irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / arch / s390 / kernel / kprobes.c
blob389db56a2208bfa118d6f31aee9b52d090031960
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corp. 2002, 2006
20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/hardirq.h>
32 #include <linux/ftrace.h>
33 #include <asm/cacheflush.h>
34 #include <asm/sections.h>
35 #include <asm/dis.h>
37 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
38 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
40 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
42 DEFINE_INSN_CACHE_OPS(dmainsn);
44 static void *alloc_dmainsn_page(void)
46 return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
49 static void free_dmainsn_page(void *page)
51 free_page((unsigned long)page);
54 struct kprobe_insn_cache kprobe_dmainsn_slots = {
55 .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
56 .alloc = alloc_dmainsn_page,
57 .free = free_dmainsn_page,
58 .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
59 .insn_size = MAX_INSN_SIZE,
62 static void copy_instruction(struct kprobe *p)
64 unsigned long ip = (unsigned long) p->addr;
65 s64 disp, new_disp;
66 u64 addr, new_addr;
68 if (ftrace_location(ip) == ip) {
70 * If kprobes patches the instruction that is morphed by
71 * ftrace make sure that kprobes always sees the branch
72 * "jg .+24" that skips the mcount block or the "brcl 0,0"
73 * in case of hotpatch.
75 ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
76 p->ainsn.is_ftrace_insn = 1;
77 } else
78 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
79 p->opcode = p->ainsn.insn[0];
80 if (!probe_is_insn_relative_long(p->ainsn.insn))
81 return;
83 * For pc-relative instructions in RIL-b or RIL-c format patch the
84 * RI2 displacement field. We have already made sure that the insn
85 * slot for the patched instruction is within the same 2GB area
86 * as the original instruction (either kernel image or module area).
87 * Therefore the new displacement will always fit.
89 disp = *(s32 *)&p->ainsn.insn[1];
90 addr = (u64)(unsigned long)p->addr;
91 new_addr = (u64)(unsigned long)p->ainsn.insn;
92 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
93 *(s32 *)&p->ainsn.insn[1] = new_disp;
95 NOKPROBE_SYMBOL(copy_instruction);
97 static inline int is_kernel_addr(void *addr)
99 return addr < (void *)_end;
102 static int s390_get_insn_slot(struct kprobe *p)
105 * Get an insn slot that is within the same 2GB area like the original
106 * instruction. That way instructions with a 32bit signed displacement
107 * field can be patched and executed within the insn slot.
109 p->ainsn.insn = NULL;
110 if (is_kernel_addr(p->addr))
111 p->ainsn.insn = get_dmainsn_slot();
112 else if (is_module_addr(p->addr))
113 p->ainsn.insn = get_insn_slot();
114 return p->ainsn.insn ? 0 : -ENOMEM;
116 NOKPROBE_SYMBOL(s390_get_insn_slot);
118 static void s390_free_insn_slot(struct kprobe *p)
120 if (!p->ainsn.insn)
121 return;
122 if (is_kernel_addr(p->addr))
123 free_dmainsn_slot(p->ainsn.insn, 0);
124 else
125 free_insn_slot(p->ainsn.insn, 0);
126 p->ainsn.insn = NULL;
128 NOKPROBE_SYMBOL(s390_free_insn_slot);
130 int arch_prepare_kprobe(struct kprobe *p)
132 if ((unsigned long) p->addr & 0x01)
133 return -EINVAL;
134 /* Make sure the probe isn't going on a difficult instruction */
135 if (probe_is_prohibited_opcode(p->addr))
136 return -EINVAL;
137 if (s390_get_insn_slot(p))
138 return -ENOMEM;
139 copy_instruction(p);
140 return 0;
142 NOKPROBE_SYMBOL(arch_prepare_kprobe);
144 int arch_check_ftrace_location(struct kprobe *p)
146 return 0;
149 struct swap_insn_args {
150 struct kprobe *p;
151 unsigned int arm_kprobe : 1;
154 static int swap_instruction(void *data)
156 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
157 unsigned long status = kcb->kprobe_status;
158 struct swap_insn_args *args = data;
159 struct ftrace_insn new_insn, *insn;
160 struct kprobe *p = args->p;
161 size_t len;
