2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
21 #include "kvm_cache_regs.h"
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
41 #include <asm/virtext.h>
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
49 static const struct x86_cpu_id svm_cpu_id
[] = {
50 X86_FEATURE_MATCH(X86_FEATURE_SVM
),
53 MODULE_DEVICE_TABLE(x86cpu
, svm_cpu_id
);
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
61 #define SVM_FEATURE_NPT (1 << 0)
62 #define SVM_FEATURE_LBRV (1 << 1)
63 #define SVM_FEATURE_SVML (1 << 2)
64 #define SVM_FEATURE_NRIP (1 << 3)
65 #define SVM_FEATURE_TSC_RATE (1 << 4)
66 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
67 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
68 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
69 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
71 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
72 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
73 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
77 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
78 #define TSC_RATIO_MIN 0x0000000000000001ULL
79 #define TSC_RATIO_MAX 0x000000ffffffffffULL
81 static bool erratum_383_found __read_mostly
;
83 static const u32 host_save_user_msrs
[] = {
85 MSR_STAR
, MSR_LSTAR
, MSR_CSTAR
, MSR_SYSCALL_MASK
, MSR_KERNEL_GS_BASE
,
88 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
91 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
101 /* These are the merged vectors */
104 /* gpa pointers to the real vectors */
108 /* A VMEXIT is required but not yet emulated */
111 /* cache for intercepts of the guest */
114 u32 intercept_exceptions
;
117 /* Nested Paging related state */
121 #define MSRPM_OFFSETS 16
122 static u32 msrpm_offsets
[MSRPM_OFFSETS
] __read_mostly
;
125 * Set osvw_len to higher value when updated Revision Guides
126 * are published and we know what the new status bits are
128 static uint64_t osvw_len
= 4, osvw_status
;
131 struct kvm_vcpu vcpu
;
133 unsigned long vmcb_pa
;
134 struct svm_cpu_data
*svm_data
;
135 uint64_t asid_generation
;
136 uint64_t sysenter_esp
;
137 uint64_t sysenter_eip
;
141 u64 host_user_msrs
[NR_HOST_SAVE_USER_MSRS
];
153 struct nested_state nested
;
157 unsigned int3_injected
;
158 unsigned long int3_rip
;
161 /* cached guest cpuid flags for faster access */
162 bool nrips_enabled
: 1;
165 static DEFINE_PER_CPU(u64
, current_tsc_ratio
);
166 #define TSC_RATIO_DEFAULT 0x0100000000ULL
168 #define MSR_INVALID 0xffffffffU
170 static const struct svm_direct_access_msrs
{
171 u32 index
; /* Index of the MSR */
172 bool always
; /* True if intercept is always on */
173 } direct_access_msrs
[] = {
174 { .index
= MSR_STAR
, .always
= true },
175 { .index
= MSR_IA32_SYSENTER_CS
, .always
= true },
177 { .index
= MSR_GS_BASE
, .always
= true },
178 { .index
= MSR_FS_BASE
, .always
= true },
179 { .index
= MSR_KERNEL_GS_BASE
, .always
= true },
180 { .index
= MSR_LSTAR
, .always
= true },
181 { .index
= MSR_CSTAR
, .always
= true },
182 { .index
= MSR_SYSCALL_MASK
, .always
= true },
184 { .index
= MSR_IA32_LASTBRANCHFROMIP
, .always
= false },
185 { .index
= MSR_IA32_LASTBRANCHTOIP
, .always
= false },
186 { .index
= MSR_IA32_LASTINTFROMIP
, .always
= false },
187 { .index
= MSR_IA32_LASTINTTOIP
, .always
= false },
188 { .index
= MSR_INVALID
, .always
= false },
191 /* enable NPT for AMD64 and X86 with PAE */
192 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
193 static bool npt_enabled
= true;
195 static bool npt_enabled
;
198 /* allow nested paging (virtualized MMU) for all guests */
199 static int npt
= true;
200 module_param(npt
, int, S_IRUGO
);
202 /* allow nested virtualization in KVM/SVM */
203 static int nested
= true;
204 module_param(nested
, int, S_IRUGO
);
206 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
);
207 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
);
208 static void svm_complete_interrupts(struct vcpu_svm
*svm
);
210 static int nested_svm_exit_handled(struct vcpu_svm
*svm
);
211 static int nested_svm_intercept(struct vcpu_svm
*svm
);
212 static int nested_svm_vmexit(struct vcpu_svm
*svm
);
213 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
214 bool has_error_code
, u32 error_code
);
217 VMCB_INTERCEPTS
, /* Intercept vectors, TSC offset,
218 pause filter count */
219 VMCB_PERM_MAP
, /* IOPM Base and MSRPM Base */
220 VMCB_ASID
, /* ASID */
221 VMCB_INTR
, /* int_ctl, int_vector */
222 VMCB_NPT
, /* npt_en, nCR3, gPAT */
223 VMCB_CR
, /* CR0, CR3, CR4, EFER */
224 VMCB_DR
, /* DR6, DR7 */
225 VMCB_DT
, /* GDT, IDT */
226 VMCB_SEG
, /* CS, DS, SS, ES, CPL */
227 VMCB_CR2
, /* CR2 only */
228 VMCB_LBR
, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
232 /* TPR and CR2 are always written before VMRUN */
233 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
235 static inline void mark_all_dirty(struct vmcb
*vmcb
)
237 vmcb
->control
.clean
= 0;
240 static inline void mark_all_clean(struct vmcb
*vmcb
)
242 vmcb
->control
.clean
= ((1 << VMCB_DIRTY_MAX
) - 1)
243 & ~VMCB_ALWAYS_DIRTY_MASK
;
246 static inline void mark_dirty(struct vmcb
*vmcb
, int bit
)
248 vmcb
->control
.clean
&= ~(1 << bit
);
251 static inline struct vcpu_svm
*to_svm(struct kvm_vcpu
*vcpu
)
253 return container_of(vcpu
, struct vcpu_svm
, vcpu
);
256 static void recalc_intercepts(struct vcpu_svm
*svm
)
258 struct vmcb_control_area
*c
, *h
;
259 struct nested_state
*g
;
261 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
263 if (!is_guest_mode(&svm
->vcpu
))
266 c
= &svm
->vmcb
->control
;
267 h
= &svm
->nested
.hsave
->control
;
270 c
->intercept_cr
= h
->intercept_cr
| g
->intercept_cr
;
271 c
->intercept_dr
= h
->intercept_dr
| g
->intercept_dr
;
272 c
->intercept_exceptions
= h
->intercept_exceptions
| g
->intercept_exceptions
;
273 c
->intercept
= h
->intercept
| g
->intercept
;
276 static inline struct vmcb
*get_host_vmcb(struct vcpu_svm
*svm
)
278 if (is_guest_mode(&svm
->vcpu
))
279 return svm
->nested
.hsave
;
284 static inline void set_cr_intercept(struct vcpu_svm
*svm
, int bit
)
286 struct vmcb
*vmcb
= get_host_vmcb(svm
);
288 vmcb
->control
.intercept_cr
|= (1U << bit
);
290 recalc_intercepts(svm
);
293 static inline void clr_cr_intercept(struct vcpu_svm
*svm
, int bit
)
295 struct vmcb
*vmcb
= get_host_vmcb(svm
);
297 vmcb
->control
.intercept_cr
&= ~(1U << bit
);
299 recalc_intercepts(svm
);
302 static inline bool is_cr_intercept(struct vcpu_svm
*svm
, int bit
)
304 struct vmcb
*vmcb
= get_host_vmcb(svm
);
306 return vmcb
->control
.intercept_cr
& (1U << bit
);
309 static inline void set_dr_intercepts(struct vcpu_svm
*svm
)
311 struct vmcb
*vmcb
= get_host_vmcb(svm
);
313 vmcb
->control
.intercept_dr
= (1 << INTERCEPT_DR0_READ
)
314 | (1 << INTERCEPT_DR1_READ
)
315 | (1 << INTERCEPT_DR2_READ
)
316 | (1 << INTERCEPT_DR3_READ
)
317 | (1 << INTERCEPT_DR4_READ
)
318 | (1 << INTERCEPT_DR5_READ
)
319 | (1 << INTERCEPT_DR6_READ
)
320 | (1 << INTERCEPT_DR7_READ
)
321 | (1 << INTERCEPT_DR0_WRITE
)
322 | (1 << INTERCEPT_DR1_WRITE
)
323 | (1 << INTERCEPT_DR2_WRITE
)
324 | (1 << INTERCEPT_DR3_WRITE
)
325 | (1 << INTERCEPT_DR4_WRITE
)
326 | (1 << INTERCEPT_DR5_WRITE
)
327 | (1 << INTERCEPT_DR6_WRITE
)
328 | (1 << INTERCEPT_DR7_WRITE
);
330 recalc_intercepts(svm
);
333 static inline void clr_dr_intercepts(struct vcpu_svm
*svm
)
335 struct vmcb
*vmcb
= get_host_vmcb(svm
);
337 vmcb
->control
.intercept_dr
= 0;
339 recalc_intercepts(svm
);
342 static inline void set_exception_intercept(struct vcpu_svm
*svm
, int bit
)
344 struct vmcb
*vmcb
= get_host_vmcb(svm
);
346 vmcb
->control
.intercept_exceptions
|= (1U << bit
);
348 recalc_intercepts(svm
);
351 static inline void clr_exception_intercept(struct vcpu_svm
*svm
, int bit
)
353 struct vmcb
*vmcb
= get_host_vmcb(svm
);
355 vmcb
->control
.intercept_exceptions
&= ~(1U << bit
);
357 recalc_intercepts(svm
);
360 static inline void set_intercept(struct vcpu_svm
*svm
, int bit
)
362 struct vmcb
*vmcb
= get_host_vmcb(svm
);
364 vmcb
->control
.intercept
|= (1ULL << bit
);
366 recalc_intercepts(svm
);
369 static inline void clr_intercept(struct vcpu_svm
*svm
, int bit
)
371 struct vmcb
*vmcb
= get_host_vmcb(svm
);
373 vmcb
->control
.intercept
&= ~(1ULL << bit
);
375 recalc_intercepts(svm
);
378 static inline void enable_gif(struct vcpu_svm
*svm
)
380 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
383 static inline void disable_gif(struct vcpu_svm
*svm
)
385 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
388 static inline bool gif_set(struct vcpu_svm
*svm
)
390 return !!(svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
);
393 static unsigned long iopm_base
;
395 struct kvm_ldttss_desc
{
398 unsigned base1
:8, type
:5, dpl
:2, p
:1;
399 unsigned limit1
:4, zero0
:3, g
:1, base2
:8;
402 } __attribute__((packed
));
404 struct svm_cpu_data
{
410 struct kvm_ldttss_desc
*tss_desc
;
412 struct page
*save_area
;
415 static DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
417 struct svm_init_data
{
422 static const u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
424 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
425 #define MSRS_RANGE_SIZE 2048
426 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
428 static u32
svm_msrpm_offset(u32 msr
)
433 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
434 if (msr
< msrpm_ranges
[i
] ||
435 msr
>= msrpm_ranges
[i
] + MSRS_IN_RANGE
)
438 offset
= (msr
- msrpm_ranges
[i
]) / 4; /* 4 msrs per u8 */
439 offset
+= (i
* MSRS_RANGE_SIZE
); /* add range offset */
441 /* Now we have the u8 offset - but need the u32 offset */
445 /* MSR not in any range */
449 #define MAX_INST_SIZE 15
451 static inline void clgi(void)
453 asm volatile (__ex(SVM_CLGI
));
456 static inline void stgi(void)
458 asm volatile (__ex(SVM_STGI
));
461 static inline void invlpga(unsigned long addr
, u32 asid
)
463 asm volatile (__ex(SVM_INVLPGA
) : : "a"(addr
), "c"(asid
));
466 static int get_npt_level(void)
469 return PT64_ROOT_LEVEL
;
471 return PT32E_ROOT_LEVEL
;
475 static void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
477 vcpu
->arch
.efer
= efer
;
478 if (!npt_enabled
&& !(efer
& EFER_LMA
))
481 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
482 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
485 static int is_external_interrupt(u32 info
)
487 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
488 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
491 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
)
493 struct vcpu_svm
*svm
= to_svm(vcpu
);
496 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
497 ret
= KVM_X86_SHADOW_INT_STI
| KVM_X86_SHADOW_INT_MOV_SS
;
501 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
503 struct vcpu_svm
*svm
= to_svm(vcpu
);
506 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
508 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
512 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
514 struct vcpu_svm
*svm
= to_svm(vcpu
);
516 if (svm
->vmcb
->control
.next_rip
!= 0) {
517 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS
));
518 svm
->next_rip
= svm
->vmcb
->control
.next_rip
;
521 if (!svm
->next_rip
) {
522 if (emulate_instruction(vcpu
, EMULTYPE_SKIP
) !=
524 printk(KERN_DEBUG
"%s: NOP\n", __func__
);
527 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
528 printk(KERN_ERR
"%s: ip 0x%lx next 0x%llx\n",
529 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
531 kvm_rip_write(vcpu
, svm
->next_rip
);
532 svm_set_interrupt_shadow(vcpu
, 0);
535 static void svm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
536 bool has_error_code
, u32 error_code
,
539 struct vcpu_svm
*svm
= to_svm(vcpu
);
542 * If we are within a nested VM we'd better #VMEXIT and let the guest
543 * handle the exception
546 nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
549 if (nr
== BP_VECTOR
&& !static_cpu_has(X86_FEATURE_NRIPS
)) {
550 unsigned long rip
, old_rip
= kvm_rip_read(&svm
->vcpu
);
553 * For guest debugging where we have to reinject #BP if some
554 * INT3 is guest-owned:
555 * Emulate nRIP by moving RIP forward. Will fail if injection
556 * raises a fault that is not intercepted. Still better than
557 * failing in all cases.
