2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
14 * From i386 code copyright (C) 1995 Linus Torvalds
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
26 #include <linux/smp.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/tty.h>
30 #include <linux/vt_kern.h> /* For unblank_screen() */
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/kprobes.h>
34 #include <linux/hugetlb.h>
35 #include <linux/syscalls.h>
36 #include <linux/uaccess.h>
37 #include <linux/kdebug.h>
38 #include <linux/context_tracking.h>
40 #include <asm/pgalloc.h>
41 #include <asm/sections.h>
42 #include <asm/traps.h>
43 #include <asm/syscalls.h>
45 #include <arch/interrupts.h>
47 static noinline
void force_sig_info_fault(const char *type
, int si_signo
,
48 int si_code
, unsigned long address
,
50 struct task_struct
*tsk
,
55 if (unlikely(tsk
->pid
< 2)) {
56 panic("Signal %d (code %d) at %#lx sent to %s!",
57 si_signo
, si_code
& 0xffff, address
,
58 is_idle_task(tsk
) ? "the idle task" : "init");
61 info
.si_signo
= si_signo
;
63 info
.si_code
= si_code
;
64 info
.si_addr
= (void __user
*)address
;
65 info
.si_trapno
= fault_num
;
66 trace_unhandled_signal(type
, regs
, address
, si_signo
);
67 force_sig_info(si_signo
, &info
, tsk
);
72 * Synthesize the fault a PL0 process would get by doing a word-load of
73 * an unaligned address or a high kernel address.
75 SYSCALL_DEFINE1(cmpxchg_badaddr
, unsigned long, address
)
77 struct pt_regs
*regs
= current_pt_regs();
79 if (address
>= PAGE_OFFSET
)
80 force_sig_info_fault("atomic segfault", SIGSEGV
, SEGV_MAPERR
,
81 address
, INT_DTLB_MISS
, current
, regs
);
83 force_sig_info_fault("atomic alignment fault", SIGBUS
,
85 INT_UNALIGN_DATA
, current
, regs
);
88 * Adjust pc to point at the actual instruction, which is unusual
89 * for syscalls normally, but is appropriate when we are claiming
90 * that a syscall swint1 caused a page fault or bus error.
95 * Mark this as a caller-save interrupt, like a normal page fault,
96 * so that when we go through the signal handler path we will
97 * properly restore r0, r1, and r2 for the signal handler arguments.
99 regs
->flags
|= PT_FLAGS_CALLER_SAVES
;
105 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
107 unsigned index
= pgd_index(address
);
113 pgd_k
= init_mm
.pgd
+ index
;
115 if (!pgd_present(*pgd_k
))
118 pud
= pud_offset(pgd
, address
);
119 pud_k
= pud_offset(pgd_k
, address
);
120 if (!pud_present(*pud_k
))
123 pmd
= pmd_offset(pud
, address
);
124 pmd_k
= pmd_offset(pud_k
, address
);
125 if (!pmd_present(*pmd_k
))
127 if (!pmd_present(*pmd
))
128 set_pmd(pmd
, *pmd_k
);
130 BUG_ON(pmd_ptfn(*pmd
) != pmd_ptfn(*pmd_k
));
135 * Handle a fault on the vmalloc area.
137 static inline int vmalloc_fault(pgd_t
*pgd
, unsigned long address
)
142 /* Make sure we are in vmalloc area */
143 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
147 * Synchronize this task's top level page-table
148 * with the 'reference' page table.
150 pmd_k
= vmalloc_sync_one(pgd
, address
);
153 pte_k
= pte_offset_kernel(pmd_k
, address
);
154 if (!pte_present(*pte_k
))
159 /* Wait until this PTE has completed migration. */
160 static void wait_for_migration(pte_t
*pte
)
162 if (pte_migrating(*pte
)) {
164 * Wait until the migrater fixes up this pte.
165 * We scale the loop count by the clock rate so we'll wait for
166 * a few seconds here.
