4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
21 #include "perf_event.h"
24 * Intel PerfMon, used on Core and later.
26 static u64 intel_perfmon_event_map
[PERF_COUNT_HW_MAX
] __read_mostly
=
28 [PERF_COUNT_HW_CPU_CYCLES
] = 0x003c,
29 [PERF_COUNT_HW_INSTRUCTIONS
] = 0x00c0,
30 [PERF_COUNT_HW_CACHE_REFERENCES
] = 0x4f2e,
31 [PERF_COUNT_HW_CACHE_MISSES
] = 0x412e,
32 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = 0x00c4,
33 [PERF_COUNT_HW_BRANCH_MISSES
] = 0x00c5,
34 [PERF_COUNT_HW_BUS_CYCLES
] = 0x013c,
35 [PERF_COUNT_HW_REF_CPU_CYCLES
] = 0x0300, /* pseudo-encoding */
38 static struct event_constraint intel_core_event_constraints
[] __read_mostly
=
40 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
49 static struct event_constraint intel_core2_event_constraints
[] __read_mostly
=
51 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
53 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
54 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
62 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
63 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
67 static struct event_constraint intel_nehalem_event_constraints
[] __read_mostly
=
69 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
71 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
72 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
83 static struct extra_reg intel_nehalem_extra_regs
[] __read_mostly
=
85 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0xffff, RSP_0
),
87 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
91 static struct event_constraint intel_westmere_event_constraints
[] __read_mostly
=
93 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
95 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
96 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
99 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
103 static struct event_constraint intel_snb_event_constraints
[] __read_mostly
=
105 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
107 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
108 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
112 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
113 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
115 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
119 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
120 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
121 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
126 static struct event_constraint intel_ivb_event_constraints
[] __read_mostly
=
128 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
129 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
130 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
131 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
132 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
133 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
134 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
135 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
136 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
137 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
138 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
139 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
142 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
143 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
144 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
145 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
150 static struct extra_reg intel_westmere_extra_regs
[] __read_mostly
=
152 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
153 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0xffff, RSP_0
),
154 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0xffff, RSP_1
),
155 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
159 static struct event_constraint intel_v1_event_constraints
[] __read_mostly
=
164 static struct event_constraint intel_gen_event_constraints
[] __read_mostly
=
166 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
167 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
168 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
172 static struct event_constraint intel_slm_event_constraints
[] __read_mostly
=
174 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
176 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
180 struct event_constraint intel_skl_event_constraints
[] = {
181 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
182 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
183 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
184 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
188 static struct extra_reg intel_knl_extra_regs
[] __read_mostly
= {
189 INTEL_UEVENT_EXTRA_REG(0x01b7,
190 MSR_OFFCORE_RSP_0
, 0x7f9ffbffffull
, RSP_0
),
191 INTEL_UEVENT_EXTRA_REG(0x02b7,
192 MSR_OFFCORE_RSP_1
, 0x3f9ffbffffull
, RSP_1
),
196 static struct extra_reg intel_snb_extra_regs
[] __read_mostly
= {
197 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
198 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3f807f8fffull
, RSP_0
),
199 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3f807f8fffull
, RSP_1
),
200 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
204 static struct extra_reg intel_snbep_extra_regs
[] __read_mostly
= {
205 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
206 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3fffff8fffull
, RSP_0
),
207 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3fffff8fffull
, RSP_1
),
208 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
212 static struct extra_reg intel_skl_extra_regs
[] __read_mostly
= {
213 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3fffff8fffull
, RSP_0
),
214 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3fffff8fffull
, RSP_1
),
215 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
217 * Note the low 8 bits eventsel code is not a continuous field, containing
218 * some #GPing bits. These are masked out.
220 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND
, 0x7fff17, FE
),
224 EVENT_ATTR_STR(mem
-loads
, mem_ld_nhm
, "event=0x0b,umask=0x10,ldlat=3");
225 EVENT_ATTR_STR(mem
-loads
, mem_ld_snb
, "event=0xcd,umask=0x1,ldlat=3");
226 EVENT_ATTR_STR(mem
-stores
, mem_st_snb
, "event=0xcd,umask=0x2");
228 struct attribute
*nhm_events_attrs
[] = {
229 EVENT_PTR(mem_ld_nhm
),
233 struct attribute
*snb_events_attrs
[] = {
234 EVENT_PTR(mem_ld_snb
),
235 EVENT_PTR(mem_st_snb
),
239 static struct event_constraint intel_hsw_event_constraints
[] = {
240 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
241 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
242 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
243 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
244 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
245 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
246 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
247 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
248 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
249 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
250 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
251 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
253 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
254 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
255 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
256 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
261 struct event_constraint intel_bdw_event_constraints
[] = {
262 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
263 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
264 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
265 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
266 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
270 static u64
intel_pmu_event_map(int hw_event
)
272 return intel_perfmon_event_map
[hw_event
];
276 * Notes on the events:
277 * - data reads do not include code reads (comparable to earlier tables)
278 * - data counts include speculative execution (except L1 write, dtlb, bpu)
279 * - remote node access includes remote memory, remote cache, remote mmio.
280 * - prefetches are not included in the counts.
281 * - icache miss does not include decoded icache
284 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
285 #define SKL_DEMAND_RFO BIT_ULL(1)
286 #define SKL_ANY_RESPONSE BIT_ULL(16)
287 #define SKL_SUPPLIER_NONE BIT_ULL(17)
288 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
289 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
290 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
291 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
292 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
293 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
294 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
295 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
296 #define SKL_SPL_HIT BIT_ULL(30)
297 #define SKL_SNOOP_NONE BIT_ULL(31)
298 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
299 #define SKL_SNOOP_MISS BIT_ULL(33)
300 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
301 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
302 #define SKL_SNOOP_HITM BIT_ULL(36)
303 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
304 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
305 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
306 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
307 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
308 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
309 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
310 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
311 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
312 SKL_SNOOP_HITM|SKL_SPL_HIT)
313 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
314 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
315 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
316 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
317 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
319 static __initconst
const u64 skl_hw_cache_event_ids
320 [PERF_COUNT_HW_CACHE_MAX
]
321 [PERF_COUNT_HW_CACHE_OP_MAX
]
322 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
326 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
327 [ C(RESULT_MISS
) ] = 0x151, /* L1D.REPLACEMENT */
330 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
331 [ C(RESULT_MISS
) ] = 0x0,
333 [ C(OP_PREFETCH
) ] = {
334 [ C(RESULT_ACCESS
) ] = 0x0,
335 [ C(RESULT_MISS
) ] = 0x0,
340 [ C(RESULT_ACCESS
) ] = 0x0,
341 [ C(RESULT_MISS
) ] = 0x283, /* ICACHE_64B.MISS */
344 [ C(RESULT_ACCESS
) ] = -1,
345 [ C(RESULT_MISS
) ] = -1,
347 [ C(OP_PREFETCH
) ] = {
348 [ C(RESULT_ACCESS
) ] = 0x0,
349 [ C(RESULT_MISS
) ] = 0x0,
354 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
355 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
358 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
359 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
361 [ C(OP_PREFETCH
) ] = {
362 [ C(RESULT_ACCESS
) ] = 0x0,
363 [ C(RESULT_MISS
) ] = 0x0,
368 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
369 [ C(RESULT_MISS
) ] = 0x608, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
372 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
373 [ C(RESULT_MISS
) ] = 0x649, /* DTLB_STORE_MISSES.WALK_COMPLETED */
375 [ C(OP_PREFETCH
) ] = {
376 [ C(RESULT_ACCESS
) ] = 0x0,
377 [ C(RESULT_MISS
) ] = 0x0,
382 [ C(RESULT_ACCESS
) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
383 [ C(RESULT_MISS
) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
386 [ C(RESULT_ACCESS
) ] = -1,
387 [ C(RESULT_MISS
) ] = -1,
389 [ C(OP_PREFETCH
) ] = {
390 [ C(RESULT_ACCESS
) ] = -1,
391 [ C(RESULT_MISS
) ] = -1,
396 [ C(RESULT_ACCESS
) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
397 [ C(RESULT_MISS
) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
400 [ C(RESULT_ACCESS
) ] = -1,
401 [ C(RESULT_MISS
) ] = -1,
403 [ C(OP_PREFETCH
) ] = {
404 [ C(RESULT_ACCESS
) ] = -1,
405 [ C(RESULT_MISS
) ] = -1,
410 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
411 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
414 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
415 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
417 [ C(OP_PREFETCH
) ] = {
418 [ C(RESULT_ACCESS
) ] = 0x0,
419 [ C(RESULT_MISS
) ] = 0x0,
424 static __initconst
const u64 skl_hw_cache_extra_regs
425 [PERF_COUNT_HW_CACHE_MAX
]
426 [PERF_COUNT_HW_CACHE_OP_MAX
]
427 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
431 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_READ
|
432 SKL_LLC_ACCESS
|SKL_ANY_SNOOP
,
433 [ C(RESULT_MISS
) ] = SKL_DEMAND_READ
|
434 SKL_L3_MISS
|SKL_ANY_SNOOP
|
438 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_WRITE
|
439 SKL_LLC_ACCESS
|SKL_ANY_SNOOP
,
440 [ C(RESULT_MISS
) ] = SKL_DEMAND_WRITE
|
441 SKL_L3_MISS
|SKL_ANY_SNOOP
|
444 [ C(OP_PREFETCH
) ] = {
445 [ C(RESULT_ACCESS
) ] = 0x0,
446 [ C(RESULT_MISS
) ] = 0x0,
451 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_READ
|
452 SKL_L3_MISS_LOCAL_DRAM
|SKL_SNOOP_DRAM
,
453 [ C(RESULT_MISS
) ] = SKL_DEMAND_READ
|
454 SKL_L3_MISS_REMOTE
|SKL_SNOOP_DRAM
,
457 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_WRITE
|
458 SKL_L3_MISS_LOCAL_DRAM
|SKL_SNOOP_DRAM
,
459 [ C(RESULT_MISS
) ] = SKL_DEMAND_WRITE
|
460 SKL_L3_MISS_REMOTE
|SKL_SNOOP_DRAM
,
462 [ C(OP_PREFETCH
) ] = {
463 [ C(RESULT_ACCESS
) ] = 0x0,
464 [ C(RESULT_MISS
) ] = 0x0,
469 #define SNB_DMND_DATA_RD (1ULL << 0)
470 #define SNB_DMND_RFO (1ULL << 1)
471 #define SNB_DMND_IFETCH (1ULL << 2)
472 #define SNB_DMND_WB (1ULL << 3)
473 #define SNB_PF_DATA_RD (1ULL << 4)
474 #define SNB_PF_RFO (1ULL << 5)
475 #define SNB_PF_IFETCH (1ULL << 6)
476 #define SNB_LLC_DATA_RD (1ULL << 7)
477 #define SNB_LLC_RFO (1ULL << 8)
478 #define SNB_LLC_IFETCH (1ULL << 9)
479 #define SNB_BUS_LOCKS (1ULL << 10)
480 #define SNB_STRM_ST (1ULL << 11)
481 #define SNB_OTHER (1ULL << 15)
482 #define SNB_RESP_ANY (1ULL << 16)
483 #define SNB_NO_SUPP (1ULL << 17)
484 #define SNB_LLC_HITM (1ULL << 18)
485 #define SNB_LLC_HITE (1ULL << 19)
486 #define SNB_LLC_HITS (1ULL << 20)
487 #define SNB_LLC_HITF (1ULL << 21)
488 #define SNB_LOCAL (1ULL << 22)
489 #define SNB_REMOTE (0xffULL << 23)
490 #define SNB_SNP_NONE (1ULL << 31)
491 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
492 #define SNB_SNP_MISS (1ULL << 33)
493 #define SNB_NO_FWD (1ULL << 34)
494 #define SNB_SNP_FWD (1ULL << 35)
495 #define SNB_HITM (1ULL << 36)
496 #define SNB_NON_DRAM (1ULL << 37)
498 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
499 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
500 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
502 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
503 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
506 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
507 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
509 #define SNB_L3_ACCESS SNB_RESP_ANY
510 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
512 static __initconst
const u64 snb_hw_cache_extra_regs
513 [PERF_COUNT_HW_CACHE_MAX
]
514 [PERF_COUNT_HW_CACHE_OP_MAX
]
515 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
519 [ C(RESULT_ACCESS
) ] = SNB_DMND_READ
|SNB_L3_ACCESS
,
520 [ C(RESULT_MISS
) ] = SNB_DMND_READ
|SNB_L3_MISS
,
523 [ C(RESULT_ACCESS
) ] = SNB_DMND_WRITE
|SNB_L3_ACCESS
,
524 [ C(RESULT_MISS
) ] = SNB_DMND_WRITE
|SNB_L3_MISS
,
526 [ C(OP_PREFETCH
) ] = {
527 [ C(RESULT_ACCESS
) ] = SNB_DMND_PREFETCH
|SNB_L3_ACCESS
,
528 [ C(RESULT_MISS
) ] = SNB_DMND_PREFETCH
|SNB_L3_MISS
,
533 [ C(RESULT_ACCESS
) ] = SNB_DMND_READ
|SNB_DRAM_ANY
,
534 [ C(RESULT_MISS
) ] = SNB_DMND_READ
|SNB_DRAM_REMOTE
,
537 [ C(RESULT_ACCESS
) ] = SNB_DMND_WRITE
|SNB_DRAM_ANY
,
538 [ C(RESULT_MISS
) ] = SNB_DMND_WRITE
|SNB_DRAM_REMOTE
,
540 [ C(OP_PREFETCH
) ] = {
541 [ C(RESULT_ACCESS
) ] = SNB_DMND_PREFETCH
|SNB_DRAM_ANY
,
542 [ C(RESULT_MISS
) ] = SNB_DMND_PREFETCH
|SNB_DRAM_REMOTE
,
547 static __initconst
const u64 snb_hw_cache_event_ids
548 [PERF_COUNT_HW_CACHE_MAX
]
549 [PERF_COUNT_HW_CACHE_OP_MAX
]
550 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
554 [ C(RESULT_ACCESS
) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
555 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPLACEMENT */
558 [ C(RESULT_ACCESS
) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
559 [ C(RESULT_MISS
) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
561 [ C(OP_PREFETCH
) ] = {
562 [ C(RESULT_ACCESS
) ] = 0x0,
563 [ C(RESULT_MISS
) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
568 [ C(RESULT_ACCESS
) ] = 0x0,
569 [ C(RESULT_MISS
) ] = 0x0280, /* ICACHE.MISSES */
572 [ C(RESULT_ACCESS
) ] = -1,
573 [ C(RESULT_MISS
) ] = -1,
575 [ C(OP_PREFETCH
) ] = {
576 [ C(RESULT_ACCESS
) ] = 0x0,
577 [ C(RESULT_MISS
) ] = 0x0,
582 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
583 [ C(RESULT_ACCESS
) ] = 0x01b7,
584 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
585 [ C(RESULT_MISS
) ] = 0x01b7,
588 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
589 [ C(RESULT_ACCESS
) ] = 0x01b7,
590 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
591 [ C(RESULT_MISS
) ] = 0x01b7,
593 [ C(OP_PREFETCH
) ] = {
594 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
595 [ C(RESULT_ACCESS
) ] = 0x01b7,
596 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
597 [ C(RESULT_MISS
) ] = 0x01b7,
602 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
603 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
606 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
607 [ C(RESULT_MISS
) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
609 [ C(OP_PREFETCH
) ] = {
610 [ C(RESULT_ACCESS
) ] = 0x0,
611 [ C(RESULT_MISS
) ] = 0x0,
616 [ C(RESULT_ACCESS
) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
617 [ C(RESULT_MISS
) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
620 [ C(RESULT_ACCESS
) ] = -1,
621 [ C(RESULT_MISS
) ] = -1,
623 [ C(OP_PREFETCH
) ] = {
624 [ C(RESULT_ACCESS
) ] = -1,
625 [ C(RESULT_MISS
) ] = -1,
630 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
631 [ C(RESULT_MISS
) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
634 [ C(RESULT_ACCESS
) ] = -1,
635 [ C(RESULT_MISS
) ] = -1,
637 [ C(OP_PREFETCH
) ] = {
638 [ C(RESULT_ACCESS
) ] = -1,
639 [ C(RESULT_MISS
) ] = -1,
644 [ C(RESULT_ACCESS
) ] = 0x01b7,
645 [ C(RESULT_MISS
) ] = 0x01b7,
648 [ C(RESULT_ACCESS
) ] = 0x01b7,
649 [ C(RESULT_MISS
) ] = 0x01b7,
651 [ C(OP_PREFETCH
) ] = {
652 [ C(RESULT_ACCESS
) ] = 0x01b7,
653 [ C(RESULT_MISS
) ] = 0x01b7,
660 * Notes on the events:
661 * - data reads do not include code reads (comparable to earlier tables)
662 * - data counts include speculative execution (except L1 write, dtlb, bpu)
663 * - remote node access includes remote memory, remote cache, remote mmio.