559 skip_emulated_instruction(&svm
->vcpu
);
560 rip
= kvm_rip_read(&svm
->vcpu
);
561 svm
->int3_rip
= rip
+ svm
->vmcb
->save
.cs
.base
;
562 svm
->int3_injected
= rip
- old_rip
;
565 svm
->vmcb
->control
.event_inj
= nr
567 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
568 | SVM_EVTINJ_TYPE_EXEPT
;
569 svm
->vmcb
->control
.event_inj_err
= error_code
;
572 static void svm_init_erratum_383(void)
578 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH
))
581 /* Use _safe variants to not break nested virtualization */
582 val
= native_read_msr_safe(MSR_AMD64_DC_CFG
, &err
);
588 low
= lower_32_bits(val
);
589 high
= upper_32_bits(val
);
591 native_write_msr_safe(MSR_AMD64_DC_CFG
, low
, high
);
593 erratum_383_found
= true;
596 static void svm_init_osvw(struct kvm_vcpu
*vcpu
)
599 * Guests should see errata 400 and 415 as fixed (assuming that
600 * HLT and IO instructions are intercepted).
602 vcpu
->arch
.osvw
.length
= (osvw_len
>= 3) ? (osvw_len
) : 3;
603 vcpu
->arch
.osvw
.status
= osvw_status
& ~(6ULL);
606 * By increasing VCPU's osvw.length to 3 we are telling the guest that
607 * all osvw.status bits inside that length, including bit 0 (which is
608 * reserved for erratum 298), are valid. However, if host processor's
609 * osvw_len is 0 then osvw_status[0] carries no information. We need to
610 * be conservative here and therefore we tell the guest that erratum 298
611 * is present (because we really don't know).
613 if (osvw_len
== 0 && boot_cpu_data
.x86
== 0x10)
614 vcpu
->arch
.osvw
.status
|= 1;
617 static int has_svm(void)
621 if (!cpu_has_svm(&msg
)) {
622 printk(KERN_INFO
"has_svm: %s\n", msg
);
629 static void svm_hardware_disable(void)
631 /* Make sure we clean up behind us */
632 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
))
633 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
637 amd_pmu_disable_virt();
640 static int svm_hardware_enable(void)
643 struct svm_cpu_data
*sd
;
645 struct desc_ptr gdt_descr
;
646 struct desc_struct
*gdt
;
647 int me
= raw_smp_processor_id();
649 rdmsrl(MSR_EFER
, efer
);
650 if (efer
& EFER_SVME
)
654 pr_err("%s: err EOPNOTSUPP on %d\n", __func__
, me
);
657 sd
= per_cpu(svm_data
, me
);
659 pr_err("%s: svm_data is NULL on %d\n", __func__
, me
);
663 sd
->asid_generation
= 1;
664 sd
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
665 sd
->next_asid
= sd
->max_asid
+ 1;
667 native_store_gdt(&gdt_descr
);
668 gdt
= (struct desc_struct
*)gdt_descr
.address
;
669 sd
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
671 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
673 wrmsrl(MSR_VM_HSAVE_PA
, page_to_pfn(sd
->save_area
) << PAGE_SHIFT
);
675 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
676 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
677 __this_cpu_write(current_tsc_ratio
, TSC_RATIO_DEFAULT
);
684 * Note that it is possible to have a system with mixed processor
685 * revisions and therefore different OSVW bits. If bits are not the same
686 * on different processors then choose the worst case (i.e. if erratum
687 * is present on one processor and not on another then assume that the
688 * erratum is present everywhere).
690 if (cpu_has(&boot_cpu_data
, X86_FEATURE_OSVW
)) {
691 uint64_t len
, status
= 0;
694 len
= native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH
, &err
);
696 status
= native_read_msr_safe(MSR_AMD64_OSVW_STATUS
,
700 osvw_status
= osvw_len
= 0;
704 osvw_status
|= status
;
705 osvw_status
&= (1ULL << osvw_len
) - 1;
708 osvw_status
= osvw_len
= 0;
710 svm_init_erratum_383();
712 amd_pmu_enable_virt();
717 static void svm_cpu_uninit(int cpu
)
719 struct svm_cpu_data
*sd
= per_cpu(svm_data
, raw_smp_processor_id());
724 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
725 __free_page(sd
->save_area
);
729 static int svm_cpu_init(int cpu
)
731 struct svm_cpu_data
*sd
;
734 sd
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
738 sd
->save_area
= alloc_page(GFP_KERNEL
);
743 per_cpu(svm_data
, cpu
) = sd
;
753 static bool valid_msr_intercept(u32 index
)
757 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++)
758 if (direct_access_msrs
[i
].index
== index
)
764 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
767 u8 bit_read
, bit_write
;
772 * If this warning triggers extend the direct_access_msrs list at the
773 * beginning of the file
775 WARN_ON(!valid_msr_intercept(msr
));
777 offset
= svm_msrpm_offset(msr
);
778 bit_read
= 2 * (msr
& 0x0f);
779 bit_write
= 2 * (msr
& 0x0f) + 1;
782 BUG_ON(offset
== MSR_INVALID
);
784 read
? clear_bit(bit_read
, &tmp
) : set_bit(bit_read
, &tmp
);
785 write
? clear_bit(bit_write
, &tmp
) : set_bit(bit_write
, &tmp
);
790 static void svm_vcpu_init_msrpm(u32
*msrpm
)
794 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
796 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
797 if (!direct_access_msrs
[i
].always
)
800 set_msr_interception(msrpm
, direct_access_msrs
[i
].index
, 1, 1);
804 static void add_msr_offset(u32 offset
)
808 for (i
= 0; i
< MSRPM_OFFSETS
; ++i
) {
810 /* Offset already in list? */
811 if (msrpm_offsets
[i
] == offset
)
814 /* Slot used by another offset? */
815 if (msrpm_offsets
[i
] != MSR_INVALID
)
818 /* Add offset to list */
819 msrpm_offsets
[i
] = offset
;
825 * If this BUG triggers the msrpm_offsets table has an overflow. Just
826 * increase MSRPM_OFFSETS in this case.