169 int bound
= get_clock_rate();
170 while (pte_migrating(*pte
)) {
172 if (++retries
> bound
)
173 panic("Hit migrating PTE (%#llx) and page PFN %#lx still migrating",
174 pte
->val
, pte_pfn(*pte
));
180 * It's not generally safe to use "current" to get the page table pointer,
181 * since we might be running an oprofile interrupt in the middle of a
184 static pgd_t
*get_current_pgd(void)
186 HV_Context ctx
= hv_inquire_context();
187 unsigned long pgd_pfn
= ctx
.page_table
>> PAGE_SHIFT
;
188 struct page
*pgd_page
= pfn_to_page(pgd_pfn
);
189 BUG_ON(PageHighMem(pgd_page
));
190 return (pgd_t
*) __va(ctx
.page_table
);
194 * We can receive a page fault from a migrating PTE at any time.
195 * Handle it by just waiting until the fault resolves.
197 * It's also possible to get a migrating kernel PTE that resolves
198 * itself during the downcall from hypervisor to Linux. We just check
199 * here to see if the PTE seems valid, and if so we retry it.
201 * NOTE! We MUST NOT take any locks for this case. We may be in an
202 * interrupt or a critical region, and must do as little as possible.
203 * Similarly, we can't use atomic ops here, since we may be handling a
204 * fault caused by an atomic op access.
206 * If we find a migrating PTE while we're in an NMI context, and we're
207 * at a PC that has a registered exception handler, we don't wait,
208 * since this thread may (e.g.) have been interrupted while migrating
209 * its own stack, which would then cause us to self-deadlock.
211 static int handle_migrating_pte(pgd_t
*pgd
, int fault_num
,
212 unsigned long address
, unsigned long pc
,
213 int is_kernel_mode
, int write
)
220 if (pgd_addr_invalid(address
))
223 pgd
+= pgd_index(address
);
224 pud
= pud_offset(pgd
, address
);
225 if (!pud
|| !pud_present(*pud
))
227 pmd
= pmd_offset(pud
, address
);
228 if (!pmd
|| !pmd_present(*pmd
))
230 pte
= pmd_huge_page(*pmd
) ? ((pte_t
*)pmd
) :
231 pte_offset_kernel(pmd
, address
);
233 if (pte_migrating(pteval
)) {
234 if (in_nmi() && search_exception_tables(pc
))
236 wait_for_migration(pte
);
240 if (!is_kernel_mode
|| !pte_present(pteval
))
242 if (fault_num
== INT_ITLB_MISS
) {
243 if (pte_exec(pteval
))
246 if (pte_write(pteval
))
249 if (pte_read(pteval
))
257 * This routine is responsible for faulting in user pages.
258 * It passes the work off to one of the appropriate routines.
259 * It returns true if the fault was successfully handled.
261 static int handle_page_fault(struct pt_regs
*regs
,
264 unsigned long address
,
267 struct task_struct
*tsk
;
268 struct mm_struct
*mm
;
269 struct vm_area_struct
*vma
;
270 unsigned long stack_offset
;
277 /* on TILE, protection faults are always writes */
281 flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
283 is_kernel_mode
= !user_mode(regs
);
285 tsk
= validate_current();
288 * Check to see if we might be overwriting the stack, and bail
289 * out if so. The page fault code is a relatively likely
290 * place to get trapped in an infinite regress, and once we
291 * overwrite the whole stack, it becomes very hard to recover.
293 stack_offset
= stack_pointer
& (THREAD_SIZE
-1);
294 if (stack_offset
< THREAD_SIZE
/ 8) {
295 pr_alert("Potential stack overrun: sp %#lx\n", stack_pointer
);
297 pr_alert("Killing current process %d/%s\n",
298 tsk
->pid
, tsk
->comm
);
299 do_group_exit(SIGKILL
);
303 * Early on, we need to check for migrating PTE entries;
304 * see homecache.c. If we find a migrating PTE, we wait until
305 * the backing page claims to be done migrating, then we proceed.