664 * - prefetches are not included in the counts because they are not
668 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
669 #define HSW_DEMAND_RFO BIT_ULL(1)
670 #define HSW_ANY_RESPONSE BIT_ULL(16)
671 #define HSW_SUPPLIER_NONE BIT_ULL(17)
672 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
673 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
674 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
675 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
676 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
677 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
678 HSW_L3_MISS_REMOTE_HOP2P)
679 #define HSW_SNOOP_NONE BIT_ULL(31)
680 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
681 #define HSW_SNOOP_MISS BIT_ULL(33)
682 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
683 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
684 #define HSW_SNOOP_HITM BIT_ULL(36)
685 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
686 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
687 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
688 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
689 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
690 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
691 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
692 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
693 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
694 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
695 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
697 #define BDW_L3_MISS_LOCAL BIT(26)
698 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
699 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
700 HSW_L3_MISS_REMOTE_HOP2P)
703 static __initconst
const u64 hsw_hw_cache_event_ids
704 [PERF_COUNT_HW_CACHE_MAX
]
705 [PERF_COUNT_HW_CACHE_OP_MAX
]
706 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
710 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
711 [ C(RESULT_MISS
) ] = 0x151, /* L1D.REPLACEMENT */
714 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
715 [ C(RESULT_MISS
) ] = 0x0,
717 [ C(OP_PREFETCH
) ] = {
718 [ C(RESULT_ACCESS
) ] = 0x0,
719 [ C(RESULT_MISS
) ] = 0x0,
724 [ C(RESULT_ACCESS
) ] = 0x0,
725 [ C(RESULT_MISS
) ] = 0x280, /* ICACHE.MISSES */
728 [ C(RESULT_ACCESS
) ] = -1,
729 [ C(RESULT_MISS
) ] = -1,
731 [ C(OP_PREFETCH
) ] = {
732 [ C(RESULT_ACCESS
) ] = 0x0,
733 [ C(RESULT_MISS
) ] = 0x0,
738 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
739 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
742 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
743 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
745 [ C(OP_PREFETCH
) ] = {
746 [ C(RESULT_ACCESS
) ] = 0x0,
747 [ C(RESULT_MISS
) ] = 0x0,
752 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
753 [ C(RESULT_MISS
) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
756 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
757 [ C(RESULT_MISS
) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
759 [ C(OP_PREFETCH
) ] = {
760 [ C(RESULT_ACCESS
) ] = 0x0,
761 [ C(RESULT_MISS
) ] = 0x0,
766 [ C(RESULT_ACCESS
) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
767 [ C(RESULT_MISS
) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
770 [ C(RESULT_ACCESS
) ] = -1,
771 [ C(RESULT_MISS
) ] = -1,
773 [ C(OP_PREFETCH
) ] = {
774 [ C(RESULT_ACCESS
) ] = -1,
775 [ C(RESULT_MISS
) ] = -1,
780 [ C(RESULT_ACCESS
) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
781 [ C(RESULT_MISS
) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
784 [ C(RESULT_ACCESS
) ] = -1,
785 [ C(RESULT_MISS
) ] = -1,
787 [ C(OP_PREFETCH
) ] = {
788 [ C(RESULT_ACCESS
) ] = -1,
789 [ C(RESULT_MISS
) ] = -1,
794 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
795 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
798 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
799 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
801 [ C(OP_PREFETCH
) ] = {
802 [ C(RESULT_ACCESS
) ] = 0x0,
803 [ C(RESULT_MISS
) ] = 0x0,
808 static __initconst
const u64 hsw_hw_cache_extra_regs
809 [PERF_COUNT_HW_CACHE_MAX
]
810 [PERF_COUNT_HW_CACHE_OP_MAX
]
811 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
815 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_READ
|
817 [ C(RESULT_MISS
) ] = HSW_DEMAND_READ
|
818 HSW_L3_MISS
|HSW_ANY_SNOOP
,
821 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_WRITE
|
823 [ C(RESULT_MISS
) ] = HSW_DEMAND_WRITE
|
824 HSW_L3_MISS
|HSW_ANY_SNOOP
,
826 [ C(OP_PREFETCH
) ] = {
827 [ C(RESULT_ACCESS
) ] = 0x0,
828 [ C(RESULT_MISS
) ] = 0x0,
833 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_READ
|
834 HSW_L3_MISS_LOCAL_DRAM
|
836 [ C(RESULT_MISS
) ] = HSW_DEMAND_READ
|
841 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_WRITE
|
842 HSW_L3_MISS_LOCAL_DRAM
|
844 [ C(RESULT_MISS
) ] = HSW_DEMAND_WRITE
|
848 [ C(OP_PREFETCH
) ] = {
849 [ C(RESULT_ACCESS
) ] = 0x0,
850 [ C(RESULT_MISS
) ] = 0x0,
855 static __initconst
const u64 westmere_hw_cache_event_ids
856 [PERF_COUNT_HW_CACHE_MAX
]
857 [PERF_COUNT_HW_CACHE_OP_MAX
]
858 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
862 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
863 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPL */
866 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
867 [ C(RESULT_MISS
) ] = 0x0251, /* L1D.M_REPL */
869 [ C(OP_PREFETCH
) ] = {
870 [ C(RESULT_ACCESS
) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
871 [ C(RESULT_MISS
) ] = 0x024e, /* L1D_PREFETCH.MISS */
876 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
877 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
880 [ C(RESULT_ACCESS
) ] = -1,
881 [ C(RESULT_MISS
) ] = -1,
883 [ C(OP_PREFETCH
) ] = {
884 [ C(RESULT_ACCESS
) ] = 0x0,
885 [ C(RESULT_MISS
) ] = 0x0,
890 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
891 [ C(RESULT_ACCESS
) ] = 0x01b7,
892 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
893 [ C(RESULT_MISS
) ] = 0x01b7,
896 * Use RFO, not WRITEBACK, because a write miss would typically occur
900 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
901 [ C(RESULT_ACCESS
) ] = 0x01b7,
902 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
903 [ C(RESULT_MISS
) ] = 0x01b7,
905 [ C(OP_PREFETCH
) ] = {
906 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
907 [ C(RESULT_ACCESS
) ] = 0x01b7,
908 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
909 [ C(RESULT_MISS
) ] = 0x01b7,
914 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
915 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
918 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
919 [ C(RESULT_MISS
) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
921 [ C(OP_PREFETCH
) ] = {
922 [ C(RESULT_ACCESS
) ] = 0x0,
923 [ C(RESULT_MISS
) ] = 0x0,
928 [ C(RESULT_ACCESS
) ] = 0x01c0, /* INST_RETIRED.ANY_P */
929 [ C(RESULT_MISS
) ] = 0x0185, /* ITLB_MISSES.ANY */
932 [ C(RESULT_ACCESS
) ] = -1,
933 [ C(RESULT_MISS
) ] = -1,
935 [ C(OP_PREFETCH
) ] = {
936 [ C(RESULT_ACCESS
) ] = -1,
937 [ C(RESULT_MISS
) ] = -1,
942 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
943 [ C(RESULT_MISS
) ] = 0x03e8, /* BPU_CLEARS.ANY */
946 [ C(RESULT_ACCESS
) ] = -1,
947 [ C(RESULT_MISS
) ] = -1,
949 [ C(OP_PREFETCH
) ] = {
950 [ C(RESULT_ACCESS
) ] = -1,
951 [ C(RESULT_MISS
) ] = -1,
956 [ C(RESULT_ACCESS
) ] = 0x01b7,
957 [ C(RESULT_MISS
) ] = 0x01b7,
960 [ C(RESULT_ACCESS
) ] = 0x01b7,
961 [ C(RESULT_MISS
) ] = 0x01b7,
963 [ C(OP_PREFETCH
) ] = {
964 [ C(RESULT_ACCESS
) ] = 0x01b7,
965 [ C(RESULT_MISS
) ] = 0x01b7,
971 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
972 * See IA32 SDM Vol 3B 30.6.1.3
975 #define NHM_DMND_DATA_RD (1 << 0)
976 #define NHM_DMND_RFO (1 << 1)
977 #define NHM_DMND_IFETCH (1 << 2)
978 #define NHM_DMND_WB (1 << 3)
979 #define NHM_PF_DATA_RD (1 << 4)
980 #define NHM_PF_DATA_RFO (1 << 5)
981 #define NHM_PF_IFETCH (1 << 6)
982 #define NHM_OFFCORE_OTHER (1 << 7)
983 #define NHM_UNCORE_HIT (1 << 8)
984 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
985 #define NHM_OTHER_CORE_HITM (1 << 10)
987 #define NHM_REMOTE_CACHE_FWD (1 << 12)
988 #define NHM_REMOTE_DRAM (1 << 13)
989 #define NHM_LOCAL_DRAM (1 << 14)
990 #define NHM_NON_DRAM (1 << 15)
992 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
993 #define NHM_REMOTE (NHM_REMOTE_DRAM)
995 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
996 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
997 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
999 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1000 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1001 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1003 static __initconst
const u64 nehalem_hw_cache_extra_regs
1004 [PERF_COUNT_HW_CACHE_MAX
]
1005 [PERF_COUNT_HW_CACHE_OP_MAX
]
1006 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1010 [ C(RESULT_ACCESS
) ] = NHM_DMND_READ
|NHM_L3_ACCESS
,
1011 [ C(RESULT_MISS
) ] = NHM_DMND_READ
|NHM_L3_MISS
,
1014 [ C(RESULT_ACCESS
) ] = NHM_DMND_WRITE
|NHM_L3_ACCESS
,
1015 [ C(RESULT_MISS
) ] = NHM_DMND_WRITE
|NHM_L3_MISS
,
1017 [ C(OP_PREFETCH
) ] = {
1018 [ C(RESULT_ACCESS
) ] = NHM_DMND_PREFETCH
|NHM_L3_ACCESS
,
1019 [ C(RESULT_MISS
) ] = NHM_DMND_PREFETCH
|NHM_L3_MISS
,
1024 [ C(RESULT_ACCESS
) ] = NHM_DMND_READ
|NHM_LOCAL
|NHM_REMOTE
,
1025 [ C(RESULT_MISS
) ] = NHM_DMND_READ
|NHM_REMOTE
,
1028 [ C(RESULT_ACCESS
) ] = NHM_DMND_WRITE
|NHM_LOCAL
|NHM_REMOTE
,
1029 [ C(RESULT_MISS
) ] = NHM_DMND_WRITE
|NHM_REMOTE
,
1031 [ C(OP_PREFETCH
) ] = {
1032 [ C(RESULT_ACCESS
) ] = NHM_DMND_PREFETCH
|NHM_LOCAL
|NHM_REMOTE
,
1033 [ C(RESULT_MISS
) ] = NHM_DMND_PREFETCH
|NHM_REMOTE
,
1038 static __initconst
const u64 nehalem_hw_cache_event_ids
1039 [PERF_COUNT_HW_CACHE_MAX
]
1040 [PERF_COUNT_HW_CACHE_OP_MAX
]
1041 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1045 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1046 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPL */
1049 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1050 [ C(RESULT_MISS
) ] = 0x0251, /* L1D.M_REPL */
1052 [ C(OP_PREFETCH
) ] = {
1053 [ C(RESULT_ACCESS
) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1054 [ C(RESULT_MISS
) ] = 0x024e, /* L1D_PREFETCH.MISS */
1059 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
1060 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
1063 [ C(RESULT_ACCESS
) ] = -1,
1064 [ C(RESULT_MISS
) ] = -1,
1066 [ C(OP_PREFETCH
) ] = {
1067 [ C(RESULT_ACCESS
) ] = 0x0,
1068 [ C(RESULT_MISS
) ] = 0x0,
1073 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1074 [ C(RESULT_ACCESS
) ] = 0x01b7,
1075 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1076 [ C(RESULT_MISS
) ] = 0x01b7,
1079 * Use RFO, not WRITEBACK, because a write miss would typically occur
1083 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1084 [ C(RESULT_ACCESS
) ] = 0x01b7,
1085 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1086 [ C(RESULT_MISS
) ] = 0x01b7,
1088 [ C(OP_PREFETCH
) ] = {
1089 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1090 [ C(RESULT_ACCESS
) ] = 0x01b7,
1091 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1092 [ C(RESULT_MISS
) ] = 0x01b7,
1097 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1098 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1101 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1102 [ C(RESULT_MISS
) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1104 [ C(OP_PREFETCH
) ] = {
1105 [ C(RESULT_ACCESS
) ] = 0x0,
1106 [ C(RESULT_MISS
) ] = 0x0,
1111 [ C(RESULT_ACCESS
) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1112 [ C(RESULT_MISS
) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1115 [ C(RESULT_ACCESS
) ] = -1,
1116 [ C(RESULT_MISS
) ] = -1,
1118 [ C(OP_PREFETCH
) ] = {
1119 [ C(RESULT_ACCESS
) ] = -1,
1120 [ C(RESULT_MISS
) ] = -1,
1125 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1126 [ C(RESULT_MISS
) ] = 0x03e8, /* BPU_CLEARS.ANY */
1129 [ C(RESULT_ACCESS
) ] = -1,
1130 [ C(RESULT_MISS
) ] = -1,
1132 [ C(OP_PREFETCH
) ] = {
1133 [ C(RESULT_ACCESS
) ] = -1,
1134 [ C(RESULT_MISS
) ] = -1,
1139 [ C(RESULT_ACCESS
) ] = 0x01b7,
1140 [ C(RESULT_MISS
) ] = 0x01b7,
1143 [ C(RESULT_ACCESS
) ] = 0x01b7,
1144 [ C(RESULT_MISS
) ] = 0x01b7,
1146 [ C(OP_PREFETCH
) ] = {
1147 [ C(RESULT_ACCESS
) ] = 0x01b7,
1148 [ C(RESULT_MISS
) ] = 0x01b7,
1153 static __initconst
const u64 core2_hw_cache_event_ids
1154 [PERF_COUNT_HW_CACHE_MAX
]
1155 [PERF_COUNT_HW_CACHE_OP_MAX
]
1156 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1160 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1161 [ C(RESULT_MISS
) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1164 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1165 [ C(RESULT_MISS
) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1167 [ C(OP_PREFETCH
) ] = {
1168 [ C(RESULT_ACCESS
) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1169 [ C(RESULT_MISS
) ] = 0,
1174 [ C(RESULT_ACCESS
) ] = 0x0080, /* L1I.READS */
1175 [ C(RESULT_MISS
) ] = 0x0081, /* L1I.MISSES */
1178 [ C(RESULT_ACCESS
) ] = -1,
1179 [ C(RESULT_MISS
) ] = -1,
1181 [ C(OP_PREFETCH
) ] = {
1182 [ C(RESULT_ACCESS
) ] = 0,
1183 [ C(RESULT_MISS
) ] = 0,
1188 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
1189 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
1192 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
1193 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
1195 [ C(OP_PREFETCH
) ] = {
1196 [ C(RESULT_ACCESS
) ] = 0,
1197 [ C(RESULT_MISS
) ] = 0,
1202 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1203 [ C(RESULT_MISS
) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1206 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1207 [ C(RESULT_MISS
) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1209 [ C(OP_PREFETCH
) ] = {
1210 [ C(RESULT_ACCESS
) ] = 0,
1211 [ C(RESULT_MISS
) ] = 0,
1216 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1217 [ C(RESULT_MISS
) ] = 0x1282, /* ITLBMISSES */
1220 [ C(RESULT_ACCESS
) ] = -1,
1221 [ C(RESULT_MISS
) ] = -1,
1223 [ C(OP_PREFETCH
) ] = {
1224 [ C(RESULT_ACCESS
) ] = -1,
1225 [ C(RESULT_MISS
) ] = -1,
1230 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1231 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1234 [ C(RESULT_ACCESS
) ] = -1,
1235 [ C(RESULT_MISS
) ] = -1,
1237 [ C(OP_PREFETCH
) ] = {
1238 [ C(RESULT_ACCESS
) ] = -1,
1239 [ C(RESULT_MISS
) ] = -1,
1244 static __initconst
const u64 atom_hw_cache_event_ids
1245 [PERF_COUNT_HW_CACHE_MAX
]
1246 [PERF_COUNT_HW_CACHE_OP_MAX
]
1247 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1251 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE.LD */
1252 [ C(RESULT_MISS
) ] = 0,
1255 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE.ST */
1256 [ C(RESULT_MISS
) ] = 0,
1258 [ C(OP_PREFETCH
) ] = {
1259 [ C(RESULT_ACCESS
) ] = 0x0,
1260 [ C(RESULT_MISS
) ] = 0,
1265 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
1266 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
1269 [ C(RESULT_ACCESS
) ] = -1,
1270 [ C(RESULT_MISS
) ] = -1,
1272 [ C(OP_PREFETCH
) ] = {
1273 [ C(RESULT_ACCESS
) ] = 0,
1274 [ C(RESULT_MISS
) ] = 0,
1279 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
1280 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
1283 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
1284 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
1286 [ C(OP_PREFETCH
) ] = {
1287 [ C(RESULT_ACCESS
) ] = 0,
1288 [ C(RESULT_MISS
) ] = 0,
1293 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1294 [ C(RESULT_MISS
) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1297 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1298 [ C(RESULT_MISS
) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1300 [ C(OP_PREFETCH
) ] = {
1301 [ C(RESULT_ACCESS
) ] = 0,
1302 [ C(RESULT_MISS
) ] = 0,
1307 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1308 [ C(RESULT_MISS
) ] = 0x0282, /* ITLB.MISSES */
1311 [ C(RESULT_ACCESS
) ] = -1,
1312 [ C(RESULT_MISS
) ] = -1,
1314 [ C(OP_PREFETCH
) ] = {
1315 [ C(RESULT_ACCESS
) ] = -1,
1316 [ C(RESULT_MISS
) ] = -1,
1321 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1322 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1325 [ C(RESULT_ACCESS
) ] = -1,
1326 [ C(RESULT_MISS
) ] = -1,
1328 [ C(OP_PREFETCH
) ] = {
1329 [ C(RESULT_ACCESS
) ] = -1,
1330 [ C(RESULT_MISS
) ] = -1,
1335 static struct extra_reg intel_slm_extra_regs
[] __read_mostly
=
1337 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1338 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x768005ffffull
, RSP_0
),
1339 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1
, 0x368005ffffull
, RSP_1
),
1343 #define SLM_DMND_READ SNB_DMND_DATA_RD
1344 #define SLM_DMND_WRITE SNB_DMND_RFO
1345 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1347 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1348 #define SLM_LLC_ACCESS SNB_RESP_ANY
1349 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1351 static __initconst
const u64 slm_hw_cache_extra_regs
1352 [PERF_COUNT_HW_CACHE_MAX
]
1353 [PERF_COUNT_HW_CACHE_OP_MAX
]
1354 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1358 [ C(RESULT_ACCESS
) ] = SLM_DMND_READ
|SLM_LLC_ACCESS
,
1359 [ C(RESULT_MISS
) ] = 0,
1362 [ C(RESULT_ACCESS
) ] = SLM_DMND_WRITE
|SLM_LLC_ACCESS
,
1363 [ C(RESULT_MISS
) ] = SLM_DMND_WRITE
|SLM_LLC_MISS
,
1365 [ C(OP_PREFETCH
) ] = {
1366 [ C(RESULT_ACCESS
) ] = SLM_DMND_PREFETCH
|SLM_LLC_ACCESS
,
1367 [ C(RESULT_MISS
) ] = SLM_DMND_PREFETCH
|SLM_LLC_MISS
,
1372 static __initconst
const u64 slm_hw_cache_event_ids
1373 [PERF_COUNT_HW_CACHE_MAX
]
1374 [PERF_COUNT_HW_CACHE_OP_MAX
]
1375 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1379 [ C(RESULT_ACCESS
) ] = 0,
1380 [ C(RESULT_MISS
) ] = 0x0104, /* LD_DCU_MISS */
1383 [ C(RESULT_ACCESS
) ] = 0,
1384 [ C(RESULT_MISS
) ] = 0,
1386 [ C(OP_PREFETCH
) ] = {
1387 [ C(RESULT_ACCESS
) ] = 0,
1388 [ C(RESULT_MISS
) ] = 0,
1393 [ C(RESULT_ACCESS
) ] = 0x0380, /* ICACHE.ACCESSES */
1394 [ C(RESULT_MISS
) ] = 0x0280, /* ICACGE.MISSES */
1397 [ C(RESULT_ACCESS
) ] = -1,
1398 [ C(RESULT_MISS
) ] = -1,
1400 [ C(OP_PREFETCH
) ] = {
1401 [ C(RESULT_ACCESS
) ] = 0,
1402 [ C(RESULT_MISS
) ] = 0,
1407 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1408 [ C(RESULT_ACCESS
) ] = 0x01b7,
1409 [ C(RESULT_MISS
) ] = 0,
1412 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1413 [ C(RESULT_ACCESS
) ] = 0x01b7,
1414 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1415 [ C(RESULT_MISS
) ] = 0x01b7,
1417 [ C(OP_PREFETCH
) ] = {
1418 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1419 [ C(RESULT_ACCESS
) ] = 0x01b7,
1420 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1421 [ C(RESULT_MISS
) ] = 0x01b7,
1426 [ C(RESULT_ACCESS
) ] = 0,
1427 [ C(RESULT_MISS
) ] = 0x0804, /* LD_DTLB_MISS */
1430 [ C(RESULT_ACCESS
) ] = 0,
1431 [ C(RESULT_MISS
) ] = 0,
1433 [ C(OP_PREFETCH
) ] = {
1434 [ C(RESULT_ACCESS
) ] = 0,
1435 [ C(RESULT_MISS
) ] = 0,
1440 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1441 [ C(RESULT_MISS
) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1444 [ C(RESULT_ACCESS
) ] = -1,
1445 [ C(RESULT_MISS
) ] = -1,
1447 [ C(OP_PREFETCH
) ] = {
1448 [ C(RESULT_ACCESS
) ] = -1,
1449 [ C(RESULT_MISS
) ] = -1,
1454 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1455 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1458 [ C(RESULT_ACCESS
) ] = -1,
1459 [ C(RESULT_MISS
) ] = -1,
1461 [ C(OP_PREFETCH
) ] = {
1462 [ C(RESULT_ACCESS
) ] = -1,
1463 [ C(RESULT_MISS
) ] = -1,
1468 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
1469 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
1470 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
1471 #define KNL_MCDRAM_FAR BIT_ULL(22)
1472 #define KNL_DDR_LOCAL BIT_ULL(23)
1473 #define KNL_DDR_FAR BIT_ULL(24)
1474 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1475 KNL_DDR_LOCAL | KNL_DDR_FAR)
1476 #define KNL_L2_READ SLM_DMND_READ
1477 #define KNL_L2_WRITE SLM_DMND_WRITE
1478 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
1479 #define KNL_L2_ACCESS SLM_LLC_ACCESS
1480 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1481 KNL_DRAM_ANY | SNB_SNP_ANY | \
1484 static __initconst
const u64 knl_hw_cache_extra_regs
1485 [PERF_COUNT_HW_CACHE_MAX
]
1486 [PERF_COUNT_HW_CACHE_OP_MAX
]
1487 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1490 [C(RESULT_ACCESS
)] = KNL_L2_READ
| KNL_L2_ACCESS
,
1491 [C(RESULT_MISS
)] = 0,
1494 [C(RESULT_ACCESS
)] = KNL_L2_WRITE
| KNL_L2_ACCESS
,
1495 [C(RESULT_MISS
)] = KNL_L2_WRITE
| KNL_L2_MISS
,
1497 [C(OP_PREFETCH
)] = {
1498 [C(RESULT_ACCESS
)] = KNL_L2_PREFETCH
| KNL_L2_ACCESS
,
1499 [C(RESULT_MISS
)] = KNL_L2_PREFETCH
| KNL_L2_MISS
,
1505 * Use from PMIs where the LBRs are already disabled.
1507 static void __intel_pmu_disable_all(void)
1509 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1511 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1513 if (test_bit(INTEL_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
))
1514 intel_pmu_disable_bts();
1516 intel_bts_disable_local();
1518 intel_pmu_pebs_disable_all();
1521 static void intel_pmu_disable_all(void)
1523 __intel_pmu_disable_all();
1524 intel_pmu_lbr_disable_all();
1527 static void __intel_pmu_enable_all(int added
, bool pmi
)
1529 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1531 intel_pmu_pebs_enable_all();
1532 intel_pmu_lbr_enable_all(pmi
);
1533 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
,
1534 x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_guest_mask
);
1536 if (test_bit(INTEL_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
)) {
1537 struct perf_event
*event
=
1538 cpuc
->events
[INTEL_PMC_IDX_FIXED_BTS
];
1540 if (WARN_ON_ONCE(!event
))
1543 intel_pmu_enable_bts(event
->hw
.config
);
1545 intel_bts_enable_local();
1548 static void intel_pmu_enable_all(int added
)
1550 __intel_pmu_enable_all(added
, false);
1555 * Intel Errata AAK100 (model 26)
1556 * Intel Errata AAP53 (model 30)
1557 * Intel Errata BD53 (model 44)
1559 * The official story:
1560 * These chips need to be 'reset' when adding counters by programming the
1561 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1562 * in sequence on the same PMC or on different PMCs.
1564 * In practise it appears some of these events do in fact count, and
1565 * we need to programm all 4 events.
1567 static void intel_pmu_nhm_workaround(void)
1569 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1570 static const unsigned long nhm_magic
[4] = {
1576 struct perf_event
*event
;
1580 * The Errata requires below steps:
1581 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1582 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1583 * the corresponding PMCx;
1584 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1585 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1586 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1590 * The real steps we choose are a little different from above.
1591 * A) To reduce MSR operations, we don't run step 1) as they
1592 * are already cleared before this function is called;
1593 * B) Call x86_perf_event_update to save PMCx before configuring
1594 * PERFEVTSELx with magic number;
1595 * C) With step 5), we do clear only when the PERFEVTSELx is
1596 * not used currently.
