tmp = cpumask_of(smp_processor_id());
1056 if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
1057 flags |= HPTE_LOCAL_UPDATE;
1059 #ifndef CONFIG_PPC_64K_PAGES
1060 /* If we use 4K pages and our psize is not 4K, then we might
1061 * be hitting a special driver mapping, and need to align the
1062 * address before we fetch the PTE.
1064 * It could also be a hugepage mapping, in which case this is
1065 * not necessary, but it's not harmful, either.
1067 if (psize != MMU_PAGE_4K)
1068 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1069 #endif /* CONFIG_PPC_64K_PAGES */
1071 /* Get PTE and page size from page tables */
1072 ptep = __find_linux_pte_or_hugepte(pgdir, ea, &is_thp, &hugeshift);
1073 if (ptep == NULL || !pte_present(*ptep)) {
1074 DBG_LOW(" no PTE !\n");
1075 rc = 1;
1076 goto bail;
1079 /* Add _PAGE_PRESENT to the required access perm */
1080 access |= _PAGE_PRESENT;
1082 /* Pre-check access permissions (will be re-checked atomically
1083 * in __hash_page_XX but this pre-check is a fast path
1085 if (access & ~pte_val(*ptep)) {
1086 DBG_LOW(" no access !\n");
1087 rc = 1;
1088 goto bail;
1091 if (hugeshift) {
1092 if (is_thp)
1093 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1094 trap, flags, ssize, psize);
1095 #ifdef CONFIG_HUGETLB_PAGE
1096 else
1097 rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1098 flags, ssize, hugeshift, psize);
1099 #else
1100 else {
1102 * if we have hugeshift, and is not transhuge with
1103 * hugetlb disabled, something is really wrong.
1105 rc = 1;
1106 WARN_ON(1);
1108 #endif
1109 if (current->mm == mm)
1110 check_paca_psize(ea, mm, psize, user_region);
1112 goto bail;
1115 #ifndef CONFIG_PPC_64K_PAGES
1116 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1117 #else
1118 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1119 pte_val(*(ptep + PTRS_PER_PTE)));
1120 #endif
1121 /* Do actual hashing */
1122 #ifdef CONFIG_PPC_64K_PAGES
1123 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1124 if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1125 demote_segment_4k(mm, ea);
1126 psize = MMU_PAGE_4K;
1129 /* If this PTE is non-cacheable and we have restrictions on
1130 * using non cacheable large pages, then we switch to 4k
1132 if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1133 (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1134 if (user_region) {
1135 demote_segment_4k(mm, ea);
1136 psize = MMU_PAGE_4K;
1137 } else if (ea < VMALLOC_END) {
1139 * some driver did a non-cacheable mapping
1140 * in vmalloc space, so switch vmalloc
1141 * to 4k pages
1143 printk(KERN_ALERT "Reducing vmalloc segment "
1144 "to 4kB pages because of "
1145 "non-cacheable mapping\n");
1146 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1147 copro_flush_all_slbs(mm);
1151 if (current->mm == mm)
1152 check_paca_psize(ea, mm, psize, user_region);
1153 #endif /* CONFIG_PPC_64K_PAGES */
1155 #ifdef CONFIG_PPC_64K_PAGES
1156 if (psize == MMU_PAGE_64K)
1157 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1158 flags, ssize);
1159 else
1160 #endif /* CONFIG_PPC_64K_PAGES */
1162 int spp = subpage_protection(mm, ea);
1163 if (access & spp)
1164 rc = -2;
1165 else
1166 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1167 flags, ssize, spp);
1170 /* Dump some info in case of hash insertion failure, they should
1171 * never happen so it is really useful to know if/when they do
1173 if (rc == -1)
1174 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1175 psize, pte_val(*ptep));
1176 #ifndef CONFIG_PPC_64K_PAGES
1177 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1178 #else
1179 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1180 pte_val(*(ptep + PTRS_PER_PTE)));
1181 #endif
1182 DBG_LOW(" -> rc=%d\n", rc);
1184 bail:
1185 exception_exit(prev_state);
1186 return rc;
1188 EXPORT_SYMBOL_GPL(hash_page_mm);
