2 * PPC Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
26 #ifdef CONFIG_HUGETLB_PAGE
28 #define PAGE_SHIFT_64K 16
29 #define PAGE_SHIFT_16M 24
30 #define PAGE_SHIFT_16G 34
32 unsigned int HPAGE_SHIFT
;
35 * Tracks gpages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES 128
44 u64 gpage_list
[MAX_NUMBER_GPAGES
];
45 unsigned int nr_gpages
;
47 static struct psize_gpages gpage_freearray
[MMU_PAGE_COUNT
];
49 #define MAX_NUMBER_GPAGES 1024
50 static u64 gpage_freearray
[MAX_NUMBER_GPAGES
];
51 static unsigned nr_gpages
;
54 #define hugepd_none(hpd) ((hpd).pd == 0)
56 #ifdef CONFIG_PPC_BOOK3S_64
58 * At this point we do the placement change only for BOOK3S 64. This would
59 * possibly work on other subarchs.
63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
66 * Defined in such a way that we can optimize away code block at build time
67 * if CONFIG_HUGETLB_PAGE=n.
69 int pmd_huge(pmd_t pmd
)
72 * leaf pte for huge page, bottom two bits != 00
74 return ((pmd_val(pmd
) & 0x3) != 0x0);
77 int pud_huge(pud_t pud
)
80 * leaf pte for huge page, bottom two bits != 00
82 return ((pud_val(pud
) & 0x3) != 0x0);
85 int pgd_huge(pgd_t pgd
)
88 * leaf pte for huge page, bottom two bits != 00
90 return ((pgd_val(pgd
) & 0x3) != 0x0);
93 #if defined(CONFIG_PPC_64K_PAGES) && defined(CONFIG_DEBUG_VM)
95 * This enables us to catch the wrong page directory format
96 * Moved here so that we can use WARN() in the call.
98 int hugepd_ok(hugepd_t hpd
)
103 * We should not find this format in page directory, warn otherwise.
105 is_hugepd
= (((hpd
.pd
& 0x3) == 0x0) && ((hpd
.pd
& HUGEPD_SHIFT_MASK
) != 0));
106 WARN(is_hugepd
, "Found wrong page directory format\n");
112 int pmd_huge(pmd_t pmd
)
117 int pud_huge(pud_t pud
)
122 int pgd_huge(pgd_t pgd
)
128 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
130 /* Only called for hugetlbfs pages, hence can ignore THP */
131 return __find_linux_pte_or_hugepte(mm
->pgd
, addr
, NULL
, NULL
);
134 static int __hugepte_alloc(struct mm_struct
*mm
, hugepd_t
*hpdp
,
135 unsigned long address
, unsigned pdshift
, unsigned pshift
)
137 struct kmem_cache
*cachep
;
140 #ifdef CONFIG_PPC_FSL_BOOK3E
142 int num_hugepd
= 1 << (pshift
- pdshift
);
143 cachep
= hugepte_cache
;
145 cachep
= PGT_CACHE(pdshift
- pshift
);
148 new = kmem_cache_zalloc(cachep
, GFP_KERNEL
|__GFP_REPEAT
);
150 BUG_ON(pshift
> HUGEPD_SHIFT_MASK
);
151 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK
);
156 spin_lock(&mm
->page_table_lock
);
157 #ifdef CONFIG_PPC_FSL_BOOK3E
159 * We have multiple higher-level entries that point to the same
160 * actual pte location. Fill in each as we go and backtrack on error.
161 * We need all of these so the DTLB pgtable walk code can find the
162 * right higher-level entry without knowing if it's a hugepage or not.
