irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / arch / sparc / include / asm / tsb.h
blobecb49cfa3be9fa274053fb15bc2d5f3c38c76e08
1 #ifndef _SPARC64_TSB_H
2 #define _SPARC64_TSB_H
4 /* The sparc64 TSB is similar to the powerpc hashtables. It's a
5 * power-of-2 sized table of TAG/PTE pairs. The cpu precomputes
6 * pointers into this table for 8K and 64K page sizes, and also a
7 * comparison TAG based upon the virtual address and context which
8 * faults.
10 * TLB miss trap handler software does the actual lookup via something
11 * of the form:
13 * ldxa [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
14 * ldxa [%g0] ASI_{D,I}MMU, %g6
15 * sllx %g6, 22, %g6
16 * srlx %g6, 22, %g6
17 * ldda [%g1] ASI_NUCLEUS_QUAD_LDD, %g4
18 * cmp %g4, %g6
19 * bne,pn %xcc, tsb_miss_{d,i}tlb
20 * mov FAULT_CODE_{D,I}TLB, %g3
21 * stxa %g5, [%g0] ASI_{D,I}TLB_DATA_IN
22 * retry
25 * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
26 * PTE. The TAG is of the same layout as the TLB TAG TARGET mmu
27 * register which is:
29 * -------------------------------------------------
30 * | - | CONTEXT | - | VADDR bits 63:22 |
31 * -------------------------------------------------
32 * 63 61 60 48 47 42 41 0
34 * But actually, since we use per-mm TSB's, we zero out the CONTEXT
35 * field.
37 * Like the powerpc hashtables we need to use locking in order to
38 * synchronize while we update the entries. PTE updates need locking
39 * as well.
41 * We need to carefully choose a lock bits for the TSB entry. We
42 * choose to use bit 47 in the tag. Also, since we never map anything
43 * at page zero in context zero, we use zero as an invalid tag entry.
44 * When the lock bit is set, this forces a tag comparison failure.
47 #define TSB_TAG_LOCK_BIT 47
48 #define TSB_TAG_LOCK_HIGH (1 << (TSB_TAG_LOCK_BIT - 32))
50 #define TSB_TAG_INVALID_BIT 46
51 #define TSB_TAG_INVALID_HIGH (1 << (TSB_TAG_INVALID_BIT - 32))
53 /* Some cpus support physical address quad loads. We want to use
54 * those if possible so we don't need to hard-lock the TSB mapping
55 * into the TLB. We encode some instruction patching in order to
56 * support this.
58 * The kernel TSB is locked into the TLB by virtue of being in the
59 * kernel image, so we don't play these games for swapper_tsb access.
61 #ifndef __ASSEMBLY__
62 struct tsb_ldquad_phys_patch_entry {
63 unsigned int addr;
64 unsigned int sun4u_insn;
65 unsigned int sun4v_insn;
67 extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
68 __tsb_ldquad_phys_patch_end;
70 struct tsb_phys_patch_entry {
71 unsigned int addr;
72 unsigned int insn;
74 extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
75 #endif
76 #define TSB_LOAD_QUAD(TSB, REG) \
77 661: ldda [TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
78 .section .tsb_ldquad_phys_patch, "ax"; \
79 .word 661b; \
80 ldda [TSB] ASI_QUAD_LDD_PHYS, REG; \
81 ldda [TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
82 .previous
84 #define TSB_LOAD_TAG_HIGH(TSB, REG) \
85 661: lduwa [TSB] ASI_N, REG; \
86 .section .tsb_phys_patch, "ax"; \
87 .word 661b; \
88 lduwa [TSB] ASI_PHYS_USE_EC, REG; \
89 .previous
91 #define TSB_LOAD_TAG(TSB, REG) \
92 661: ldxa [TSB] ASI_N, REG; \
93 .section .tsb_phys_patch, "ax"; \
94 .word 661b; \
95 ldxa [TSB] ASI_PHYS_USE_EC, REG; \
96 .previous
98 #define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
99 661: casa [TSB] ASI_N, REG1, REG2; \
100 .section .tsb_phys_patch, "ax"; \
101 .word 661b; \
102 casa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
103 .previous
105 #define TSB_CAS_TAG(TSB, REG1, REG2) \
106 661: casxa [TSB] ASI_N, REG1, REG2; \
107 .section .tsb_phys_patch, "ax"; \
108 .word 661b; \
109 casxa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
110 .previous
112 #define TSB_STORE(ADDR, VAL) \
113 661: stxa VAL, [ADDR] ASI_N; \
114 .section .tsb_phys_patch, "ax"; \
115 .word 661b; \
116 stxa VAL, [ADDR] ASI_PHYS_USE_EC; \
117 .previous
119 #define TSB_LOCK_TAG(TSB, REG1, REG2) \
120 99: TSB_LOAD_TAG_HIGH(TSB, REG1); \
121 sethi %hi(TSB_TAG_LOCK_HIGH), REG2;\
122 andcc REG1, REG2, %g0; \
123 bne,pn %icc, 99b; \
124 nop; \
125 TSB_CAS_TAG_HIGH(TSB, REG1, REG2); \
126 cmp REG1, REG2; \
127 bne,pn %icc, 99b; \
128 nop; \
130 #define TSB_WRITE(TSB, TTE, TAG) \
131 add TSB, 0x8, TSB; \
132 TSB_STORE(TSB, TTE); \
133 sub TSB, 0x8, TSB; \
134 TSB_STORE(TSB, TAG);
136 /* Do a kernel page table walk. Leaves valid PTE value in
137 * REG1. Jumps to FAIL_LABEL on early page table walk
138 * termination. VADDR will not be clobbered, but REG2 will.
