3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 * Derived from "include/asm-i386/pgtable.h"
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
34 extern pgd_t swapper_pg_dir
[] __attribute__ ((aligned (4096)));
35 extern void paging_init(void);
36 extern void vmem_map_init(void);
39 * The S390 doesn't have any external MMU info: the kernel page
40 * tables contain all the necessary information.
42 #define update_mmu_cache(vma, address, ptep) do { } while (0)
43 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
46 * ZERO_PAGE is a global shared page that is always zero; used
47 * for zero-mapped memory areas etc..
50 extern unsigned long empty_zero_page
;
51 extern unsigned long zero_page_mask
;
53 #define ZERO_PAGE(vaddr) \
54 (virt_to_page((void *)(empty_zero_page + \
55 (((unsigned long)(vaddr)) &zero_page_mask))))
56 #define __HAVE_COLOR_ZERO_PAGE
58 /* TODO: s390 cannot support io_remap_pfn_range... */
59 #endif /* !__ASSEMBLY__ */
62 * PMD_SHIFT determines the size of the area a second-level page
64 * PGDIR_SHIFT determines what a third-level page table entry can map
68 #define PGDIR_SHIFT 42
70 #define PMD_SIZE (1UL << PMD_SHIFT)
71 #define PMD_MASK (~(PMD_SIZE-1))
72 #define PUD_SIZE (1UL << PUD_SHIFT)
73 #define PUD_MASK (~(PUD_SIZE-1))
74 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75 #define PGDIR_MASK (~(PGDIR_SIZE-1))
78 * entries per page directory level: the S390 is two-level, so
79 * we don't really have any PMD directory physically.
80 * for S390 segment-table entries are combined to one PGD
81 * that leads to 1024 pte per pgd
83 #define PTRS_PER_PTE 256
84 #define PTRS_PER_PMD 2048
85 #define PTRS_PER_PUD 2048
86 #define PTRS_PER_PGD 2048
88 #define FIRST_USER_ADDRESS 0UL
90 #define pte_ERROR(e) \
91 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
92 #define pmd_ERROR(e) \
93 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
94 #define pud_ERROR(e) \
95 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
96 #define pgd_ERROR(e) \
97 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
101 * The vmalloc and module area will always be on the topmost area of the
102 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
103 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
104 * modules will reside. That makes sure that inter module branches always
105 * happen without trampolines and in addition the placement within a 2GB frame
106 * is branch prediction unit friendly.
108 extern unsigned long VMALLOC_START
;
109 extern unsigned long VMALLOC_END
;
110 extern struct page
*vmemmap
;
112 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
114 extern unsigned long MODULES_VADDR
;
115 extern unsigned long MODULES_END
;
116 #define MODULES_VADDR MODULES_VADDR
117 #define MODULES_END MODULES_END
118 #define MODULES_LEN (1UL << 31)
120 static inline int is_module_addr(void *addr
)
122 BUILD_BUG_ON(MODULES_LEN
> (1UL << 31));
123 if (addr
< (void *)MODULES_VADDR
)
125 if (addr
> (void *)MODULES_END
)
131 * A 64 bit pagetable entry of S390 has following format:
133 * 0000000000111111111122222222223333333333444444444455555555556666
134 * 0123456789012345678901234567890123456789012345678901234567890123
136 * I Page-Invalid Bit: Page is not available for address-translation
137 * P Page-Protection Bit: Store access not possible for page
138 * C Change-bit override: HW is not required to set change bit
140 * A 64 bit segmenttable entry of S390 has following format:
141 * | P-table origin | TT
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
145 * I Segment-Invalid Bit: Segment is not available for address-translation
146 * C Common-Segment Bit: Segment is not private (PoP 3-30)
147 * P Page-Protection Bit: Store access not possible for page
150 * A 64 bit region table entry of S390 has following format:
151 * | S-table origin | TF TTTL
152 * 0000000000111111111122222222223333333333444444444455555555556666
153 * 0123456789012345678901234567890123456789012345678901234567890123
155 * I Segment-Invalid Bit: Segment is not available for address-translation
160 * The 64 bit regiontable origin of S390 has following format:
161 * | region table origon | DTTL
162 * 0000000000111111111122222222223333333333444444444455555555556666
163 * 0123456789012345678901234567890123456789012345678901234567890123
165 * X Space-Switch event:
166 * G Segment-Invalid Bit:
167 * P Private-Space Bit:
168 * S Storage-Alteration:
172 * A storage key has the following format:
176 * F : fetch protection bit
181 /* Hardware bits in the page table entry */
182 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
183 #define _PAGE_INVALID 0x400 /* HW invalid bit */
184 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
186 /* Software bits in the page table entry */
187 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
188 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
189 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
190 #define _PAGE_READ 0x010 /* SW pte read bit */
191 #define _PAGE_WRITE 0x020 /* SW pte write bit */
192 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
193 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
194 #define __HAVE_ARCH_PTE_SPECIAL
196 #ifdef CONFIG_MEM_SOFT_DIRTY
197 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
199 #define _PAGE_SOFT_DIRTY 0x000
202 /* Set of bits not changed in pte_modify */
203 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
204 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
207 * handle_pte_fault uses pte_present and pte_none to find out the pte type
208 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
209 * distinguish present from not-present ptes. It is changed only with the page
212 * The following table gives the different possible bit combinations for
213 * the pte hardware and software bits in the last 12 bits of a pte
214 * (. unassigned bit, x don't care, t swap type):
222 * prot-none, clean, old .11.xx0000.1
223 * prot-none, clean, young .11.xx0001.1
224 * prot-none, dirty, old .10.xx0010.1
225 * prot-none, dirty, young .10.xx0011.1
226 * read-only, clean, old .11.xx0100.1
227 * read-only, clean, young .01.xx0101.1
228 * read-only, dirty, old .11.xx0110.1
229 * read-only, dirty, young .01.xx0111.1
230 * read-write, clean, old .11.xx1100.1
231 * read-write, clean, young .01.xx1101.1
232 * read-write, dirty, old .10.xx1110.1
233 * read-write, dirty, young .00.xx1111.1
234 * HW-bits: R read-only, I invalid
235 * SW-bits: p present, y young, d dirty, r read, w write, s special,
238 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
239 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
240 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
243 /* Bits in the segment/region table address-space-control-element */
244 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
245 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
246 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
247 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
248 #define _ASCE_REAL_SPACE 0x20 /* real space control */
249 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
250 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
251 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
252 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
253 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