831 static void init_msrpm_offsets(void)
835 memset(msrpm_offsets
, 0xff, sizeof(msrpm_offsets
));
837 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
840 offset
= svm_msrpm_offset(direct_access_msrs
[i
].index
);
841 BUG_ON(offset
== MSR_INVALID
);
843 add_msr_offset(offset
);
847 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
849 u32
*msrpm
= svm
->msrpm
;
851 svm
->vmcb
->control
.lbr_ctl
= 1;
852 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
853 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
854 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
855 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
858 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
860 u32
*msrpm
= svm
->msrpm
;
862 svm
->vmcb
->control
.lbr_ctl
= 0;
863 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
864 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
865 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
866 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
869 static __init
int svm_hardware_setup(void)
872 struct page
*iopm_pages
;
876 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
881 iopm_va
= page_address(iopm_pages
);
882 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
883 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
885 init_msrpm_offsets();
887 if (boot_cpu_has(X86_FEATURE_NX
))
888 kvm_enable_efer_bits(EFER_NX
);
890 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
891 kvm_enable_efer_bits(EFER_FFXSR
);
893 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
894 kvm_has_tsc_control
= true;
895 kvm_max_tsc_scaling_ratio
= TSC_RATIO_MAX
;
896 kvm_tsc_scaling_ratio_frac_bits
= 32;
900 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
901 kvm_enable_efer_bits(EFER_SVME
| EFER_LMSLE
);
904 for_each_possible_cpu(cpu
) {
905 r
= svm_cpu_init(cpu
);
910 if (!boot_cpu_has(X86_FEATURE_NPT
))
913 if (npt_enabled
&& !npt
) {
914 printk(KERN_INFO
"kvm: Nested Paging disabled\n");
919 printk(KERN_INFO
"kvm: Nested Paging enabled\n");
927 __free_pages(iopm_pages
, IOPM_ALLOC_ORDER
);
932 static __exit
void svm_hardware_unsetup(void)
936 for_each_possible_cpu(cpu
)
939 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
943 static void init_seg(struct vmcb_seg
*seg
)
946 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
947 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
952 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
955 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
960 static u64
svm_read_tsc_offset(struct kvm_vcpu
*vcpu
)
962 struct vcpu_svm
*svm
= to_svm(vcpu
);
964 return svm
->vmcb
->control
.tsc_offset
;
967 static void svm_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
969 struct vcpu_svm
*svm
= to_svm(vcpu
);
970 u64 g_tsc_offset
= 0;
972 if (is_guest_mode(vcpu
)) {
973 g_tsc_offset
= svm
->vmcb
->control
.tsc_offset
-
974 svm
->nested
.hsave
->control
.tsc_offset
;
975 svm
->nested
.hsave
->control
.tsc_offset
= offset
;
977 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
978 svm
->vmcb
->control
.tsc_offset
,
981 svm
->vmcb
->control
.tsc_offset
= offset
+ g_tsc_offset
;
983 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
986 static void svm_adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
, s64 adjustment
)
988 struct vcpu_svm
*svm
= to_svm(vcpu
);
990 svm
->vmcb
->control
.tsc_offset
+= adjustment
;
991 if (is_guest_mode(vcpu
))
992 svm
->nested
.hsave
->control
.tsc_offset
+= adjustment
;
994 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
995 svm
->vmcb
->control
.tsc_offset
- adjustment
,
996 svm
->vmcb
->control
.tsc_offset
);
998 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
1001 static void init_vmcb(struct vcpu_svm
*svm
)
1003 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
1004 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
1006 svm
->vcpu
.fpu_active
= 1;
1007 svm
->vcpu
.arch
.hflags
= 0;
1009 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1010 set_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1011 set_cr_intercept(svm
, INTERCEPT_CR4_READ
);
1012 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1013 set_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1014 set_cr_intercept(svm
, INTERCEPT_CR4_WRITE
);
1015 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
1017 set_dr_intercepts(svm
);
1019 set_exception_intercept(svm
, PF_VECTOR
);
1020 set_exception_intercept(svm
, UD_VECTOR
);
1021 set_exception_intercept(svm
, MC_VECTOR
);
1022 set_exception_intercept(svm
, AC_VECTOR
);
1023 set_exception_intercept(svm
, DB_VECTOR
);
1025 set_intercept(svm
, INTERCEPT_INTR
);
1026 set_intercept(svm
, INTERCEPT_NMI
);
1027 set_intercept(svm
, INTERCEPT_SMI
);
1028 set_intercept(svm
, INTERCEPT_SELECTIVE_CR0
);
1029 set_intercept(svm
, INTERCEPT_RDPMC
);
1030 set_intercept(svm
, INTERCEPT_CPUID
);
1031 set_intercept(svm
, INTERCEPT_INVD
);
1032 set_intercept(svm
, INTERCEPT_HLT
);
1033 set_intercept(svm
, INTERCEPT_INVLPG
);
1034 set_intercept(svm
, INTERCEPT_INVLPGA
);
1035 set_intercept(svm
, INTERCEPT_IOIO_PROT
);
1036 set_intercept(svm
, INTERCEPT_MSR_PROT
);
1037 set_intercept(svm
, INTERCEPT_TASK_SWITCH
);
1038 set_intercept(svm
, INTERCEPT_SHUTDOWN
);
1039 set_intercept(svm
, INTERCEPT_VMRUN
);
1040 set_intercept(svm
, INTERCEPT_VMMCALL
);
1041 set_intercept(svm
, INTERCEPT_VMLOAD
);
1042 set_intercept(svm
, INTERCEPT_VMSAVE
);
1043 set_intercept(svm
, INTERCEPT_STGI
);
1044 set_intercept(svm
, INTERCEPT_CLGI
);
1045 set_intercept(svm
, INTERCEPT_SKINIT
);
1046 set_intercept(svm
, INTERCEPT_WBINVD
);
1047 set_intercept(svm
, INTERCEPT_MONITOR
);
1048 set_intercept(svm
, INTERCEPT_MWAIT
);
1049 set_intercept(svm
, INTERCEPT_XSETBV
);
1051 control
->iopm_base_pa
= iopm_base
;
1052 control
->msrpm_base_pa
= __pa(svm
->msrpm
);
1053 control
->int_ctl
= V_INTR_MASKING_MASK
;
1055 init_seg(&save
->es
);
1056 init_seg(&save
->ss
);
1057 init_seg(&save
->ds
);
1058 init_seg(&save
->fs
);
1059 init_seg(&save
->gs
);
1061 save
->cs
.selector
= 0xf000;
1062 save
->cs
.base
= 0xffff0000;
1063 /* Executable/Readable Code Segment */
1064 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
1065 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
1066 save
->cs
.limit
= 0xffff;
1068 save
->gdtr
.limit
= 0xffff;
1069 save
->idtr
.limit
= 0xffff;
1071 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
1072 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
1074 svm_set_efer(&svm
->vcpu
, 0);
1075 save
->dr6
= 0xffff0ff0;
1076 kvm_set_rflags(&svm
->vcpu
, 2);
1077 save
->rip
= 0x0000fff0;
1078 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
1081 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1082 * It also updates the guest-visible cr0 value.
1084 svm_set_cr0(&svm
->vcpu
, X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
);
1085 kvm_mmu_reset_context(&svm
->vcpu
);
1087 save
->cr4
= X86_CR4_PAE
;
1091 /* Setup VMCB for Nested Paging */
1092 control
->nested_ctl
= 1;
1093 clr_intercept(svm
, INTERCEPT_INVLPG
);
1094 clr_exception_intercept(svm
, PF_VECTOR
);
1095 clr_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1096 clr_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1097 save
->g_pat
= svm
->vcpu
.arch
.pat
;
1101 svm
->asid_generation
= 0;
1103 svm
->nested
.vmcb
= 0;
1104 svm
->vcpu
.arch
.hflags
= 0;
1106 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER
)) {
1107 control
->pause_filter_count
= 3000;
1108 set_intercept(svm
, INTERCEPT_PAUSE
);
1111 mark_all_dirty(svm
->vmcb
);
1116 static void svm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
1118 struct vcpu_svm
*svm
= to_svm(vcpu
);
1123 svm
->vcpu
.arch
.apic_base
= APIC_DEFAULT_PHYS_BASE
|
1124 MSR_IA32_APICBASE_ENABLE
;
1125 if (kvm_vcpu_is_reset_bsp(&svm
->vcpu
))
1126 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
1130 kvm_cpuid(vcpu
, &eax
, &dummy
, &dummy
, &dummy
);
1131 kvm_register_write(vcpu
, VCPU_REGS_RDX
, eax
);
1134 static struct kvm_vcpu
*svm_create_vcpu(struct kvm
*kvm
, unsigned int id
)
1136 struct vcpu_svm
*svm
;
1138 struct page
*msrpm_pages
;
1139 struct page
*hsave_page
;
1140 struct page
*nested_msrpm_pages
;
1143 svm
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
1149 err
= kvm_vcpu_init(&svm
->vcpu
, kvm
, id
);
1154 page
= alloc_page(GFP_KERNEL
);
1158 msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1162 nested_msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1163 if (!nested_msrpm_pages
)
1166 hsave_page
= alloc_page(GFP_KERNEL
);
1170 svm
->nested
.hsave
= page_address(hsave_page
);
1172 svm
->msrpm
= page_address(msrpm_pages
);
1173 svm_vcpu_init_msrpm(svm
->msrpm
);
1175 svm
->nested
.msrpm
= page_address(nested_msrpm_pages
);
1176 svm_vcpu_init_msrpm(svm
->nested
.msrpm
);
1178 svm
->vmcb
= page_address(page
);
1179 clear_page(svm
->vmcb
);
1180 svm
->vmcb_pa
= page_to_pfn(page
) << PAGE_SHIFT
;
1181 svm
->asid_generation
= 0;
1184 svm_init_osvw(&svm
->vcpu
);
1189 __free_pages(nested_msrpm_pages
, MSRPM_ALLOC_ORDER
);
1191 __free_pages(msrpm_pages
, MSRPM_ALLOC_ORDER
);
1195 kvm_vcpu_uninit(&svm
->vcpu
);
1197 kmem_cache_free(kvm_vcpu_cache
, svm
);
1199 return ERR_PTR(err
);
1202 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
1204 struct vcpu_svm
*svm
= to_svm(vcpu
);
1206 __free_page(pfn_to_page(svm
->vmcb_pa
>> PAGE_SHIFT
));
1207 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
1208 __free_page(virt_to_page(svm
->nested
.hsave
));
1209 __free_pages(virt_to_page(svm
->nested
.msrpm
), MSRPM_ALLOC_ORDER
);
1210 kvm_vcpu_uninit(vcpu
);
1211 kmem_cache_free(kvm_vcpu_cache
, svm
);
1214 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1216 struct vcpu_svm
*svm
= to_svm(vcpu
);
1219 if (unlikely(cpu
!= vcpu
->cpu
)) {
1220 svm
->asid_generation
= 0;
1221 mark_all_dirty(svm
->vmcb
);
1224 #ifdef CONFIG_X86_64
1225 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host
.gs_base
);
1227 savesegment(fs
, svm
->host
.fs
);
1228 savesegment(gs
, svm
->host
.gs
);
1229 svm
->host
.ldt
= kvm_read_ldt();
1231 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1232 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1234 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
1235 u64 tsc_ratio
= vcpu
->arch
.tsc_scaling_ratio
;
1236 if (tsc_ratio
!= __this_cpu_read(current_tsc_ratio
)) {
1237 __this_cpu_write(current_tsc_ratio
, tsc_ratio
);
1238 wrmsrl(MSR_AMD64_TSC_RATIO
, tsc_ratio
);
1243 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
1245 struct vcpu_svm
*svm
= to_svm(vcpu
);
1248 ++vcpu
->stat
.host_state_reload
;
1249 kvm_load_ldt(svm
->host
.ldt
);
1250 #ifdef CONFIG_X86_64
1251 loadsegment(fs
, svm
->host
.fs
);
1252 wrmsrl(MSR_KERNEL_GS_BASE
, current
->thread
.gs
);
1253 load_gs_index(svm
->host
.gs
);
1255 #ifdef CONFIG_X86_32_LAZY_GS
1256 loadsegment(gs
, svm
->host
.gs
);
1259 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1260 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1263 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
1265 return to_svm(vcpu
)->vmcb
->save
.rflags
;
1268 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
1271 * Any change of EFLAGS.VM is accompained by a reload of SS
1272 * (caused by either a task switch or an inter-privilege IRET),
1273 * so we do not need to update the CPL here.
1275 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
1278 static void svm_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
1281 case VCPU_EXREG_PDPTR
:
1282 BUG_ON(!npt_enabled
);
1283 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
1290 static void svm_set_vintr(struct vcpu_svm
*svm
)
1292 set_intercept(svm
, INTERCEPT_VINTR
);
1295 static void svm_clear_vintr(struct vcpu_svm
*svm
)
1297 clr_intercept(svm
, INTERCEPT_VINTR
);
1300 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
1302 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1305 case VCPU_SREG_CS
: return &save
->cs
;
1306 case VCPU_SREG_DS
: return &save
->ds
;
1307 case VCPU_SREG_ES
: return &save
->es
;
1308 case VCPU_SREG_FS
: return &save
->fs
;
1309 case VCPU_SREG_GS
: return &save
->gs
;
1310 case VCPU_SREG_SS
: return &save
->ss
;
1311 case VCPU_SREG_TR
: return &save
->tr
;
1312 case VCPU_SREG_LDTR
: return &save
->ldtr
;
1318 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1320 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1325 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
1326 struct kvm_segment
*var
, int seg
)
1328 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1330 var
->base
= s
->base
;
1331 var
->limit
= s
->limit
;
1332 var
->selector
= s
->selector
;
1333 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
1334 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
1335 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
1336 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
1337 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
1338 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
1339 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
1342 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1343 * However, the SVM spec states that the G bit is not observed by the
1344 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1345 * So let's synthesize a legal G bit for all segments, this helps
1346 * running KVM nested. It also helps cross-vendor migration, because
1347 * Intel's vmentry has a check on the 'G' bit.