1190 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1191 unsigned long dsisr)
1193 unsigned long flags = 0;
1194 struct mm_struct *mm = current->mm;
1196 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1197 mm = &init_mm;
1199 if (dsisr & DSISR_NOHPTE)
1200 flags |= HPTE_NOHPTE_UPDATE;
1202 return hash_page_mm(mm, ea, access, trap, flags);
1204 EXPORT_SYMBOL_GPL(hash_page);
1206 void hash_preload(struct mm_struct *mm, unsigned long ea,
1207 unsigned long access, unsigned long trap)
1209 int hugepage_shift;
1210 unsigned long vsid;
1211 pgd_t *pgdir;
1212 pte_t *ptep;
1213 unsigned long flags;
1214 int rc, ssize, update_flags = 0;
1216 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1218 #ifdef CONFIG_PPC_MM_SLICES
1219 /* We only prefault standard pages for now */
1220 if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1221 return;
1222 #endif
1224 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1225 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1227 /* Get Linux PTE if available */
1228 pgdir = mm->pgd;
1229 if (pgdir == NULL)
1230 return;
1232 /* Get VSID */
1233 ssize = user_segment_size(ea);
1234 vsid = get_vsid(mm->context.id, ea, ssize);
1235 if (!vsid)
1236 return;
1238 * Hash doesn't like irqs. Walking linux page table with irq disabled
1239 * saves us from holding multiple locks.
1241 local_irq_save(flags);
1244 * THP pages use update_mmu_cache_pmd. We don't do
1245 * hash preload there. Hence can ignore THP here
1247 ptep = find_linux_pte_or_hugepte(pgdir, ea, NULL, &hugepage_shift);
1248 if (!ptep)
1249 goto out_exit;
1251 WARN_ON(hugepage_shift);
1252 #ifdef CONFIG_PPC_64K_PAGES
1253 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1254 * a 64K kernel), then we don't preload, hash_page() will take
1255 * care of it once we actually try to access the page.
1256 * That way we don't have to duplicate all of the logic for segment
1257 * page size demotion here
1259 if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1260 goto out_exit;
1261 #endif /* CONFIG_PPC_64K_PAGES */
1263 /* Is that local to this CPU ? */
1264 if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1265 update_flags |= HPTE_LOCAL_UPDATE;
1267 /* Hash it in */
1268 #ifdef CONFIG_PPC_64K_PAGES
1269 if (mm->context.user_psize == MMU_PAGE_64K)
1270 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1271 update_flags, ssize);
1272 else
1273 #endif /* CONFIG_PPC_64K_PAGES */
1274 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1275 ssize, subpage_protection(mm, ea));
1277 /* Dump some info in case of hash insertion failure, they should
1278 * never happen so it is really useful to know if/when they do
1280 if (rc == -1)
1281 hash_failure_debug(ea, access, vsid, trap, ssize,
1282 mm->context.user_psize,
1283 mm->context.user_psize,
1284 pte_val(*ptep));
1285 out_exit:
1286 local_irq_restore(flags);
1289 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1290 * do not forget to update the assembly call site !
1292 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1293 unsigned long flags)
1295 unsigned long hash, index, shift, hidx, slot;
1296 int local = flags & HPTE_LOCAL_UPDATE;
1298 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1299 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1300 hash = hpt_hash(vpn, shift, ssize);
1301 hidx = __rpte_to_hidx(pte, index);
1302 if (hidx & _PTEIDX_SECONDARY)
1303 hash = ~hash;
1304 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1305 slot += hidx & _PTEIDX_GROUP_IX;
1306 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1308 * We use same base page size and actual psize, because we don't
1309 * use these functions for hugepage
1311 ppc_md.hpte_invalidate(slot, vpn, psize, psize, ssize, local);
1312 } pte_iterate_hashed_end();
1314 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1315 /* Transactions are not aborted by tlbiel, only tlbie.