164 for (i
= 0; i
< num_hugepd
; i
++, hpdp
++) {
165 if (unlikely(!hugepd_none(*hpdp
)))
168 /* We use the old format for PPC_FSL_BOOK3E */
169 hpdp
->pd
= ((unsigned long)new & ~PD_HUGE
) | pshift
;
171 /* If we bailed from the for loop early, an error occurred, clean up */
172 if (i
< num_hugepd
) {
173 for (i
= i
- 1 ; i
>= 0; i
--, hpdp
--)
175 kmem_cache_free(cachep
, new);
178 if (!hugepd_none(*hpdp
))
179 kmem_cache_free(cachep
, new);
181 #ifdef CONFIG_PPC_BOOK3S_64
182 hpdp
->pd
= (unsigned long)new |
183 (shift_to_mmu_psize(pshift
) << 2);
185 hpdp
->pd
= ((unsigned long)new & ~PD_HUGE
) | pshift
;
189 spin_unlock(&mm
->page_table_lock
);
194 * These macros define how to determine which level of the page table holds
197 #ifdef CONFIG_PPC_FSL_BOOK3E
198 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
199 #define HUGEPD_PUD_SHIFT PUD_SHIFT
201 #define HUGEPD_PGD_SHIFT PUD_SHIFT
202 #define HUGEPD_PUD_SHIFT PMD_SHIFT
205 #ifdef CONFIG_PPC_BOOK3S_64
207 * At this point we do the placement change only for BOOK3S 64. This would
208 * possibly work on other subarchs.
210 pte_t
*huge_pte_alloc(struct mm_struct
*mm
, unsigned long addr
, unsigned long sz
)
215 hugepd_t
*hpdp
= NULL
;
216 unsigned pshift
= __ffs(sz
);
217 unsigned pdshift
= PGDIR_SHIFT
;
220 pg
= pgd_offset(mm
, addr
);
222 if (pshift
== PGDIR_SHIFT
)
225 else if (pshift
> PUD_SHIFT
)
227 * We need to use hugepd table
229 hpdp
= (hugepd_t
*)pg
;
232 pu
= pud_alloc(mm
, pg
, addr
);
233 if (pshift
== PUD_SHIFT
)
235 else if (pshift
> PMD_SHIFT
)
236 hpdp
= (hugepd_t
*)pu
;
239 pm
= pmd_alloc(mm
, pu
, addr
);
240 if (pshift
== PMD_SHIFT
)
244 hpdp
= (hugepd_t
*)pm
;
250 BUG_ON(!hugepd_none(*hpdp
) && !hugepd_ok(*hpdp
));
252 if (hugepd_none(*hpdp
) && __hugepte_alloc(mm
, hpdp
, addr
, pdshift
, pshift
))
255 return hugepte_offset(*hpdp
, addr
, pdshift
);
260 pte_t
*huge_pte_alloc(struct mm_struct
*mm
, unsigned long addr
, unsigned long sz
)
265 hugepd_t
*hpdp
= NULL
;
266 unsigned pshift
= __ffs(sz
);
267 unsigned pdshift
= PGDIR_SHIFT
;
271 pg
= pgd_offset(mm
, addr
);
273 if (pshift
>= HUGEPD_PGD_SHIFT
) {
274 hpdp
= (hugepd_t
*)pg
;
277 pu
= pud_alloc(mm
, pg
, addr
);
278 if (pshift
>= HUGEPD_PUD_SHIFT
) {
279 hpdp
= (hugepd_t
*)pu
;
282 pm
= pmd_alloc(mm
, pu
, addr
);
283 hpdp
= (hugepd_t
*)pm
;
290 BUG_ON(!hugepd_none(*hpdp
) && !hugepd_ok(*hpdp
));
292 if (hugepd_none(*hpdp
) && __hugepte_alloc(mm
, hpdp
, addr
, pdshift
, pshift
))
295 return hugepte_offset(*hpdp
, addr
, pdshift
);
299 #ifdef CONFIG_PPC_FSL_BOOK3E
300 /* Build list of addresses of gigantic pages. This function is used in early
301 * boot before the buddy allocator is setup.
303 void add_gpage(u64 addr
, u64 page_size
, unsigned long number_of_pages
)
305 unsigned int idx
= shift_to_mmu_psize(__ffs(page_size
));
311 gpage_freearray
[idx
].nr_gpages
= number_of_pages
;
313 for (i
= 0; i
< number_of_pages
; i
++) {
314 gpage_freearray
[idx
].gpage_list
[i
] = addr
;
320 * Moves the gigantic page addresses from the temporary list to the
321 * huge_boot_pages list.
