irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / arch / x86 / kernel / nmi.c
blob8a2cdd736fa4da82374fa9392e76b5716cc0f89a
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
11 * Handle hardware traps and faults.
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/slab.h>
21 #include <linux/export.h>
23 #if defined(CONFIG_EDAC)
24 #include <linux/edac.h>
25 #endif
27 #include <linux/atomic.h>
28 #include <asm/traps.h>
29 #include <asm/mach_traps.h>
30 #include <asm/nmi.h>
31 #include <asm/x86_init.h>
32 #include <asm/reboot.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/nmi.h>
37 struct nmi_desc {
38 spinlock_t lock;
39 struct list_head head;
42 static struct nmi_desc nmi_desc[NMI_MAX] =
45 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
46 .head = LIST_HEAD_INIT(nmi_desc[0].head),
49 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
50 .head = LIST_HEAD_INIT(nmi_desc[1].head),
53 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
54 .head = LIST_HEAD_INIT(nmi_desc[2].head),
57 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
58 .head = LIST_HEAD_INIT(nmi_desc[3].head),
63 struct nmi_stats {
64 unsigned int normal;
65 unsigned int unknown;
66 unsigned int external;
67 unsigned int swallow;
70 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
72 static int ignore_nmis;
74 int unknown_nmi_panic;
76 * Prevent NMI reason port (0x61) being accessed simultaneously, can
77 * only be used in NMI handler.
79 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
81 static int __init setup_unknown_nmi_panic(char *str)
83 unknown_nmi_panic = 1;
84 return 1;
86 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
88 #define nmi_to_desc(type) (&nmi_desc[type])
90 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
92 static int __init nmi_warning_debugfs(void)
94 debugfs_create_u64("nmi_longest_ns", 0644,
95 arch_debugfs_dir, &nmi_longest_ns);
96 return 0;
98 fs_initcall(nmi_warning_debugfs);
100 static void nmi_max_handler(struct irq_work *w)
102 struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
103 int remainder_ns, decimal_msecs;
104 u64 whole_msecs = ACCESS_ONCE(a->max_duration);
106 remainder_ns = do_div(whole_msecs, (1000 * 1000));
107 decimal_msecs = remainder_ns / 1000;
109 printk_ratelimited(KERN_INFO
110 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
111 a->handler, whole_msecs, decimal_msecs);
114 static int nmi_handle(unsigned int type, struct pt_regs *regs)
116 struct nmi_desc *desc = nmi_to_desc(type);
117 struct nmiaction *a;
118 int handled=0;
120 rcu_read_lock();
123 * NMIs are edge-triggered, which means if you have enough
124 * of them concurrently, you can lose some because only one
125 * can be latched at any given time. Walk the whole list
126 * to handle those situations.
128 list_for_each_entry_rcu(a, &desc->head, list) {
129 int thishandled;
130 u64 delta;
132 delta = sched_clock();
133 thishandled = a->handler(type, regs);
134 handled += thishandled;
135 delta = sched_clock() - delta;
136 trace_nmi_handler(a->handler, (int)delta, thishandled);
138 if (delta < nmi_longest_ns || delta < a->max_duration)
139 continue;
141 a->max_duration = delta;
142 irq_work_queue(&a->irq_work);
145 rcu_read_unlock();
147 /* return total number of NMI events handled */
148 return handled;
150 NOKPROBE_SYMBOL(nmi_handle);
152 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
154 struct nmi_desc *desc = nmi_to_desc(type);
155 unsigned long flags;
157 if (!action->handler)
158 return -EINVAL;
160 init_irq_work(&action->irq_work, nmi_max_handler);
162 spin_lock_irqsave(&desc->lock, flags);
165 * most handlers of type NMI_UNKNOWN never return because
166 * they just assume the NMI is theirs. Just a sanity check
167 * to manage expectations
169 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
170 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
171 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
174 * some handlers need to be executed first otherwise a fake