163 new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
164 len = sizeof(new_insn.opc);
165 if (!p->ainsn.is_ftrace_insn)
166 goto skip_ftrace;
167 len = sizeof(new_insn);
168 insn = (struct ftrace_insn *) p->addr;
169 if (args->arm_kprobe) {
170 if (is_ftrace_nop(insn))
171 new_insn.disp = KPROBE_ON_FTRACE_NOP;
172 else
173 new_insn.disp = KPROBE_ON_FTRACE_CALL;
174 } else {
175 ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
176 if (insn->disp == KPROBE_ON_FTRACE_NOP)
177 ftrace_generate_nop_insn(&new_insn);
179 skip_ftrace:
180 kcb->kprobe_status = KPROBE_SWAP_INST;
181 s390_kernel_write(p->addr, &new_insn, len);
182 kcb->kprobe_status = status;
183 return 0;
185 NOKPROBE_SYMBOL(swap_instruction);
187 void arch_arm_kprobe(struct kprobe *p)
189 struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
191 stop_machine(swap_instruction, &args, NULL);
193 NOKPROBE_SYMBOL(arch_arm_kprobe);
195 void arch_disarm_kprobe(struct kprobe *p)
197 struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
199 stop_machine(swap_instruction, &args, NULL);
201 NOKPROBE_SYMBOL(arch_disarm_kprobe);
203 void arch_remove_kprobe(struct kprobe *p)
205 s390_free_insn_slot(p);
207 NOKPROBE_SYMBOL(arch_remove_kprobe);
209 static void enable_singlestep(struct kprobe_ctlblk *kcb,
210 struct pt_regs *regs,
211 unsigned long ip)
213 struct per_regs per_kprobe;
215 /* Set up the PER control registers %cr9-%cr11 */
216 per_kprobe.control = PER_EVENT_IFETCH;
217 per_kprobe.start = ip;
218 per_kprobe.end = ip;
220 /* Save control regs and psw mask */
221 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
222 kcb->kprobe_saved_imask = regs->psw.mask &
223 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
225 /* Set PER control regs, turns on single step for the given address */
226 __ctl_load(per_kprobe, 9, 11);
227 regs->psw.mask |= PSW_MASK_PER;
228 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
229 regs->psw.addr = ip | PSW_ADDR_AMODE;
231 NOKPROBE_SYMBOL(enable_singlestep);
233 static void disable_singlestep(struct kprobe_ctlblk *kcb,
234 struct pt_regs *regs,
235 unsigned long ip)
237 /* Restore control regs and psw mask, set new psw address */
238 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
239 regs->psw.mask &= ~PSW_MASK_PER;
240 regs->psw.mask |= kcb->kprobe_saved_imask;
241 regs->psw.addr = ip | PSW_ADDR_AMODE;
243 NOKPROBE_SYMBOL(disable_singlestep);
246 * Activate a kprobe by storing its pointer to current_kprobe. The
247 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
248 * two kprobes can be active, see KPROBE_REENTER.
250 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
252 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
253 kcb->prev_kprobe.status = kcb->kprobe_status;
254 __this_cpu_write(current_kprobe, p);
256 NOKPROBE_SYMBOL(push_kprobe);
259 * Deactivate a kprobe by backing up to the previous state. If the
260 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
261 * for any other state prev_kprobe.kp will be NULL.
263 static void pop_kprobe(struct kprobe_ctlblk *kcb)
265 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
266 kcb->kprobe_status = kcb->prev_kprobe.status;
268 NOKPROBE_SYMBOL(pop_kprobe);
270 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
272 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
274 /* Replace the return addr with trampoline addr */
275 regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
277 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
279 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
281 switch (kcb->kprobe_status) {
282 case KPROBE_HIT_SSDONE:
283 case KPROBE_HIT_ACTIVE:
284 kprobes_inc_nmissed_count(p);
285 break;
286 case KPROBE_HIT_SS:
287 case KPROBE_REENTER:
288 default:
290 * A kprobe on the code path to single step an instruction
291 * is a BUG. The code path resides in the .kprobes.text
292 * section and is executed with interrupts disabled.