323 int alloc_bootmem_huge_page(struct hstate
*hstate
)
325 struct huge_bootmem_page
*m
;
326 int idx
= shift_to_mmu_psize(huge_page_shift(hstate
));
327 int nr_gpages
= gpage_freearray
[idx
].nr_gpages
;
332 #ifdef CONFIG_HIGHMEM
334 * If gpages can be in highmem we can't use the trick of storing the
335 * data structure in the page; allocate space for this
337 m
= memblock_virt_alloc(sizeof(struct huge_bootmem_page
), 0);
338 m
->phys
= gpage_freearray
[idx
].gpage_list
[--nr_gpages
];
340 m
= phys_to_virt(gpage_freearray
[idx
].gpage_list
[--nr_gpages
]);
343 list_add(&m
->list
, &huge_boot_pages
);
344 gpage_freearray
[idx
].nr_gpages
= nr_gpages
;
345 gpage_freearray
[idx
].gpage_list
[nr_gpages
] = 0;
351 * Scan the command line hugepagesz= options for gigantic pages; store those in
352 * a list that we use to allocate the memory once all options are parsed.
355 unsigned long gpage_npages
[MMU_PAGE_COUNT
];
357 static int __init
do_gpage_early_setup(char *param
, char *val
,
358 const char *unused
, void *arg
)
360 static phys_addr_t size
;
361 unsigned long npages
;
364 * The hugepagesz and hugepages cmdline options are interleaved. We
365 * use the size variable to keep track of whether or not this was done
366 * properly and skip over instances where it is incorrect. Other
367 * command-line parsing code will issue warnings, so we don't need to.
370 if ((strcmp(param
, "default_hugepagesz") == 0) ||
371 (strcmp(param
, "hugepagesz") == 0)) {
372 size
= memparse(val
, NULL
);
373 } else if (strcmp(param
, "hugepages") == 0) {
375 if (sscanf(val
, "%lu", &npages
) <= 0)
377 if (npages
> MAX_NUMBER_GPAGES
) {
378 pr_warn("MMU: %lu pages requested for page "
379 "size %llu KB, limiting to "
380 __stringify(MAX_NUMBER_GPAGES
) "\n",
381 npages
, size
/ 1024);
382 npages
= MAX_NUMBER_GPAGES
;
384 gpage_npages
[shift_to_mmu_psize(__ffs(size
))] = npages
;
393 * This function allocates physical space for pages that are larger than the
394 * buddy allocator can handle. We want to allocate these in highmem because
395 * the amount of lowmem is limited. This means that this function MUST be
396 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
397 * allocate to grab highmem.
399 void __init
reserve_hugetlb_gpages(void)
401 static __initdata
char cmdline
[COMMAND_LINE_SIZE
];
402 phys_addr_t size
, base
;
405 strlcpy(cmdline
, boot_command_line
, COMMAND_LINE_SIZE
);
406 parse_args("hugetlb gpages", cmdline
, NULL
, 0, 0, 0,
407 NULL
, &do_gpage_early_setup
);
410 * Walk gpage list in reverse, allocating larger page sizes first.
411 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
412 * When we reach the point in the list where pages are no longer
413 * considered gpages, we're done.
415 for (i
= MMU_PAGE_COUNT
-1; i
>= 0; i
--) {
416 if (mmu_psize_defs
[i
].shift
== 0 || gpage_npages
[i
] == 0)
418 else if (mmu_psize_to_shift(i
) < (MAX_ORDER
+ PAGE_SHIFT
))
421 size
= (phys_addr_t
)(1ULL << mmu_psize_to_shift(i
));
422 base
= memblock_alloc_base(size
* gpage_npages
[i
], size
,
423 MEMBLOCK_ALLOC_ANYWHERE
);
424 add_gpage(base
, size
, gpage_npages
[i
]);
428 #else /* !PPC_FSL_BOOK3E */
430 /* Build list of addresses of gigantic pages. This function is used in early
431 * boot before the buddy allocator is setup.
433 void add_gpage(u64 addr
, u64 page_size
, unsigned long number_of_pages
)
437 while (number_of_pages
> 0) {
438 gpage_freearray
[nr_gpages
] = addr
;
445 /* Moves the gigantic page addresses from the temporary list to the
446 * huge_boot_pages list.