1597 * D) Call x86_perf_event_set_period to restore PMCx;
1600 /* We always operate 4 pairs of PERF Counters */
1601 for (i
= 0; i
< 4; i
++) {
1602 event
= cpuc
->events
[i
];
1604 x86_perf_event_update(event
);
1607 for (i
= 0; i
< 4; i
++) {
1608 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0
+ i
, nhm_magic
[i
]);
1609 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0
+ i
, 0x0);
1612 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0xf);
1613 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0x0);
1615 for (i
= 0; i
< 4; i
++) {
1616 event
= cpuc
->events
[i
];
1619 x86_perf_event_set_period(event
);
1620 __x86_pmu_enable_event(&event
->hw
,
1621 ARCH_PERFMON_EVENTSEL_ENABLE
);
1623 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0
+ i
, 0x0);
1627 static void intel_pmu_nhm_enable_all(int added
)
1630 intel_pmu_nhm_workaround();
1631 intel_pmu_enable_all(added
);
1634 static inline u64
intel_pmu_get_status(void)
1638 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
1643 static inline void intel_pmu_ack_status(u64 ack
)
1645 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, ack
);
1648 static void intel_pmu_disable_fixed(struct hw_perf_event
*hwc
)
1650 int idx
= hwc
->idx
- INTEL_PMC_IDX_FIXED
;
1653 mask
= 0xfULL
<< (idx
* 4);
1655 rdmsrl(hwc
->config_base
, ctrl_val
);
1657 wrmsrl(hwc
->config_base
, ctrl_val
);
1660 static inline bool event_is_checkpointed(struct perf_event
*event
)
1662 return (event
->hw
.config
& HSW_IN_TX_CHECKPOINTED
) != 0;
1665 static void intel_pmu_disable_event(struct perf_event
*event
)
1667 struct hw_perf_event
*hwc
= &event
->hw
;
1668 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1670 if (unlikely(hwc
->idx
== INTEL_PMC_IDX_FIXED_BTS
)) {
1671 intel_pmu_disable_bts();
1672 intel_pmu_drain_bts_buffer();
1676 cpuc
->intel_ctrl_guest_mask
&= ~(1ull << hwc
->idx
);
1677 cpuc
->intel_ctrl_host_mask
&= ~(1ull << hwc
->idx
);
1678 cpuc
->intel_cp_status
&= ~(1ull << hwc
->idx
);
1681 * must disable before any actual event
1682 * because any event may be combined with LBR
1684 if (needs_branch_stack(event
))
1685 intel_pmu_lbr_disable(event
);
1687 if (unlikely(hwc
->config_base
== MSR_ARCH_PERFMON_FIXED_CTR_CTRL
)) {
1688 intel_pmu_disable_fixed(hwc
);
1692 x86_pmu_disable_event(event
);
1694 if (unlikely(event
->attr
.precise_ip
))
1695 intel_pmu_pebs_disable(event
);
1698 static void intel_pmu_enable_fixed(struct hw_perf_event
*hwc
)
1700 int idx
= hwc
->idx
- INTEL_PMC_IDX_FIXED
;
1701 u64 ctrl_val
, bits
, mask
;
1704 * Enable IRQ generation (0x8),
1705 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1709 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_USR
)
1711 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_OS
)
1715 * ANY bit is supported in v3 and up
1717 if (x86_pmu
.version
> 2 && hwc
->config
& ARCH_PERFMON_EVENTSEL_ANY
)
1721 mask
= 0xfULL
<< (idx
* 4);
1723 rdmsrl(hwc
->config_base
, ctrl_val
);
1726 wrmsrl(hwc
->config_base
, ctrl_val
);
1729 static void intel_pmu_enable_event(struct perf_event
*event
)
1731 struct hw_perf_event
*hwc
= &event
->hw
;
1732 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1734 if (unlikely(hwc
->idx
== INTEL_PMC_IDX_FIXED_BTS
)) {
1735 if (!__this_cpu_read(cpu_hw_events
.enabled
))
1738 intel_pmu_enable_bts(hwc
->config
);
1742 * must enabled before any actual event
1743 * because any event may be combined with LBR
1745 if (needs_branch_stack(event
))
1746 intel_pmu_lbr_enable(event
);
1748 if (event
->attr
.exclude_host
)
1749 cpuc
->intel_ctrl_guest_mask
|= (1ull << hwc
->idx
);
1750 if (event
->attr
.exclude_guest
)
1751 cpuc
->intel_ctrl_host_mask
|= (1ull << hwc
->idx
);
1753 if (unlikely(event_is_checkpointed(event
)))
1754 cpuc
->intel_cp_status
|= (1ull << hwc
->idx
);
1756 if (unlikely(hwc
->config_base
== MSR_ARCH_PERFMON_FIXED_CTR_CTRL
)) {
1757 intel_pmu_enable_fixed(hwc
);
1761 if (unlikely(event
->attr
.precise_ip
))
1762 intel_pmu_pebs_enable(event
);
1764 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
1768 * Save and restart an expired event. Called by NMI contexts,
1769 * so it has to be careful about preempting normal event ops:
1771 int intel_pmu_save_and_restart(struct perf_event
*event
)
1773 x86_perf_event_update(event
);
1775 * For a checkpointed counter always reset back to 0. This
1776 * avoids a situation where the counter overflows, aborts the
1777 * transaction and is then set back to shortly before the
1778 * overflow, and overflows and aborts again.
1780 if (unlikely(event_is_checkpointed(event
))) {
1781 /* No race with NMIs because the counter should not be armed */
1782 wrmsrl(event
->hw
.event_base
, 0);
1783 local64_set(&event
->hw
.prev_count
, 0);
1785 return x86_perf_event_set_period(event
);
1788 static void intel_pmu_reset(void)
1790 struct debug_store
*ds
= __this_cpu_read(cpu_hw_events
.ds
);
1791 unsigned long flags
;
1794 if (!x86_pmu
.num_counters
)
1797 local_irq_save(flags
);
1799 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1801 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1802 wrmsrl_safe(x86_pmu_config_addr(idx
), 0ull);
1803 wrmsrl_safe(x86_pmu_event_addr(idx
), 0ull);
1805 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++)
1806 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, 0ull);
1809 ds
->bts_index
= ds
->bts_buffer_base
;
1811 /* Ack all overflows and disable fixed counters */
1812 if (x86_pmu
.version
>= 2) {
1813 intel_pmu_ack_status(intel_pmu_get_status());
1814 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1817 /* Reset LBRs and LBR freezing */
1818 if (x86_pmu
.lbr_nr
) {
1819 update_debugctlmsr(get_debugctlmsr() &
1820 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI
|DEBUGCTLMSR_LBR
));
1823 local_irq_restore(flags
);
1827 * This handler is triggered by the local APIC, so the APIC IRQ handling
1830 static int intel_pmu_handle_irq(struct pt_regs
*regs
)
1832 struct perf_sample_data data
;
1833 struct cpu_hw_events
*cpuc
;
1838 cpuc
= this_cpu_ptr(&cpu_hw_events
);
1841 * No known reason to not always do late ACK,
1842 * but just in case do it opt-in.
1844 if (!x86_pmu
.late_ack
)
1845 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1846 __intel_pmu_disable_all();
1847 handled
= intel_pmu_drain_bts_buffer();
1848 handled
+= intel_bts_interrupt();
1849 status
= intel_pmu_get_status();
1855 intel_pmu_lbr_read();
1856 intel_pmu_ack_status(status
);
1857 if (++loops
> 100) {
1858 static bool warned
= false;
1860 WARN(1, "perfevents: irq loop stuck!\n");
1861 perf_event_print_debug();
1868 inc_irq_stat(apic_perf_irqs
);
1872 * Ignore a range of extra bits in status that do not indicate
1873 * overflow by themselves.
1875 status
&= ~(GLOBAL_STATUS_COND_CHG
|
1876 GLOBAL_STATUS_ASIF
|
1877 GLOBAL_STATUS_LBRS_FROZEN
);
1882 * PEBS overflow sets bit 62 in the global status register
1884 if (__test_and_clear_bit(62, (unsigned long *)&status
)) {
1886 x86_pmu
.drain_pebs(regs
);
1892 if (__test_and_clear_bit(55, (unsigned long *)&status
)) {
1894 intel_pt_interrupt();
1898 * Checkpointed counters can lead to 'spurious' PMIs because the
1899 * rollback caused by the PMI will have cleared the overflow status
1900 * bit. Therefore always force probe these counters.
1902 status
|= cpuc
->intel_cp_status
;
1904 for_each_set_bit(bit
, (unsigned long *)&status
, X86_PMC_IDX_MAX
) {
1905 struct perf_event
*event
= cpuc
->events
[bit
];
1909 if (!test_bit(bit
, cpuc
->active_mask
))
1912 if (!intel_pmu_save_and_restart(event
))
1915 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
1917 if (has_branch_stack(event
))
1918 data
.br_stack
= &cpuc
->lbr_stack
;
1920 if (perf_event_overflow(event
, &data
, regs
))
1921 x86_pmu_stop(event
, 0);
1925 * Repeat if there is more work to be done:
1927 status
= intel_pmu_get_status();
1932 __intel_pmu_enable_all(0, true);
1934 * Only unmask the NMI after the overflow counters
1935 * have been reset. This avoids spurious NMIs on
1938 if (x86_pmu
.late_ack
)
1939 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1943 static struct event_constraint
*
1944 intel_bts_constraints(struct perf_event
*event
)
1946 struct hw_perf_event
*hwc
= &event
->hw
;
1947 unsigned int hw_event
, bts_event
;
1949 if (event
->attr
.freq
)
1952 hw_event
= hwc
->config
& INTEL_ARCH_EVENT_MASK
;
1953 bts_event
= x86_pmu
.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS
);
1955 if (unlikely(hw_event
== bts_event
&& hwc
->sample_period
== 1))
1956 return &bts_constraint
;
1961 static int intel_alt_er(int idx
, u64 config
)
1964 if (!(x86_pmu
.flags
& PMU_FL_HAS_RSP_1
))
1967 if (idx
== EXTRA_REG_RSP_0
)
1968 alt_idx
= EXTRA_REG_RSP_1
;
1970 if (idx
== EXTRA_REG_RSP_1
)
1971 alt_idx
= EXTRA_REG_RSP_0
;
1973 if (config
& ~x86_pmu
.extra_regs
[alt_idx
].valid_mask
)
1979 static void intel_fixup_er(struct perf_event
*event
, int idx
)
1981 event
->hw
.extra_reg
.idx
= idx
;
1983 if (idx
== EXTRA_REG_RSP_0
) {
1984 event
->hw
.config
&= ~INTEL_ARCH_EVENT_MASK
;
1985 event
->hw
.config
|= x86_pmu
.extra_regs
[EXTRA_REG_RSP_0
].event
;
1986 event
->hw
.extra_reg
.reg
= MSR_OFFCORE_RSP_0
;
1987 } else if (idx
== EXTRA_REG_RSP_1
) {
1988 event
->hw
.config
&= ~INTEL_ARCH_EVENT_MASK
;
1989 event
->hw
.config
|= x86_pmu
.extra_regs
[EXTRA_REG_RSP_1
].event
;
1990 event
->hw
.extra_reg
.reg
= MSR_OFFCORE_RSP_1
;
1995 * manage allocation of shared extra msr for certain events
1998 * per-cpu: to be shared between the various events on a single PMU
1999 * per-core: per-cpu + shared by HT threads
2001 static struct event_constraint
*
2002 __intel_shared_reg_get_constraints(struct cpu_hw_events
*cpuc
,
2003 struct perf_event
*event
,
2004 struct hw_perf_event_extra
*reg
)
2006 struct event_constraint
*c
= &emptyconstraint
;
2007 struct er_account
*era
;
2008 unsigned long flags
;
2012 * reg->alloc can be set due to existing state, so for fake cpuc we
2013 * need to ignore this, otherwise we might fail to allocate proper fake
2014 * state for this extra reg constraint. Also see the comment below.
2016 if (reg
->alloc
&& !cpuc
->is_fake
)
2017 return NULL
; /* call x86_get_event_constraint() */
2020 era
= &cpuc
->shared_regs
->regs
[idx
];
2022 * we use spin_lock_irqsave() to avoid lockdep issues when
2023 * passing a fake cpuc
2025 raw_spin_lock_irqsave(&era
->lock
, flags
);
2027 if (!atomic_read(&era
->ref
) || era
->config
== reg
->config
) {
2030 * If its a fake cpuc -- as per validate_{group,event}() we
2031 * shouldn't touch event state and we can avoid doing so
2032 * since both will only call get_event_constraints() once
2033 * on each event, this avoids the need for reg->alloc.
2035 * Not doing the ER fixup will only result in era->reg being
2036 * wrong, but since we won't actually try and program hardware
2037 * this isn't a problem either.
2039 if (!cpuc
->is_fake
) {
2040 if (idx
!= reg
->idx
)
2041 intel_fixup_er(event
, idx
);
2044 * x86_schedule_events() can call get_event_constraints()
2045 * multiple times on events in the case of incremental
2046 * scheduling(). reg->alloc ensures we only do the ER
2052 /* lock in msr value */
2053 era
->config
= reg
->config
;
2054 era
->reg
= reg
->reg
;
2057 atomic_inc(&era
->ref
);
2060 * need to call x86_get_event_constraint()
2061 * to check if associated event has constraints
2065 idx
= intel_alt_er(idx
, reg
->config
);
2066 if (idx
!= reg
->idx
) {
2067 raw_spin_unlock_irqrestore(&era
->lock
, flags
);
2071 raw_spin_unlock_irqrestore(&era
->lock
, flags
);
2077 __intel_shared_reg_put_constraints(struct cpu_hw_events
*cpuc
,
2078 struct hw_perf_event_extra
*reg
)
2080 struct er_account
*era
;
2083 * Only put constraint if extra reg was actually allocated. Also takes
2084 * care of event which do not use an extra shared reg.
2086 * Also, if this is a fake cpuc we shouldn't touch any event state
2087 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2088 * either since it'll be thrown out.