294 printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
295 dump_kprobe(p);
296 BUG();
299 NOKPROBE_SYMBOL(kprobe_reenter_check);
301 static int kprobe_handler(struct pt_regs *regs)
303 struct kprobe_ctlblk *kcb;
304 struct kprobe *p;
307 * We want to disable preemption for the entire duration of kprobe
308 * processing. That includes the calls to the pre/post handlers
309 * and single stepping the kprobe instruction.
311 preempt_disable();
312 kcb = get_kprobe_ctlblk();
313 p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
315 if (p) {
316 if (kprobe_running()) {
318 * We have hit a kprobe while another is still
319 * active. This can happen in the pre and post
320 * handler. Single step the instruction of the
321 * new probe but do not call any handler function
322 * of this secondary kprobe.
323 * push_kprobe and pop_kprobe saves and restores
324 * the currently active kprobe.
326 kprobe_reenter_check(kcb, p);
327 push_kprobe(kcb, p);
328 kcb->kprobe_status = KPROBE_REENTER;
329 } else {
331 * If we have no pre-handler or it returned 0, we
332 * continue with single stepping. If we have a
333 * pre-handler and it returned non-zero, it prepped
334 * for calling the break_handler below on re-entry
335 * for jprobe processing, so get out doing nothing
336 * more here.
338 push_kprobe(kcb, p);
339 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
340 if (p->pre_handler && p->pre_handler(p, regs))
341 return 1;
342 kcb->kprobe_status = KPROBE_HIT_SS;
344 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
345 return 1;
346 } else if (kprobe_running()) {
347 p = __this_cpu_read(current_kprobe);
348 if (p->break_handler && p->break_handler(p, regs)) {
350 * Continuation after the jprobe completed and
351 * caused the jprobe_return trap. The jprobe
352 * break_handler "returns" to the original
353 * function that still has the kprobe breakpoint
354 * installed. We continue with single stepping.
356 kcb->kprobe_status = KPROBE_HIT_SS;
357 enable_singlestep(kcb, regs,
358 (unsigned long) p->ainsn.insn);
359 return 1;
360 } /* else:
361 * No kprobe at this address and the current kprobe
362 * has no break handler (no jprobe!). The kernel just
363 * exploded, let the standard trap handler pick up the
364 * pieces.
366 } /* else:
367 * No kprobe at this address and no active kprobe. The trap has
368 * not been caused by a kprobe breakpoint. The race of breakpoint
369 * vs. kprobe remove does not exist because on s390 as we use
370 * stop_machine to arm/disarm the breakpoints.
372 preempt_enable_no_resched();
373 return 0;
375 NOKPROBE_SYMBOL(kprobe_handler);
378 * Function return probe trampoline:
379 * - init_kprobes() establishes a probepoint here
380 * - When the probed function returns, this probe
381 * causes the handlers to fire
383 static void __used kretprobe_trampoline_holder(void)
385 asm volatile(".global kretprobe_trampoline\n"
386 "kretprobe_trampoline: bcr 0,0\n");
390 * Called when the probe at kretprobe trampoline is hit
392 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
394 struct kretprobe_instance *ri;
395 struct hlist_head *head, empty_rp;
396 struct hlist_node *tmp;
397 unsigned long flags, orig_ret_address;
398 unsigned long trampoline_address;
399 kprobe_opcode_t *correct_ret_addr;
401 INIT_HLIST_HEAD(&empty_rp);
402 kretprobe_hash_lock(current, &head, &flags);
405 * It is possible to have multiple instances associated with a given
406 * task either because an multiple functions in the call path
407 * have a return probe installed on them, and/or more than one return
408 * return probe was registered for a target function.