175 * event confuses some handlers (kdump uses this flag)
177 if (action->flags & NMI_FLAG_FIRST)
178 list_add_rcu(&action->list, &desc->head);
179 else
180 list_add_tail_rcu(&action->list, &desc->head);
182 spin_unlock_irqrestore(&desc->lock, flags);
183 return 0;
185 EXPORT_SYMBOL(__register_nmi_handler);
187 void unregister_nmi_handler(unsigned int type, const char *name)
189 struct nmi_desc *desc = nmi_to_desc(type);
190 struct nmiaction *n;
191 unsigned long flags;
193 spin_lock_irqsave(&desc->lock, flags);
195 list_for_each_entry_rcu(n, &desc->head, list) {
197 * the name passed in to describe the nmi handler
198 * is used as the lookup key
200 if (!strcmp(n->name, name)) {
201 WARN(in_nmi(),
202 "Trying to free NMI (%s) from NMI context!\n", n->name);
203 list_del_rcu(&n->list);
204 break;
208 spin_unlock_irqrestore(&desc->lock, flags);
209 synchronize_rcu();
211 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
213 static void
214 pci_serr_error(unsigned char reason, struct pt_regs *regs)
216 /* check to see if anyone registered against these types of errors */
217 if (nmi_handle(NMI_SERR, regs))
218 return;
220 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
221 reason, smp_processor_id());
224 * On some machines, PCI SERR line is used to report memory
225 * errors. EDAC makes use of it.
227 #if defined(CONFIG_EDAC)
228 if (edac_handler_set()) {
229 edac_atomic_assert_error();
230 return;
232 #endif
234 if (panic_on_unrecovered_nmi)
235 nmi_panic(regs, "NMI: Not continuing");
237 pr_emerg("Dazed and confused, but trying to continue\n");
239 /* Clear and disable the PCI SERR error line. */
240 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
241 outb(reason, NMI_REASON_PORT);
243 NOKPROBE_SYMBOL(pci_serr_error);
245 static void
246 io_check_error(unsigned char reason, struct pt_regs *regs)
248 unsigned long i;
250 /* check to see if anyone registered against these types of errors */
251 if (nmi_handle(NMI_IO_CHECK, regs))
252 return;
254 pr_emerg(
255 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
256 reason, smp_processor_id());
257 show_regs(regs);
259 if (panic_on_io_nmi) {
260 nmi_panic(regs, "NMI IOCK error: Not continuing");
263 * If we end up here, it means we have received an NMI while
264 * processing panic(). Simply return without delaying and
265 * re-enabling NMIs.
267 return;
270 /* Re-enable the IOCK line, wait for a few seconds */
271 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
272 outb(reason, NMI_REASON_PORT);
274 i = 20000;
275 while (--i) {
276 touch_nmi_watchdog();
277 udelay(100);
280 reason &= ~NMI_REASON_CLEAR_IOCHK;
281 outb(reason, NMI_REASON_PORT);
283 NOKPROBE_SYMBOL(io_check_error);
285 static void
286 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
288 int handled;
291 * Use 'false' as back-to-back NMIs are dealt with one level up.
292 * Of course this makes having multiple 'unknown' handlers useless
293 * as only the first one is ever run (unless it can actually determine
294 * if it caused the NMI)
296 handled = nmi_handle(NMI_UNKNOWN, regs);
297 if (handled) {
298 __this_cpu_add(nmi_stats.unknown, handled);
299 return;
302 __this_cpu_add(nmi_stats.unknown, 1);
304 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
305 reason, smp_processor_id());
307 pr_emerg("Do you have a strange power saving mode enabled?\n");
308 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
309 nmi_panic(regs, "NMI: Not continuing");
311 pr_emerg("Dazed and confused, but trying to continue\n");
313 NOKPROBE_SYMBOL(unknown_nmi_error);
315 static DEFINE_PER_CPU(bool, swallow_nmi);
316 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
318 static void default_do_nmi(struct pt_regs *regs)
320 unsigned char reason = 0;
321 int handled;
322 bool b2b = false;
325 * CPU-specific NMI must be processed before non-CPU-specific
326 * NMI, otherwise we may lose it, because the CPU-specific
327 * NMI can not be detected/processed on other CPUs.