306 * For kernel PTEs, we rewrite the PTE and return and retry.
307 * Otherwise, we treat the fault like a normal "no PTE" fault,
308 * rather than trying to patch up the existing PTE.
310 pgd
= get_current_pgd();
311 if (handle_migrating_pte(pgd
, fault_num
, address
, regs
->pc
,
312 is_kernel_mode
, write
))
315 si_code
= SEGV_MAPERR
;
318 * We fault-in kernel-space virtual memory on-demand. The
319 * 'reference' page table is init_mm.pgd.
321 * NOTE! We MUST NOT take any locks for this case. We may
322 * be in an interrupt or a critical region, and should
323 * only copy the information from the master page table,
326 * This verifies that the fault happens in kernel space
327 * and that the fault was not a protection fault.
329 if (unlikely(address
>= TASK_SIZE
&&
330 !is_arch_mappable_range(address
, 0))) {
331 if (is_kernel_mode
&& is_page_fault
&&
332 vmalloc_fault(pgd
, address
) >= 0)
335 * Don't take the mm semaphore here. If we fixup a prefetch
336 * fault we could otherwise deadlock.
338 mm
= NULL
; /* happy compiler */
340 goto bad_area_nosemaphore
;
344 * If we're trying to touch user-space addresses, we must
345 * be either at PL0, or else with interrupts enabled in the
346 * kernel, so either way we can re-enable interrupts here
347 * unless we are doing atomic access to user space with
348 * interrupts disabled.
350 if (!(regs
->flags
& PT_FLAGS_DISABLE_IRQ
))
356 * If we're in an interrupt, have no user context or are running in an
357 * region with pagefaults disabled then we must not take the fault.
359 if (pagefault_disabled() || !mm
) {
360 vma
= NULL
; /* happy compiler */
361 goto bad_area_nosemaphore
;
365 flags
|= FAULT_FLAG_USER
;
368 * When running in the kernel we expect faults to occur only to
369 * addresses in user space. All other faults represent errors in the
370 * kernel and should generate an OOPS. Unfortunately, in the case of an
371 * erroneous fault occurring in a code path which already holds mmap_sem
372 * we will deadlock attempting to validate the fault against the
373 * address space. Luckily the kernel only validly references user
374 * space from well defined areas of code, which are listed in the
377 * As the vast majority of faults will be valid we will only perform
378 * the source reference check when there is a possibility of a deadlock.
379 * Attempt to lock the address space, if we cannot we then validate the
380 * source. If this is invalid we can skip the address space check,
381 * thus avoiding the deadlock.
383 if (!down_read_trylock(&mm
->mmap_sem
)) {
384 if (is_kernel_mode
&&
385 !search_exception_tables(regs
->pc
)) {
386 vma
= NULL
; /* happy compiler */
387 goto bad_area_nosemaphore
;
391 down_read(&mm
->mmap_sem
);
394 vma
= find_vma(mm
, address
);
397 if (vma
->vm_start
<= address
)
399 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
401 if (regs
->sp
< PAGE_OFFSET
) {
403 * accessing the stack below sp is always a bug.