1349 var
->g
= s
->limit
> 0xfffff;
1352 * AMD's VMCB does not have an explicit unusable field, so emulate it
1353 * for cross vendor migration purposes by "not present"
1355 var
->unusable
= !var
->present
|| (var
->type
== 0);
1360 * Work around a bug where the busy flag in the tr selector
1370 * The accessed bit must always be set in the segment
1371 * descriptor cache, although it can be cleared in the
1372 * descriptor, the cached bit always remains at 1. Since
1373 * Intel has a check on this, set it here to support
1374 * cross-vendor migration.
1381 * On AMD CPUs sometimes the DB bit in the segment
1382 * descriptor is left as 1, although the whole segment has
1383 * been made unusable. Clear it here to pass an Intel VMX
1384 * entry check when cross vendor migrating.
1388 var
->dpl
= to_svm(vcpu
)->vmcb
->save
.cpl
;
1393 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
1395 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1400 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1402 struct vcpu_svm
*svm
= to_svm(vcpu
);
1404 dt
->size
= svm
->vmcb
->save
.idtr
.limit
;
1405 dt
->address
= svm
->vmcb
->save
.idtr
.base
;
1408 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1410 struct vcpu_svm
*svm
= to_svm(vcpu
);
1412 svm
->vmcb
->save
.idtr
.limit
= dt
->size
;
1413 svm
->vmcb
->save
.idtr
.base
= dt
->address
;
1414 mark_dirty(svm
->vmcb
, VMCB_DT
);
1417 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1419 struct vcpu_svm
*svm
= to_svm(vcpu
);
1421 dt
->size
= svm
->vmcb
->save
.gdtr
.limit
;
1422 dt
->address
= svm
->vmcb
->save
.gdtr
.base
;
1425 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1427 struct vcpu_svm
*svm
= to_svm(vcpu
);
1429 svm
->vmcb
->save
.gdtr
.limit
= dt
->size
;
1430 svm
->vmcb
->save
.gdtr
.base
= dt
->address
;
1431 mark_dirty(svm
->vmcb
, VMCB_DT
);
1434 static void svm_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
1438 static void svm_decache_cr3(struct kvm_vcpu
*vcpu
)
1442 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1446 static void update_cr0_intercept(struct vcpu_svm
*svm
)
1448 ulong gcr0
= svm
->vcpu
.arch
.cr0
;
1449 u64
*hcr0
= &svm
->vmcb
->save
.cr0
;
1451 if (!svm
->vcpu
.fpu_active
)
1452 *hcr0
|= SVM_CR0_SELECTIVE_MASK
;
1454 *hcr0
= (*hcr0
& ~SVM_CR0_SELECTIVE_MASK
)
1455 | (gcr0
& SVM_CR0_SELECTIVE_MASK
);
1457 mark_dirty(svm
->vmcb
, VMCB_CR
);
1459 if (gcr0
== *hcr0
&& svm
->vcpu
.fpu_active
) {
1460 clr_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1461 clr_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1463 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1464 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1468 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1470 struct vcpu_svm
*svm
= to_svm(vcpu
);
1472 #ifdef CONFIG_X86_64
1473 if (vcpu
->arch
.efer
& EFER_LME
) {
1474 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
1475 vcpu
->arch
.efer
|= EFER_LMA
;
1476 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
1479 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
1480 vcpu
->arch
.efer
&= ~EFER_LMA
;
1481 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
1485 vcpu
->arch
.cr0
= cr0
;
1488 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
1490 if (!vcpu
->fpu_active
)
1493 * re-enable caching here because the QEMU bios
1494 * does not do it - this results in some delay at
1497 if (kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
1498 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
1499 svm
->vmcb
->save
.cr0
= cr0
;
1500 mark_dirty(svm
->vmcb
, VMCB_CR
);
1501 update_cr0_intercept(svm
);
1504 static int svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1506 unsigned long host_cr4_mce
= cr4_read_shadow() & X86_CR4_MCE
;
1507 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
1509 if (cr4
& X86_CR4_VMXE
)
1512 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
1513 svm_flush_tlb(vcpu
);
1515 vcpu
->arch
.cr4
= cr4
;
1518 cr4
|= host_cr4_mce
;
1519 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
1520 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
1524 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
1525 struct kvm_segment
*var
, int seg
)
1527 struct vcpu_svm
*svm
= to_svm(vcpu
);
1528 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1530 s
->base
= var
->base
;
1531 s
->limit
= var
->limit
;
1532 s
->selector
= var
->selector
;
1536 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
1537 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
1538 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
1539 s
->attrib
|= (var
->present
& 1) << SVM_SELECTOR_P_SHIFT
;
1540 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
1541 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
1542 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
1543 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
1547 * This is always accurate, except if SYSRET returned to a segment
1548 * with SS.DPL != 3. Intel does not have this quirk, and always
1549 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1550 * would entail passing the CPL to userspace and back.
1552 if (seg
== VCPU_SREG_SS
)
1553 svm
->vmcb
->save
.cpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
1555 mark_dirty(svm
->vmcb
, VMCB_SEG
);
1558 static void update_bp_intercept(struct kvm_vcpu
*vcpu
)
1560 struct vcpu_svm
*svm
= to_svm(vcpu
);
1562 clr_exception_intercept(svm
, BP_VECTOR
);
1564 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
1565 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
1566 set_exception_intercept(svm
, BP_VECTOR
);
1568 vcpu
->guest_debug
= 0;
1571 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*sd
)
1573 if (sd
->next_asid
> sd
->max_asid
) {
1574 ++sd
->asid_generation
;
1576 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
1579 svm
->asid_generation
= sd
->asid_generation
;
1580 svm
->vmcb
->control
.asid
= sd
->next_asid
++;
1582 mark_dirty(svm
->vmcb
, VMCB_ASID
);
1585 static u64
svm_get_dr6(struct kvm_vcpu
*vcpu
)
1587 return to_svm(vcpu
)->vmcb
->save
.dr6
;
1590 static void svm_set_dr6(struct kvm_vcpu
*vcpu
, unsigned long value
)
1592 struct vcpu_svm
*svm
= to_svm(vcpu
);
1594 svm
->vmcb
->save
.dr6
= value
;
1595 mark_dirty(svm
->vmcb
, VMCB_DR
);
1598 static void svm_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
1600 struct vcpu_svm
*svm
= to_svm(vcpu
);
1602 get_debugreg(vcpu
->arch
.db
[0], 0);
1603 get_debugreg(vcpu
->arch
.db
[1], 1);
1604 get_debugreg(vcpu
->arch
.db
[2], 2);
1605 get_debugreg(vcpu
->arch
.db
[3], 3);
1606 vcpu
->arch
.dr6
= svm_get_dr6(vcpu
);
1607 vcpu
->arch
.dr7
= svm
->vmcb
->save
.dr7
;
1609 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
1610 set_dr_intercepts(svm
);
1613 static void svm_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long value
)
1615 struct vcpu_svm
*svm
= to_svm(vcpu
);
1617 svm
->vmcb
->save
.dr7
= value
;
1618 mark_dirty(svm
->vmcb
, VMCB_DR
);
1621 static int pf_interception(struct vcpu_svm
*svm
)
1623 u64 fault_address
= svm
->vmcb
->control
.exit_info_2
;
1627 switch (svm
->apf_reason
) {
1629 error_code
= svm
->vmcb
->control
.exit_info_1
;
1631 trace_kvm_page_fault(fault_address
, error_code
);
1632 if (!npt_enabled
&& kvm_event_needs_reinjection(&svm
->vcpu
))
1633 kvm_mmu_unprotect_page_virt(&svm
->vcpu
, fault_address
);
1634 r
= kvm_mmu_page_fault(&svm
->vcpu
, fault_address
, error_code
,
1635 svm
->vmcb
->control
.insn_bytes
,
1636 svm
->vmcb
->control
.insn_len
);
1638 case KVM_PV_REASON_PAGE_NOT_PRESENT
:
1639 svm
->apf_reason
= 0;
1640 local_irq_disable();
1641 kvm_async_pf_task_wait(fault_address
);
1644 case KVM_PV_REASON_PAGE_READY
:
1645 svm
->apf_reason
= 0;
1646 local_irq_disable();
1647 kvm_async_pf_task_wake(fault_address
);
1654 static int db_interception(struct vcpu_svm
*svm
)
1656 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1658 if (!(svm
->vcpu
.guest_debug
&
1659 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
1660 !svm
->nmi_singlestep
) {
1661 kvm_queue_exception(&svm
->vcpu
, DB_VECTOR
);
1665 if (svm
->nmi_singlestep
) {
1666 svm
->nmi_singlestep
= false;
1667 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
))
1668 svm
->vmcb
->save
.rflags
&=
1669 ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1672 if (svm
->vcpu
.guest_debug
&
1673 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) {
1674 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1675 kvm_run
->debug
.arch
.pc
=
1676 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1677 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
1684 static int bp_interception(struct vcpu_svm
*svm
)
1686 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1688 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1689 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1690 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
1694 static int ud_interception(struct vcpu_svm
*svm
)
1698 er
= emulate_instruction(&svm
->vcpu
, EMULTYPE_TRAP_UD
);
1699 if (er
!= EMULATE_DONE
)
1700 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1704 static int ac_interception(struct vcpu_svm
*svm
)
1706 kvm_queue_exception_e(&svm
->vcpu
, AC_VECTOR
, 0);
1710 static void svm_fpu_activate(struct kvm_vcpu
*vcpu
)
1712 struct vcpu_svm
*svm
= to_svm(vcpu
);
1714 clr_exception_intercept(svm
, NM_VECTOR
);
1716 svm
->vcpu
.fpu_active
= 1;
1717 update_cr0_intercept(svm
);
1720 static int nm_interception(struct vcpu_svm
*svm
)
1722 svm_fpu_activate(&svm
->vcpu
);
1726 static bool is_erratum_383(void)
1731 if (!erratum_383_found
)
1734 value
= native_read_msr_safe(MSR_IA32_MC0_STATUS
, &err
);
1738 /* Bit 62 may or may not be set for this mce */
1739 value
&= ~(1ULL << 62);
1741 if (value
!= 0xb600000000010015ULL
)
1744 /* Clear MCi_STATUS registers */
1745 for (i
= 0; i
< 6; ++i
)
1746 native_write_msr_safe(MSR_IA32_MCx_STATUS(i
), 0, 0);
1748 value
= native_read_msr_safe(MSR_IA32_MCG_STATUS
, &err
);
1752 value
&= ~(1ULL << 2);
1753 low
= lower_32_bits(value
);
1754 high
= upper_32_bits(value
);
1756 native_write_msr_safe(MSR_IA32_MCG_STATUS
, low
, high
);
1759 /* Flush tlb to evict multi-match entries */
1765 static void svm_handle_mce(struct vcpu_svm
*svm
)
1767 if (is_erratum_383()) {
1769 * Erratum 383 triggered. Guest state is corrupt so kill the
1772 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1774 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, &svm
->vcpu
);
1780 * On an #MC intercept the MCE handler is not called automatically in
1781 * the host. So do it by hand here.