448 int alloc_bootmem_huge_page(struct hstate
*hstate
)
450 struct huge_bootmem_page
*m
;
453 m
= phys_to_virt(gpage_freearray
[--nr_gpages
]);
454 gpage_freearray
[nr_gpages
] = 0;
455 list_add(&m
->list
, &huge_boot_pages
);
461 #ifdef CONFIG_PPC_FSL_BOOK3E
462 #define HUGEPD_FREELIST_SIZE \
463 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
465 struct hugepd_freelist
{
471 static DEFINE_PER_CPU(struct hugepd_freelist
*, hugepd_freelist_cur
);
473 static void hugepd_free_rcu_callback(struct rcu_head
*head
)
475 struct hugepd_freelist
*batch
=
476 container_of(head
, struct hugepd_freelist
, rcu
);
479 for (i
= 0; i
< batch
->index
; i
++)
480 kmem_cache_free(hugepte_cache
, batch
->ptes
[i
]);
482 free_page((unsigned long)batch
);
485 static void hugepd_free(struct mmu_gather
*tlb
, void *hugepte
)
487 struct hugepd_freelist
**batchp
;
489 batchp
= this_cpu_ptr(&hugepd_freelist_cur
);
491 if (atomic_read(&tlb
->mm
->mm_users
) < 2 ||
492 cpumask_equal(mm_cpumask(tlb
->mm
),
493 cpumask_of(smp_processor_id()))) {
494 kmem_cache_free(hugepte_cache
, hugepte
);
495 put_cpu_var(hugepd_freelist_cur
);
499 if (*batchp
== NULL
) {
500 *batchp
= (struct hugepd_freelist
*)__get_free_page(GFP_ATOMIC
);
501 (*batchp
)->index
= 0;
504 (*batchp
)->ptes
[(*batchp
)->index
++] = hugepte
;
505 if ((*batchp
)->index
== HUGEPD_FREELIST_SIZE
) {
506 call_rcu_sched(&(*batchp
)->rcu
, hugepd_free_rcu_callback
);
509 put_cpu_var(hugepd_freelist_cur
);
513 static void free_hugepd_range(struct mmu_gather
*tlb
, hugepd_t
*hpdp
, int pdshift
,
514 unsigned long start
, unsigned long end
,
515 unsigned long floor
, unsigned long ceiling
)
517 pte_t
*hugepte
= hugepd_page(*hpdp
);
520 unsigned long pdmask
= ~((1UL << pdshift
) - 1);
521 unsigned int num_hugepd
= 1;
523 #ifdef CONFIG_PPC_FSL_BOOK3E
524 /* Note: On fsl the hpdp may be the first of several */
525 num_hugepd
= (1 << (hugepd_shift(*hpdp
) - pdshift
));
527 unsigned int shift
= hugepd_shift(*hpdp
);
538 if (end
- 1 > ceiling
- 1)
541 for (i
= 0; i
< num_hugepd
; i
++, hpdp
++)
544 #ifdef CONFIG_PPC_FSL_BOOK3E
545 hugepd_free(tlb
, hugepte
);
547 pgtable_free_tlb(tlb
, hugepte
, pdshift
- shift
);
551 static void hugetlb_free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
552 unsigned long addr
, unsigned long end
,
553 unsigned long floor
, unsigned long ceiling
)
561 pmd
= pmd_offset(pud
, addr
);
562 next
= pmd_addr_end(addr
, end
);
563 if (!is_hugepd(__hugepd(pmd_val(*pmd
)))) {
565 * if it is not hugepd pointer, we should already find
568 WARN_ON(!pmd_none_or_clear_bad(pmd
));
571 #ifdef CONFIG_PPC_FSL_BOOK3E
573 * Increment next by the size of the huge mapping since
574 * there may be more than one entry at this level for a
575 * single hugepage, but all of them point to
576 * the same kmem cache that holds the hugepte.
578 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pmd
));
580 free_hugepd_range(tlb
, (hugepd_t
*)pmd
, PMD_SHIFT
,
581 addr
, next
, floor
, ceiling
);
582 } while (addr
= next
, addr
!= end
);
592 if (end
- 1 > ceiling
- 1)
595 pmd
= pmd_offset(pud
, start
);
597 pmd_free_tlb(tlb
, pmd
, start
);
598 mm_dec_nr_pmds(tlb
->mm
);
601 static void hugetlb_free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
602 unsigned long addr
, unsigned long end
,
603 unsigned long floor
, unsigned long ceiling
)
611 pud
= pud_offset(pgd
, addr
);
612 next
= pud_addr_end(addr
, end
);
613 if (!is_hugepd(__hugepd(pud_val(*pud
)))) {
614 if (pud_none_or_clear_bad(pud
))
616 hugetlb_free_pmd_range(tlb
, pud
, addr
, next
, floor
,
619 #ifdef CONFIG_PPC_FSL_BOOK3E
621 * Increment next by the size of the huge mapping since
622 * there may be more than one entry at this level for a
623 * single hugepage, but all of them point to
624 * the same kmem cache that holds the hugepte.
