irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / arch / sh / kernel / perf_event.c
blob4dca18347ee9a40949d55af11ae6adf07d05ca4b
1 /*
2 * Performance event support framework for SuperH hardware counters.
4 * Copyright (C) 2009 Paul Mundt
6 * Heavily based on the x86 and PowerPC implementations.
8 * x86:
9 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11 * Copyright (C) 2009 Jaswinder Singh Rajput
12 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
14 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
16 * ppc:
17 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
19 * This file is subject to the terms and conditions of the GNU General Public
20 * License. See the file "COPYING" in the main directory of this archive
21 * for more details.
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/perf_event.h>
28 #include <linux/export.h>
29 #include <asm/processor.h>
31 struct cpu_hw_events {
32 struct perf_event *events[MAX_HWEVENTS];
33 unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
34 unsigned long active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
37 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
39 static struct sh_pmu *sh_pmu __read_mostly;
41 /* Number of perf_events counting hardware events */
42 static atomic_t num_events;
43 /* Used to avoid races in calling reserve/release_pmc_hardware */
44 static DEFINE_MUTEX(pmc_reserve_mutex);
47 * Stub these out for now, do something more profound later.
49 int reserve_pmc_hardware(void)
51 return 0;
54 void release_pmc_hardware(void)
58 static inline int sh_pmu_initialized(void)
60 return !!sh_pmu;
63 const char *perf_pmu_name(void)
65 if (!sh_pmu)
66 return NULL;
68 return sh_pmu->name;
70 EXPORT_SYMBOL_GPL(perf_pmu_name);
72 int perf_num_counters(void)
74 if (!sh_pmu)
75 return 0;
77 return sh_pmu->num_events;
79 EXPORT_SYMBOL_GPL(perf_num_counters);
82 * Release the PMU if this is the last perf_event.
84 static void hw_perf_event_destroy(struct perf_event *event)
86 if (!atomic_add_unless(&num_events, -1, 1)) {
87 mutex_lock(&pmc_reserve_mutex);
88 if (atomic_dec_return(&num_events) == 0)
89 release_pmc_hardware();
90 mutex_unlock(&pmc_reserve_mutex);
94 static int hw_perf_cache_event(int config, int *evp)
96 unsigned long type, op, result;
97 int ev;
99 if (!sh_pmu->cache_events)
100 return -EINVAL;
102 /* unpack config */
103 type = config & 0xff;
104 op = (config >> 8) & 0xff;
105 result = (config >> 16) & 0xff;
107 if (type >= PERF_COUNT_HW_CACHE_MAX ||
108 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
109 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
110 return -EINVAL;
112 ev = (*sh_pmu->cache_events)[type][op][result];
113 if (ev == 0)
114 return -EOPNOTSUPP;
115 if (ev == -1)
116 return -EINVAL;
117 *evp = ev;
118 return 0;
121 static int __hw_perf_event_init(struct perf_event *event)
123 struct perf_event_attr *attr = &event->attr;
124 struct hw_perf_event *hwc = &event->hw;
125 int config = -1;
126 int err;
128 if (!sh_pmu_initialized())
129 return -ENODEV;
132 * See if we need to reserve the counter.
134 * If no events are currently in use, then we have to take a
135 * mutex to ensure that we don't race with another task doing
136 * reserve_pmc_hardware or release_pmc_hardware.
138 err = 0;
139 if (!atomic_inc_not_zero(&num_events)) {
140 mutex_lock(&pmc_reserve_mutex);
141 if (atomic_read(&num_events) == 0 &&
142 reserve_pmc_hardware())
143 err = -EBUSY;
144 else
145 atomic_inc(&num_events);
146 mutex_unlock(&pmc_reserve_mutex);
149 if (err)
150 return err;
152 event->destroy = hw_perf_event_destroy;
154 switch (attr->type) {
155 case PERF_TYPE_RAW:
156 config = attr->config & sh_pmu->raw_event_mask;
157 break;
158 case PERF_TYPE_HW_CACHE:
159 err = hw_perf_cache_event(attr->config, &config);
160 if (err)
161 return err;
162 break;
163 case PERF_TYPE_HARDWARE:
164 if (attr->config >= sh_pmu->max_events)
165 return -EINVAL;
167 config = sh_pmu->event_map(attr->config);
168 break;
171 if (config == -1)
172 return -EINVAL;
174 hwc->config |= config;
176 return 0;
179 static void sh_perf_event_update(struct perf_event *event,
180 struct hw_perf_event *hwc, int idx)
182 u64 prev_raw_count, new_raw_count;
183 s64 delta;
184 int shift = 0;
187 * Depending on the counter configuration, they may or may not
188 * be chained, in which case the previous counter value can be
189 * updated underneath us if the lower-half overflows.
191 * Our tactic to handle this is to first atomically read and
192 * exchange a new raw count - then add that new-prev delta
193 * count to the generic counter atomically.
195 * As there is no interrupt associated with the overflow events,
196 * this is the simplest approach for maintaining consistency.