2090 if (!reg
->alloc
|| cpuc
->is_fake
)
2093 era
= &cpuc
->shared_regs
->regs
[reg
->idx
];
2095 /* one fewer user */
2096 atomic_dec(&era
->ref
);
2098 /* allocate again next time */
2102 static struct event_constraint
*
2103 intel_shared_regs_constraints(struct cpu_hw_events
*cpuc
,
2104 struct perf_event
*event
)
2106 struct event_constraint
*c
= NULL
, *d
;
2107 struct hw_perf_event_extra
*xreg
, *breg
;
2109 xreg
= &event
->hw
.extra_reg
;
2110 if (xreg
->idx
!= EXTRA_REG_NONE
) {
2111 c
= __intel_shared_reg_get_constraints(cpuc
, event
, xreg
);
2112 if (c
== &emptyconstraint
)
2115 breg
= &event
->hw
.branch_reg
;
2116 if (breg
->idx
!= EXTRA_REG_NONE
) {
2117 d
= __intel_shared_reg_get_constraints(cpuc
, event
, breg
);
2118 if (d
== &emptyconstraint
) {
2119 __intel_shared_reg_put_constraints(cpuc
, xreg
);
2126 struct event_constraint
*
2127 x86_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
2128 struct perf_event
*event
)
2130 struct event_constraint
*c
;
2132 if (x86_pmu
.event_constraints
) {
2133 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
2134 if ((event
->hw
.config
& c
->cmask
) == c
->code
) {
2135 event
->hw
.flags
|= c
->flags
;
2141 return &unconstrained
;
2144 static struct event_constraint
*
2145 __intel_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
2146 struct perf_event
*event
)
2148 struct event_constraint
*c
;
2150 c
= intel_bts_constraints(event
);
2154 c
= intel_shared_regs_constraints(cpuc
, event
);
2158 c
= intel_pebs_constraints(event
);
2162 return x86_get_event_constraints(cpuc
, idx
, event
);
2166 intel_start_scheduling(struct cpu_hw_events
*cpuc
)
2168 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2169 struct intel_excl_states
*xl
;
2170 int tid
= cpuc
->excl_thread_id
;
2173 * nothing needed if in group validation mode
2175 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2179 * no exclusion needed
2181 if (WARN_ON_ONCE(!excl_cntrs
))
2184 xl
= &excl_cntrs
->states
[tid
];
2186 xl
->sched_started
= true;
2188 * lock shared state until we are done scheduling
2189 * in stop_event_scheduling()
2190 * makes scheduling appear as a transaction
2192 raw_spin_lock(&excl_cntrs
->lock
);
2195 static void intel_commit_scheduling(struct cpu_hw_events
*cpuc
, int idx
, int cntr
)
2197 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2198 struct event_constraint
*c
= cpuc
->event_constraint
[idx
];
2199 struct intel_excl_states
*xl
;
2200 int tid
= cpuc
->excl_thread_id
;
2202 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2205 if (WARN_ON_ONCE(!excl_cntrs
))
2208 if (!(c
->flags
& PERF_X86_EVENT_DYNAMIC
))
2211 xl
= &excl_cntrs
->states
[tid
];
2213 lockdep_assert_held(&excl_cntrs
->lock
);
2215 if (c
->flags
& PERF_X86_EVENT_EXCL
)
2216 xl
->state
[cntr
] = INTEL_EXCL_EXCLUSIVE
;
2218 xl
->state
[cntr
] = INTEL_EXCL_SHARED
;
2222 intel_stop_scheduling(struct cpu_hw_events
*cpuc
)
2224 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2225 struct intel_excl_states
*xl
;
2226 int tid
= cpuc
->excl_thread_id
;
2229 * nothing needed if in group validation mode
2231 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2234 * no exclusion needed
2236 if (WARN_ON_ONCE(!excl_cntrs
))
2239 xl
= &excl_cntrs
->states
[tid
];
2241 xl
->sched_started
= false;
2243 * release shared state lock (acquired in intel_start_scheduling())
2245 raw_spin_unlock(&excl_cntrs
->lock
);
2248 static struct event_constraint
*
2249 intel_get_excl_constraints(struct cpu_hw_events
*cpuc
, struct perf_event
*event
,
2250 int idx
, struct event_constraint
*c
)
2252 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2253 struct intel_excl_states
*xlo
;
2254 int tid
= cpuc
->excl_thread_id
;
2258 * validating a group does not require
2259 * enforcing cross-thread exclusion
2261 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2265 * no exclusion needed
2267 if (WARN_ON_ONCE(!excl_cntrs
))
2271 * because we modify the constraint, we need
2272 * to make a copy. Static constraints come
2273 * from static const tables.
2275 * only needed when constraint has not yet
2276 * been cloned (marked dynamic)
2278 if (!(c
->flags
& PERF_X86_EVENT_DYNAMIC
)) {
2279 struct event_constraint
*cx
;
2282 * grab pre-allocated constraint entry
2284 cx
= &cpuc
->constraint_list
[idx
];
2287 * initialize dynamic constraint
2288 * with static constraint
2293 * mark constraint as dynamic, so we
2294 * can free it later on
2296 cx
->flags
|= PERF_X86_EVENT_DYNAMIC
;
2301 * From here on, the constraint is dynamic.
2302 * Either it was just allocated above, or it
2303 * was allocated during a earlier invocation
2308 * state of sibling HT
2310 xlo
= &excl_cntrs
->states
[tid
^ 1];
2313 * event requires exclusive counter access
2316 is_excl
= c
->flags
& PERF_X86_EVENT_EXCL
;
2317 if (is_excl
&& !(event
->hw
.flags
& PERF_X86_EVENT_EXCL_ACCT
)) {
2318 event
->hw
.flags
|= PERF_X86_EVENT_EXCL_ACCT
;
2319 if (!cpuc
->n_excl
++)
2320 WRITE_ONCE(excl_cntrs
->has_exclusive
[tid
], 1);
2324 * Modify static constraint with current dynamic
2327 * EXCLUSIVE: sibling counter measuring exclusive event
2328 * SHARED : sibling counter measuring non-exclusive event
2329 * UNUSED : sibling counter unused
2331 for_each_set_bit(i
, c
->idxmsk
, X86_PMC_IDX_MAX
) {
2333 * exclusive event in sibling counter
2334 * our corresponding counter cannot be used
2335 * regardless of our event
2337 if (xlo
->state
[i
] == INTEL_EXCL_EXCLUSIVE
)
2338 __clear_bit(i
, c
->idxmsk
);
2340 * if measuring an exclusive event, sibling
2341 * measuring non-exclusive, then counter cannot
2344 if (is_excl
&& xlo
->state
[i
] == INTEL_EXCL_SHARED
)
2345 __clear_bit(i
, c
->idxmsk
);
2349 * recompute actual bit weight for scheduling algorithm
2351 c
->weight
= hweight64(c
->idxmsk64
);
2354 * if we return an empty mask, then switch
2355 * back to static empty constraint to avoid
2356 * the cost of freeing later on
2359 c
= &emptyconstraint
;
2364 static struct event_constraint
*
2365 intel_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
2366 struct perf_event
*event
)
2368 struct event_constraint
*c1
= NULL
;
2369 struct event_constraint
*c2
;
2371 if (idx
>= 0) /* fake does < 0 */
2372 c1
= cpuc
->event_constraint
[idx
];
2376 * - static constraint: no change across incremental scheduling calls
2377 * - dynamic constraint: handled by intel_get_excl_constraints()
2379 c2
= __intel_get_event_constraints(cpuc
, idx
, event
);
2380 if (c1
&& (c1
->flags
& PERF_X86_EVENT_DYNAMIC
)) {
2381 bitmap_copy(c1
->idxmsk
, c2
->idxmsk
, X86_PMC_IDX_MAX
);
2382 c1
->weight
= c2
->weight
;
2386 if (cpuc
->excl_cntrs
)
2387 return intel_get_excl_constraints(cpuc
, event
, idx
, c2
);
2392 static void intel_put_excl_constraints(struct cpu_hw_events
*cpuc
,
2393 struct perf_event
*event
)
2395 struct hw_perf_event
*hwc
= &event
->hw
;
2396 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2397 int tid
= cpuc
->excl_thread_id
;
2398 struct intel_excl_states
*xl
;
2401 * nothing needed if in group validation mode
2406 if (WARN_ON_ONCE(!excl_cntrs
))
2409 if (hwc
->flags
& PERF_X86_EVENT_EXCL_ACCT
) {
2410 hwc
->flags
&= ~PERF_X86_EVENT_EXCL_ACCT
;
2411 if (!--cpuc
->n_excl
)
2412 WRITE_ONCE(excl_cntrs
->has_exclusive
[tid
], 0);
2416 * If event was actually assigned, then mark the counter state as
2419 if (hwc
->idx
>= 0) {
2420 xl
= &excl_cntrs
->states
[tid
];
2423 * put_constraint may be called from x86_schedule_events()
2424 * which already has the lock held so here make locking
2427 if (!xl
->sched_started
)
2428 raw_spin_lock(&excl_cntrs
->lock
);
2430 xl
->state
[hwc
->idx
] = INTEL_EXCL_UNUSED
;
2432 if (!xl
->sched_started
)
2433 raw_spin_unlock(&excl_cntrs
->lock
);
2438 intel_put_shared_regs_event_constraints(struct cpu_hw_events
*cpuc
,
2439 struct perf_event
*event
)
2441 struct hw_perf_event_extra
*reg
;
2443 reg
= &event
->hw
.extra_reg
;
2444 if (reg
->idx
!= EXTRA_REG_NONE
)
2445 __intel_shared_reg_put_constraints(cpuc
, reg
);
2447 reg
= &event
->hw
.branch_reg
;
2448 if (reg
->idx
!= EXTRA_REG_NONE
)
2449 __intel_shared_reg_put_constraints(cpuc
, reg
);
2452 static void intel_put_event_constraints(struct cpu_hw_events
*cpuc
,
2453 struct perf_event
*event
)
2455 intel_put_shared_regs_event_constraints(cpuc
, event
);
2458 * is PMU has exclusive counter restrictions, then
2459 * all events are subject to and must call the
2460 * put_excl_constraints() routine
2462 if (cpuc
->excl_cntrs
)
2463 intel_put_excl_constraints(cpuc
, event
);
2466 static void intel_pebs_aliases_core2(struct perf_event
*event
)
2468 if ((event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
2470 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2471 * (0x003c) so that we can use it with PEBS.
2473 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2474 * PEBS capable. However we can use INST_RETIRED.ANY_P
2475 * (0x00c0), which is a PEBS capable event, to get the same
2478 * INST_RETIRED.ANY_P counts the number of cycles that retires
2479 * CNTMASK instructions. By setting CNTMASK to a value (16)
2480 * larger than the maximum number of instructions that can be
2481 * retired per cycle (4) and then inverting the condition, we
2482 * count all cycles that retire 16 or less instructions, which
2485 * Thereby we gain a PEBS capable cycle counter.
2487 u64 alt_config
= X86_CONFIG(.event
=0xc0, .inv
=1, .cmask
=16);
2489 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
2490 event
->hw
.config
= alt_config
;
2494 static void intel_pebs_aliases_snb(struct perf_event
*event
)
2496 if ((event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
2498 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2499 * (0x003c) so that we can use it with PEBS.
2501 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2502 * PEBS capable. However we can use UOPS_RETIRED.ALL
2503 * (0x01c2), which is a PEBS capable event, to get the same
2506 * UOPS_RETIRED.ALL counts the number of cycles that retires
2507 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2508 * larger than the maximum number of micro-ops that can be
2509 * retired per cycle (4) and then inverting the condition, we
2510 * count all cycles that retire 16 or less micro-ops, which
2513 * Thereby we gain a PEBS capable cycle counter.
2515 u64 alt_config
= X86_CONFIG(.event
=0xc2, .umask
=0x01, .inv
=1, .cmask
=16);
2517 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
2518 event
->hw
.config
= alt_config
;
2522 static void intel_pebs_aliases_precdist(struct perf_event
*event
)
2524 if ((event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
2526 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2527 * (0x003c) so that we can use it with PEBS.
2529 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2530 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2531 * (0x01c0), which is a PEBS capable event, to get the same
2534 * The PREC_DIST event has special support to minimize sample
2535 * shadowing effects. One drawback is that it can be
2536 * only programmed on counter 1, but that seems like an
2537 * acceptable trade off.
2539 u64 alt_config
= X86_CONFIG(.event
=0xc0, .umask
=0x01, .inv
=1, .cmask
=16);
2541 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
2542 event
->hw
.config
= alt_config
;
2546 static void intel_pebs_aliases_ivb(struct perf_event
*event
)
2548 if (event
->attr
.precise_ip
< 3)
2549 return intel_pebs_aliases_snb(event
);
2550 return intel_pebs_aliases_precdist(event
);
2553 static void intel_pebs_aliases_skl(struct perf_event
*event
)
2555 if (event
->attr
.precise_ip
< 3)
2556 return intel_pebs_aliases_core2(event
);
2557 return intel_pebs_aliases_precdist(event
);
2560 static unsigned long intel_pmu_free_running_flags(struct perf_event
*event
)
2562 unsigned long flags
= x86_pmu
.free_running_flags
;
2564 if (event
->attr
.use_clockid
)
2565 flags
&= ~PERF_SAMPLE_TIME
;
2569 static int intel_pmu_hw_config(struct perf_event
*event
)
2571 int ret
= x86_pmu_hw_config(event
);
2576 if (event
->attr
.precise_ip
) {
2577 if (!event
->attr
.freq
) {
2578 event
->hw
.flags
|= PERF_X86_EVENT_AUTO_RELOAD
;
2579 if (!(event
->attr
.sample_type
&
2580 ~intel_pmu_free_running_flags(event
)))
2581 event
->hw
.flags
|= PERF_X86_EVENT_FREERUNNING
;
2583 if (x86_pmu
.pebs_aliases
)
2584 x86_pmu
.pebs_aliases(event
);
2587 if (needs_branch_stack(event
)) {
2588 ret
= intel_pmu_setup_lbr_filter(event
);
2593 * BTS is set up earlier in this path, so don't account twice
2595 if (!intel_pmu_has_bts(event
)) {
2596 /* disallow lbr if conflicting events are present */
2597 if (x86_add_exclusive(x86_lbr_exclusive_lbr
))
2600 event
->destroy
= hw_perf_lbr_event_destroy
;
2604 if (event
->attr
.type
!= PERF_TYPE_RAW
)
2607 if (!(event
->attr
.config
& ARCH_PERFMON_EVENTSEL_ANY
))
2610 if (x86_pmu
.version
< 3)
2613 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
2616 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_ANY
;
2621 struct perf_guest_switch_msr
*perf_guest_get_msrs(int *nr
)
2623 if (x86_pmu
.guest_get_msrs
)
2624 return x86_pmu
.guest_get_msrs(nr
);
2628 EXPORT_SYMBOL_GPL(perf_guest_get_msrs
);
2630 static struct perf_guest_switch_msr
*intel_guest_get_msrs(int *nr
)
2632 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2633 struct perf_guest_switch_msr
*arr
= cpuc
->guest_switch_msrs
;
2635 arr
[0].msr
= MSR_CORE_PERF_GLOBAL_CTRL
;
2636 arr
[0].host
= x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_guest_mask
;
2637 arr
[0].guest
= x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_host_mask
;
2639 * If PMU counter has PEBS enabled it is not enough to disable counter
2640 * on a guest entry since PEBS memory write can overshoot guest entry
2641 * and corrupt guest memory. Disabling PEBS solves the problem.