626 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pud
));
628 free_hugepd_range(tlb
, (hugepd_t
*)pud
, PUD_SHIFT
,
629 addr
, next
, floor
, ceiling
);
631 } while (addr
= next
, addr
!= end
);
637 ceiling
&= PGDIR_MASK
;
641 if (end
- 1 > ceiling
- 1)
644 pud
= pud_offset(pgd
, start
);
646 pud_free_tlb(tlb
, pud
, start
);
650 * This function frees user-level page tables of a process.
652 void hugetlb_free_pgd_range(struct mmu_gather
*tlb
,
653 unsigned long addr
, unsigned long end
,
654 unsigned long floor
, unsigned long ceiling
)
660 * Because there are a number of different possible pagetable
661 * layouts for hugepage ranges, we limit knowledge of how
662 * things should be laid out to the allocation path
663 * (huge_pte_alloc(), above). Everything else works out the
664 * structure as it goes from information in the hugepd
665 * pointers. That means that we can't here use the
666 * optimization used in the normal page free_pgd_range(), of
667 * checking whether we're actually covering a large enough
668 * range to have to do anything at the top level of the walk
669 * instead of at the bottom.
671 * To make sense of this, you should probably go read the big
672 * block comment at the top of the normal free_pgd_range(),
677 next
= pgd_addr_end(addr
, end
);
678 pgd
= pgd_offset(tlb
->mm
, addr
);
679 if (!is_hugepd(__hugepd(pgd_val(*pgd
)))) {
680 if (pgd_none_or_clear_bad(pgd
))
682 hugetlb_free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
684 #ifdef CONFIG_PPC_FSL_BOOK3E
686 * Increment next by the size of the huge mapping since
687 * there may be more than one entry at the pgd level
688 * for a single hugepage, but all of them point to the
689 * same kmem cache that holds the hugepte.
691 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pgd
));
693 free_hugepd_range(tlb
, (hugepd_t
*)pgd
, PGDIR_SHIFT
,
694 addr
, next
, floor
, ceiling
);
696 } while (addr
= next
, addr
!= end
);
700 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
701 * To prevent hugepage split, disable irq.
704 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
, int write
)
709 unsigned long mask
, flags
;
710 struct page
*page
= ERR_PTR(-EINVAL
);
712 local_irq_save(flags
);
713 ptep
= find_linux_pte_or_hugepte(mm
->pgd
, address
, &is_thp
, &shift
);
716 pte
= READ_ONCE(*ptep
);
718 * Verify it is a huge page else bail.
719 * Transparent hugepages are handled by generic code. We can skip them
722 if (!shift
|| is_thp
)
725 if (!pte_present(pte
)) {
729 mask
= (1UL << shift
) - 1;
730 page
= pte_page(pte
);
732 page
+= (address
& mask
) / PAGE_SIZE
;
735 local_irq_restore(flags
);
740 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
741 pmd_t
*pmd
, int write
)
748 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
749 pud_t
*pud
, int write
)
755 static unsigned long hugepte_addr_end(unsigned long addr
, unsigned long end
,
758 unsigned long __boundary
= (addr
+ sz
) & ~(sz
-1);
759 return (__boundary
- 1 < end
- 1) ? __boundary
: end
;
762 int gup_huge_pd(hugepd_t hugepd
, unsigned long addr
, unsigned pdshift
,
763 unsigned long end
, int write
, struct page
**pages
, int *nr
)
766 unsigned long sz
= 1UL << hugepd_shift(hugepd
);
769 ptep
= hugepte_offset(hugepd
, addr