331 * Back-to-back NMIs are interesting because they can either
332 * be two NMI or more than two NMIs (any thing over two is dropped
333 * due to NMI being edge-triggered). If this is the second half
334 * of the back-to-back NMI, assume we dropped things and process
335 * more handlers. Otherwise reset the 'swallow' NMI behaviour
337 if (regs->ip == __this_cpu_read(last_nmi_rip))
338 b2b = true;
339 else
340 __this_cpu_write(swallow_nmi, false);
342 __this_cpu_write(last_nmi_rip, regs->ip);
344 handled = nmi_handle(NMI_LOCAL, regs);
345 __this_cpu_add(nmi_stats.normal, handled);
346 if (handled) {
348 * There are cases when a NMI handler handles multiple
349 * events in the current NMI. One of these events may
350 * be queued for in the next NMI. Because the event is
351 * already handled, the next NMI will result in an unknown
352 * NMI. Instead lets flag this for a potential NMI to
353 * swallow.
355 if (handled > 1)
356 __this_cpu_write(swallow_nmi, true);
357 return;
361 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
363 * Another CPU may be processing panic routines while holding
364 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
365 * and if so, call its callback directly. If there is no CPU preparing
366 * crash dump, we simply loop here.
368 while (!raw_spin_trylock(&nmi_reason_lock)) {
369 run_crash_ipi_callback(regs);
370 cpu_relax();
373 reason = x86_platform.get_nmi_reason();
375 if (reason & NMI_REASON_MASK) {
376 if (reason & NMI_REASON_SERR)
377 pci_serr_error(reason, regs);
378 else if (reason & NMI_REASON_IOCHK)
379 io_check_error(reason, regs);
380 #ifdef CONFIG_X86_32
382 * Reassert NMI in case it became active
383 * meanwhile as it's edge-triggered:
385 reassert_nmi();
386 #endif
387 __this_cpu_add(nmi_stats.external, 1);
388 raw_spin_unlock(&nmi_reason_lock);
389 return;
391 raw_spin_unlock(&nmi_reason_lock);
394 * Only one NMI can be latched at a time. To handle
395 * this we may process multiple nmi handlers at once to
396 * cover the case where an NMI is dropped. The downside
397 * to this approach is we may process an NMI prematurely,
398 * while its real NMI is sitting latched. This will cause
399 * an unknown NMI on the next run of the NMI processing.
401 * We tried to flag that condition above, by setting the
402 * swallow_nmi flag when we process more than one event.
403 * This condition is also only present on the second half
404 * of a back-to-back NMI, so we flag that condition too.
406 * If both are true, we assume we already processed this
407 * NMI previously and we swallow it. Otherwise we reset
408 * the logic.
410 * There are scenarios where we may accidentally swallow
411 * a 'real' unknown NMI. For example, while processing
412 * a perf NMI another perf NMI comes in along with a
413 * 'real' unknown NMI. These two NMIs get combined into
414 * one (as descibed above). When the next NMI gets
415 * processed, it will be flagged by perf as handled, but
416 * noone will know that there was a 'real' unknown NMI sent
417 * also. As a result it gets swallowed. Or if the first
418 * perf NMI returns two events handled then the second
419 * NMI will get eaten by the logic below, again losing a
420 * 'real' unknown NMI. But this is the best we can do
421 * for now.
423 if (b2b && __this_cpu_read(swallow_nmi))
424 __this_cpu_add(nmi_stats.swallow, 1);
425 else
426 unknown_nmi_error(reason, regs);
428 NOKPROBE_SYMBOL(default_do_nmi);
431 * NMIs can page fault or hit breakpoints which will cause it to lose
432 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
434 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
435 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
436 * if the outer NMI came from kernel mode, but we can still nest if the
437 * outer NMI came from user mode.
439 * To handle these nested NMIs, we have three states:
441 * 1) not running
442 * 2) executing
443 * 3) latched
445 * When no NMI is in progress, it is in the "not running" state.