254 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
256 /* Bits in the region table entry */
257 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
258 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
259 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
260 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
261 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
262 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
263 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
264 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
266 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
267 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
268 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
269 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
270 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
271 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
273 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
274 #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
276 /* Bits in the segment table entry */
277 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
278 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
279 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
280 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
281 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
282 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
284 #define _SEGMENT_ENTRY (0)
285 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
287 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
288 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
289 #define _SEGMENT_ENTRY_SPLIT 0x0800 /* THP splitting bit */
290 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
291 #define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
292 #define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
294 #ifdef CONFIG_MEM_SOFT_DIRTY
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
297 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
301 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
303 * prot-none, clean, old 00..1...1...00
304 * prot-none, clean, young 01..1...1...00
305 * prot-none, dirty, old 10..1...1...00
306 * prot-none, dirty, young 11..1...1...00
307 * read-only, clean, old 00..1...1...01
308 * read-only, clean, young 01..1...0...01
309 * read-only, dirty, old 10..1...1...01
310 * read-only, dirty, young 11..1...0...01
311 * read-write, clean, old 00..1...1...11
312 * read-write, clean, young 01..1...0...11
313 * read-write, dirty, old 10..0...1...11
314 * read-write, dirty, young 11..0...0...11
315 * The segment table origin is used to distinguish empty (origin==0) from
316 * read-write, old segment table entries (origin!=0)
317 * HW-bits: R read-only, I invalid
318 * SW-bits: y young, d dirty, r read, w write
321 #define _SEGMENT_ENTRY_SPLIT_BIT 11 /* THP splitting bit number */
323 /* Page status table bits for virtualization */
324 #define PGSTE_ACC_BITS 0xf000000000000000UL
325 #define PGSTE_FP_BIT 0x0800000000000000UL
326 #define PGSTE_PCL_BIT 0x0080000000000000UL
327 #define PGSTE_HR_BIT 0x0040000000000000UL
328 #define PGSTE_HC_BIT 0x0020000000000000UL
329 #define PGSTE_GR_BIT 0x0004000000000000UL
330 #define PGSTE_GC_BIT 0x0002000000000000UL
331 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
332 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
334 /* Guest Page State used for virtualization */
335 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
336 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
337 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
338 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
341 * A user page table pointer has the space-switch-event bit, the
342 * private-space-control bit and the storage-alteration-event-control
343 * bit set. A kernel page table pointer doesn't need them.
345 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
349 * Page protection definitions.
351 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
352 #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
353 _PAGE_INVALID | _PAGE_PROTECT)
354 #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
355 _PAGE_INVALID | _PAGE_PROTECT)
357 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
358 _PAGE_YOUNG | _PAGE_DIRTY)
359 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
360 _PAGE_YOUNG | _PAGE_DIRTY)
361 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
365 * On s390 the page table entry has an invalid bit and a read-only bit.
366 * Read permission implies execute permission and write permission
367 * implies read permission.
370 #define __P000 PAGE_NONE
371 #define __P001 PAGE_READ
372 #define __P010 PAGE_READ
373 #define __P011 PAGE_READ
374 #define __P100 PAGE_READ
375 #define __P101 PAGE_READ
376 #define __P110 PAGE_READ
377 #define __P111 PAGE_READ
379 #define __S000 PAGE_NONE
380 #define __S001 PAGE_READ
381 #define __S010 PAGE_WRITE
382 #define __S011 PAGE_WRITE
383 #define __S100 PAGE_READ
384 #define __S101 PAGE_READ
385 #define __S110 PAGE_WRITE
386 #define __S111 PAGE_WRITE
389 * Segment entry (large page) protection definitions.
391 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
392 _SEGMENT_ENTRY_PROTECT)
393 #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
395 #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
396 _SEGMENT_ENTRY_WRITE)
398 static inline int mm_has_pgste(struct mm_struct
*mm
)
401 if (unlikely(mm
->context
.has_pgste
))
407 static inline int mm_alloc_pgste(struct mm_struct
*mm
)
410 if (unlikely(mm
->context
.alloc_pgste
))
417 * In the case that a guest uses storage keys
418 * faults should no longer be backed by zero pages
420 #define mm_forbids_zeropage mm_use_skey
421 static inline int mm_use_skey(struct mm_struct
*mm
)
424 if (mm
->context
.use_skey
)
431 * pgd/pmd/pte query functions
433 static inline int pgd_present(pgd_t pgd
)
435 if ((pgd_val(pgd
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R2
)
437 return (pgd_val(pgd
) & _REGION_ENTRY_ORIGIN
) != 0UL;
440 static inline int pgd_none(pgd_t pgd
)
442 if ((pgd_val(pgd
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R2
)
444 return (pgd_val(pgd
) & _REGION_ENTRY_INVALID
) != 0UL;
447 static inline int pgd_bad(pgd_t pgd
)
450 * With dynamic page table levels the pgd can be a region table
451 * entry or a segment table entry. Check for the bit that are
452 * invalid for either table entry.
455 ~_SEGMENT_ENTRY_ORIGIN
& ~_REGION_ENTRY_INVALID
&
456 ~_REGION_ENTRY_TYPE_MASK
& ~_REGION_ENTRY_LENGTH
;
457 return (pgd_val(pgd
) & mask
) != 0;
460 static inline int pud_present(pud_t pud
)
462 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R3
)
464 return (pud_val(pud
) & _REGION_ENTRY_ORIGIN
) != 0UL;
467 static inline int pud_none(pud_t pud
)
469 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R3
)
471 return (pud_val(pud
) & _REGION_ENTRY_INVALID
) != 0UL;
474 static inline int pud_large(pud_t pud
)
476 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) != _REGION_ENTRY_TYPE_R3
)
478 return !!(pud_val(pud
) & _REGION3_ENTRY_LARGE
);
481 static inline int pud_bad(pud_t pud
)
484 * With dynamic page table levels the pud can be a region table
485 * entry or a segment table entry. Check for the bit that are
486 * invalid for either table entry.