, pdshift
);
771 next
= hugepte_addr_end(addr
, end
, sz
);
772 if (!gup_hugepte(ptep
, sz
, addr
, end
, write
, pages
, nr
))
774 } while (ptep
++, addr
= next
, addr
!= end
);
779 #ifdef CONFIG_PPC_MM_SLICES
780 unsigned long hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
781 unsigned long len
, unsigned long pgoff
,
784 struct hstate
*hstate
= hstate_file(file
);
785 int mmu_psize
= shift_to_mmu_psize(huge_page_shift(hstate
));
787 return slice_get_unmapped_area(addr
, len
, flags
, mmu_psize
, 1);
791 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
793 #ifdef CONFIG_PPC_MM_SLICES
794 unsigned int psize
= get_slice_psize(vma
->vm_mm
, vma
->vm_start
);
796 return 1UL << mmu_psize_to_shift(psize
);
798 if (!is_vm_hugetlb_page(vma
))
801 return huge_page_size(hstate_vma(vma
));
805 static inline bool is_power_of_4(unsigned long x
)
807 if (is_power_of_2(x
))
808 return (__ilog2(x
) % 2) ? false : true;
812 static int __init
add_huge_page_size(unsigned long long size
)
814 int shift
= __ffs(size
);
817 /* Check that it is a page size supported by the hardware and
818 * that it fits within pagetable and slice limits. */
819 #ifdef CONFIG_PPC_FSL_BOOK3E
820 if ((size
< PAGE_SIZE
) || !is_power_of_4(size
))
823 if (!is_power_of_2(size
)
824 || (shift
> SLICE_HIGH_SHIFT
) || (shift
<= PAGE_SHIFT
))
828 if ((mmu_psize
= shift_to_mmu_psize(shift
)) < 0)
831 BUG_ON(mmu_psize_defs
[mmu_psize
].shift
!= shift
);
833 /* Return if huge page size has already been setup */
834 if (size_to_hstate(size
))
837 hugetlb_add_hstate(shift
- PAGE_SHIFT
);
842 static int __init
hugepage_setup_sz(char *str
)
844 unsigned long long size
;
846 size
= memparse(str
, &str
);
848 if (add_huge_page_size(size
) != 0)
849 printk(KERN_WARNING
"Invalid huge page size specified(%llu)\n", size
);
853 __setup("hugepagesz=", hugepage_setup_sz
);
855 #ifdef CONFIG_PPC_FSL_BOOK3E
856 struct kmem_cache
*hugepte_cache
;
857 static int __init
hugetlbpage_init(void)
861 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
864 if (!mmu_psize_defs
[psize
].shift
)
867 shift
= mmu_psize_to_shift(psize
);
869 /* Don't treat normal page sizes as huge... */
870 if (shift
!= PAGE_SHIFT
)
871 if (add_huge_page_size(1ULL << shift
) < 0)
876 * Create a kmem cache for hugeptes. The bottom bits in the pte have
877 * size information encoded in them, so align them to allow this
879 hugepte_cache
= kmem_cache_create("hugepte-cache", sizeof(pte_t
),
880 HUGEPD_SHIFT_MASK
+ 1, 0, NULL
);
881 if (hugepte_cache
== NULL
)
882 panic("%s: Unable to create kmem cache for hugeptes\n",
885 /* Default hpage size = 4M */
886 if (mmu_psize_defs
[MMU_PAGE_4M
].shift
)
887 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_4M
].shift
;
889 panic("%s: Unable to set default huge page size\n", __func__
);
895 static int __init
hugetlbpage_init(void)
899 if (!mmu_has_feature(MMU_FTR_16M_PAGE
))
902 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
906 if (!mmu_psize_defs
[psize
].shift
)
909 shift
= mmu_psize_to_shift(psize
);
911 if (add_huge_page_size(1ULL << shift
) < 0)
914 if (shift
< PMD_SHIFT
)
916 else if (shift
< PUD_SHIFT
)
919 pdshift
= PGDIR_SHIFT
;
921 * if we have pdshift and shift value same, we don't
922 * use pgt cache for hugepd.