2643 arr
[1].msr
= MSR_IA32_PEBS_ENABLE
;
2644 arr
[1].host
= cpuc
->pebs_enabled
;
2651 static struct perf_guest_switch_msr
*core_guest_get_msrs(int *nr
)
2653 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2654 struct perf_guest_switch_msr
*arr
= cpuc
->guest_switch_msrs
;
2657 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
2658 struct perf_event
*event
= cpuc
->events
[idx
];
2660 arr
[idx
].msr
= x86_pmu_config_addr(idx
);
2661 arr
[idx
].host
= arr
[idx
].guest
= 0;
2663 if (!test_bit(idx
, cpuc
->active_mask
))
2666 arr
[idx
].host
= arr
[idx
].guest
=
2667 event
->hw
.config
| ARCH_PERFMON_EVENTSEL_ENABLE
;
2669 if (event
->attr
.exclude_host
)
2670 arr
[idx
].host
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
2671 else if (event
->attr
.exclude_guest
)
2672 arr
[idx
].guest
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
2675 *nr
= x86_pmu
.num_counters
;
2679 static void core_pmu_enable_event(struct perf_event
*event
)
2681 if (!event
->attr
.exclude_host
)
2682 x86_pmu_enable_event(event
);
2685 static void core_pmu_enable_all(int added
)
2687 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2690 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
2691 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
2693 if (!test_bit(idx
, cpuc
->active_mask
) ||
2694 cpuc
->events
[idx
]->attr
.exclude_host
)
2697 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
2701 static int hsw_hw_config(struct perf_event
*event
)
2703 int ret
= intel_pmu_hw_config(event
);
2707 if (!boot_cpu_has(X86_FEATURE_RTM
) && !boot_cpu_has(X86_FEATURE_HLE
))
2709 event
->hw
.config
|= event
->attr
.config
& (HSW_IN_TX
|HSW_IN_TX_CHECKPOINTED
);
2712 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2713 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2716 if ((event
->hw
.config
& (HSW_IN_TX
|HSW_IN_TX_CHECKPOINTED
)) &&
2717 ((event
->hw
.config
& ARCH_PERFMON_EVENTSEL_ANY
) ||
2718 event
->attr
.precise_ip
> 0))
2721 if (event_is_checkpointed(event
)) {
2723 * Sampling of checkpointed events can cause situations where
2724 * the CPU constantly aborts because of a overflow, which is
2725 * then checkpointed back and ignored. Forbid checkpointing
2728 * But still allow a long sampling period, so that perf stat
2731 if (event
->attr
.sample_period
> 0 &&
2732 event
->attr
.sample_period
< 0x7fffffff)
2738 static struct event_constraint counter2_constraint
=
2739 EVENT_CONSTRAINT(0, 0x4, 0);
2741 static struct event_constraint
*
2742 hsw_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
2743 struct perf_event
*event
)
2745 struct event_constraint
*c
;
2747 c
= intel_get_event_constraints(cpuc
, idx
, event
);
2749 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2750 if (event
->hw
.config
& HSW_IN_TX_CHECKPOINTED
) {
2751 if (c
->idxmsk64
& (1U << 2))
2752 return &counter2_constraint
;
2753 return &emptyconstraint
;
2762 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2763 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2764 * the two to enforce a minimum period of 128 (the smallest value that has bits
2765 * 0-5 cleared and >= 100).
2767 * Because of how the code in x86_perf_event_set_period() works, the truncation
2768 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2769 * to make up for the 'lost' events due to carrying the 'error' in period_left.
2771 * Therefore the effective (average) period matches the requested period,
2772 * despite coarser hardware granularity.
2774 static unsigned bdw_limit_period(struct perf_event
*event
, unsigned left
)
2776 if ((event
->hw
.config
& INTEL_ARCH_EVENT_MASK
) ==
2777 X86_CONFIG(.event
=0xc0, .umask
=0x01)) {
2785 PMU_FORMAT_ATTR(event
, "config:0-7" );
2786 PMU_FORMAT_ATTR(umask
, "config:8-15" );
2787 PMU_FORMAT_ATTR(edge
, "config:18" );
2788 PMU_FORMAT_ATTR(pc
, "config:19" );
2789 PMU_FORMAT_ATTR(any
, "config:21" ); /* v3 + */
2790 PMU_FORMAT_ATTR(inv
, "config:23" );
2791 PMU_FORMAT_ATTR(cmask
, "config:24-31" );
2792 PMU_FORMAT_ATTR(in_tx
, "config:32");
2793 PMU_FORMAT_ATTR(in_tx_cp
, "config:33");
2795 static struct attribute
*intel_arch_formats_attr
[] = {
2796 &format_attr_event
.attr
,
2797 &format_attr_umask
.attr
,
2798 &format_attr_edge
.attr
,
2799 &format_attr_pc
.attr
,
2800 &format_attr_inv
.attr
,
2801 &format_attr_cmask
.attr
,
2805 ssize_t
intel_event_sysfs_show(char *page
, u64 config
)
2807 u64 event
= (config
& ARCH_PERFMON_EVENTSEL_EVENT
);
2809 return x86_event_sysfs_show(page
, config
, event
);
2812 struct intel_shared_regs
*allocate_shared_regs(int cpu
)
2814 struct intel_shared_regs
*regs
;
2817 regs
= kzalloc_node(sizeof(struct intel_shared_regs
),
2818 GFP_KERNEL
, cpu_to_node(cpu
));
2821 * initialize the locks to keep lockdep happy
2823 for (i
= 0; i
< EXTRA_REG_MAX
; i
++)
2824 raw_spin_lock_init(®s
->regs
[i
].lock
);
2831 static struct intel_excl_cntrs
*allocate_excl_cntrs(int cpu
)
2833 struct intel_excl_cntrs
*c
;
2835 c
= kzalloc_node(sizeof(struct intel_excl_cntrs
),
2836 GFP_KERNEL
, cpu_to_node(cpu
));
2838 raw_spin_lock_init(&c
->lock
);
2844 static int intel_pmu_cpu_prepare(int cpu
)
2846 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
2848 if (x86_pmu
.extra_regs
|| x86_pmu
.lbr_sel_map
) {
2849 cpuc
->shared_regs
= allocate_shared_regs(cpu
);
2850 if (!cpuc
->shared_regs
)
2854 if (x86_pmu
.flags
& PMU_FL_EXCL_CNTRS
) {
2855 size_t sz
= X86_PMC_IDX_MAX
* sizeof(struct event_constraint
);
2857 cpuc
->constraint_list
= kzalloc(sz
, GFP_KERNEL
);
2858 if (!cpuc
->constraint_list
)
2859 goto err_shared_regs
;
2861 cpuc
->excl_cntrs
= allocate_excl_cntrs(cpu
);
2862 if (!cpuc
->excl_cntrs
)
2863 goto err_constraint_list
;
2865 cpuc
->excl_thread_id
= 0;
2870 err_constraint_list
:
2871 kfree(cpuc
->constraint_list
);
2872 cpuc
->constraint_list
= NULL
;
2875 kfree(cpuc
->shared_regs
);
2876 cpuc
->shared_regs
= NULL
;
2882 static void intel_pmu_cpu_starting(int cpu
)
2884 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
2885 int core_id
= topology_core_id(cpu
);
2888 init_debug_store_on_cpu(cpu
);
2890 * Deal with CPUs that don't clear their LBRs on power-up.
2892 intel_pmu_lbr_reset();
2894 cpuc
->lbr_sel
= NULL
;
2896 if (!cpuc
->shared_regs
)
2899 if (!(x86_pmu
.flags
& PMU_FL_NO_HT_SHARING
)) {
2900 void **onln
= &cpuc
->kfree_on_online
[X86_PERF_KFREE_SHARED
];
2902 for_each_cpu(i
, topology_sibling_cpumask(cpu
)) {
2903 struct intel_shared_regs
*pc
;
2905 pc
= per_cpu(cpu_hw_events
, i
).shared_regs
;
2906 if (pc
&& pc
->core_id
== core_id
) {
2907 *onln
= cpuc
->shared_regs
;
2908 cpuc
->shared_regs
= pc
;
2912 cpuc
->shared_regs
->core_id
= core_id
;
2913 cpuc
->shared_regs
->refcnt
++;
2916 if (x86_pmu
.lbr_sel_map
)
2917 cpuc
->lbr_sel
= &cpuc
->shared_regs
->regs
[EXTRA_REG_LBR
];
2919 if (x86_pmu
.flags
& PMU_FL_EXCL_CNTRS
) {
2920 for_each_cpu(i
, topology_sibling_cpumask(cpu
)) {
2921 struct intel_excl_cntrs
*c
;
2923 c
= per_cpu(cpu_hw_events
, i
).excl_cntrs
;
2924 if (c
&& c
->core_id
== core_id
) {
2925 cpuc
->kfree_on_online
[1] = cpuc
->excl_cntrs
;
2926 cpuc
->excl_cntrs
= c
;
2927 cpuc
->excl_thread_id
= 1;
2931 cpuc
->excl_cntrs
->core_id
= core_id
;
2932 cpuc
->excl_cntrs
->refcnt
++;
2936 static void free_excl_cntrs(int cpu
)
2938 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
2939 struct intel_excl_cntrs
*c
;
2941 c
= cpuc
->excl_cntrs
;
2943 if (c
->core_id
== -1 || --c
->refcnt
== 0)
2945 cpuc
->excl_cntrs
= NULL
;
2946 kfree(cpuc
->constraint_list
);
2947 cpuc
->constraint_list
= NULL
;
2951 static void intel_pmu_cpu_dying(int cpu
)
2953 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
2954 struct intel_shared_regs
*pc
;
2956 pc
= cpuc
->shared_regs
;
2958 if (pc
->core_id
== -1 || --pc
->refcnt
== 0)
2960 cpuc
->shared_regs
= NULL
;
2963 free_excl_cntrs(cpu
);
2965 fini_debug_store_on_cpu(cpu
);
2968 static void intel_pmu_sched_task(struct perf_event_context
*ctx
,
2971 if (x86_pmu
.pebs_active
)
2972 intel_pmu_pebs_sched_task(ctx
, sched_in
);
2974 intel_pmu_lbr_sched_task(ctx
, sched_in
);
2977 PMU_FORMAT_ATTR(offcore_rsp
, "config1:0-63");
2979 PMU_FORMAT_ATTR(ldlat
, "config1:0-15");
2981 PMU_FORMAT_ATTR(frontend
, "config1:0-23");
2983 static struct attribute
*intel_arch3_formats_attr
[] = {
2984 &format_attr_event
.attr
,
2985 &format_attr_umask
.attr
,
2986 &format_attr_edge
.attr
,
2987 &format_attr_pc
.attr
,
2988 &format_attr_any
.attr
,
2989 &format_attr_inv
.attr
,
2990 &format_attr_cmask
.attr
,
2991 &format_attr_in_tx
.attr
,
2992 &format_attr_in_tx_cp
.attr
,
2994 &format_attr_offcore_rsp
.attr
, /* XXX do NHM/WSM + SNB breakout */
2995 &format_attr_ldlat
.attr
, /* PEBS load latency */
2999 static struct attribute
*skl_format_attr
[] = {
3000 &format_attr_frontend
.attr
,
3004 static __initconst
const struct x86_pmu core_pmu
= {
3006 .handle_irq
= x86_pmu_handle_irq
,
3007 .disable_all
= x86_pmu_disable_all
,
3008 .enable_all
= core_pmu_enable_all
,
3009 .enable
= core_pmu_enable_event
,
3010 .disable
= x86_pmu_disable_event
,
3011 .hw_config
= x86_pmu_hw_config
,
3012 .schedule_events
= x86_schedule_events
,
3013 .eventsel
= MSR_ARCH_PERFMON_EVENTSEL0
,
3014 .perfctr
= MSR_ARCH_PERFMON_PERFCTR0
,
3015 .event_map
= intel_pmu_event_map
,
3016 .max_events
= ARRAY_SIZE(intel_perfmon_event_map
),
3018 .free_running_flags
= PEBS_FREERUNNING_FLAGS
,
3021 * Intel PMCs cannot be accessed sanely above 32-bit width,
3022 * so we install an artificial 1<<31 period regardless of
3023 * the generic event period:
3025 .max_period
= (1ULL<<31) - 1,
3026 .get_event_constraints
= intel_get_event_constraints
,
3027 .put_event_constraints
= intel_put_event_constraints
,
3028 .event_constraints
= intel_core_event_constraints
,
3029 .guest_get_msrs
= core_guest_get_msrs
,
3030 .format_attrs
= intel_arch_formats_attr
,
3031 .events_sysfs_show
= intel_event_sysfs_show
,
3034 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3035 * together with PMU version 1 and thus be using core_pmu with
3036 * shared_regs. We need following callbacks here to allocate
3039 .cpu_prepare
= intel_pmu_cpu_prepare
,
3040 .cpu_starting
= intel_pmu_cpu_starting
,
3041 .cpu_dying
= intel_pmu_cpu_dying
,
3044 static __initconst
const struct x86_pmu intel_pmu
= {
3046 .handle_irq
= intel_pmu_handle_irq
,
3047 .disable_all
= intel_pmu_disable_all
,
3048 .enable_all
= intel_pmu_enable_all
,
3049 .enable
= intel_pmu_enable_event
,
3050 .disable
= intel_pmu_disable_event
,
3051 .hw_config
= intel_pmu_hw_config
,
3052 .schedule_events
= x86_schedule_events
,
3053 .eventsel
= MSR_ARCH_PERFMON_EVENTSEL0
,
3054 .perfctr
= MSR_ARCH_PERFMON_PERFCTR0
,
3055 .event_map
= intel_pmu_event_map
,
3056 .max_events
= ARRAY_SIZE(intel_perfmon_event_map
),
3058 .free_running_flags
= PEBS_FREERUNNING_FLAGS
,
3060 * Intel PMCs cannot be accessed sanely above 32 bit width,
3061 * so we install an artificial 1<<31 period regardless of
3062 * the generic event period:
3064 .max_period
= (1ULL << 31) - 1,
3065 .get_event_constraints
= intel_get_event_constraints
,
3066 .put_event_constraints
= intel_put_event_constraints
,
3067 .pebs_aliases
= intel_pebs_aliases_core2
,
3069 .format_attrs
= intel_arch3_formats_attr
,
3070 .events_sysfs_show
= intel_event_sysfs_show
,
3072 .cpu_prepare
= intel_pmu_cpu_prepare
,
3073 .cpu_starting
= intel_pmu_cpu_starting
,
3074 .cpu_dying
= intel_pmu_cpu_dying
,
3075 .guest_get_msrs
= intel_guest_get_msrs
,
3076 .sched_task
= intel_pmu_sched_task
,
3079 static __init
void intel_clovertown_quirk(void)
3082 * PEBS is unreliable due to:
3084 * AJ67 - PEBS may experience CPL leaks
3085 * AJ68 - PEBS PMI may be delayed by one event
3086 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3087 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3089 * AJ67 could be worked around by restricting the OS/USR flags.