410 * We can handle this because:
411 * - instances are always inserted at the head of the list
412 * - when multiple return probes are registered for the same
413 * function, the first instance's ret_addr will point to the
414 * real return address, and all the rest will point to
415 * kretprobe_trampoline
417 ri = NULL;
418 orig_ret_address = 0;
419 correct_ret_addr = NULL;
420 trampoline_address = (unsigned long) &kretprobe_trampoline;
421 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
422 if (ri->task != current)
423 /* another task is sharing our hash bucket */
424 continue;
426 orig_ret_address = (unsigned long) ri->ret_addr;
428 if (orig_ret_address != trampoline_address)
430 * This is the real return address. Any other
431 * instances associated with this task are for
432 * other calls deeper on the call stack
434 break;
437 kretprobe_assert(ri, orig_ret_address, trampoline_address);
439 correct_ret_addr = ri->ret_addr;
440 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
441 if (ri->task != current)
442 /* another task is sharing our hash bucket */
443 continue;
445 orig_ret_address = (unsigned long) ri->ret_addr;
447 if (ri->rp && ri->rp->handler) {
448 ri->ret_addr = correct_ret_addr;
449 ri->rp->handler(ri, regs);
452 recycle_rp_inst(ri, &empty_rp);
454 if (orig_ret_address != trampoline_address)
456 * This is the real return address. Any other
457 * instances associated with this task are for
458 * other calls deeper on the call stack
460 break;
463 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
465 pop_kprobe(get_kprobe_ctlblk());
466 kretprobe_hash_unlock(current, &flags);
467 preempt_enable_no_resched();
469 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
470 hlist_del(&ri->hlist);
471 kfree(ri);
474 * By returning a non-zero value, we are telling
475 * kprobe_handler() that we don't want the post_handler
476 * to run (and have re-enabled preemption)
478 return 1;
480 NOKPROBE_SYMBOL(trampoline_probe_handler);
483 * Called after single-stepping. p->addr is the address of the
484 * instruction whose first byte has been replaced by the "breakpoint"
485 * instruction. To avoid the SMP problems that can occur when we
486 * temporarily put back the original opcode to single-step, we
487 * single-stepped a copy of the instruction. The address of this
488 * copy is p->ainsn.insn.
490 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
492 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
493 unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
494 int fixup = probe_get_fixup_type(p->ainsn.insn);
496 /* Check if the kprobes location is an enabled ftrace caller */
497 if (p->ainsn.is_ftrace_insn) {
498 struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
499 struct ftrace_insn call_insn;
501 ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
503 * A kprobe on an enabled ftrace call site actually single
504 * stepped an unconditional branch (ftrace nop equivalent).
505 * Now we need to fixup things and pretend that a brasl r0,...
506 * was executed instead.
508 if (insn->disp == KPROBE_ON_FTRACE_CALL) {
509 ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
510 regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
514 if (fixup & FIXUP_PSW_NORMAL)
515 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
517 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
518 int ilen = insn_length(p->ainsn.insn[0] >> 8);
519 if (ip - (unsigned long) p->ainsn.insn == ilen)
520 ip = (unsigned long) p->addr + ilen;
523 if (fixup & FIXUP_RETURN_REGISTER) {
524 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
525 regs->gprs[reg] += (unsigned long) p->addr -
526 (unsigned long) p->ainsn.insn;
529 disable_singlestep(kcb, regs, ip);
531 NOKPROBE_SYMBOL(resume_execution);
533 static int post_kprobe_handler(struct pt_regs *regs)
535 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536 struct kprobe *p = kprobe_running();
538 if (!p)
539 return 0;
541 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
542 kcb->kprobe_status = KPROBE_HIT_SSDONE;
543 p->post_handler(p, regs, 0);
546 resume_execution(p, regs);
547 pop_kprobe(kcb);
548 preempt_enable_no_resched();
551 * if somebody else is singlestepping across a probe point, psw mask
552 * will have PER set, in which case, continue the remaining processing
553 * of do_single_step, as if this is not a probe hit.