405 if (address
< regs
->sp
)
408 if (expand_stack(vma
, address
))
412 * Ok, we have a good vm_area for this memory access, so
416 si_code
= SEGV_ACCERR
;
417 if (fault_num
== INT_ITLB_MISS
) {
418 if (!(vma
->vm_flags
& VM_EXEC
))
421 #ifdef TEST_VERIFY_AREA
422 if (!is_page_fault
&& regs
->cs
== KERNEL_CS
)
423 pr_err("WP fault at " REGFMT
"\n", regs
->eip
);
425 if (!(vma
->vm_flags
& VM_WRITE
))
427 flags
|= FAULT_FLAG_WRITE
;
429 if (!is_page_fault
|| !(vma
->vm_flags
& VM_READ
))
434 * If for any reason at all we couldn't handle the fault,
435 * make sure we exit gracefully rather than endlessly redo
438 fault
= handle_mm_fault(mm
, vma
, address
, flags
);
440 if ((fault
& VM_FAULT_RETRY
) && fatal_signal_pending(current
))
443 if (unlikely(fault
& VM_FAULT_ERROR
)) {
444 if (fault
& VM_FAULT_OOM
)
446 else if (fault
& VM_FAULT_SIGSEGV
)
448 else if (fault
& VM_FAULT_SIGBUS
)
452 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
453 if (fault
& VM_FAULT_MAJOR
)
457 if (fault
& VM_FAULT_RETRY
) {
458 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
459 flags
|= FAULT_FLAG_TRIED
;
462 * No need to up_read(&mm->mmap_sem) as we would
463 * have already released it in __lock_page_or_retry
470 #if CHIP_HAS_TILE_DMA()
471 /* If this was a DMA TLB fault, restart the DMA engine. */
473 case INT_DMATLB_MISS
:
474 case INT_DMATLB_MISS_DWNCL
:
475 case INT_DMATLB_ACCESS
:
476 case INT_DMATLB_ACCESS_DWNCL
:
477 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__REQUEST_MASK
);
482 up_read(&mm
->mmap_sem
);
486 * Something tried to access memory that isn't in our memory map..
487 * Fix it, but check if it's kernel or user first..
490 up_read(&mm
->mmap_sem
);
492 bad_area_nosemaphore
:
493 /* User mode accesses just cause a SIGSEGV */
494 if (!is_kernel_mode
) {
496 * It's possible to have interrupts off here.
500 force_sig_info_fault("segfault", SIGSEGV
, si_code
, address
,
501 fault_num
, tsk
, regs
);
506 /* Are we prepared to handle this kernel fault? */
507 if (fixup_exception(regs
))
511 * Oops. The kernel tried to access some bad page. We'll have to
512 * terminate things with extreme prejudice.
517 /* FIXME: no lookup_address() yet */
518 #ifdef SUPPORT_LOOKUP_ADDRESS
519 if (fault_num
== INT_ITLB_MISS
) {
520 pte_t
*pte
= lookup_address(address
);
522 if (pte
&& pte_present(*pte
) && !pte_exec_kernel(*pte
))
523 pr_crit("kernel tried to execute non-executable page - exploit attempt? (uid: %d)\n",
527 if (address
< PAGE_SIZE
)
528 pr_alert("Unable to handle kernel NULL pointer dereference\n");
530 pr_alert("Unable to handle kernel paging request\n");
531 pr_alert(" at virtual address " REGFMT
", pc " REGFMT
"\n",
536 if (unlikely(tsk
->pid
< 2)) {
537 panic("Kernel page fault running %s!",
538 is_idle_task(tsk
) ? "the idle task" : "init");
542 * More FIXME: we should probably copy the i386 here and
543 * implement a generic die() routine. Not today.
550 do_group_exit(SIGKILL
);
553 * We ran out of memory, or some other thing happened to us that made
554 * us unable to handle the page fault gracefully.
557 up_read(&mm
->mmap_sem
);
560 pagefault_out_of_memory();
564 up_read(&mm
->mmap_sem
);
566 /* Kernel mode? Handle exceptions or die */
570 force_sig_info_fault("bus error", SIGBUS
, BUS_ADRERR
, address
,
571 fault_num
, tsk
, regs
);
577 /* We must release ICS before panicking or we won't get anywhere. */
578 #define ics_panic(fmt, ...) \
580 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
581 panic(fmt, ##__VA_ARGS__); \
585 * When we take an ITLB or DTLB fault or access violation in the
586 * supervisor while the critical section bit is set, the hypervisor is
587 * reluctant to write new values into the EX_CONTEXT_K_x registers,
588 * since that might indicate we have not yet squirreled the SPR
589 * contents away and can thus safely take a recursive interrupt.