3090 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3092 * AJ106 could possibly be worked around by not allowing LBR
3093 * usage from PEBS, including the fixup.
3094 * AJ68 could possibly be worked around by always programming
3095 * a pebs_event_reset[0] value and coping with the lost events.
3097 * But taken together it might just make sense to not enable PEBS on
3100 pr_warn("PEBS disabled due to CPU errata\n");
3102 x86_pmu
.pebs_constraints
= NULL
;
3105 static int intel_snb_pebs_broken(int cpu
)
3107 u32 rev
= UINT_MAX
; /* default to broken for unknown models */
3109 switch (cpu_data(cpu
).x86_model
) {
3114 case 45: /* SNB-EP */
3115 switch (cpu_data(cpu
).x86_mask
) {
3116 case 6: rev
= 0x618; break;
3117 case 7: rev
= 0x70c; break;
3121 return (cpu_data(cpu
).microcode
< rev
);
3124 static void intel_snb_check_microcode(void)
3126 int pebs_broken
= 0;
3130 for_each_online_cpu(cpu
) {
3131 if ((pebs_broken
= intel_snb_pebs_broken(cpu
)))
3136 if (pebs_broken
== x86_pmu
.pebs_broken
)
3140 * Serialized by the microcode lock..
3142 if (x86_pmu
.pebs_broken
) {
3143 pr_info("PEBS enabled due to microcode update\n");
3144 x86_pmu
.pebs_broken
= 0;
3146 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3147 x86_pmu
.pebs_broken
= 1;
3152 * Under certain circumstances, access certain MSR may cause #GP.
3153 * The function tests if the input MSR can be safely accessed.
3155 static bool check_msr(unsigned long msr
, u64 mask
)
3157 u64 val_old
, val_new
, val_tmp
;
3160 * Read the current value, change it and read it back to see if it
3161 * matches, this is needed to detect certain hardware emulators
3162 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3164 if (rdmsrl_safe(msr
, &val_old
))
3168 * Only change the bits which can be updated by wrmsrl.
3170 val_tmp
= val_old
^ mask
;
3171 if (wrmsrl_safe(msr
, val_tmp
) ||
3172 rdmsrl_safe(msr
, &val_new
))
3175 if (val_new
!= val_tmp
)
3178 /* Here it's sure that the MSR can be safely accessed.
3179 * Restore the old value and return.
3181 wrmsrl(msr
, val_old
);
3186 static __init
void intel_sandybridge_quirk(void)
3188 x86_pmu
.check_microcode
= intel_snb_check_microcode
;
3189 intel_snb_check_microcode();
3192 static const struct { int id
; char *name
; } intel_arch_events_map
[] __initconst
= {
3193 { PERF_COUNT_HW_CPU_CYCLES
, "cpu cycles" },
3194 { PERF_COUNT_HW_INSTRUCTIONS
, "instructions" },
3195 { PERF_COUNT_HW_BUS_CYCLES
, "bus cycles" },
3196 { PERF_COUNT_HW_CACHE_REFERENCES
, "cache references" },
3197 { PERF_COUNT_HW_CACHE_MISSES
, "cache misses" },
3198 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS
, "branch instructions" },
3199 { PERF_COUNT_HW_BRANCH_MISSES
, "branch misses" },
3202 static __init
void intel_arch_events_quirk(void)
3206 /* disable event that reported as not presend by cpuid */
3207 for_each_set_bit(bit
, x86_pmu
.events_mask
, ARRAY_SIZE(intel_arch_events_map
)) {
3208 intel_perfmon_event_map
[intel_arch_events_map
[bit
].id
] = 0;
3209 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3210 intel_arch_events_map
[bit
].name
);
3214 static __init
void intel_nehalem_quirk(void)
3216 union cpuid10_ebx ebx
;
3218 ebx
.full
= x86_pmu
.events_maskl
;
3219 if (ebx
.split
.no_branch_misses_retired
) {
3221 * Erratum AAJ80 detected, we work it around by using
3222 * the BR_MISP_EXEC.ANY event. This will over-count
3223 * branch-misses, but it's still much better than the
3224 * architectural event which is often completely bogus:
3226 intel_perfmon_event_map
[PERF_COUNT_HW_BRANCH_MISSES
] = 0x7f89;
3227 ebx
.split
.no_branch_misses_retired
= 0;
3228 x86_pmu
.events_maskl
= ebx
.full
;
3229 pr_info("CPU erratum AAJ80 worked around\n");
3234 * enable software workaround for errata:
3239 * Only needed when HT is enabled. However detecting
3240 * if HT is enabled is difficult (model specific). So instead,
3241 * we enable the workaround in the early boot, and verify if
3242 * it is needed in a later initcall phase once we have valid
3243 * topology information to check if HT is actually enabled
3245 static __init
void intel_ht_bug(void)
3247 x86_pmu
.flags
|= PMU_FL_EXCL_CNTRS
| PMU_FL_EXCL_ENABLED
;
3249 x86_pmu
.start_scheduling
= intel_start_scheduling
;
3250 x86_pmu
.commit_scheduling
= intel_commit_scheduling
;
3251 x86_pmu
.stop_scheduling
= intel_stop_scheduling
;
3254 EVENT_ATTR_STR(mem
-loads
, mem_ld_hsw
, "event=0xcd,umask=0x1,ldlat=3");
3255 EVENT_ATTR_STR(mem
-stores
, mem_st_hsw
, "event=0xd0,umask=0x82")
3257 /* Haswell special events */
3258 EVENT_ATTR_STR(tx
-start
, tx_start
, "event=0xc9,umask=0x1");
3259 EVENT_ATTR_STR(tx
-commit
, tx_commit
, "event=0xc9,umask=0x2");
3260 EVENT_ATTR_STR(tx
-abort
, tx_abort
, "event=0xc9,umask=0x4");
3261 EVENT_ATTR_STR(tx
-capacity
, tx_capacity
, "event=0x54,umask=0x2");
3262 EVENT_ATTR_STR(tx
-conflict
, tx_conflict
, "event=0x54,umask=0x1");
3263 EVENT_ATTR_STR(el
-start
, el_start
, "event=0xc8,umask=0x1");
3264 EVENT_ATTR_STR(el
-commit
, el_commit
, "event=0xc8,umask=0x2");
3265 EVENT_ATTR_STR(el
-abort
, el_abort
, "event=0xc8,umask=0x4");
3266 EVENT_ATTR_STR(el
-capacity
, el_capacity
, "event=0x54,umask=0x2");
3267 EVENT_ATTR_STR(el
-conflict
, el_conflict
, "event=0x54,umask=0x1");
3268 EVENT_ATTR_STR(cycles
-t
, cycles_t
, "event=0x3c,in_tx=1");
3269 EVENT_ATTR_STR(cycles
-ct
, cycles_ct
, "event=0x3c,in_tx=1,in_tx_cp=1");
3271 static struct attribute
*hsw_events_attrs
[] = {
3272 EVENT_PTR(tx_start
),
3273 EVENT_PTR(tx_commit
),
3274 EVENT_PTR(tx_abort
),
3275 EVENT_PTR(tx_capacity
),
3276 EVENT_PTR(tx_conflict
),
3277 EVENT_PTR(el_start
),
3278 EVENT_PTR(el_commit
),
3279 EVENT_PTR(el_abort
),
3280 EVENT_PTR(el_capacity
),
3281 EVENT_PTR(el_conflict
),
3282 EVENT_PTR(cycles_t
),
3283 EVENT_PTR(cycles_ct
),
3284 EVENT_PTR(mem_ld_hsw
),
3285 EVENT_PTR(mem_st_hsw
),
3289 __init
int intel_pmu_init(void)
3291 union cpuid10_edx edx
;
3292 union cpuid10_eax eax
;
3293 union cpuid10_ebx ebx
;
3294 struct event_constraint
*c
;
3295 unsigned int unused
;
3296 struct extra_reg
*er
;
3299 if (!cpu_has(&boot_cpu_data
, X86_FEATURE_ARCH_PERFMON
)) {
3300 switch (boot_cpu_data
.x86
) {
3302 return p6_pmu_init();
3304 return knc_pmu_init();
3306 return p4_pmu_init();
3312 * Check whether the Architectural PerfMon supports
3313 * Branch Misses Retired hw_event or not.
3315 cpuid(10, &eax
.full
, &ebx
.full
, &unused
, &edx
.full
);
3316 if (eax
.split
.mask_length
< ARCH_PERFMON_EVENTS_COUNT
)
3319 version
= eax
.split
.version_id
;
3323 x86_pmu
= intel_pmu
;
3325 x86_pmu
.version
= version
;
3326 x86_pmu
.num_counters
= eax
.split
.num_counters
;
3327 x86_pmu
.cntval_bits
= eax
.split
.bit_width
;
3328 x86_pmu
.cntval_mask
= (1ULL << eax
.split
.bit_width
) - 1;
3330 x86_pmu
.events_maskl
= ebx
.full
;
3331 x86_pmu
.events_mask_len
= eax
.split
.mask_length
;
3333 x86_pmu
.max_pebs_events
= min_t(unsigned, MAX_PEBS_EVENTS
, x86_pmu
.num_counters
);
3336 * Quirk: v2 perfmon does not report fixed-purpose events, so
3337 * assume at least 3 events:
3340 x86_pmu
.num_counters_fixed
= max((int)edx
.split
.num_counters_fixed
, 3);
3342 if (boot_cpu_has(X86_FEATURE_PDCM
)) {
3345 rdmsrl(MSR_IA32_PERF_CAPABILITIES
, capabilities
);
3346 x86_pmu
.intel_cap
.capabilities
= capabilities
;
3351 x86_add_quirk(intel_arch_events_quirk
); /* Install first, so it runs last */
3354 * Install the hw-cache-events table:
3356 switch (boot_cpu_data
.x86_model
) {
3357 case 14: /* 65nm Core "Yonah" */
3358 pr_cont("Core events, ");
3361 case 15: /* 65nm Core2 "Merom" */
3362 x86_add_quirk(intel_clovertown_quirk
);
3363 case 22: /* 65nm Core2 "Merom-L" */
3364 case 23: /* 45nm Core2 "Penryn" */
3365 case 29: /* 45nm Core2 "Dunnington (MP) */
3366 memcpy(hw_cache_event_ids
, core2_hw_cache_event_ids
,
3367 sizeof(hw_cache_event_ids
));
3369 intel_pmu_lbr_init_core();
3371 x86_pmu
.event_constraints
= intel_core2_event_constraints
;
3372 x86_pmu
.pebs_constraints
= intel_core2_pebs_event_constraints
;
3373 pr_cont("Core2 events, ");
3376 case 30: /* 45nm Nehalem */
3377 case 26: /* 45nm Nehalem-EP */
3378 case 46: /* 45nm Nehalem-EX */
3379 memcpy(hw_cache_event_ids
, nehalem_hw_cache_event_ids
,
3380 sizeof(hw_cache_event_ids
));
3381 memcpy(hw_cache_extra_regs
, nehalem_hw_cache_extra_regs
,
3382 sizeof(hw_cache_extra_regs
));
3384 intel_pmu_lbr_init_nhm();
3386 x86_pmu
.event_constraints
= intel_nehalem_event_constraints
;
3387 x86_pmu
.pebs_constraints
= intel_nehalem_pebs_event_constraints
;
3388 x86_pmu
.enable_all
= intel_pmu_nhm_enable_all
;
3389 x86_pmu
.extra_regs
= intel_nehalem_extra_regs
;
3391 x86_pmu
.cpu_events
= nhm_events_attrs
;
3393 /* UOPS_ISSUED.STALLED_CYCLES */
3394 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
3395 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
3396 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3397 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] =
3398 X86_CONFIG(.event
=0xb1, .umask
=0x3f, .inv
=1, .cmask
=1);
3400 x86_add_quirk(intel_nehalem_quirk
);
3402 pr_cont("Nehalem events, ");
3405 case 28: /* 45nm Atom "Pineview" */
3406 case 38: /* 45nm Atom "Lincroft" */
3407 case 39: /* 32nm Atom "Penwell" */
3408 case 53: /* 32nm Atom "Cloverview" */
3409 case 54: /* 32nm Atom "Cedarview" */
3410 memcpy(hw_cache_event_ids
, atom_hw_cache_event_ids
,
3411 sizeof(hw_cache_event_ids
));
3413 intel_pmu_lbr_init_atom();
3415 x86_pmu
.event_constraints
= intel_gen_event_constraints
;
3416 x86_pmu
.pebs_constraints
= intel_atom_pebs_event_constraints
;
3417 x86_pmu
.pebs_aliases
= intel_pebs_aliases_core2
;
3418 pr_cont("Atom events, ");
3421 case 55: /* 22nm Atom "Silvermont" */
3422 case 76: /* 14nm Atom "Airmont" */
3423 case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3424 memcpy(hw_cache_event_ids
, slm_hw_cache_event_ids
,
3425 sizeof(hw_cache_event_ids
));
3426 memcpy(hw_cache_extra_regs
, slm_hw_cache_extra_regs
,
3427 sizeof(hw_cache_extra_regs
));
3429 intel_pmu_lbr_init_atom();
3431 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
3432 x86_pmu
.pebs_constraints
= intel_slm_pebs_event_constraints
;
3433 x86_pmu
.extra_regs
= intel_slm_extra_regs
;
3434 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
3435 pr_cont("Silvermont events, ");
3438 case 37: /* 32nm Westmere */
3439 case 44: /* 32nm Westmere-EP */
3440 case 47: /* 32nm Westmere-EX */
3441 memcpy(hw_cache_event_ids
, westmere_hw_cache_event_ids
,
3442 sizeof(hw_cache_event_ids
));
3443 memcpy(hw_cache_extra_regs
, nehalem_hw_cache_extra_regs
,
3444 sizeof(hw_cache_extra_regs
));
3446 intel_pmu_lbr_init_nhm();
3448 x86_pmu
.event_constraints
= intel_westmere_event_constraints
;
3449 x86_pmu
.enable_all
= intel_pmu_nhm_enable_all
;
3450 x86_pmu
.pebs_constraints
= intel_westmere_pebs_event_constraints
;
3451 x86_pmu
.extra_regs
= intel_westmere_extra_regs
;
3452 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
3454 x86_pmu
.cpu_events
= nhm_events_attrs
;
3456 /* UOPS_ISSUED.STALLED_CYCLES */