489 ~_SEGMENT_ENTRY_ORIGIN
& ~_REGION_ENTRY_INVALID
&
490 ~_REGION_ENTRY_TYPE_MASK
& ~_REGION_ENTRY_LENGTH
;
491 return (pud_val(pud
) & mask
) != 0;
494 static inline int pmd_present(pmd_t pmd
)
496 return pmd_val(pmd
) != _SEGMENT_ENTRY_INVALID
;
499 static inline int pmd_none(pmd_t pmd
)
501 return pmd_val(pmd
) == _SEGMENT_ENTRY_INVALID
;
504 static inline int pmd_large(pmd_t pmd
)
506 return (pmd_val(pmd
) & _SEGMENT_ENTRY_LARGE
) != 0;
509 static inline unsigned long pmd_pfn(pmd_t pmd
)
511 unsigned long origin_mask
;
513 origin_mask
= _SEGMENT_ENTRY_ORIGIN
;
515 origin_mask
= _SEGMENT_ENTRY_ORIGIN_LARGE
;
516 return (pmd_val(pmd
) & origin_mask
) >> PAGE_SHIFT
;
519 static inline int pmd_bad(pmd_t pmd
)
522 return (pmd_val(pmd
) & ~_SEGMENT_ENTRY_BITS_LARGE
) != 0;
523 return (pmd_val(pmd
) & ~_SEGMENT_ENTRY_BITS
) != 0;
526 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
527 extern void pmdp_splitting_flush(struct vm_area_struct
*vma
,
528 unsigned long addr
, pmd_t
*pmdp
);
530 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
531 extern int pmdp_set_access_flags(struct vm_area_struct
*vma
,
532 unsigned long address
, pmd_t
*pmdp
,
533 pmd_t entry
, int dirty
);
535 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
536 extern int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
537 unsigned long address
, pmd_t
*pmdp
);
539 #define __HAVE_ARCH_PMD_WRITE
540 static inline int pmd_write(pmd_t pmd
)
542 return (pmd_val(pmd
) & _SEGMENT_ENTRY_WRITE
) != 0;
545 static inline int pmd_dirty(pmd_t pmd
)
549 dirty
= (pmd_val(pmd
) & _SEGMENT_ENTRY_DIRTY
) != 0;
553 static inline int pmd_young(pmd_t pmd
)
557 young
= (pmd_val(pmd
) & _SEGMENT_ENTRY_YOUNG
) != 0;
561 static inline int pte_present(pte_t pte
)
563 /* Bit pattern: (pte & 0x001) == 0x001 */
564 return (pte_val(pte
) & _PAGE_PRESENT
) != 0;
567 static inline int pte_none(pte_t pte
)
569 /* Bit pattern: pte == 0x400 */
570 return pte_val(pte
) == _PAGE_INVALID
;
573 static inline int pte_swap(pte_t pte
)
575 /* Bit pattern: (pte & 0x201) == 0x200 */
576 return (pte_val(pte
) & (_PAGE_PROTECT
| _PAGE_PRESENT
))
580 static inline int pte_special(pte_t pte
)
582 return (pte_val(pte
) & _PAGE_SPECIAL
);
585 #define __HAVE_ARCH_PTE_SAME
586 static inline int pte_same(pte_t a
, pte_t b
)
588 return pte_val(a
) == pte_val(b
);
591 #ifdef CONFIG_NUMA_BALANCING
592 static inline int pte_protnone(pte_t pte
)
594 return pte_present(pte
) && !(pte_val(pte
) & _PAGE_READ
);
597 static inline int pmd_protnone(pmd_t pmd
)
599 /* pmd_large(pmd) implies pmd_present(pmd) */
600 return pmd_large(pmd
) && !(pmd_val(pmd
) & _SEGMENT_ENTRY_READ
);
604 static inline int pte_soft_dirty(pte_t pte
)
606 return pte_val(pte
) & _PAGE_SOFT_DIRTY
;
608 #define pte_swp_soft_dirty pte_soft_dirty
610 static inline pte_t
pte_mksoft_dirty(pte_t pte
)
612 pte_val(pte
) |= _PAGE_SOFT_DIRTY
;
615 #define pte_swp_mksoft_dirty pte_mksoft_dirty
617 static inline pte_t
pte_clear_soft_dirty(pte_t pte
)
619 pte_val(pte
) &= ~_PAGE_SOFT_DIRTY
;
622 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
624 static inline int pmd_soft_dirty(pmd_t pmd
)
626 return pmd_val(pmd
) & _SEGMENT_ENTRY_SOFT_DIRTY
;
629 static inline pmd_t
pmd_mksoft_dirty(pmd_t pmd
)
631 pmd_val(pmd
) |= _SEGMENT_ENTRY_SOFT_DIRTY
;
635 static inline pmd_t
pmd_clear_soft_dirty(pmd_t pmd
)
637 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_SOFT_DIRTY
;
641 static inline pgste_t
pgste_get_lock(pte_t
*ptep
)
643 unsigned long new = 0;
651 " nihh %0,0xff7f\n" /* clear PCL bit in old */
652 " oihh %1,0x0080\n" /* set PCL bit in new */
655 : "=&d" (old
), "=&d" (new), "=Q" (ptep
[PTRS_PER_PTE
])
656 : "Q" (ptep
[PTRS_PER_PTE
]) : "cc", "memory");
661 static inline void pgste_set_unlock(pte_t
*ptep
, pgste_t pgste
)
665 " nihh %1,0xff7f\n" /* clear PCL bit */
667 : "=Q" (ptep
[PTRS_PER_PTE
])
668 : "d" (pgste_val(pgste
)), "Q" (ptep
[PTRS_PER_PTE
])
674 static inline pgste_t
pgste_get(pte_t
*ptep
)
676 unsigned long pgste
= 0;
678 pgste
= *(unsigned long *)(ptep
+ PTRS_PER_PTE
);
680 return __pgste(pgste
);
683 static inline void pgste_set(pte_t
*ptep
, pgste_t pgste
)
686 *(pgste_t
*)(ptep
+ PTRS_PER_PTE
) = pgste
;
690 static inline pgste_t
pgste_update_all(pte_t
*ptep
, pgste_t pgste
,
691 struct mm_struct
*mm
)
694 unsigned long address
, bits
, skey
;
696 if (!mm_use_skey(mm
) || pte_val(*ptep
) & _PAGE_INVALID
)
698 address
= pte_val(*ptep
) & PAGE_MASK
;
699 skey
= (unsigned long) page_get_storage_key(address
);
700 bits
= skey
& (_PAGE_CHANGED
| _PAGE_REFERENCED
);
701 /* Transfer page changed & referenced bit to guest bits in pgste */
702 pgste_val(pgste
) |= bits
<< 48; /* GR bit & GC bit */
703 /* Copy page access key and fetch protection bit to pgste */
704 pgste_val(pgste
) &= ~(PGSTE_ACC_BITS
| PGSTE_FP_BIT
);
705 pgste_val(pgste
) |= (skey
& (_PAGE_ACC_BITS
| _PAGE_FP_BIT
)) << 56;
711 static inline void pgste_set_key(pte_t
*ptep
, pgste_t pgste
, pte_t entry
,
712 struct mm_struct
*mm
)
715 unsigned long address
;
718 if (!mm_use_skey(mm
) || pte_val(entry
) & _PAGE_INVALID
)
720 VM_BUG_ON(!(pte_val(*ptep
) & _PAGE_INVALID
));
721 address
= pte_val(entry
) & PAGE_MASK
;
723 * Set page access key and fetch protection bit from pgste.