1316 * Without, syncing a page back to a block device w/ PIO could pick up
1317 * transactional data (bad!) so we force an abort here. Before the
1318 * sync the page will be made read-only, which will flush_hash_page.
1319 * BIG ISSUE here: if the kernel uses a page from userspace without
1320 * unmapping it first, it may see the speculated version.
1322 if (local && cpu_has_feature(CPU_FTR_TM) &&
1323 current->thread.regs &&
1324 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1325 tm_enable();
1326 tm_abort(TM_CAUSE_TLBI);
1328 #endif
1331 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1332 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1333 pmd_t *pmdp, unsigned int psize, int ssize,
1334 unsigned long flags)
1336 int i, max_hpte_count, valid;
1337 unsigned long s_addr;
1338 unsigned char *hpte_slot_array;
1339 unsigned long hidx, shift, vpn, hash, slot;
1340 int local = flags & HPTE_LOCAL_UPDATE;
1342 s_addr = addr & HPAGE_PMD_MASK;
1343 hpte_slot_array = get_hpte_slot_array(pmdp);
1345 * IF we try to do a HUGE PTE update after a withdraw is done.
1346 * we will find the below NULL. This happens when we do
1347 * split_huge_page_pmd
1349 if (!hpte_slot_array)
1350 return;
1352 if (ppc_md.hugepage_invalidate) {
1353 ppc_md.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1354 psize, ssize, local);
1355 goto tm_abort;
1358 * No bluk hpte removal support, invalidate each entry
1360 shift = mmu_psize_defs[psize].shift;
1361 max_hpte_count = HPAGE_PMD_SIZE >> shift;
1362 for (i = 0; i < max_hpte_count; i++) {
1364 * 8 bits per each hpte entries
1365 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1367 valid = hpte_valid(hpte_slot_array, i);
1368 if (!valid)
1369 continue;
1370 hidx = hpte_hash_index(hpte_slot_array, i);
1372 /* get the vpn */
1373 addr = s_addr + (i * (1ul << shift));
1374 vpn = hpt_vpn(addr, vsid, ssize);
1375 hash = hpt_hash(vpn, shift, ssize);
1376 if (hidx & _PTEIDX_SECONDARY)
1377 hash = ~hash;
1379 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1380 slot += hidx & _PTEIDX_GROUP_IX;
1381 ppc_md.hpte_invalidate(slot, vpn, psize,
1382 MMU_PAGE_16M, ssize, local);
1384 tm_abort:
1385 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1386 /* Transactions are not aborted by tlbiel, only tlbie.
1387 * Without, syncing a page back to a block device w/ PIO could pick up
1388 * transactional data (bad!) so we force an abort here. Before the
1389 * sync the page will be made read-only, which will flush_hash_page.
1390 * BIG ISSUE here: if the kernel uses a page from userspace without
1391 * unmapping it first, it may see the speculated version.