140 * There are two masks we must apply to propagate bits from
141 * the virtual address into the PTE physical address field
142 * when dealing with huge pages. This is because the page
143 * table boundaries do not match the huge page size(s) the
144 * hardware supports.
146 * In these cases we propagate the bits that are below the
147 * page table level where we saw the huge page mapping, but
148 * are still within the relevant physical bits for the huge
149 * page size in question. So for PMD mappings (which fall on
150 * bit 23, for 8MB per PMD) we must propagate bit 22 for a
151 * 4MB huge page. For huge PUDs (which fall on bit 33, for
152 * 8GB per PUD), we have to accomodate 256MB and 2GB huge
153 * pages. So for those we propagate bits 32 to 28.
155 #define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL) \
156 sethi %hi(swapper_pg_dir), REG1; \
157 or REG1, %lo(swapper_pg_dir), REG1; \
158 sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
159 srlx REG2, 64 - PAGE_SHIFT, REG2; \
160 andn REG2, 0x7, REG2; \
161 ldx [REG1 + REG2], REG1; \
162 brz,pn REG1, FAIL_LABEL; \
163 sllx VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
164 srlx REG2, 64 - PAGE_SHIFT, REG2; \
165 andn REG2, 0x7, REG2; \
166 ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
167 brz,pn REG1, FAIL_LABEL; \
168 sethi %uhi(_PAGE_PUD_HUGE), REG2; \
169 brz,pn REG1, FAIL_LABEL; \
170 sllx REG2, 32, REG2; \
171 andcc REG1, REG2, %g0; \
172 sethi %hi(0xf8000000), REG2; \
173 bne,pt %xcc, 697f; \
174 sllx REG2, 1, REG2; \
175 sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
176 srlx REG2, 64 - PAGE_SHIFT, REG2; \
177 andn REG2, 0x7, REG2; \
178 ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
179 sethi %uhi(_PAGE_PMD_HUGE), REG2; \
180 brz,pn REG1, FAIL_LABEL; \
181 sllx REG2, 32, REG2; \
182 andcc REG1, REG2, %g0; \
183 be,pn %xcc, 698f; \
184 sethi %hi(0x400000), REG2; \
185 697: brgez,pn REG1, FAIL_LABEL; \
186 andn REG1, REG2, REG1; \
187 and VADDR, REG2, REG2; \
188 ba,pt %xcc, 699f; \
189 or REG1, REG2, REG1; \
190 698: sllx VADDR, 64 - PMD_SHIFT, REG2; \
191 srlx REG2, 64 - PAGE_SHIFT, REG2; \
192 andn REG2, 0x7, REG2; \
193 ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
194 brgez,pn REG1, FAIL_LABEL; \
195 nop; \
196 699:
198 /* PMD has been loaded into REG1, interpret the value, seeing
199 * if it is a HUGE PMD or a normal one. If it is not valid
200 * then jump to FAIL_LABEL. If it is a HUGE PMD, and it
201 * translates to a valid PTE, branch to PTE_LABEL.
203 * We have to propagate the 4MB bit of the virtual address
204 * because we are fabricating 8MB pages using 4MB hw pages.
206 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
207 #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
208 brz,pn REG1, FAIL_LABEL; \
209 sethi %uhi(_PAGE_PMD_HUGE), REG2; \
210 sllx REG2, 32, REG2; \
211 andcc REG1, REG2, %g0; \
212 be,pt %xcc, 700f; \
213 sethi %hi(4 * 1024 * 1024), REG2; \
214 brgez,pn REG1, FAIL_LABEL; \
215 andn REG1, REG2, REG1; \
216 and VADDR, REG2, REG2; \
217 brlz,pt REG1, PTE_LABEL; \
218 or REG1, REG2, REG1; \
219 700:
220 #else
221 #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
222 brz,pn REG1, FAIL_LABEL; \
223 nop;
224 #endif
226 /* Do a user page table walk in MMU globals. Leaves final,
227 * valid, PTE value in REG1. Jumps to FAIL_LABEL on early
228 * page table walk termination or if the PTE is not valid.