590 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
592 * Note that this routine is called before homecache_tlb_defer_enter(),
593 * which means that we can properly unlock any atomics that might
594 * be used there (good), but also means we must be very sensitive
595 * to not touch any data structures that might be located in memory
596 * that could migrate, as we could be entering the kernel on a dataplane
597 * cpu that has been deferring kernel TLB updates. This means, for
598 * example, that we can't migrate init_mm or its pgd.
600 struct intvec_state
do_page_fault_ics(struct pt_regs
*regs
, int fault_num
,
601 unsigned long address
,
604 unsigned long pc
= info
& ~1;
605 int write
= info
& 1;
606 pgd_t
*pgd
= get_current_pgd();
608 /* Retval is 1 at first since we will handle the fault fully. */
609 struct intvec_state state
= {
610 do_page_fault
, fault_num
, address
, write
, 1
613 /* Validate that we are plausibly in the right routine. */
614 if ((pc
& 0x7) != 0 || pc
< PAGE_OFFSET
||
615 (fault_num
!= INT_DTLB_MISS
&&
616 fault_num
!= INT_DTLB_ACCESS
)) {
617 unsigned long old_pc
= regs
->pc
;
619 ics_panic("Bad ICS page fault args: old PC %#lx, fault %d/%d at %#lx",
620 old_pc
, fault_num
, write
, address
);
623 /* We might be faulting on a vmalloc page, so check that first. */
624 if (fault_num
!= INT_DTLB_ACCESS
&& vmalloc_fault(pgd
, address
) >= 0)
628 * If we faulted with ICS set in sys_cmpxchg, we are providing
629 * a user syscall service that should generate a signal on
630 * fault. We didn't set up a kernel stack on initial entry to
631 * sys_cmpxchg, but instead had one set up by the fault, which
632 * (because sys_cmpxchg never releases ICS) came to us via the
633 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
634 * still referencing the original user code. We release the
635 * atomic lock and rewrite pt_regs so that it appears that we
636 * came from user-space directly, and after we finish the
637 * fault we'll go back to user space and re-issue the swint.
638 * This way the backtrace information is correct if we need to
639 * emit a stack dump at any point while handling this.
641 * Must match register use in sys_cmpxchg().
643 if (pc
>= (unsigned long) sys_cmpxchg
&&
644 pc
< (unsigned long) __sys_cmpxchg_end
) {
646 /* Don't unlock before we could have locked. */
647 if (pc
>= (unsigned long)__sys_cmpxchg_grab_lock
) {
648 int *lock_ptr
= (int *)(regs
->regs
[ATOMIC_LOCK_REG
]);
649 __atomic_fault_unlock(lock_ptr
);
652 regs
->sp
= regs
->regs
[27];
656 * We can also fault in the atomic assembly, in which
657 * case we use the exception table to do the first-level fixup.
658 * We may re-fixup again in the real fault handler if it
659 * turns out the faulting address is just bad, and not,
660 * for example, migrating.
662 else if (pc
>= (unsigned long) __start_atomic_asm_code
&&
663 pc
< (unsigned long) __end_atomic_asm_code
) {
664 const struct exception_table_entry
*fixup
;
666 /* Unlock the atomic lock. */
667 int *lock_ptr
= (int *)(regs
->regs
[ATOMIC_LOCK_REG
]);
668 __atomic_fault_unlock(lock_ptr
);
670 fixup
= search_exception_tables(pc
);
672 ics_panic("ICS atomic fault not in table: PC %#lx, fault %d",
674 regs
->pc
= fixup
->fixup
;
675 regs
->ex1
= PL_ICS_EX1(KERNEL_PL
, 0);
679 * Now that we have released the atomic lock (if necessary),
680 * it's safe to spin if the PTE that caused the fault was migrating.