1785 /* not sure if we ever come back to this point */
1790 static int mc_interception(struct vcpu_svm
*svm
)
1795 static int shutdown_interception(struct vcpu_svm
*svm
)
1797 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1800 * VMCB is undefined after a SHUTDOWN intercept
1801 * so reinitialize it.
1803 clear_page(svm
->vmcb
);
1806 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1810 static int io_interception(struct vcpu_svm
*svm
)
1812 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
1813 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
1814 int size
, in
, string
;
1817 ++svm
->vcpu
.stat
.io_exits
;
1818 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
1819 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
1821 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
1823 port
= io_info
>> 16;
1824 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
1825 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
1826 skip_emulated_instruction(&svm
->vcpu
);
1828 return kvm_fast_pio_out(vcpu
, size
, port
);
1831 static int nmi_interception(struct vcpu_svm
*svm
)
1836 static int intr_interception(struct vcpu_svm
*svm
)
1838 ++svm
->vcpu
.stat
.irq_exits
;
1842 static int nop_on_interception(struct vcpu_svm
*svm
)
1847 static int halt_interception(struct vcpu_svm
*svm
)
1849 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 1;
1850 return kvm_emulate_halt(&svm
->vcpu
);
1853 static int vmmcall_interception(struct vcpu_svm
*svm
)
1855 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1856 kvm_emulate_hypercall(&svm
->vcpu
);
1860 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu
*vcpu
)
1862 struct vcpu_svm
*svm
= to_svm(vcpu
);
1864 return svm
->nested
.nested_cr3
;
1867 static u64
nested_svm_get_tdp_pdptr(struct kvm_vcpu
*vcpu
, int index
)
1869 struct vcpu_svm
*svm
= to_svm(vcpu
);
1870 u64 cr3
= svm
->nested
.nested_cr3
;
1874 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa_to_gfn(cr3
), &pdpte
,
1875 offset_in_page(cr3
) + index
* 8, 8);
1881 static void nested_svm_set_tdp_cr3(struct kvm_vcpu
*vcpu
,
1884 struct vcpu_svm
*svm
= to_svm(vcpu
);
1886 svm
->vmcb
->control
.nested_cr3
= root
;
1887 mark_dirty(svm
->vmcb
, VMCB_NPT
);
1888 svm_flush_tlb(vcpu
);
1891 static void nested_svm_inject_npf_exit(struct kvm_vcpu
*vcpu
,
1892 struct x86_exception
*fault
)
1894 struct vcpu_svm
*svm
= to_svm(vcpu
);
1896 if (svm
->vmcb
->control
.exit_code
!= SVM_EXIT_NPF
) {
1898 * TODO: track the cause of the nested page fault, and
1899 * correctly fill in the high bits of exit_info_1.
1901 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NPF
;
1902 svm
->vmcb
->control
.exit_code_hi
= 0;
1903 svm
->vmcb
->control
.exit_info_1
= (1ULL << 32);
1904 svm
->vmcb
->control
.exit_info_2
= fault
->address
;
1907 svm
->vmcb
->control
.exit_info_1
&= ~0xffffffffULL
;
1908 svm
->vmcb
->control
.exit_info_1
|= fault
->error_code
;
1911 * The present bit is always zero for page structure faults on real
1914 if (svm
->vmcb
->control
.exit_info_1
& (2ULL << 32))
1915 svm
->vmcb
->control
.exit_info_1
&= ~1;
1917 nested_svm_vmexit(svm
);
1920 static void nested_svm_init_mmu_context(struct kvm_vcpu
*vcpu
)
1922 WARN_ON(mmu_is_nested(vcpu
));
1923 kvm_init_shadow_mmu(vcpu
);
1924 vcpu
->arch
.mmu
.set_cr3
= nested_svm_set_tdp_cr3
;
1925 vcpu
->arch
.mmu
.get_cr3
= nested_svm_get_tdp_cr3
;
1926 vcpu
->arch
.mmu
.get_pdptr
= nested_svm_get_tdp_pdptr
;
1927 vcpu
->arch
.mmu
.inject_page_fault
= nested_svm_inject_npf_exit
;
1928 vcpu
->arch
.mmu
.shadow_root_level
= get_npt_level();
1929 reset_shadow_zero_bits_mask(vcpu
, &vcpu
->arch
.mmu
);
1930 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
1933 static void nested_svm_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
1935 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
1938 static int nested_svm_check_permissions(struct vcpu_svm
*svm
)
1940 if (!(svm
->vcpu
.arch
.efer
& EFER_SVME
)
1941 || !is_paging(&svm
->vcpu
)) {
1942 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1946 if (svm
->vmcb
->save
.cpl
) {
1947 kvm_inject_gp(&svm
->vcpu
, 0);
1954 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
1955 bool has_error_code
, u32 error_code
)
1959 if (!is_guest_mode(&svm
->vcpu
))
1962 svm
->vmcb
->control
.exit_code
= SVM_EXIT_EXCP_BASE
+ nr
;
1963 svm
->vmcb
->control
.exit_code_hi
= 0;
1964 svm
->vmcb
->control
.exit_info_1
= error_code
;
1965 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.cr2
;
1967 vmexit
= nested_svm_intercept(svm
);
1968 if (vmexit
== NESTED_EXIT_DONE
)
1969 svm
->nested
.exit_required
= true;
1974 /* This function returns true if it is save to enable the irq window */
1975 static inline bool nested_svm_intr(struct vcpu_svm
*svm
)
1977 if (!is_guest_mode(&svm
->vcpu
))
1980 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
1983 if (!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
))
1987 * if vmexit was already requested (by intercepted exception
1988 * for instance) do not overwrite it with "external interrupt"
1991 if (svm
->nested
.exit_required
)
1994 svm
->vmcb
->control
.exit_code
= SVM_EXIT_INTR
;
1995 svm
->vmcb
->control
.exit_info_1
= 0;
1996 svm
->vmcb
->control
.exit_info_2
= 0;
1998 if (svm
->nested
.intercept
& 1ULL) {
2000 * The #vmexit can't be emulated here directly because this
2001 * code path runs with irqs and preemption disabled. A
2002 * #vmexit emulation might sleep. Only signal request for
2005 svm
->nested
.exit_required
= true;
2006 trace_kvm_nested_intr_vmexit(svm
->vmcb
->save
.rip
);
2013 /* This function returns true if it is save to enable the nmi window */
2014 static inline bool nested_svm_nmi(struct vcpu_svm
*svm
)
2016 if (!is_guest_mode(&svm
->vcpu
))
2019 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_NMI
)))
2022 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NMI
;
2023 svm
->nested
.exit_required
= true;
2028 static void *nested_svm_map(struct vcpu_svm
*svm
, u64 gpa
, struct page
**_page
)
2034 page
= kvm_vcpu_gfn_to_page(&svm
->vcpu
, gpa
>> PAGE_SHIFT
);
2035 if (is_error_page(page
))
2043 kvm_inject_gp(&svm
->vcpu
, 0);
2048 static void nested_svm_unmap(struct page
*page
)
2051 kvm_release_page_dirty(page
);
2054 static int nested_svm_intercept_ioio(struct vcpu_svm
*svm
)
2056 unsigned port
, size
, iopm_len
;
2061 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_IOIO_PROT
)))
2062 return NESTED_EXIT_HOST
;
2064 port
= svm
->vmcb
->control
.exit_info_1
>> 16;
2065 size
= (svm
->vmcb
->control
.exit_info_1
& SVM_IOIO_SIZE_MASK
) >>
2066 SVM_IOIO_SIZE_SHIFT
;
2067 gpa
= svm
->nested
.vmcb_iopm
+ (port
/ 8);
2068 start_bit
= port
% 8;
2069 iopm_len
= (start_bit
+ size
> 8) ? 2 : 1;
2070 mask
= (0xf >> (4 - size
)) << start_bit
;
2073 if (kvm_vcpu_read_guest(&svm
->vcpu
, gpa
, &val
, iopm_len
))
2074 return NESTED_EXIT_DONE
;
2076 return (val
& mask
) ? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2079 static int nested_svm_exit_handled_msr(struct vcpu_svm
*svm
)
2081 u32 offset
, msr
, value
;
2084 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2085 return NESTED_EXIT_HOST
;
2087 msr
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2088 offset
= svm_msrpm_offset(msr
);
2089 write
= svm
->vmcb
->control
.exit_info_1
& 1;
2090 mask
= 1 << ((2 * (msr
& 0xf)) + write
);
2092 if (offset
== MSR_INVALID
)
2093 return NESTED_EXIT_DONE
;
2095 /* Offset is in 32 bit units but need in 8 bit units */
2098 if (kvm_vcpu_read_guest(&svm
->vcpu
, svm
->nested
.vmcb_msrpm
+ offset
, &value
, 4))
2099 return NESTED_EXIT_DONE
;
2101 return (value
& mask
) ? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2104 static int nested_svm_exit_special(struct vcpu_svm
*svm
)
2106 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2108 switch (exit_code
) {
2111 case SVM_EXIT_EXCP_BASE
+ MC_VECTOR
:
2112 return NESTED_EXIT_HOST
;
2114 /* For now we are always handling NPFs when using them */
2116 return NESTED_EXIT_HOST
;
2118 case SVM_EXIT_EXCP_BASE
+ PF_VECTOR
:
2119 /* When we're shadowing, trap PFs, but not async PF */
2120 if (!npt_enabled
&& svm
->apf_reason
== 0)
2121 return NESTED_EXIT_HOST
;
2123 case SVM_EXIT_EXCP_BASE
+ NM_VECTOR
:
2124 nm_interception(svm
);
2130 return NESTED_EXIT_CONTINUE
;
2134 * If this function returns true, this #vmexit was already handled
2136 static int nested_svm_intercept(struct vcpu_svm
*svm
)
2138 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2139 int vmexit
= NESTED_EXIT_HOST
;
2141 switch (exit_code
) {
2143 vmexit
= nested_svm_exit_handled_msr(svm
);
2146 vmexit
= nested_svm_intercept_ioio(svm
);
2148 case SVM_EXIT_READ_CR0
... SVM_EXIT_WRITE_CR8
: {
2149 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_CR0
);
2150 if (svm