724 * The guest C/R information is still in the PGSTE, set real
727 nkey
= (pgste_val(pgste
) & (PGSTE_ACC_BITS
| PGSTE_FP_BIT
)) >> 56;
728 nkey
|= (pgste_val(pgste
) & (PGSTE_GR_BIT
| PGSTE_GC_BIT
)) >> 48;
729 page_set_storage_key(address
, nkey
, 0);
733 static inline pgste_t
pgste_set_pte(pte_t
*ptep
, pgste_t pgste
, pte_t entry
)
735 if ((pte_val(entry
) & _PAGE_PRESENT
) &&
736 (pte_val(entry
) & _PAGE_WRITE
) &&
737 !(pte_val(entry
) & _PAGE_INVALID
)) {
738 if (!MACHINE_HAS_ESOP
) {
740 * Without enhanced suppression-on-protection force
741 * the dirty bit on for all writable ptes.
743 pte_val(entry
) |= _PAGE_DIRTY
;
744 pte_val(entry
) &= ~_PAGE_PROTECT
;
746 if (!(pte_val(entry
) & _PAGE_PROTECT
))
747 /* This pte allows write access, set user-dirty */
748 pgste_val(pgste
) |= PGSTE_UC_BIT
;
755 * struct gmap_struct - guest address space
756 * @crst_list: list of all crst tables used in the guest address space
757 * @mm: pointer to the parent mm_struct
758 * @guest_to_host: radix tree with guest to host address translation
759 * @host_to_guest: radix tree with pointer to segment table entries
760 * @guest_table_lock: spinlock to protect all entries in the guest page table
761 * @table: pointer to the page directory
762 * @asce: address space control element for gmap page table
763 * @pfault_enabled: defines if pfaults are applicable for the guest
766 struct list_head list
;
767 struct list_head crst_list
;
768 struct mm_struct
*mm
;
769 struct radix_tree_root guest_to_host
;
770 struct radix_tree_root host_to_guest
;
771 spinlock_t guest_table_lock
;
772 unsigned long *table
;
774 unsigned long asce_end
;
780 * struct gmap_notifier - notify function block for page invalidation
781 * @notifier_call: address of callback function
783 struct gmap_notifier
{
784 struct list_head list
;
785 void (*notifier_call
)(struct gmap
*gmap
, unsigned long gaddr
);
788 struct gmap
*gmap_alloc(struct mm_struct
*mm
, unsigned long limit
);
789 void gmap_free(struct gmap
*gmap
);
790 void gmap_enable(struct gmap
*gmap
);
791 void gmap_disable(struct gmap
*gmap
);
792 int gmap_map_segment(struct gmap
*gmap
, unsigned long from
,
793 unsigned long to
, unsigned long len
);
794 int gmap_unmap_segment(struct gmap
*gmap
, unsigned long to
, unsigned long len
);
795 unsigned long __gmap_translate(struct gmap
*, unsigned long gaddr
);
796 unsigned long gmap_translate(struct gmap
*, unsigned long gaddr
);
797 int __gmap_link(struct gmap
*gmap
, unsigned long gaddr
, unsigned long vmaddr
);
798 int gmap_fault(struct gmap
*, unsigned long gaddr
, unsigned int fault_flags
);
799 void gmap_discard(struct gmap
*, unsigned long from
, unsigned long to
);
800 void __gmap_zap(struct gmap
*, unsigned long gaddr
);
801 bool gmap_test_and_clear_dirty(unsigned long address
, struct gmap
*);
804 void gmap_register_ipte_notifier(struct gmap_notifier
*);
805 void gmap_unregister_ipte_notifier(struct gmap_notifier
*);
806 int gmap_ipte_notify(struct gmap
*, unsigned long start
, unsigned long len
);
807 void gmap_do_ipte_notify(struct mm_struct
*, unsigned long addr
, pte_t
*);
809 static inline pgste_t
pgste_ipte_notify(struct mm_struct
*mm
,
811 pte_t
*ptep
, pgste_t pgste
)
814 if (pgste_val(pgste
) & PGSTE_IN_BIT
) {
815 pgste_val(pgste
) &= ~PGSTE_IN_BIT
;
816 gmap_do_ipte_notify(mm
, addr
, ptep
);
823 * Certain architectures need to do special things when PTEs
824 * within a page table are directly modified. Thus, the following
825 * hook is made available.
827 static inline void set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
828 pte_t
*ptep
, pte_t entry
)
832 if (mm_has_pgste(mm
)) {
833 pgste
= pgste_get_lock(ptep
);
834 pgste_val(pgste
) &= ~_PGSTE_GPS_ZERO
;
835 pgste_set_key(ptep
, pgste
, entry
, mm
);
836 pgste
= pgste_set_pte(ptep
, pgste
, entry
);
837 pgste_set_unlock(ptep
, pgste
);
844 * query functions pte_write/pte_dirty/pte_young only work if
845 * pte_present() is true. Undefined behaviour if not..
847 static inline int pte_write(pte_t pte
)
849 return (pte_val(pte
) & _PAGE_WRITE
) != 0;
852 static inline int pte_dirty(pte_t pte
)
854 return (pte_val(pte
) & _PAGE_DIRTY
) != 0;
857 static inline int pte_young(pte_t pte
)
859 return (pte_val(pte
) & _PAGE_YOUNG
) != 0;
862 #define __HAVE_ARCH_PTE_UNUSED
863 static inline int pte_unused(pte_t pte
)
865 return pte_val(pte
) & _PAGE_UNUSED
;
869 * pgd/pmd/pte modification functions
872 static inline void pgd_clear(pgd_t
*pgd
)
874 if ((pgd_val(*pgd
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R2
)
875 pgd_val(*pgd
) = _REGION2_ENTRY_EMPTY
;
878 static inline void pud_clear(pud_t
*pud
)
880 if ((pud_val(*pud
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
881 pud_val(*pud
) = _REGION3_ENTRY_EMPTY
;
884 static inline void pmd_clear(pmd_t
*pmdp
)
886 pmd_val(*pmdp
) = _SEGMENT_ENTRY_INVALID
;
889 static inline void pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
891 pte_val(*ptep
) = _PAGE_INVALID
;
895 * The following pte modification functions only work if
896 * pte_present() is true. Undefined behaviour if not..