230 * Physical base of page tables is in PHYS_PGD which will not
231 * be modified.
233 * VADDR will not be clobbered, but REG1 and REG2 will.
235 #define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL) \
236 sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
237 srlx REG2, 64 - PAGE_SHIFT, REG2; \
238 andn REG2, 0x7, REG2; \
239 ldxa [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
240 brz,pn REG1, FAIL_LABEL; \
241 sllx VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
242 srlx REG2, 64 - PAGE_SHIFT, REG2; \
243 andn REG2, 0x7, REG2; \
244 ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
245 brz,pn REG1, FAIL_LABEL; \
246 sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
247 srlx REG2, 64 - PAGE_SHIFT, REG2; \
248 andn REG2, 0x7, REG2; \
249 ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
250 USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
251 sllx VADDR, 64 - PMD_SHIFT, REG2; \
252 srlx REG2, 64 - PAGE_SHIFT, REG2; \
253 andn REG2, 0x7, REG2; \
254 add REG1, REG2, REG1; \
255 ldxa [REG1] ASI_PHYS_USE_EC, REG1; \
256 brgez,pn REG1, FAIL_LABEL; \
257 nop; \
258 800:
260 /* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
261 * If no entry is found, FAIL_LABEL will be branched to. On success
262 * the resulting PTE value will be left in REG1. VADDR is preserved
263 * by this routine.
265 #define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
266 sethi %hi(prom_trans), REG1; \
267 or REG1, %lo(prom_trans), REG1; \
268 97: ldx [REG1 + 0x00], REG2; \
269 brz,pn REG2, FAIL_LABEL; \
270 nop; \
271 ldx [REG1 + 0x08], REG3; \
272 add REG2, REG3, REG3; \
273 cmp REG2, VADDR; \
274 bgu,pt %xcc, 98f; \
275 cmp VADDR, REG3; \
276 bgeu,pt %xcc, 98f; \
277 ldx [REG1 + 0x10], REG3; \
278 sub VADDR, REG2, REG2; \
279 ba,pt %xcc, 99f; \
280 add REG3, REG2, REG1; \
281 98: ba,pt %xcc, 97b; \
282 add REG1, (3 * 8), REG1; \
285 /* We use a 32K TSB for the whole kernel, this allows to
286 * handle about 16MB of modules and vmalloc mappings without
287 * incurring many hash conflicts.
289 #define KERNEL_TSB_SIZE_BYTES (32 * 1024)
290 #define KERNEL_TSB_NENTRIES \
291 (KERNEL_TSB_SIZE_BYTES / 16)
292 #define KERNEL_TSB4M_NENTRIES 4096
294 /* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
295 * on TSB hit. REG1, REG2, REG3, and REG4 are used as temporaries
296 * and the found TTE will be left in REG1. REG3 and REG4 must
297 * be an even/odd pair of registers.
299 * VADDR and TAG will be preserved and not clobbered by this macro.
301 #define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
302 661: sethi %uhi(swapper_tsb), REG1; \
303 sethi %hi(swapper_tsb), REG2; \
304 or REG1, %ulo(swapper_tsb), REG1; \
305 or REG2, %lo(swapper_tsb), REG2; \
306 .section .swapper_tsb_phys_patch, "ax"; \
307 .word 661b; \
308 .previous; \
309 sllx REG1, 32, REG1; \
310 or REG1, REG2, REG1; \
311 srlx VADDR, PAGE_SHIFT, REG2; \
312 and REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
313 sllx REG2, 4, REG2; \
314 add REG1, REG2, REG2; \
315 TSB_LOAD_QUAD(REG2, REG3); \
316 cmp REG3, TAG; \
317 be,a,pt %xcc, OK_LABEL; \
318 mov REG4, REG1;
320 #ifndef CONFIG_DEBUG_PAGEALLOC
321 /* This version uses a trick, the TAG is already (VADDR >> 22) so
322 * we can make use of that for the index computation.
324 #define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
325 661: sethi %uhi(swapper_4m_tsb), REG1; \
326 sethi %hi(swapper_4m_tsb), REG2; \
327 or REG1, %ulo(swapper_4m_tsb), REG1; \
328 or REG2, %lo(swapper_4m_tsb), REG2; \
329 .section .swapper_4m_tsb_phys_patch, "ax"; \
330 .word 661b; \
331 .previous; \
332 sllx REG1, 32, REG1; \
333 or REG1, REG2, REG1; \
334 and TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
335 sllx REG2, 4, REG2; \
336 add REG1, REG2, REG2; \
337 TSB_LOAD_QUAD(REG2, REG3); \
338 cmp REG3, TAG; \
339 be,a,pt %xcc, OK_LABEL; \
340 mov REG4, REG1;
341 #endif
343 #endif /* !(_SPARC64_TSB_H) */