->nested
.intercept_cr
& bit
)
2151 vmexit
= NESTED_EXIT_DONE
;
2154 case SVM_EXIT_READ_DR0
... SVM_EXIT_WRITE_DR7
: {
2155 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_DR0
);
2156 if (svm
->nested
.intercept_dr
& bit
)
2157 vmexit
= NESTED_EXIT_DONE
;
2160 case SVM_EXIT_EXCP_BASE
... SVM_EXIT_EXCP_BASE
+ 0x1f: {
2161 u32 excp_bits
= 1 << (exit_code
- SVM_EXIT_EXCP_BASE
);
2162 if (svm
->nested
.intercept_exceptions
& excp_bits
)
2163 vmexit
= NESTED_EXIT_DONE
;
2164 /* async page fault always cause vmexit */
2165 else if ((exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
) &&
2166 svm
->apf_reason
!= 0)
2167 vmexit
= NESTED_EXIT_DONE
;
2170 case SVM_EXIT_ERR
: {
2171 vmexit
= NESTED_EXIT_DONE
;
2175 u64 exit_bits
= 1ULL << (exit_code
- SVM_EXIT_INTR
);
2176 if (svm
->nested
.intercept
& exit_bits
)
2177 vmexit
= NESTED_EXIT_DONE
;
2184 static int nested_svm_exit_handled(struct vcpu_svm
*svm
)
2188 vmexit
= nested_svm_intercept(svm
);
2190 if (vmexit
== NESTED_EXIT_DONE
)
2191 nested_svm_vmexit(svm
);
2196 static inline void copy_vmcb_control_area(struct vmcb
*dst_vmcb
, struct vmcb
*from_vmcb
)
2198 struct vmcb_control_area
*dst
= &dst_vmcb
->control
;
2199 struct vmcb_control_area
*from
= &from_vmcb
->control
;
2201 dst
->intercept_cr
= from
->intercept_cr
;
2202 dst
->intercept_dr
= from
->intercept_dr
;
2203 dst
->intercept_exceptions
= from
->intercept_exceptions
;
2204 dst
->intercept
= from
->intercept
;
2205 dst
->iopm_base_pa
= from
->iopm_base_pa
;
2206 dst
->msrpm_base_pa
= from
->msrpm_base_pa
;
2207 dst
->tsc_offset
= from
->tsc_offset
;
2208 dst
->asid
= from
->asid
;
2209 dst
->tlb_ctl
= from
->tlb_ctl
;
2210 dst
->int_ctl
= from
->int_ctl
;
2211 dst
->int_vector
= from
->int_vector
;
2212 dst
->int_state
= from
->int_state
;
2213 dst
->exit_code
= from
->exit_code
;
2214 dst
->exit_code_hi
= from
->exit_code_hi
;
2215 dst
->exit_info_1
= from
->exit_info_1
;
2216 dst
->exit_info_2
= from
->exit_info_2
;
2217 dst
->exit_int_info
= from
->exit_int_info
;
2218 dst
->exit_int_info_err
= from
->exit_int_info_err
;
2219 dst
->nested_ctl
= from
->nested_ctl
;
2220 dst
->event_inj
= from
->event_inj
;
2221 dst
->event_inj_err
= from
->event_inj_err
;
2222 dst
->nested_cr3
= from
->nested_cr3
;
2223 dst
->lbr_ctl
= from
->lbr_ctl
;
2226 static int nested_svm_vmexit(struct vcpu_svm
*svm
)
2228 struct vmcb
*nested_vmcb
;
2229 struct vmcb
*hsave
= svm
->nested
.hsave
;
2230 struct vmcb
*vmcb
= svm
->vmcb
;
2233 trace_kvm_nested_vmexit_inject(vmcb
->control
.exit_code
,
2234 vmcb
->control
.exit_info_1
,
2235 vmcb
->control
.exit_info_2
,
2236 vmcb
->control
.exit_int_info
,
2237 vmcb
->control
.exit_int_info_err
,
2240 nested_vmcb
= nested_svm_map(svm
, svm
->nested
.vmcb
, &page
);
2244 /* Exit Guest-Mode */
2245 leave_guest_mode(&svm
->vcpu
);
2246 svm
->nested
.vmcb
= 0;
2248 /* Give the current vmcb to the guest */
2251 nested_vmcb
->save
.es
= vmcb
->save
.es
;
2252 nested_vmcb
->save
.cs
= vmcb
->save
.cs
;
2253 nested_vmcb
->save
.ss
= vmcb
->save
.ss
;
2254 nested_vmcb
->save
.ds
= vmcb
->save
.ds
;
2255 nested_vmcb
->save
.gdtr
= vmcb
->save
.gdtr
;
2256 nested_vmcb
->save
.idtr
= vmcb
->save
.idtr
;
2257 nested_vmcb
->save
.efer
= svm
->vcpu
.arch
.efer
;
2258 nested_vmcb
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2259 nested_vmcb
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2260 nested_vmcb
->save
.cr2
= vmcb
->save
.cr2
;
2261 nested_vmcb
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2262 nested_vmcb
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
2263 nested_vmcb
->save
.rip
= vmcb
->save
.rip
;
2264 nested_vmcb
->save
.rsp
= vmcb
->save
.rsp
;
2265 nested_vmcb
->save
.rax
= vmcb
->save
.rax
;
2266 nested_vmcb
->save
.dr7
= vmcb
->save
.dr7
;
2267 nested_vmcb
->save
.dr6
= vmcb
->save
.dr6
;
2268 nested_vmcb
->save
.cpl
= vmcb
->save
.cpl
;
2270 nested_vmcb
->control
.int_ctl
= vmcb
->control
.int_ctl
;
2271 nested_vmcb
->control
.int_vector
= vmcb
->control
.int_vector
;
2272 nested_vmcb
->control
.int_state
= vmcb
->control
.int_state
;
2273 nested_vmcb
->control
.exit_code
= vmcb
->control
.exit_code
;
2274 nested_vmcb
->control
.exit_code_hi
= vmcb
->control
.exit_code_hi
;
2275 nested_vmcb
->control
.exit_info_1
= vmcb
->control
.exit_info_1
;
2276 nested_vmcb
->control
.exit_info_2
= vmcb
->control
.exit_info_2
;
2277 nested_vmcb
->control
.exit_int_info
= vmcb
->control
.exit_int_info
;
2278 nested_vmcb
->control
.exit_int_info_err
= vmcb
->control
.exit_int_info_err
;
2280 if (svm
->nrips_enabled
)
2281 nested_vmcb
->control
.next_rip
= vmcb
->control
.next_rip
;
2284 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2285 * to make sure that we do not lose injected events. So check event_inj
2286 * here and copy it to exit_int_info if it is valid.
2287 * Exit_int_info and event_inj can't be both valid because the case
2288 * below only happens on a VMRUN instruction intercept which has
2289 * no valid exit_int_info set.
2291 if (vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
) {
2292 struct vmcb_control_area
*nc
= &nested_vmcb
->control
;
2294 nc
->exit_int_info
= vmcb
->control
.event_inj
;
2295 nc
->exit_int_info_err
= vmcb
->control
.event_inj_err
;
2298 nested_vmcb
->control
.tlb_ctl
= 0;
2299 nested_vmcb
->control
.event_inj
= 0;
2300 nested_vmcb
->control
.event_inj_err
= 0;
2302 /* We always set V_INTR_MASKING and remember the old value in hflags */
2303 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
2304 nested_vmcb
->control
.int_ctl
&= ~V_INTR_MASKING_MASK
;
2306 /* Restore the original control entries */
2307 copy_vmcb_control_area(vmcb
, hsave
);
2309 kvm_clear_exception_queue(&svm
->vcpu
);
2310 kvm_clear_interrupt_queue(&svm
->vcpu
);
2312 svm
->nested
.nested_cr3
= 0;
2314 /* Restore selected save entries */
2315 svm
->vmcb
->save
.es
= hsave
->save
.es
;
2316 svm
->vmcb
->save
.cs
= hsave
->save
.cs
;
2317 svm
->vmcb
->save
.ss
= hsave
->save
.ss
;
2318 svm
->vmcb
->save
.ds
= hsave
->save
.ds
;
2319 svm
->vmcb
->save
.gdtr
= hsave
->save
.gdtr
;
2320 svm
->vmcb
->save
.idtr
= hsave
->save
.idtr
;
2321 kvm_set_rflags(&svm
->vcpu
, hsave
->save
.rflags
);
2322 svm_set_efer(&svm
->vcpu
, hsave
->save
.efer
);
2323 svm_set_cr0(&svm
->vcpu
, hsave
->save
.cr0
| X86_CR0_PE
);
2324 svm_set_cr4(&svm
->vcpu
, hsave
->save
.cr4
);
2326 svm
->vmcb
->save
.cr3
= hsave
->save
.cr3
;
2327 svm
->vcpu
.arch
.cr3
= hsave
->save
.cr3
;
2329 (void)kvm_set_cr3(&svm
->vcpu
, hsave
->save
.cr3
);
2331 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, hsave
->save
.rax
);
2332 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, hsave
->save
.rsp
);
2333 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, hsave
->save
.rip
);
2334 svm
->vmcb
->save
.dr7
= 0;
2335 svm
->vmcb
->save
.cpl
= 0;
2336 svm
->vmcb
->control
.exit_int_info
= 0;
2338 mark_all_dirty(svm
->vmcb
);
2340 nested_svm_unmap(page
);
2342 nested_svm_uninit_mmu_context(&svm
->vcpu
);
2343 kvm_mmu_reset_context(&svm
->vcpu
);
2344 kvm_mmu_load(&svm
->vcpu
);
2349 static bool nested_svm_vmrun_msrpm(struct vcpu_svm
*svm
)
2352 * This function merges the msr permission bitmaps of kvm and the
2353 * nested vmcb. It is optimized in that it only merges the parts where
2354 * the kvm msr permission bitmap may contain zero bits
2358 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2361 for (i
= 0; i
< MSRPM_OFFSETS
; i
++) {
2365 if (msrpm_offsets
[i
] == 0xffffffff)
2368 p
= msrpm_offsets
[i
];
2369 offset
= svm
->nested
.vmcb_msrpm
+ (p
* 4);
2371 if (kvm_vcpu_read_guest(&svm
->vcpu
, offset
, &value
, 4))
2374 svm
->nested
.msrpm
[p
] = svm
->msrpm
[p
] | value
;
2377 svm
->vmcb
->control
.msrpm_base_pa
= __pa(svm
->nested
.msrpm
);
2382 static bool nested_vmcb_checks(struct vmcb
*vmcb
)
2384 if ((vmcb
->control
.intercept
& (1ULL << INTERCEPT_VMRUN
)) == 0)
2387 if (vmcb
->control
.asid
== 0)
2390 if (vmcb
->control
.nested_ctl
&& !npt_enabled
)
2396 static bool nested_svm_vmrun(struct vcpu_svm
*svm
)
2398 struct vmcb
*nested_vmcb
;
2399 struct vmcb
*hsave
= svm
->nested
.hsave
;
2400 struct vmcb
*vmcb
= svm
->vmcb
;
2404 vmcb_gpa
= svm
->vmcb
->save
.rax
;
2406 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2410 if (!nested_vmcb_checks(nested_vmcb
)) {
2411 nested_vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
2412 nested_vmcb
->control
.exit_code_hi
= 0;
2413 nested_vmcb
->control
.exit_info_1
= 0;
2414 nested_vmcb
->control
.exit_info_2
= 0;
2416 nested_svm_unmap(page
);
2421 trace_kvm_nested_vmrun(svm
->vmcb
->save
.rip
, vmcb_gpa
,
2422 nested_vmcb
->save
.rip
,
2423 nested_vmcb
->control
.int_ctl
,
2424 nested_vmcb
->control
.event_inj
,
2425 nested_vmcb
->control
.nested_ctl
);