898 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
900 pte_val(pte
) &= _PAGE_CHG_MASK
;
901 pte_val(pte
) |= pgprot_val(newprot
);
903 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
904 * invalid bit set, clear it again for readable, young pages
906 if ((pte_val(pte
) & _PAGE_YOUNG
) && (pte_val(pte
) & _PAGE_READ
))
907 pte_val(pte
) &= ~_PAGE_INVALID
;
909 * newprot for PAGE_READ and PAGE_WRITE has the page protection
910 * bit set, clear it again for writable, dirty pages
912 if ((pte_val(pte
) & _PAGE_DIRTY
) && (pte_val(pte
) & _PAGE_WRITE
))
913 pte_val(pte
) &= ~_PAGE_PROTECT
;
917 static inline pte_t
pte_wrprotect(pte_t pte
)
919 pte_val(pte
) &= ~_PAGE_WRITE
;
920 pte_val(pte
) |= _PAGE_PROTECT
;
924 static inline pte_t
pte_mkwrite(pte_t pte
)
926 pte_val(pte
) |= _PAGE_WRITE
;
927 if (pte_val(pte
) & _PAGE_DIRTY
)
928 pte_val(pte
) &= ~_PAGE_PROTECT
;
932 static inline pte_t
pte_mkclean(pte_t pte
)
934 pte_val(pte
) &= ~_PAGE_DIRTY
;
935 pte_val(pte
) |= _PAGE_PROTECT
;
939 static inline pte_t
pte_mkdirty(pte_t pte
)
941 pte_val(pte
) |= _PAGE_DIRTY
| _PAGE_SOFT_DIRTY
;
942 if (pte_val(pte
) & _PAGE_WRITE
)
943 pte_val(pte
) &= ~_PAGE_PROTECT
;
947 static inline pte_t
pte_mkold(pte_t pte
)
949 pte_val(pte
) &= ~_PAGE_YOUNG
;
950 pte_val(pte
) |= _PAGE_INVALID
;
954 static inline pte_t
pte_mkyoung(pte_t pte
)
956 pte_val(pte
) |= _PAGE_YOUNG
;
957 if (pte_val(pte
) & _PAGE_READ
)
958 pte_val(pte
) &= ~_PAGE_INVALID
;
962 static inline pte_t
pte_mkspecial(pte_t pte
)
964 pte_val(pte
) |= _PAGE_SPECIAL
;
968 #ifdef CONFIG_HUGETLB_PAGE
969 static inline pte_t
pte_mkhuge(pte_t pte
)
971 pte_val(pte
) |= _PAGE_LARGE
;
976 static inline void __ptep_ipte(unsigned long address
, pte_t
*ptep
)
978 unsigned long pto
= (unsigned long) ptep
;
980 /* Invalidation + global TLB flush for the pte */
983 : "=m" (*ptep
) : "m" (*ptep
), "a" (pto
), "a" (address
));
986 static inline void __ptep_ipte_local(unsigned long address
, pte_t
*ptep
)
988 unsigned long pto
= (unsigned long) ptep
;
990 /* Invalidation + local TLB flush for the pte */
992 " .insn rrf,0xb2210000,%2,%3,0,1"
993 : "=m" (*ptep
) : "m" (*ptep
), "a" (pto
), "a" (address
));
996 static inline void __ptep_ipte_range(unsigned long address
, int nr
, pte_t
*ptep
)
998 unsigned long pto
= (unsigned long) ptep
;
1000 /* Invalidate a range of ptes + global TLB flush of the ptes */
1003 " .insn rrf,0xb2210000,%2,%0,%1,0"
1004 : "+a" (address
), "+a" (nr
) : "a" (pto
) : "memory");
1005 } while (nr
!= 255);
1008 static inline void ptep_flush_direct(struct mm_struct
*mm
,
1009 unsigned long address
, pte_t
*ptep
)
1013 if (pte_val(*ptep
) & _PAGE_INVALID
)
1015 active
= (mm
== current
->active_mm
) ? 1 : 0;
1016 count
= atomic_add_return(0x10000, &mm
->context
.attach_count
);
1017 if (MACHINE_HAS_TLB_LC
&& (count
& 0xffff) <= active
&&
1018 cpumask_equal(mm_cpumask(mm
), cpumask_of(smp_processor_id())))
1019 __ptep_ipte_local(address
, ptep
);
1021 __ptep_ipte(address
, ptep
);
1022 atomic_sub(0x10000, &mm
->context
.attach_count
);
1025 static inline void ptep_flush_lazy(struct mm_struct
*mm
,
1026 unsigned long address
, pte_t
*ptep
)
1030 if (pte_val(*ptep
) & _PAGE_INVALID
)
1032 active
= (mm
== current
->active_mm
) ? 1 : 0;
1033 count
= atomic_add_return(0x10000, &mm
->context
.attach_count
);
1034 if ((count
& 0xffff) <= active
) {
1035 pte_val(*ptep
) |= _PAGE_INVALID
;
1036 mm
->context
.flush_mm
= 1;
1038 __ptep_ipte(address
, ptep
);
1039 atomic_sub(0x10000, &mm
->context
.attach_count
);
1043 * Get (and clear) the user dirty bit for a pte.