682 if (fault_num
== INT_DTLB_ACCESS
)
684 if (handle_migrating_pte(pgd
, fault_num
, address
, pc
, 1, write
))
687 /* Return zero so that we continue on with normal fault handling. */
692 #endif /* !__tilegx__ */
695 * This routine handles page faults. It determines the address, and the
696 * problem, and then passes it handle_page_fault() for normal DTLB and
697 * ITLB issues, and for DMA or SN processor faults when we are in user
698 * space. For the latter, if we're in kernel mode, we just save the
699 * interrupt away appropriately and return immediately. We can't do
700 * page faults for user code while in kernel mode.
702 static inline void __do_page_fault(struct pt_regs
*regs
, int fault_num
,
703 unsigned long address
, unsigned long write
)
707 #ifdef CONFIG_KPROBES
709 * This is to notify the fault handler of the kprobes. The
710 * exception code is redundant as it is also carried in REGS,
711 * but we pass it anyhow.
713 if (notify_die(DIE_PAGE_FAULT
, "page fault", regs
, -1,
714 regs
->faultnum
, SIGSEGV
) == NOTIFY_STOP
)
720 * We don't need early do_page_fault_ics() support, since unlike
721 * Pro we don't need to worry about unlocking the atomic locks.
722 * There is only one current case in GX where we touch any memory
723 * under ICS other than our own kernel stack, and we handle that
724 * here. (If we crash due to trying to touch our own stack,
725 * we're in too much trouble for C code to help out anyway.)
728 unsigned long pc
= write
& ~1;
729 if (pc
>= (unsigned long) __start_unalign_asm_code
&&
730 pc
< (unsigned long) __end_unalign_asm_code
) {
731 struct thread_info
*ti
= current_thread_info();
733 * Our EX_CONTEXT is still what it was from the
734 * initial unalign exception, but now we've faulted
735 * on the JIT page. We would like to complete the
736 * page fault however is appropriate, and then retry
737 * the instruction that caused the unalign exception.
738 * Our state has been "corrupted" by setting the low
739 * bit in "sp", and stashing r0..r3 in the
740 * thread_info area, so we revert all of that, then
741 * continue as if this were a normal page fault.
744 regs
->regs
[0] = ti
->unalign_jit_tmp
[0];
745 regs
->regs
[1] = ti
->unalign_jit_tmp
[1];
746 regs
->regs
[2] = ti
->unalign_jit_tmp
[2];
747 regs
->regs
[3] = ti
->unalign_jit_tmp
[3];
750 pr_alert("%s/%d: ICS set at page fault at %#lx: %#lx\n",
751 current
->comm
, current
->pid
, pc
, address
);
753 do_group_exit(SIGKILL
);
757 /* This case should have been handled by do_page_fault_ics(). */
761 #if CHIP_HAS_TILE_DMA()
763 * If it's a DMA fault, suspend the transfer while we're
764 * handling the miss; we'll restart after it's handled. If we
765 * don't suspend, it's possible that this process could swap
766 * out and back in, and restart the engine since the DMA is
769 if (fault_num
== INT_DMATLB_MISS
||
770 fault_num
== INT_DMATLB_ACCESS
||
771 fault_num
== INT_DMATLB_MISS_DWNCL
||
772 fault_num
== INT_DMATLB_ACCESS_DWNCL
) {
773 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__SUSPEND_MASK
);
774 while (__insn_mfspr(SPR_DMA_USER_STATUS
) &
775 SPR_DMA_STATUS__BUSY_MASK
)
780 /* Validate fault num and decide if this is a first-time page fault. */
784 #if CHIP_HAS_TILE_DMA()
785 case INT_DMATLB_MISS
:
786 case INT_DMATLB_MISS_DWNCL
:
791 case INT_DTLB_ACCESS
:
792 #if CHIP_HAS_TILE_DMA()
793 case INT_DMATLB_ACCESS
:
794 case INT_DMATLB_ACCESS_DWNCL
:
800 panic("Bad fault number %d in do_page_fault", fault_num
);
803 #if CHIP_HAS_TILE_DMA()
804 if (!user_mode(regs
)) {
805 struct async_tlb
*async
;
807 #if CHIP_HAS_TILE_DMA()
808 case INT_DMATLB_MISS
:
809 case INT_DMATLB_ACCESS
:
810 case INT_DMATLB_MISS_DWNCL
:
811 case INT_DMATLB_ACCESS_DWNCL
:
812 async
= ¤t
->thread
.dma_async_tlb
;
821 * No vmalloc check required, so we can allow
822 * interrupts immediately at this point.