2427 trace_kvm_nested_intercepts(nested_vmcb
->control
.intercept_cr
& 0xffff,
2428 nested_vmcb
->control
.intercept_cr
>> 16,
2429 nested_vmcb
->control
.intercept_exceptions
,
2430 nested_vmcb
->control
.intercept
);
2432 /* Clear internal status */
2433 kvm_clear_exception_queue(&svm
->vcpu
);
2434 kvm_clear_interrupt_queue(&svm
->vcpu
);
2437 * Save the old vmcb, so we don't need to pick what we save, but can
2438 * restore everything when a VMEXIT occurs
2440 hsave
->save
.es
= vmcb
->save
.es
;
2441 hsave
->save
.cs
= vmcb
->save
.cs
;
2442 hsave
->save
.ss
= vmcb
->save
.ss
;
2443 hsave
->save
.ds
= vmcb
->save
.ds
;
2444 hsave
->save
.gdtr
= vmcb
->save
.gdtr
;
2445 hsave
->save
.idtr
= vmcb
->save
.idtr
;
2446 hsave
->save
.efer
= svm
->vcpu
.arch
.efer
;
2447 hsave
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2448 hsave
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2449 hsave
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
2450 hsave
->save
.rip
= kvm_rip_read(&svm
->vcpu
);
2451 hsave
->save
.rsp
= vmcb
->save
.rsp
;
2452 hsave
->save
.rax
= vmcb
->save
.rax
;
2454 hsave
->save
.cr3
= vmcb
->save
.cr3
;
2456 hsave
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2458 copy_vmcb_control_area(hsave
, vmcb
);
2460 if (kvm_get_rflags(&svm
->vcpu
) & X86_EFLAGS_IF
)
2461 svm
->vcpu
.arch
.hflags
|= HF_HIF_MASK
;
2463 svm
->vcpu
.arch
.hflags
&= ~HF_HIF_MASK
;
2465 if (nested_vmcb
->control
.nested_ctl
) {
2466 kvm_mmu_unload(&svm
->vcpu
);
2467 svm
->nested
.nested_cr3
= nested_vmcb
->control
.nested_cr3
;
2468 nested_svm_init_mmu_context(&svm
->vcpu
);
2471 /* Load the nested guest state */
2472 svm
->vmcb
->save
.es
= nested_vmcb
->save
.es
;
2473 svm
->vmcb
->save
.cs
= nested_vmcb
->save
.cs
;
2474 svm
->vmcb
->save
.ss
= nested_vmcb
->save
.ss
;
2475 svm
->vmcb
->save
.ds
= nested_vmcb
->save
.ds
;
2476 svm
->vmcb
->save
.gdtr
= nested_vmcb
->save
.gdtr
;
2477 svm
->vmcb
->save
.idtr
= nested_vmcb
->save
.idtr
;
2478 kvm_set_rflags(&svm
->vcpu
, nested_vmcb
->save
.rflags
);
2479 svm_set_efer(&svm
->vcpu
, nested_vmcb
->save
.efer
);
2480 svm_set_cr0(&svm
->vcpu
, nested_vmcb
->save
.cr0
);
2481 svm_set_cr4(&svm
->vcpu
, nested_vmcb
->save
.cr4
);
2483 svm
->vmcb
->save
.cr3
= nested_vmcb
->save
.cr3
;
2484 svm
->vcpu
.arch
.cr3
= nested_vmcb
->save
.cr3
;
2486 (void)kvm_set_cr3(&svm
->vcpu
, nested_vmcb
->save
.cr3
);
2488 /* Guest paging mode is active - reset mmu */
2489 kvm_mmu_reset_context(&svm
->vcpu
);
2491 svm
->vmcb
->save
.cr2
= svm
->vcpu
.arch
.cr2
= nested_vmcb
->save
.cr2
;
2492 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, nested_vmcb
->save
.rax
);
2493 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, nested_vmcb
->save
.rsp
);
2494 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, nested_vmcb
->save
.rip
);
2496 /* In case we don't even reach vcpu_run, the fields are not updated */
2497 svm
->vmcb
->save
.rax
= nested_vmcb
->save
.rax
;
2498 svm
->vmcb
->save
.rsp
= nested_vmcb
->save
.rsp
;
2499 svm
->vmcb
->save
.rip
= nested_vmcb
->save
.rip
;
2500 svm
->vmcb
->save
.dr7
= nested_vmcb
->save
.dr7
;
2501 svm
->vmcb
->save
.dr6
= nested_vmcb
->save
.dr6
;
2502 svm
->vmcb
->save
.cpl
= nested_vmcb
->save
.cpl
;
2504 svm
->nested
.vmcb_msrpm
= nested_vmcb
->control
.msrpm_base_pa
& ~0x0fffULL
;
2505 svm
->nested
.vmcb_iopm
= nested_vmcb
->control
.iopm_base_pa
& ~0x0fffULL
;
2507 /* cache intercepts */
2508 svm
->nested
.intercept_cr
= nested_vmcb
->control
.intercept_cr
;
2509 svm
->nested
.intercept_dr
= nested_vmcb
->control
.intercept_dr
;
2510 svm
->nested
.intercept_exceptions
= nested_vmcb
->control
.intercept_exceptions
;
2511 svm
->nested
.intercept
= nested_vmcb
->control
.intercept
;
2513 svm_flush_tlb(&svm
->vcpu
);
2514 svm
->vmcb
->control
.int_ctl
= nested_vmcb
->control
.int_ctl
| V_INTR_MASKING_MASK
;
2515 if (nested_vmcb
->control
.int_ctl
& V_INTR_MASKING_MASK
)
2516 svm
->vcpu
.arch
.hflags
|= HF_VINTR_MASK
;
2518 svm
->vcpu
.arch
.hflags
&= ~HF_VINTR_MASK
;
2520 if (svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
) {
2521 /* We only want the cr8 intercept bits of the guest */
2522 clr_cr_intercept(svm
, INTERCEPT_CR8_READ
);
2523 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
2526 /* We don't want to see VMMCALLs from a nested guest */
2527 clr_intercept(svm
, INTERCEPT_VMMCALL
);
2529 svm
->vmcb
->control
.lbr_ctl
= nested_vmcb
->control
.lbr_ctl
;
2530 svm
->vmcb
->control
.int_vector
= nested_vmcb
->control
.int_vector
;
2531 svm
->vmcb
->control
.int_state
= nested_vmcb
->control
.int_state
;
2532 svm
->vmcb
->control
.tsc_offset
+= nested_vmcb
->control
.tsc_offset
;
2533 svm
->vmcb
->control
.event_inj
= nested_vmcb
->control
.event_inj
;
2534 svm
->vmcb
->control
.event_inj_err
= nested_vmcb
->control
.event_inj_err
;
2536 nested_svm_unmap(page
);
2538 /* Enter Guest-Mode */
2539 enter_guest_mode(&svm
->vcpu
);
2542 * Merge guest and host intercepts - must be called with vcpu in
2543 * guest-mode to take affect here
2545 recalc_intercepts(svm
);
2547 svm
->nested
.vmcb
= vmcb_gpa
;
2551 mark_all_dirty(svm
->vmcb
);
2556 static void nested_svm_vmloadsave(struct vmcb
*from_vmcb
, struct vmcb
*to_vmcb
)
2558 to_vmcb
->save
.fs
= from_vmcb
->save
.fs
;
2559 to_vmcb
->save
.gs
= from_vmcb
->save
.gs
;
2560 to_vmcb
->save
.tr
= from_vmcb
->save
.tr
;
2561 to_vmcb
->save
.ldtr
= from_vmcb
->save
.ldtr
;
2562 to_vmcb
->save
.kernel_gs_base
= from_vmcb
->save
.kernel_gs_base
;
2563 to_vmcb
->save
.star
= from_vmcb
->save
.star
;
2564 to_vmcb
->save
.lstar
= from_vmcb
->save
.lstar
;
2565 to_vmcb
->save
.cstar
= from_vmcb
->save
.cstar
;
2566 to_vmcb
->save
.sfmask
= from_vmcb
->save
.sfmask
;
2567 to_vmcb
->save
.sysenter_cs
= from_vmcb
->save
.sysenter_cs
;
2568 to_vmcb
->save
.sysenter_esp
= from_vmcb
->save
.sysenter_esp
;
2569 to_vmcb
->save
.sysenter_eip
= from_vmcb
->save
.sysenter_eip
;
2572 static int vmload_interception(struct vcpu_svm
*svm
)
2574 struct vmcb
*nested_vmcb
;
2577 if (nested_svm_check_permissions(svm
))
2580 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2584 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2585 skip_emulated_instruction(&svm
->vcpu
);
2587 nested_svm_vmloadsave(nested_vmcb
, svm
->vmcb
);
2588 nested_svm_unmap(page
);
2593 static int vmsave_interception(struct vcpu_svm
*svm
)
2595 struct vmcb
*nested_vmcb
;
2598 if (nested_svm_check_permissions(svm
))
2601 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2605 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2606 skip_emulated_instruction(&svm
->vcpu
);
2608 nested_svm_vmloadsave(svm
->vmcb
, nested_vmcb
);
2609 nested_svm_unmap(page
);
2614 static int vmrun_interception(struct vcpu_svm
*svm
)
2616 if (nested_svm_check_permissions(svm
))
2619 /* Save rip after vmrun instruction */
2620 kvm_rip_write(&svm
->vcpu
, kvm_rip_read(&svm
->vcpu
) + 3);
2622 if (!nested_svm_vmrun(svm
))
2625 if (!nested_svm_vmrun_msrpm(svm
))
2632 svm
->vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
2633 svm
->vmcb
->control
.exit_code_hi
= 0;
2634 svm
->vmcb
->control
.exit_info_1
= 0;
2635 svm
->vmcb
->control
.exit_info_2
= 0;
2637 nested_svm_vmexit(svm
);
2642 static int stgi_interception(struct vcpu_svm
*svm
)
2644 if (nested_svm_check_permissions(svm
))
2647 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2648 skip_emulated_instruction(&svm
->vcpu
);
2649 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
2656 static int clgi_interception(struct vcpu_svm
*svm
)
2658 if (nested_svm_check_permissions(svm
))
2661 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2662 skip_emulated_instruction(&svm
->vcpu
);
2666 /* After a CLGI no interrupts should come */
2667 svm_clear_vintr(svm
);
2668 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
2670 mark_dirty(svm
->vmcb
, VMCB_INTR
);
2675 static int invlpga_interception(struct vcpu_svm
*svm
)
2677 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
2679 trace_kvm_invlpga(svm
->vmcb
->save
.rip
, kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
),
2680 kvm_register_read(&svm
->vcpu
, VCPU_REGS_RAX
));
2682 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2683 kvm_mmu_invlpg(vcpu
, kvm_register_read(&svm
->vcpu
, VCPU_REGS_RAX
));
2685 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2686 skip_emulated_instruction(&svm
->vcpu
);
2690 static int skinit_interception(struct vcpu_svm
*svm
)
2692 trace_kvm_skinit(svm
->vmcb
->save
.rip
, kvm_register_read(&svm
->vcpu
, VCPU_REGS_RAX
));
2694 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2698 static int wbinvd_interception(struct vcpu_svm
*svm
)
2700 kvm_emulate_wbinvd(&svm
->vcpu
);
2704 static int xsetbv_interception(struct vcpu_svm
*svm
)