198 again:
199 prev_raw_count = local64_read(&hwc->prev_count);
200 new_raw_count = sh_pmu->read(idx);
202 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
203 new_raw_count) != prev_raw_count)
204 goto again;
207 * Now we have the new raw value and have updated the prev
208 * timestamp already. We can now calculate the elapsed delta
209 * (counter-)time and add that to the generic counter.
211 * Careful, not all hw sign-extends above the physical width
212 * of the count.
214 delta = (new_raw_count << shift) - (prev_raw_count << shift);
215 delta >>= shift;
217 local64_add(delta, &event->count);
220 static void sh_pmu_stop(struct perf_event *event, int flags)
222 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
223 struct hw_perf_event *hwc = &event->hw;
224 int idx = hwc->idx;
226 if (!(event->hw.state & PERF_HES_STOPPED)) {
227 sh_pmu->disable(hwc, idx);
228 cpuc->events[idx] = NULL;
229 event->hw.state |= PERF_HES_STOPPED;
232 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
233 sh_perf_event_update(event, &event->hw, idx);
234 event->hw.state |= PERF_HES_UPTODATE;
238 static void sh_pmu_start(struct perf_event *event, int flags)
240 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
241 struct hw_perf_event *hwc = &event->hw;
242 int idx = hwc->idx;
244 if (WARN_ON_ONCE(idx == -1))
245 return;
247 if (flags & PERF_EF_RELOAD)
248 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
250 cpuc->events[idx] = event;
251 event->hw.state = 0;
252 sh_pmu->enable(hwc, idx);
255 static void sh_pmu_del(struct perf_event *event, int flags)
257 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
259 sh_pmu_stop(event, PERF_EF_UPDATE);
260 __clear_bit(event->hw.idx, cpuc->used_mask);
262 perf_event_update_userpage(event);
265 static int sh_pmu_add(struct perf_event *event, int flags)
267 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
268 struct hw_perf_event *hwc = &event->hw;
269 int idx = hwc->idx;
270 int ret = -EAGAIN;
272 perf_pmu_disable(event->pmu);
274 if (__test_and_set_bit(idx, cpuc->used_mask)) {
275 idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
276 if (idx == sh_pmu->num_events)
277 goto out;
279 __set_bit(idx, cpuc->used_mask);
280 hwc->idx = idx;
283 sh_pmu->disable(hwc, idx);
285 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
286 if (flags & PERF_EF_START)
287 sh_pmu_start(event, PERF_EF_RELOAD);
289 perf_event_update_userpage(event);
290 ret = 0;
291 out:
292 perf_pmu_enable(event->pmu);
293 return ret;
296 static void sh_pmu_read(struct perf_event *event)
298 sh_perf_event_update(event, &event->hw, event->hw.idx);
301 static int sh_pmu_event_init(struct perf_event *event)
303 int err;
305 /* does not support taken branch sampling */
306 if (has_branch_stack(event))
307 return -EOPNOTSUPP;
309 switch (event->attr.type) {
310 case PERF_TYPE_RAW:
311 case PERF_TYPE_HW_CACHE:
312 case PERF_TYPE_HARDWARE:
313 err = __hw_perf_event_init(event);
314 break;
316 default:
317 return -ENOENT;
320 if (unlikely(err)) {
321 if (event->destroy)
322 event->destroy(event);
325 return err;
328 static void sh_pmu_enable(struct pmu *pmu)
330 if (!sh_pmu_initialized())
331 return;
333 sh_pmu->enable_all();
336 static void sh_pmu_disable(struct pmu *pmu)
338 if (!sh_pmu_initialized())
339 return;
341 sh_pmu->disable_all();
344 static struct pmu pmu = {
345 .pmu_enable = sh_pmu_enable,
346 .pmu_disable = sh_pmu_disable,
347 .event_init = sh_pmu_event_init,
348 .add = sh_pmu_add,
349 .del = sh_pmu_del,
350 .start = sh_pmu_start,
351 .stop = sh_pmu_stop,
352 .read = sh_pmu_read,
355 static void sh_pmu_setup(int cpu)
357 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
359 memset(cpuhw, 0, sizeof(struct cpu_hw_events));
362 static int
363 sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
365 unsigned int cpu = (long)hcpu;
367 switch (action & ~CPU_TASKS_FROZEN) {
368 case CPU_UP_PREPARE:
369 sh_pmu_setup(cpu);
370 break;
372 default:
373 break;
376 return NOTIFY_OK;
379 int register_sh_pmu(struct sh_pmu *_pmu)
381 if (sh_pmu)
382 return -EBUSY;
383 sh_pmu = _pmu;
385 pr_info("Performance Events: %s support registered\n", _pmu->name);
388 * All of the on-chip counters are "limited", in that they have
389 * no interrupts, and are therefore unable to do sampling without
390 * further work and timer assistance.
392 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
394 WARN_ON(_pmu->num_events > MAX_HWEVENTS);
396 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
397 perf_cpu_notifier(sh_pmu_notifier);
398 return 0;