555 if (regs->psw.mask & PSW_MASK_PER)
556 return 0;
558 return 1;
560 NOKPROBE_SYMBOL(post_kprobe_handler);
562 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
564 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
565 struct kprobe *p = kprobe_running();
566 const struct exception_table_entry *entry;
568 switch(kcb->kprobe_status) {
569 case KPROBE_SWAP_INST:
570 /* We are here because the instruction replacement failed */
571 return 0;
572 case KPROBE_HIT_SS:
573 case KPROBE_REENTER:
575 * We are here because the instruction being single
576 * stepped caused a page fault. We reset the current
577 * kprobe and the nip points back to the probe address
578 * and allow the page fault handler to continue as a
579 * normal page fault.
581 disable_singlestep(kcb, regs, (unsigned long) p->addr);
582 pop_kprobe(kcb);
583 preempt_enable_no_resched();
584 break;
585 case KPROBE_HIT_ACTIVE:
586 case KPROBE_HIT_SSDONE:
588 * We increment the nmissed count for accounting,
589 * we can also use npre/npostfault count for accounting
590 * these specific fault cases.
592 kprobes_inc_nmissed_count(p);
595 * We come here because instructions in the pre/post
596 * handler caused the page_fault, this could happen
597 * if handler tries to access user space by
598 * copy_from_user(), get_user() etc. Let the
599 * user-specified handler try to fix it first.
601 if (p->fault_handler && p->fault_handler(p, regs, trapnr))
602 return 1;
605 * In case the user-specified fault handler returned
606 * zero, try to fix up.
608 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
609 if (entry) {
610 regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE;
611 return 1;
615 * fixup_exception() could not handle it,
616 * Let do_page_fault() fix it.
618 break;
619 default:
620 break;
622 return 0;
624 NOKPROBE_SYMBOL(kprobe_trap_handler);
626 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
628 int ret;
630 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
631 local_irq_disable();
632 ret = kprobe_trap_handler(regs, trapnr);
633 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
634 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
635 return ret;
637 NOKPROBE_SYMBOL(kprobe_fault_handler);
640 * Wrapper routine to for handling exceptions.
642 int kprobe_exceptions_notify(struct notifier_block *self,
643 unsigned long val, void *data)
645 struct die_args *args = (struct die_args *) data;
646 struct pt_regs *regs = args->regs;
647 int ret = NOTIFY_DONE;
649 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
650 local_irq_disable();
652 switch (val) {
653 case DIE_BPT:
654 if (kprobe_handler(regs))
655 ret = NOTIFY_STOP;
656 break;
657 case DIE_SSTEP:
658 if (post_kprobe_handler(regs))
659 ret = NOTIFY_STOP;
660 break;
661 case DIE_TRAP:
662 if (!preemptible() && kprobe_running() &&
663 kprobe_trap_handler(regs, args->trapnr))
664 ret = NOTIFY_STOP;
665 break;
666 default:
667 break;
670 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
671 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
673 return ret;
675 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
677 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
679 struct jprobe *jp = container_of(p, struct jprobe, kp);
680 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
681 unsigned long stack;
683 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
685 /* setup return addr to the jprobe handler routine */
686 regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
687 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
689 /* r15 is the stack pointer */
690 stack = (unsigned long) regs->gprs[15];
692 memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
693 return 1;
695 NOKPROBE_SYMBOL(setjmp_pre_handler);
697 void jprobe_return(void)
699 asm volatile(".word 0x0002");
701 NOKPROBE_SYMBOL(jprobe_return);
703 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
705 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
706 unsigned long stack;
708 stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
710 /* Put the regs back */
711 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
712 /* put the stack back */
713 memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
714 preempt_enable_no_resched();
715 return 1;
717 NOKPROBE_SYMBOL(longjmp_break_handler);
719 static struct kprobe trampoline = {
720 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
721 .pre_handler = trampoline_probe_handler
724 int __init arch_init_kprobes(void)
726 return register_kprobe(&trampoline);
729 int arch_trampoline_kprobe(struct kprobe *p)
731 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
733 NOKPROBE_SYMBOL(arch_trampoline_kprobe);