826 set_thread_flag(TIF_ASYNC_TLB
);
827 if (async
->fault_num
!= 0) {
828 panic("Second async fault %d; old fault was %d (%#lx/%ld)",
829 fault_num
, async
->fault_num
,
832 BUG_ON(fault_num
== 0);
833 async
->fault_num
= fault_num
;
834 async
->is_fault
= is_page_fault
;
835 async
->is_write
= write
;
836 async
->address
= address
;
842 handle_page_fault(regs
, fault_num
, is_page_fault
, address
, write
);
845 void do_page_fault(struct pt_regs
*regs
, int fault_num
,
846 unsigned long address
, unsigned long write
)
848 enum ctx_state prev_state
= exception_enter();
849 __do_page_fault(regs
, fault_num
, address
, write
);
850 exception_exit(prev_state
);
853 #if CHIP_HAS_TILE_DMA()
855 * This routine effectively re-issues asynchronous page faults
856 * when we are returning to user space.
858 void do_async_page_fault(struct pt_regs
*regs
)
860 struct async_tlb
*async
= ¤t
->thread
.dma_async_tlb
;
863 * Clear thread flag early. If we re-interrupt while processing
864 * code here, we will reset it and recall this routine before
865 * returning to user space.
867 clear_thread_flag(TIF_ASYNC_TLB
);
869 if (async
->fault_num
) {
871 * Clear async->fault_num before calling the page-fault
872 * handler so that if we re-interrupt before returning
873 * from the function we have somewhere to put the
874 * information from the new interrupt.
876 int fault_num
= async
->fault_num
;
877 async
->fault_num
= 0;
878 handle_page_fault(regs
, fault_num
, async
->is_fault
,
879 async
->address
, async
->is_write
);
882 #endif /* CHIP_HAS_TILE_DMA() */
885 void vmalloc_sync_all(void)
888 /* Currently all L1 kernel pmd's are static and shared. */
889 BUILD_BUG_ON(pgd_index(VMALLOC_END
- PAGE_SIZE
) !=
890 pgd_index(VMALLOC_START
));
893 * Note that races in the updates of insync and start aren't
894 * problematic: insync can only get set bits added, and updates to
895 * start are only improving performance (without affecting correctness
898 static DECLARE_BITMAP(insync
, PTRS_PER_PGD
);
899 static unsigned long start
= PAGE_OFFSET
;
900 unsigned long address
;
902 BUILD_BUG_ON(PAGE_OFFSET
& ~PGDIR_MASK
);
903 for (address
= start
; address
>= PAGE_OFFSET
; address
+= PGDIR_SIZE
) {
904 if (!test_bit(pgd_index(address
), insync
)) {
906 struct list_head
*pos
;
908 spin_lock_irqsave(&pgd_lock
, flags
);
909 list_for_each(pos
, &pgd_list
)
910 if (!vmalloc_sync_one(list_to_pgd(pos
),
912 /* Must be at first entry in list. */
913 BUG_ON(pos
!= pgd_list
.next
);
916 spin_unlock_irqrestore(&pgd_lock
, flags
);
917 if (pos
!= pgd_list
.next
)
918 set_bit(pgd_index(address
), insync
);
920 if (address
== start
&& test_bit(pgd_index(address
), insync
))
921 start
= address
+ PGDIR_SIZE
;