3457 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
3458 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
3459 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3460 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] =
3461 X86_CONFIG(.event
=0xb1, .umask
=0x3f, .inv
=1, .cmask
=1);
3463 pr_cont("Westmere events, ");
3466 case 42: /* 32nm SandyBridge */
3467 case 45: /* 32nm SandyBridge-E/EN/EP */
3468 x86_add_quirk(intel_sandybridge_quirk
);
3469 x86_add_quirk(intel_ht_bug
);
3470 memcpy(hw_cache_event_ids
, snb_hw_cache_event_ids
,
3471 sizeof(hw_cache_event_ids
));
3472 memcpy(hw_cache_extra_regs
, snb_hw_cache_extra_regs
,
3473 sizeof(hw_cache_extra_regs
));
3475 intel_pmu_lbr_init_snb();
3477 x86_pmu
.event_constraints
= intel_snb_event_constraints
;
3478 x86_pmu
.pebs_constraints
= intel_snb_pebs_event_constraints
;
3479 x86_pmu
.pebs_aliases
= intel_pebs_aliases_snb
;
3480 if (boot_cpu_data
.x86_model
== 45)
3481 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
3483 x86_pmu
.extra_regs
= intel_snb_extra_regs
;
3486 /* all extra regs are per-cpu when HT is on */
3487 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
3488 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
3490 x86_pmu
.cpu_events
= snb_events_attrs
;
3492 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3493 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
3494 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
3495 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3496 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] =
3497 X86_CONFIG(.event
=0xb1, .umask
=0x01, .inv
=1, .cmask
=1);
3499 pr_cont("SandyBridge events, ");
3502 case 58: /* 22nm IvyBridge */
3503 case 62: /* 22nm IvyBridge-EP/EX */
3504 x86_add_quirk(intel_ht_bug
);
3505 memcpy(hw_cache_event_ids
, snb_hw_cache_event_ids
,
3506 sizeof(hw_cache_event_ids
));
3507 /* dTLB-load-misses on IVB is different than SNB */
3508 hw_cache_event_ids
[C(DTLB
)][C(OP_READ
)][C(RESULT_MISS
)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3510 memcpy(hw_cache_extra_regs
, snb_hw_cache_extra_regs
,
3511 sizeof(hw_cache_extra_regs
));
3513 intel_pmu_lbr_init_snb();
3515 x86_pmu
.event_constraints
= intel_ivb_event_constraints
;
3516 x86_pmu
.pebs_constraints
= intel_ivb_pebs_event_constraints
;
3517 x86_pmu
.pebs_aliases
= intel_pebs_aliases_ivb
;
3518 x86_pmu
.pebs_prec_dist
= true;
3519 if (boot_cpu_data
.x86_model
== 62)
3520 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
3522 x86_pmu
.extra_regs
= intel_snb_extra_regs
;
3523 /* all extra regs are per-cpu when HT is on */
3524 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
3525 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
3527 x86_pmu
.cpu_events
= snb_events_attrs
;
3529 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3530 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
3531 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
3533 pr_cont("IvyBridge events, ");
3537 case 60: /* 22nm Haswell Core */
3538 case 63: /* 22nm Haswell Server */
3539 case 69: /* 22nm Haswell ULT */
3540 case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3541 x86_add_quirk(intel_ht_bug
);
3542 x86_pmu
.late_ack
= true;
3543 memcpy(hw_cache_event_ids
, hsw_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
3544 memcpy(hw_cache_extra_regs
, hsw_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
3546 intel_pmu_lbr_init_hsw();
3548 x86_pmu
.event_constraints
= intel_hsw_event_constraints
;
3549 x86_pmu
.pebs_constraints
= intel_hsw_pebs_event_constraints
;
3550 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
3551 x86_pmu
.pebs_aliases
= intel_pebs_aliases_ivb
;
3552 x86_pmu
.pebs_prec_dist
= true;
3553 /* all extra regs are per-cpu when HT is on */
3554 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
3555 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
3557 x86_pmu
.hw_config
= hsw_hw_config
;
3558 x86_pmu
.get_event_constraints
= hsw_get_event_constraints
;
3559 x86_pmu
.cpu_events
= hsw_events_attrs
;
3560 x86_pmu
.lbr_double_abort
= true;
3561 pr_cont("Haswell events, ");
3564 case 61: /* 14nm Broadwell Core-M */
3565 case 86: /* 14nm Broadwell Xeon D */
3566 case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3567 case 79: /* 14nm Broadwell Server */
3568 x86_pmu
.late_ack
= true;
3569 memcpy(hw_cache_event_ids
, hsw_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
3570 memcpy(hw_cache_extra_regs
, hsw_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
3572 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3573 hw_cache_extra_regs
[C(LL
)][C(OP_READ
)][C(RESULT_MISS
)] = HSW_DEMAND_READ
|
3574 BDW_L3_MISS
|HSW_SNOOP_DRAM
;
3575 hw_cache_extra_regs
[C(LL
)][C(OP_WRITE
)][C(RESULT_MISS
)] = HSW_DEMAND_WRITE
|BDW_L3_MISS
|
3577 hw_cache_extra_regs
[C(NODE
)][C(OP_READ
)][C(RESULT_ACCESS
)] = HSW_DEMAND_READ
|
3578 BDW_L3_MISS_LOCAL
|HSW_SNOOP_DRAM
;
3579 hw_cache_extra_regs
[C(NODE
)][C(OP_WRITE
)][C(RESULT_ACCESS
)] = HSW_DEMAND_WRITE
|
3580 BDW_L3_MISS_LOCAL
|HSW_SNOOP_DRAM
;
3582 intel_pmu_lbr_init_hsw();
3584 x86_pmu
.event_constraints
= intel_bdw_event_constraints
;
3585 x86_pmu
.pebs_constraints
= intel_hsw_pebs_event_constraints
;
3586 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
3587 x86_pmu
.pebs_aliases
= intel_pebs_aliases_ivb
;
3588 x86_pmu
.pebs_prec_dist
= true;
3589 /* all extra regs are per-cpu when HT is on */
3590 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
3591 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
3593 x86_pmu
.hw_config
= hsw_hw_config
;
3594 x86_pmu
.get_event_constraints
= hsw_get_event_constraints
;
3595 x86_pmu
.cpu_events
= hsw_events_attrs
;
3596 x86_pmu
.limit_period
= bdw_limit_period
;
3597 pr_cont("Broadwell events, ");
3600 case 87: /* Knights Landing Xeon Phi */
3601 memcpy(hw_cache_event_ids
,
3602 slm_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
3603 memcpy(hw_cache_extra_regs
,
3604 knl_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
3605 intel_pmu_lbr_init_knl();
3607 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
3608 x86_pmu
.pebs_constraints
= intel_slm_pebs_event_constraints
;
3609 x86_pmu
.extra_regs
= intel_knl_extra_regs
;
3611 /* all extra regs are per-cpu when HT is on */
3612 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
3613 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
3615 pr_cont("Knights Landing events, ");
3618 case 78: /* 14nm Skylake Mobile */
3619 case 94: /* 14nm Skylake Desktop */
3620 x86_pmu
.late_ack
= true;
3621 memcpy(hw_cache_event_ids
, skl_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
3622 memcpy(hw_cache_extra_regs
, skl_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
3623 intel_pmu_lbr_init_skl();
3625 x86_pmu
.event_constraints
= intel_skl_event_constraints
;
3626 x86_pmu
.pebs_constraints
= intel_skl_pebs_event_constraints
;
3627 x86_pmu
.extra_regs
= intel_skl_extra_regs
;
3628 x86_pmu
.pebs_aliases
= intel_pebs_aliases_skl
;
3629 x86_pmu
.pebs_prec_dist
= true;
3630 /* all extra regs are per-cpu when HT is on */
3631 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
3632 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
3634 x86_pmu
.hw_config
= hsw_hw_config
;
3635 x86_pmu
.get_event_constraints
= hsw_get_event_constraints
;
3636 x86_pmu
.format_attrs
= merge_attr(intel_arch3_formats_attr
,
3638 WARN_ON(!x86_pmu
.format_attrs
);
3639 x86_pmu
.cpu_events
= hsw_events_attrs
;
3640 pr_cont("Skylake events, ");
3644 switch (x86_pmu
.version
) {
3646 x86_pmu
.event_constraints
= intel_v1_event_constraints
;
3647 pr_cont("generic architected perfmon v1, ");
3651 * default constraints for v2 and up
3653 x86_pmu
.event_constraints
= intel_gen_event_constraints
;
3654 pr_cont("generic architected perfmon, ");
3659 if (x86_pmu
.num_counters
> INTEL_PMC_MAX_GENERIC
) {
3660 WARN(1, KERN_ERR
"hw perf events %d > max(%d), clipping!",
3661 x86_pmu
.num_counters
, INTEL_PMC_MAX_GENERIC
);
3662 x86_pmu
.num_counters
= INTEL_PMC_MAX_GENERIC
;
3664 x86_pmu
.intel_ctrl
= (1 << x86_pmu
.num_counters
) - 1;
3666 if (x86_pmu
.num_counters_fixed
> INTEL_PMC_MAX_FIXED
) {
3667 WARN(1, KERN_ERR
"hw perf events fixed %d > max(%d), clipping!",
3668 x86_pmu
.num_counters_fixed
, INTEL_PMC_MAX_FIXED
);
3669 x86_pmu
.num_counters_fixed
= INTEL_PMC_MAX_FIXED
;
3672 x86_pmu
.intel_ctrl
|=
3673 ((1LL << x86_pmu
.num_counters_fixed
)-1) << INTEL_PMC_IDX_FIXED
;
3675 if (x86_pmu
.event_constraints
) {
3677 * event on fixed counter2 (REF_CYCLES) only works on this
3678 * counter, so do not extend mask to generic counters
3680 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
3681 if (c
->cmask
== FIXED_EVENT_FLAGS
3682 && c
->idxmsk64
!= INTEL_PMC_MSK_FIXED_REF_CYCLES
) {
3683 c
->idxmsk64
|= (1ULL << x86_pmu
.num_counters
) - 1;
3686 ~(~0UL << (INTEL_PMC_IDX_FIXED
+ x86_pmu
.num_counters_fixed
));
3687 c
->weight
= hweight64(c
->idxmsk64
);
3692 * Access LBR MSR may cause #GP under certain circumstances.
3693 * E.g. KVM doesn't support LBR MSR
3694 * Check all LBT MSR here.
3695 * Disable LBR access if any LBR MSRs can not be accessed.
3697 if (x86_pmu
.lbr_nr
&& !check_msr(x86_pmu
.lbr_tos
, 0x3UL
))
3699 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++) {
3700 if (!(check_msr(x86_pmu
.lbr_from
+ i
, 0xffffUL
) &&
3701 check_msr(x86_pmu
.lbr_to
+ i
, 0xffffUL
)))
3706 * Access extra MSR may cause #GP under certain circumstances.
3707 * E.g. KVM doesn't support offcore event
3708 * Check all extra_regs here.
3710 if (x86_pmu
.extra_regs
) {
3711 for (er
= x86_pmu
.extra_regs
; er
->msr
; er
++) {
3712 er
->extra_msr_access
= check_msr(er
->msr
, 0x11UL
);
3713 /* Disable LBR select mapping */
3714 if ((er
->idx
== EXTRA_REG_LBR
) && !er
->extra_msr_access
)
3715 x86_pmu
.lbr_sel_map
= NULL
;
3719 /* Support full width counters using alternative MSR range */
3720 if (x86_pmu
.intel_cap
.full_width_write
) {
3721 x86_pmu
.max_period
= x86_pmu
.cntval_mask
;
3722 x86_pmu
.perfctr
= MSR_IA32_PMC0
;
3723 pr_cont("full-width counters, ");
3730 * HT bug: phase 2 init
3731 * Called once we have valid topology information to check
3732 * whether or not HT is enabled
3733 * If HT is off, then we disable the workaround
3735 static __init
int fixup_ht_bug(void)
3737 int cpu
= smp_processor_id();
3740 * problem not present on this CPU model, nothing to do
3742 if (!(x86_pmu
.flags
& PMU_FL_EXCL_ENABLED
))
3745 w
= cpumask_weight(topology_sibling_cpumask(cpu
));
3747 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3751 if (lockup_detector_suspend() != 0) {
3752 pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
3756 x86_pmu
.flags
&= ~(PMU_FL_EXCL_CNTRS
| PMU_FL_EXCL_ENABLED
);
3758 x86_pmu
.start_scheduling
= NULL
;
3759 x86_pmu
.commit_scheduling
= NULL
;
3760 x86_pmu
.stop_scheduling
= NULL
;
3762 lockup_detector_resume();
3766 for_each_online_cpu(c
) {
3771 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3774 subsys_initcall(fixup_ht_bug
)