1045 static inline int ptep_test_and_clear_user_dirty(struct mm_struct
*mm
,
1053 if (!mm_has_pgste(mm
))
1055 pgste
= pgste_get_lock(ptep
);
1056 dirty
= !!(pgste_val(pgste
) & PGSTE_UC_BIT
);
1057 pgste_val(pgste
) &= ~PGSTE_UC_BIT
;
1059 if (dirty
&& (pte_val(pte
) & _PAGE_PRESENT
)) {
1060 pgste
= pgste_ipte_notify(mm
, addr
, ptep
, pgste
);
1061 __ptep_ipte(addr
, ptep
);
1062 if (MACHINE_HAS_ESOP
|| !(pte_val(pte
) & _PAGE_WRITE
))
1063 pte_val(pte
) |= _PAGE_PROTECT
;
1065 pte_val(pte
) |= _PAGE_INVALID
;
1068 pgste_set_unlock(ptep
, pgste
);
1072 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1073 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
1074 unsigned long addr
, pte_t
*ptep
)
1080 if (mm_has_pgste(vma
->vm_mm
)) {
1081 pgste
= pgste_get_lock(ptep
);
1082 pgste
= pgste_ipte_notify(vma
->vm_mm
, addr
, ptep
, pgste
);
1085 oldpte
= pte
= *ptep
;
1086 ptep_flush_direct(vma
->vm_mm
, addr
, ptep
);
1087 young
= pte_young(pte
);
1088 pte
= pte_mkold(pte
);
1090 if (mm_has_pgste(vma
->vm_mm
)) {
1091 pgste
= pgste_update_all(&oldpte
, pgste
, vma
->vm_mm
);
1092 pgste
= pgste_set_pte(ptep
, pgste
, pte
);
1093 pgste_set_unlock(ptep
, pgste
);
1100 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1101 static inline int ptep_clear_flush_young(struct vm_area_struct
*vma
,
1102 unsigned long address
, pte_t
*ptep
)
1104 return ptep_test_and_clear_young(vma
, address
, ptep
);
1108 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1109 * both clear the TLB for the unmapped pte. The reason is that
1110 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1111 * to modify an active pte. The sequence is
1112 * 1) ptep_get_and_clear
1114 * 3) flush_tlb_range
1115 * On s390 the tlb needs to get flushed with the modification of the pte
1116 * if the pte is active. The only way how this can be implemented is to
1117 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1120 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1121 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
,
1122 unsigned long address
, pte_t
*ptep
)
1127 if (mm_has_pgste(mm
)) {
1128 pgste
= pgste_get_lock(ptep
);
1129 pgste
= pgste_ipte_notify(mm
, address
, ptep
, pgste
);
1133 ptep_flush_lazy(mm
, address
, ptep
);
1134 pte_val(*ptep
) = _PAGE_INVALID
;
1136 if (mm_has_pgste(mm
)) {
1137 pgste
= pgste_update_all(&pte
, pgste
, mm
);
1138 pgste_set_unlock(ptep
, pgste
);
1143 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1144 static inline pte_t
ptep_modify_prot_start(struct mm_struct
*mm
,
1145 unsigned long address
,
1151 if (mm_has_pgste(mm
)) {
1152 pgste
= pgste_get_lock(ptep
);
1153 pgste_ipte_notify(mm
, address
, ptep
, pgste
);
1157 ptep_flush_lazy(mm
, address
, ptep
);
1159 if (mm_has_pgste(mm
)) {
1160 pgste
= pgste_update_all(&pte
, pgste
, mm
);
1161 pgste_set(ptep
, pgste
);
1166 static inline void ptep_modify_prot_commit(struct mm_struct
*mm
,
1167 unsigned long address
,
1168 pte_t
*ptep
, pte_t pte
)
1172 if (mm_has_pgste(mm
)) {
1173 pgste
= pgste_get(ptep
);
1174 pgste_set_key(ptep
, pgste
, pte
, mm
);
1175 pgste
= pgste_set_pte(ptep
, pgste
, pte
);
1176 pgste_set_unlock(ptep
, pgste
);
1181 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1182 static inline pte_t
ptep_clear_flush(struct vm_area_struct
*vma
,
1183 unsigned long address
, pte_t
*ptep
)
1188 if (mm_has_pgste(vma
->vm_mm
)) {
1189 pgste
= pgste_get_lock(ptep
);
1190 pgste
= pgste_ipte_notify(vma
->vm_mm
, address
, ptep
, pgste
);
1194 ptep_flush_direct(vma
->vm_mm
, address
, ptep
);
1195 pte_val(*ptep
) = _PAGE_INVALID
;
1197 if (mm_has_pgste(vma
->vm_mm
)) {
1198 if ((pgste_val(pgste
) & _PGSTE_GPS_USAGE_MASK
) ==
1199 _PGSTE_GPS_USAGE_UNUSED
)
1200 pte_val(pte
) |= _PAGE_UNUSED
;
1201 pgste
= pgste_update_all(&pte
, pgste
, vma
->vm_mm
);
1202 pgste_set_unlock(ptep
, pgste
);
1208 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1209 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1210 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1211 * cannot be accessed while the batched unmap is running. In this case
1212 * full==1 and a simple pte_clear is enough. See tlb.h.
1214 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1215 static inline pte_t
ptep_get_and_clear_full(struct mm_struct
*mm
,
1216 unsigned long address
,
1217 pte_t
*ptep
, int full
)
1222 if (!full
&& mm_has_pgste(mm
)) {
1223 pgste
= pgste_get_lock(ptep
);
1224 pgste
= pgste_ipte_notify(mm
, address
, ptep
, pgste
);
1229 ptep_flush_lazy(mm
, address
, ptep
);
1230 pte_val(*ptep
) = _PAGE_INVALID
;
1232 if (!full
&& mm_has_pgste(mm
)) {
1233 pgste
= pgste_update_all(&pte
, pgste
, mm
);
1234 pgste_set_unlock(ptep
, pgste
);
1239 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1240 static inline pte_t
ptep_set_wrprotect(struct mm_struct
*mm
,
1241 unsigned long address
, pte_t
*ptep
)
1246 if (pte_write(pte
)) {
1247 if (mm_has_pgste(mm
)) {
1248 pgste
= pgste_get_lock(ptep
);
1249 pgste
= pgste_ipte_notify(mm
, address
, ptep
, pgste
);
1252 ptep_flush_lazy(mm
, address
, ptep
);
1253 pte
= pte_wrprotect(pte
);
1255 if (mm_has_pgste(mm
)) {
1256 pgste
= pgste_set_pte(ptep
, pgste
, pte
);
1257 pgste_set_unlock(ptep
, pgste
);
1264 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1265 static inline int ptep_set_access_flags(struct vm_area_struct
*vma
,
1266 unsigned long address
, pte_t
*ptep
,
1267 pte_t entry
, int dirty
)
1273 if (pte_same(oldpte
, entry
))
1275 if (mm_has_pgste(vma
->vm_mm
)) {
1276 pgste
= pgste_get_lock(ptep
);
1277 pgste
= pgste_ipte_notify(vma
->vm_mm
, address
, ptep
, pgste
);
1280 ptep_flush_direct(vma
->vm_mm
, address
, ptep
);
1282 if (mm_has_pgste(vma
->vm_mm
)) {
1283 if (pte_val(oldpte
) & _PAGE_INVALID
)
1284 pgste_set_key(ptep
, pgste
, entry
, vma
->vm_mm
);
1285 pgste
= pgste_set_pte(ptep
, pgste
, entry
);
1286 pgste_set_unlock(ptep
, pgste
);
1293 * Conversion functions: convert a page and protection to a page entry,
1294 * and a page entry and page directory to the page they refer to.