446 * When an NMI comes in, it goes into the "executing" state.
447 * Normally, if another NMI is triggered, it does not interrupt
448 * the running NMI and the HW will simply latch it so that when
449 * the first NMI finishes, it will restart the second NMI.
450 * (Note, the latch is binary, thus multiple NMIs triggering,
451 * when one is running, are ignored. Only one NMI is restarted.)
453 * If an NMI executes an iret, another NMI can preempt it. We do not
454 * want to allow this new NMI to run, but we want to execute it when the
455 * first one finishes. We set the state to "latched", and the exit of
456 * the first NMI will perform a dec_return, if the result is zero
457 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
458 * dec_return would have set the state to NMI_EXECUTING (what we want it
459 * to be when we are running). In this case, we simply jump back to
460 * rerun the NMI handler again, and restart the 'latched' NMI.
462 * No trap (breakpoint or page fault) should be hit before nmi_restart,
463 * thus there is no race between the first check of state for NOT_RUNNING
464 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
465 * at this point.
467 * In case the NMI takes a page fault, we need to save off the CR2
468 * because the NMI could have preempted another page fault and corrupt
469 * the CR2 that is about to be read. As nested NMIs must be restarted
470 * and they can not take breakpoints or page faults, the update of the
471 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
472 * Otherwise, there would be a race of another nested NMI coming in
473 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
475 enum nmi_states {
476 NMI_NOT_RUNNING = 0,
477 NMI_EXECUTING,
478 NMI_LATCHED,
480 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
481 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
483 #ifdef CONFIG_X86_64
485 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
486 * some care, the inner breakpoint will clobber the outer breakpoint's
487 * stack.
489 * If a breakpoint is being processed, and the debug stack is being
490 * used, if an NMI comes in and also hits a breakpoint, the stack
491 * pointer will be set to the same fixed address as the breakpoint that
492 * was interrupted, causing that stack to be corrupted. To handle this
493 * case, check if the stack that was interrupted is the debug stack, and
494 * if so, change the IDT so that new breakpoints will use the current
495 * stack and not switch to the fixed address. On return of the NMI,
496 * switch back to the original IDT.
498 static DEFINE_PER_CPU(int, update_debug_stack);
499 #endif
501 dotraplinkage notrace void
502 do_nmi(struct pt_regs *regs, long error_code)
504 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
505 this_cpu_write(nmi_state, NMI_LATCHED);
506 return;
508 this_cpu_write(nmi_state, NMI_EXECUTING);
509 this_cpu_write(nmi_cr2, read_cr2());
510 nmi_restart:
512 #ifdef CONFIG_X86_64
514 * If we interrupted a breakpoint, it is possible that
515 * the nmi handler will have breakpoints too. We need to
516 * change the IDT such that breakpoints that happen here
517 * continue to use the NMI stack.
519 if (unlikely(is_debug_stack(regs->sp))) {
520 debug_stack_set_zero();
521 this_cpu_write(update_debug_stack, 1);
523 #endif
525 nmi_enter();
527 inc_irq_stat(__nmi_count);
529 if (!ignore_nmis)
530 default_do_nmi(regs);
532 nmi_exit();
534 #ifdef CONFIG_X86_64
535 if (unlikely(this_cpu_read(update_debug_stack))) {
536 debug_stack_reset();
537 this_cpu_write(update_debug_stack, 0);
539 #endif
541 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
542 write_cr2(this_cpu_read(nmi_cr2));
543 if (this_cpu_dec_return(nmi_state))
544 goto nmi_restart;
546 NOKPROBE_SYMBOL(do_nmi);
548 void stop_nmi(void)
550 ignore_nmis++;
553 void restart_nmi(void)
555 ignore_nmis--;
558 /* reset the back-to-back NMI logic */
559 void local_touch_nmi(void)
561 __this_cpu_write(last_nmi_rip, 0);
563 EXPORT_SYMBOL_GPL(local_touch_nmi);