1393 if (local && cpu_has_feature(CPU_FTR_TM) &&
1394 current->thread.regs &&
1395 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1396 tm_enable();
1397 tm_abort(TM_CAUSE_TLBI);
1399 #endif
1400 return;
1402 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1404 void flush_hash_range(unsigned long number, int local)
1406 if (ppc_md.flush_hash_range)
1407 ppc_md.flush_hash_range(number, local);
1408 else {
1409 int i;
1410 struct ppc64_tlb_batch *batch =
1411 this_cpu_ptr(&ppc64_tlb_batch);
1413 for (i = 0; i < number; i++)
1414 flush_hash_page(batch->vpn[i], batch->pte[i],
1415 batch->psize, batch->ssize, local);
1420 * low_hash_fault is called when we the low level hash code failed
1421 * to instert a PTE due to an hypervisor error
1423 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1425 enum ctx_state prev_state = exception_enter();
1427 if (user_mode(regs)) {
1428 #ifdef CONFIG_PPC_SUBPAGE_PROT
1429 if (rc == -2)
1430 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1431 else
1432 #endif
1433 _exception(SIGBUS, regs, BUS_ADRERR, address);
1434 } else
1435 bad_page_fault(regs, address, SIGBUS);
1437 exception_exit(prev_state);
1440 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1441 unsigned long pa, unsigned long rflags,
1442 unsigned long vflags, int psize, int ssize)
1444 unsigned long hpte_group;
1445 long slot;
1447 repeat:
1448 hpte_group = ((hash & htab_hash_mask) *
1449 HPTES_PER_GROUP) & ~0x7UL;
1451 /* Insert into the hash table, primary slot */
1452 slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1453 psize, psize, ssize);
1455 /* Primary is full, try the secondary */
1456 if (unlikely(slot == -1)) {
1457 hpte_group = ((~hash & htab_hash_mask) *
1458 HPTES_PER_GROUP) & ~0x7UL;
1459 slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags,
1460 vflags | HPTE_V_SECONDARY,
1461 psize, psize, ssize);
1462 if (slot == -1) {
1463 if (mftb() & 0x1)
1464 hpte_group = ((hash & htab_hash_mask) *
1465 HPTES_PER_GROUP)&~0x7UL;
1467 ppc_md.hpte_remove(hpte_group);
1468 goto repeat;
1472 return slot;
1475 #ifdef CONFIG_DEBUG_PAGEALLOC
1476 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1478 unsigned long hash;
1479 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1480 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1481 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1482 long ret;
1484 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1486 /* Don't create HPTE entries for bad address */
1487 if (!vsid)
1488 return;
1490 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1491 HPTE_V_BOLTED,
1492 mmu_linear_psize, mmu_kernel_ssize);
1494 BUG_ON (ret < 0);
1495 spin_lock(&linear_map_hash_lock);
1496 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1497 linear_map_hash_slots[lmi] = ret | 0x80;
1498 spin_unlock(&linear_map_hash_lock);
1501 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1503 unsigned long hash, hidx, slot;
1504 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1505 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1507 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1508 spin_lock(&linear_map_hash_lock);
1509 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1510 hidx = linear_map_hash_slots[lmi] & 0x7f;
1511 linear_map_hash_slots[lmi] = 0;
1512 spin_unlock(&linear_map_hash_lock);
1513 if (hidx & _PTEIDX_SECONDARY)
1514 hash = ~hash;
1515 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1516 slot += hidx & _PTEIDX_GROUP_IX;
1517 ppc_md.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_linear_psize,
1518 mmu_kernel_ssize, 0);
1521 void __kernel_map_pages(struct page *page, int numpages, int enable)
1523 unsigned long flags, vaddr, lmi;
1524 int i;
1526 local_irq_save(flags);
1527 for (i = 0; i < numpages; i++, page++) {
1528 vaddr = (unsigned long)page_address(page);
1529 lmi = __pa(vaddr) >> PAGE_SHIFT;
1530 if (lmi >= linear_map_hash_count)
1531 continue;
1532 if (enable)
1533 kernel_map_linear_page(vaddr, lmi);
1534 else
1535 kernel_unmap_linear_page(vaddr, lmi);
1537 local_irq_restore(flags);
1539 #endif /* CONFIG_DEBUG_PAGEALLOC */
1541 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1542 phys_addr_t first_memblock_size)
1544 /* We don't currently support the first MEMBLOCK not mapping 0
1545 * physical on those processors
1547 BUG_ON(first_memblock_base != 0);
1549 /* On LPAR systems, the first entry is our RMA region,
1550 * non-LPAR 64-bit hash MMU systems don't have a limitation
1551 * on real mode access, but using the first entry works well
1552 * enough. We also clamp it to 1G to avoid some funky things
1553 * such as RTAS bugs etc...
1555 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1557 /* Finally limit subsequent allocations */
1558 memblock_set_current_limit(ppc64_rma_size);