1296 static inline pte_t
mk_pte_phys(unsigned long physpage
, pgprot_t pgprot
)
1299 pte_val(__pte
) = physpage
+ pgprot_val(pgprot
);
1300 return pte_mkyoung(__pte
);
1303 static inline pte_t
mk_pte(struct page
*page
, pgprot_t pgprot
)
1305 unsigned long physpage
= page_to_phys(page
);
1306 pte_t __pte
= mk_pte_phys(physpage
, pgprot
);
1308 if (pte_write(__pte
) && PageDirty(page
))
1309 __pte
= pte_mkdirty(__pte
);
1313 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1314 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1315 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1316 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1318 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1319 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1321 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1322 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1323 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1325 static inline pud_t
*pud_offset(pgd_t
*pgd
, unsigned long address
)
1327 pud_t
*pud
= (pud_t
*) pgd
;
1328 if ((pgd_val(*pgd
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R2
)
1329 pud
= (pud_t
*) pgd_deref(*pgd
);
1330 return pud
+ pud_index(address
);
1333 static inline pmd_t
*pmd_offset(pud_t
*pud
, unsigned long address
)
1335 pmd_t
*pmd
= (pmd_t
*) pud
;
1336 if ((pud_val(*pud
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
1337 pmd
= (pmd_t
*) pud_deref(*pud
);
1338 return pmd
+ pmd_index(address
);
1341 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1342 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1343 #define pte_page(x) pfn_to_page(pte_pfn(x))
1345 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1347 /* Find an entry in the lowest level page table.. */
1348 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1349 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1350 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1351 #define pte_unmap(pte) do { } while (0)
1353 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1354 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot
)
1357 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1358 * Convert to segment table entry format.
1360 if (pgprot_val(pgprot
) == pgprot_val(PAGE_NONE
))
1361 return pgprot_val(SEGMENT_NONE
);
1362 if (pgprot_val(pgprot
) == pgprot_val(PAGE_READ
))
1363 return pgprot_val(SEGMENT_READ
);
1364 return pgprot_val(SEGMENT_WRITE
);
1367 static inline pmd_t
pmd_wrprotect(pmd_t pmd
)
1369 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_WRITE
;
1370 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1374 static inline pmd_t
pmd_mkwrite(pmd_t pmd
)
1376 pmd_val(pmd
) |= _SEGMENT_ENTRY_WRITE
;
1377 if (pmd_large(pmd
) && !(pmd_val(pmd
) & _SEGMENT_ENTRY_DIRTY
))
1379 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_PROTECT
;
1383 static inline pmd_t
pmd_mkclean(pmd_t pmd
)
1385 if (pmd_large(pmd
)) {
1386 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_DIRTY
;
1387 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1392 static inline pmd_t
pmd_mkdirty(pmd_t pmd
)
1394 if (pmd_large(pmd
)) {
1395 pmd_val(pmd
) |= _SEGMENT_ENTRY_DIRTY
|
1396 _SEGMENT_ENTRY_SOFT_DIRTY
;
1397 if (pmd_val(pmd
) & _SEGMENT_ENTRY_WRITE
)
1398 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_PROTECT
;
1403 static inline pmd_t
pmd_mkyoung(pmd_t pmd
)
1405 if (pmd_large(pmd
)) {
1406 pmd_val(pmd
) |= _SEGMENT_ENTRY_YOUNG
;
1407 if (pmd_val(pmd
) & _SEGMENT_ENTRY_READ
)
1408 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_INVALID
;
1413 static inline pmd_t
pmd_mkold(pmd_t pmd
)
1415 if (pmd_large(pmd
)) {
1416 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_YOUNG
;
1417 pmd_val(pmd
) |= _SEGMENT_ENTRY_INVALID
;
1422 static inline pmd_t
pmd_modify(pmd_t pmd
, pgprot_t newprot
)
1424 if (pmd_large(pmd
)) {
1425 pmd_val(pmd
) &= _SEGMENT_ENTRY_ORIGIN_LARGE
|
1426 _SEGMENT_ENTRY_DIRTY
| _SEGMENT_ENTRY_YOUNG
|
1427 _SEGMENT_ENTRY_LARGE
| _SEGMENT_ENTRY_SPLIT
|
1428 _SEGMENT_ENTRY_SOFT_DIRTY
;
1429 pmd_val(pmd
) |= massage_pgprot_pmd(newprot
);
1430 if (!(pmd_val(pmd
) & _SEGMENT_ENTRY_DIRTY
))
1431 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1432 if (!(pmd_val(pmd
) & _SEGMENT_ENTRY_YOUNG
))
1433 pmd_val(pmd
) |= _SEGMENT_ENTRY_INVALID
;
1436 pmd_val(pmd
) &= _SEGMENT_ENTRY_ORIGIN
;
1437 pmd_val(pmd
) |= massage_pgprot_pmd(newprot
);
1441 static inline pmd_t
mk_pmd_phys(unsigned long physpage
, pgprot_t pgprot
)
1444 pmd_val(__pmd
) = physpage
+ massage_pgprot_pmd(pgprot
);
1448 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1450 static inline void __pmdp_csp(pmd_t
*pmdp
)
1452 register unsigned long reg2
asm("2") = pmd_val(*pmdp
);
1453 register unsigned long reg3
asm("3") = pmd_val(*pmdp
) |
1454 _SEGMENT_ENTRY_INVALID
;
1455 register unsigned long reg4
asm("4") = ((unsigned long) pmdp
) + 5;
1460 : "d" (reg2
), "d" (reg3
), "d" (reg4
), "m" (*pmdp
) : "cc");
1463 static inline void __pmdp_idte(unsigned long address
, pmd_t
*pmdp
)
1467 sto
= (unsigned long) pmdp
- pmd_index(address
) * sizeof(pmd_t
);
1469 " .insn rrf,0xb98e0000,%2,%3,0,0"
1471 : "m" (*pmdp
), "a" (sto
), "a" ((address
& HPAGE_MASK
))
1475 static inline void __pmdp_idte_local(unsigned long address
, pmd_t
*pmdp
)
1479 sto
= (unsigned long) pmdp
- pmd_index(address
) * sizeof(pmd_t
);
1481 " .insn rrf,0xb98e0000,%2,%3,0,1"
1483 : "m" (*pmdp
), "a" (sto
), "a" ((address
& HPAGE_MASK
))
1487 static inline void pmdp_flush_direct(struct mm_struct
*mm
,
1488 unsigned long address
, pmd_t
*pmdp
)
1492 if (pmd_val(*pmdp
) & _SEGMENT_ENTRY_INVALID
)
1494 if (!MACHINE_HAS_IDTE
) {
1498 active
= (mm
== current
->active_mm
) ? 1 : 0;
1499 count
= atomic_add_return(0x10000, &mm
->context
.attach_count
);
1500 if (MACHINE_HAS_TLB_LC
&& (count
& 0xffff) <= active
&&
1501 cpumask_equal(mm_cpumask(mm
), cpumask_of(smp_processor_id())))
1502 __pmdp_idte_local(address
, pmdp
);
1504 __pmdp_idte(address