924 if (pdshift
!= shift
) {
925 pgtable_cache_add(pdshift
- shift
, NULL
);
926 if (!PGT_CACHE(pdshift
- shift
))
927 panic("hugetlbpage_init(): could not create "
928 "pgtable cache for %d bit pagesize\n", shift
);
932 /* Set default large page size. Currently, we pick 16M or 1M
933 * depending on what is available
935 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
936 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_16M
].shift
;
937 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
938 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_1M
].shift
;
943 arch_initcall(hugetlbpage_init
);
945 void flush_dcache_icache_hugepage(struct page
*page
)
950 BUG_ON(!PageCompound(page
));
952 for (i
= 0; i
< (1UL << compound_order(page
)); i
++) {
953 if (!PageHighMem(page
)) {
954 __flush_dcache_icache(page_address(page
+i
));
956 start
= kmap_atomic(page
+i
);
957 __flush_dcache_icache(start
);
958 kunmap_atomic(start
);
963 #endif /* CONFIG_HUGETLB_PAGE */
966 * We have 4 cases for pgds and pmds:
967 * (1) invalid (all zeroes)
968 * (2) pointer to next table, as normal; bottom 6 bits == 0
969 * (3) leaf pte for huge page, bottom two bits != 00
970 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
972 * So long as we atomically load page table pointers we are safe against teardown,
973 * we can follow the address down to the the page and take a ref on it.
974 * This function need to be called with interrupts disabled. We use this variant
975 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
978 pte_t
*__find_linux_pte_or_hugepte(pgd_t
*pgdir
, unsigned long ea
,
979 bool *is_thp
, unsigned *shift
)
985 hugepd_t
*hpdp
= NULL
;
986 unsigned pdshift
= PGDIR_SHIFT
;
994 pgdp
= pgdir
+ pgd_index(ea
);
995 pgd
= READ_ONCE(*pgdp
);
997 * Always operate on the local stack value. This make sure the
998 * value don't get updated by a parallel THP split/collapse,
999 * page fault or a page unmap. The return pte_t * is still not
1000 * stable. So should be checked there for above conditions.
1004 else if (pgd_huge(pgd
)) {
1005 ret_pte
= (pte_t
*) pgdp
;
1007 } else if (is_hugepd(__hugepd(pgd_val(pgd
))))
1008 hpdp
= (hugepd_t
*)&pgd
;
1011 * Even if we end up with an unmap, the pgtable will not
1012 * be freed, because we do an rcu free and here we are
1015 pdshift
= PUD_SHIFT
;
1016 pudp
= pud_offset(&pgd
, ea
);
1017 pud
= READ_ONCE(*pudp
);
1021 else if (pud_huge(pud
)) {
1022 ret_pte
= (pte_t
*) pudp
;
1024 } else if (is_hugepd(__hugepd(pud_val(pud
))))
1025 hpdp
= (hugepd_t
*)&pud
;
1027 pdshift
= PMD_SHIFT
;
1028 pmdp
= pmd_offset(&pud
, ea
);
1029 pmd
= READ_ONCE(*pmdp
);
1031 * A hugepage collapse is captured by pmd_none, because
1032 * it mark the pmd none and do a hpte invalidate.
1034 * We don't worry about pmd_trans_splitting here, The
1035 * caller if it needs to handle the splitting case
1036 * should check for that.
1041 if (pmd_trans_huge(pmd
)) {
1044 ret_pte
= (pte_t
*) pmdp
;
1048 if (pmd_huge(pmd
)) {
1049 ret_pte
= (pte_t
*) pmdp
;
1051 } else if (is_hugepd(__hugepd(pmd_val(pmd
))))
1052 hpdp
= (hugepd_t
*)&pmd
;
1054 return pte_offset_kernel(&pmd
, ea
);
1060 ret_pte
= hugepte_offset(*hpdp
, ea
, pdshift
);
1061 pdshift
= hugepd_shift(*hpdp
);
1067 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte
);
1069 int gup_hugepte(pte_t
*ptep
, unsigned long sz
, unsigned long addr
,
1070 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1073 unsigned long pte_end
;
1074 struct page
*head
, *page
, *tail
;
1078 pte_end
= (addr
+ sz
) & ~(sz
-1);
1082 pte
= READ_ONCE(*ptep
);
1083 mask
= _PAGE_PRESENT
| _PAGE_USER
;
1087 if ((pte_val(pte
) & mask
) != mask
)
1090 /* hugepages are never "special" */
1091 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
1094 head
= pte_page(pte
);
1096 page
= head
+ ((addr
& (sz
-1)) >> PAGE_SHIFT
);
1099 VM_BUG_ON(compound_head(page
) != head
);
1104 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1106 if (!page_cache_add_speculative(head
, refs
)) {
1111 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
1112 /* Could be optimized better */
1120 * Any tail page need their mapcount reference taken before we
1125 get_huge_page_tail(tail
);