, pmdp
);
1505 atomic_sub(0x10000, &mm
->context
.attach_count
);
1508 static inline void pmdp_flush_lazy(struct mm_struct
*mm
,
1509 unsigned long address
, pmd_t
*pmdp
)
1513 if (pmd_val(*pmdp
) & _SEGMENT_ENTRY_INVALID
)
1515 active
= (mm
== current
->active_mm
) ? 1 : 0;
1516 count
= atomic_add_return(0x10000, &mm
->context
.attach_count
);
1517 if ((count
& 0xffff) <= active
) {
1518 pmd_val(*pmdp
) |= _SEGMENT_ENTRY_INVALID
;
1519 mm
->context
.flush_mm
= 1;
1520 } else if (MACHINE_HAS_IDTE
)
1521 __pmdp_idte(address
, pmdp
);
1524 atomic_sub(0x10000, &mm
->context
.attach_count
);
1527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1529 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1530 extern void pgtable_trans_huge_deposit(struct mm_struct
*mm
, pmd_t
*pmdp
,
1533 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1534 extern pgtable_t
pgtable_trans_huge_withdraw(struct mm_struct
*mm
, pmd_t
*pmdp
);
1536 static inline int pmd_trans_splitting(pmd_t pmd
)
1538 return (pmd_val(pmd
) & _SEGMENT_ENTRY_LARGE
) &&
1539 (pmd_val(pmd
) & _SEGMENT_ENTRY_SPLIT
);
1542 static inline void set_pmd_at(struct mm_struct
*mm
, unsigned long addr
,
1543 pmd_t
*pmdp
, pmd_t entry
)
1548 static inline pmd_t
pmd_mkhuge(pmd_t pmd
)
1550 pmd_val(pmd
) |= _SEGMENT_ENTRY_LARGE
;
1551 pmd_val(pmd
) |= _SEGMENT_ENTRY_YOUNG
;
1552 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1556 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1557 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
1558 unsigned long address
, pmd_t
*pmdp
)
1563 pmdp_flush_direct(vma
->vm_mm
, address
, pmdp
);
1564 *pmdp
= pmd_mkold(pmd
);
1565 return pmd_young(pmd
);
1568 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1569 static inline pmd_t
pmdp_huge_get_and_clear(struct mm_struct
*mm
,
1570 unsigned long address
, pmd_t
*pmdp
)
1574 pmdp_flush_direct(mm
, address
, pmdp
);
1579 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1580 static inline pmd_t
pmdp_huge_get_and_clear_full(struct mm_struct
*mm
,
1581 unsigned long address
,
1582 pmd_t
*pmdp
, int full
)
1587 pmdp_flush_lazy(mm
, address
, pmdp
);
1592 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1593 static inline pmd_t
pmdp_huge_clear_flush(struct vm_area_struct
*vma
,
1594 unsigned long address
, pmd_t
*pmdp
)
1596 return pmdp_huge_get_and_clear(vma
->vm_mm
, address
, pmdp
);
1599 #define __HAVE_ARCH_PMDP_INVALIDATE
1600 static inline void pmdp_invalidate(struct vm_area_struct
*vma
,
1601 unsigned long address
, pmd_t
*pmdp
)
1603 pmdp_flush_direct(vma
->vm_mm
, address
, pmdp
);
1606 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1607 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
1608 unsigned long address
, pmd_t
*pmdp
)
1612 if (pmd_write(pmd
)) {
1613 pmdp_flush_direct(mm
, address
, pmdp
);
1614 set_pmd_at(mm
, address
, pmdp
, pmd_wrprotect(pmd
));
1618 static inline pmd_t
pmdp_collapse_flush(struct vm_area_struct
*vma
,
1619 unsigned long address
,
1622 return pmdp_huge_get_and_clear(vma
->vm_mm
, address
, pmdp
);
1624 #define pmdp_collapse_flush pmdp_collapse_flush
1626 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1627 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1629 static inline int pmd_trans_huge(pmd_t pmd
)
1631 return pmd_val(pmd
) & _SEGMENT_ENTRY_LARGE
;
1634 static inline int has_transparent_hugepage(void)
1636 return MACHINE_HAS_HPAGE
? 1 : 0;
1638 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1641 * 64 bit swap entry format:
1642 * A page-table entry has some bits we have to treat in a special way.
1643 * Bits 52 and bit 55 have to be zero, otherwise a specification
1644 * exception will occur instead of a page translation exception. The
1645 * specification exception has the bad habit not to store necessary
1646 * information in the lowcore.
1647 * Bits 54 and 63 are used to indicate the page type.
1648 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1649 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1650 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1652 * | offset |01100|type |00|
1653 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1654 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1657 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1658 #define __SWP_OFFSET_SHIFT 12
1659 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1660 #define __SWP_TYPE_SHIFT 2
1662 static inline pte_t
mk_swap_pte(unsigned long type
, unsigned long offset
)
1666 pte_val(pte
) = _PAGE_INVALID
| _PAGE_PROTECT
;
1667 pte_val(pte
) |= (offset
& __SWP_OFFSET_MASK
) << __SWP_OFFSET_SHIFT
;
1668 pte_val(pte
) |= (type
& __SWP_TYPE_MASK
) << __SWP_TYPE_SHIFT
;
1672 static inline unsigned long __swp_type(swp_entry_t entry
)
1674 return (entry
.val
>> __SWP_TYPE_SHIFT
) & __SWP_TYPE_MASK
;
1677 static inline unsigned long __swp_offset(swp_entry_t entry
)
1679 return (entry
.val
>> __SWP_OFFSET_SHIFT
) & __SWP_OFFSET_MASK
;
1682 static inline swp_entry_t
__swp_entry(unsigned long type
, unsigned long offset
)
1684 return (swp_entry_t
) { pte_val(mk_swap_pte(type
, offset
)) };
1687 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1688 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1690 #endif /* !__ASSEMBLY__ */
1692 #define kern_addr_valid(addr) (1)
1694 extern int vmem_add_mapping(unsigned long start
, unsigned long size
);
1695 extern int vmem_remove_mapping(unsigned long start
, unsigned long size
);
1696 extern int s390_enable_sie(void);
1697 extern int s390_enable_skey(void);
1698 extern void s390_reset_cmma(struct mm_struct
*mm
);
1700 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1701 #define HAVE_ARCH_UNMAPPED_AREA
1702 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1705 * No page table caches to initialise
1707 static inline void pgtable_cache_init(void) { }
1708 static inline void check_pgt_cache(void) { }
1710 #include <asm-generic/pgtable.h>
1712 #endif /* _S390_PAGE_H */