2706 u64 new_bv
= kvm_read_edx_eax(&svm
->vcpu
);
2707 u32 index
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
2709 if (kvm_set_xcr(&svm
->vcpu
, index
, new_bv
) == 0) {
2710 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2711 skip_emulated_instruction(&svm
->vcpu
);
2717 static int task_switch_interception(struct vcpu_svm
*svm
)
2721 int int_type
= svm
->vmcb
->control
.exit_int_info
&
2722 SVM_EXITINTINFO_TYPE_MASK
;
2723 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
2725 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
2727 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
2728 bool has_error_code
= false;
2731 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
2733 if (svm
->vmcb
->control
.exit_info_2
&
2734 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
2735 reason
= TASK_SWITCH_IRET
;
2736 else if (svm
->vmcb
->control
.exit_info_2
&
2737 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
2738 reason
= TASK_SWITCH_JMP
;
2740 reason
= TASK_SWITCH_GATE
;
2742 reason
= TASK_SWITCH_CALL
;
2744 if (reason
== TASK_SWITCH_GATE
) {
2746 case SVM_EXITINTINFO_TYPE_NMI
:
2747 svm
->vcpu
.arch
.nmi_injected
= false;
2749 case SVM_EXITINTINFO_TYPE_EXEPT
:
2750 if (svm
->vmcb
->control
.exit_info_2
&
2751 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE
)) {
2752 has_error_code
= true;
2754 (u32
)svm
->vmcb
->control
.exit_info_2
;
2756 kvm_clear_exception_queue(&svm
->vcpu
);
2758 case SVM_EXITINTINFO_TYPE_INTR
:
2759 kvm_clear_interrupt_queue(&svm
->vcpu
);
2766 if (reason
!= TASK_SWITCH_GATE
||
2767 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
2768 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
2769 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
)))
2770 skip_emulated_instruction(&svm
->vcpu
);
2772 if (int_type
!= SVM_EXITINTINFO_TYPE_SOFT
)
2775 if (kvm_task_switch(&svm
->vcpu
, tss_selector
, int_vec
, reason
,
2776 has_error_code
, error_code
) == EMULATE_FAIL
) {
2777 svm
->vcpu
.run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
2778 svm
->vcpu
.run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
2779 svm
->vcpu
.run
->internal
.ndata
= 0;
2785 static int cpuid_interception(struct vcpu_svm
*svm
)
2787 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2788 kvm_emulate_cpuid(&svm
->vcpu
);
2792 static int iret_interception(struct vcpu_svm
*svm
)
2794 ++svm
->vcpu
.stat
.nmi_window_exits
;
2795 clr_intercept(svm
, INTERCEPT_IRET
);
2796 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
2797 svm
->nmi_iret_rip
= kvm_rip_read(&svm
->vcpu
);
2798 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
2802 static int invlpg_interception(struct vcpu_svm
*svm
)
2804 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2805 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
2807 kvm_mmu_invlpg(&svm
->vcpu
, svm
->vmcb
->control
.exit_info_1
);
2808 skip_emulated_instruction(&svm
->vcpu
);
2812 static int emulate_on_interception(struct vcpu_svm
*svm
)
2814 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
2817 static int rdpmc_interception(struct vcpu_svm
*svm
)
2821 if (!static_cpu_has(X86_FEATURE_NRIPS
))
2822 return emulate_on_interception(svm
);
2824 err
= kvm_rdpmc(&svm
->vcpu
);
2825 kvm_complete_insn_gp(&svm
->vcpu
, err
);
2830 static bool check_selective_cr0_intercepted(struct vcpu_svm
*svm
,
2833 unsigned long cr0
= svm
->vcpu
.arch
.cr0
;
2837 intercept
= svm
->nested
.intercept
;
2839 if (!is_guest_mode(&svm
->vcpu
) ||
2840 (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
))))
2843 cr0
&= ~SVM_CR0_SELECTIVE_MASK
;
2844 val
&= ~SVM_CR0_SELECTIVE_MASK
;
2847 svm
->vmcb
->control
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
2848 ret
= (nested_svm_exit_handled(svm
) == NESTED_EXIT_DONE
);
2854 #define CR_VALID (1ULL << 63)
2856 static int cr_interception(struct vcpu_svm
*svm
)
2862 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2863 return emulate_on_interception(svm
);
2865 if (unlikely((svm
->vmcb
->control
.exit_info_1
& CR_VALID
) == 0))
2866 return emulate_on_interception(svm
);
2868 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
2869 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_CR0_SEL_WRITE
)
2870 cr
= SVM_EXIT_WRITE_CR0
- SVM_EXIT_READ_CR0
;
2872 cr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_CR0
;
2875 if (cr
>= 16) { /* mov to cr */
2877 val
= kvm_register_read(&svm
->vcpu
, reg
);
2880 if (!check_selective_cr0_intercepted(svm
, val
))
2881 err
= kvm_set_cr0(&svm
->vcpu
, val
);
2887 err
= kvm_set_cr3(&svm
->vcpu
, val
);
2890 err
= kvm_set_cr4(&svm
->vcpu
, val
);
2893 err
= kvm_set_cr8(&svm
->vcpu
, val
);
2896 WARN(1, "unhandled write to CR%d", cr
);
2897 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2900 } else { /* mov from cr */
2903 val
= kvm_read_cr0(&svm
->vcpu
);
2906 val
= svm
->vcpu
.arch
.cr2
;
2909 val
= kvm_read_cr3(&svm
->vcpu
);
2912 val
= kvm_read_cr4(&svm
->vcpu
);
2915 val
= kvm_get_cr8(&svm
->vcpu
);
2918 WARN(1, "unhandled read from CR%d", cr
);
2919 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2922 kvm_register_write(&svm
->vcpu
, reg
, val
);
2924 kvm_complete_insn_gp(&svm
->vcpu
, err
);
2929 static int dr_interception(struct vcpu_svm
*svm
)
2934 if (svm
->vcpu
.guest_debug
== 0) {
2936 * No more DR vmexits; force a reload of the debug registers
2937 * and reenter on this instruction. The next vmexit will
2938 * retrieve the full state of the debug registers.
2940 clr_dr_intercepts(svm
);
2941 svm
->vcpu
.arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
2945 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS
))
2946 return emulate_on_interception(svm
);
2948 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
2949 dr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_DR0
;
2951 if (dr
>= 16) { /* mov to DRn */
2952 if (!kvm_require_dr(&svm
->vcpu
, dr
- 16))
2954 val
= kvm_register_read(&svm
->vcpu
, reg
);
2955 kvm_set_dr(&svm
->vcpu
, dr
- 16, val
);
2957 if (!kvm_require_dr(&svm
->vcpu
, dr
))
2959 kvm_get_dr(&svm
->vcpu
, dr
, &val
);
2960 kvm_register_write(&svm
->vcpu
, reg
, val
);
2963 skip_emulated_instruction(&svm
->vcpu
);
2968 static int cr8_write_interception(struct vcpu_svm
*svm
)
2970 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2973 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
2974 /* instruction emulation calls kvm_set_cr8() */
2975 r
= cr_interception(svm
);
2976 if (lapic_in_kernel(&svm
->vcpu
))
2978 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
2980 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
2984 static u64
svm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
2986 struct vmcb
*vmcb
= get_host_vmcb(to_svm(vcpu
));
2987 return vmcb
->control
.tsc_offset
+ host_tsc
;
2990 static int svm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2992 struct vcpu_svm
*svm
= to_svm(vcpu
);
2994 switch (msr_info
->index
) {
2995 case MSR_IA32_TSC
: {
2996 msr_info
->data
= svm
->vmcb
->control
.tsc_offset
+
2997 kvm_scale_tsc(vcpu
, rdtsc());
3002 msr_info
->data
= svm
->vmcb
->save
.star
;
3004 #ifdef CONFIG_X86_64
3006 msr_info
->data
= svm
->vmcb
->save
.lstar
;
3009 msr_info
->data
= svm
->vmcb
->save
.cstar
;
3011 case MSR_KERNEL_GS_BASE
:
3012 msr_info
->data
= svm
->vmcb
->save
.kernel_gs_base
;
3014 case MSR_SYSCALL_MASK
:
3015 msr_info
->data
= svm
->vmcb
->save
.sfmask
;
3018 case MSR_IA32_SYSENTER_CS
:
3019 msr_info
->data
= svm
->vmcb
->save
.sysenter_cs
;
3021 case MSR_IA32_SYSENTER_EIP
:
3022 msr_info
->data
= svm
->sysenter_eip
;
3024 case MSR_IA32_SYSENTER_ESP
:
3025 msr_info
->data
= svm
->sysenter_esp
;
3028 * Nobody will change the following 5 values in the VMCB so we can
3029 * safely return them on rdmsr. They will always be 0 until LBRV is
3032 case MSR_IA32_DEBUGCTLMSR
:
3033 msr_info
->data
= svm
->vmcb
->save
.dbgctl
;
3035 case MSR_IA32_LASTBRANCHFROMIP
:
3036 msr_info
->data
= svm
->vmcb
->save
.br_from
;
3038 case MSR_IA32_LASTBRANCHTOIP
:
3039 msr_info
->data
= svm
->vmcb
->save
.br_to
;
3041 case MSR_IA32_LASTINTFROMIP
:
3042 msr_info
->data
= svm
->vmcb
->save
.last_excp_from
;
3044 case MSR_IA32_LASTINTTOIP
:
3045 msr_info
->data
= svm
->vmcb
->save
.last_excp_to
;
3047 case MSR_VM_HSAVE_PA
:
3048 msr_info
->data
= svm
->nested
.hsave_msr
;
3051 msr_info
->data
= svm
->nested
.vm_cr_msr
;
3053 case MSR_IA32_UCODE_REV
:
3054 msr_info
->data
= 0x01000065;
3056 case MSR_F15H_IC_CFG
: {
3060 family
= guest_cpuid_family(vcpu
);
3061 model
= guest_cpuid_model(vcpu
);
3063 if (family
< 0 || model
< 0)
3064 return kvm_get_msr_common(vcpu
, msr_info
);
3068 if (family
== 0x15 &&
3069 (model
>= 0x2 && model
< 0x20))
3070 msr_info
->data
= 0x1E;
3074 return kvm_get_msr_common(vcpu
, msr_info
);
3079 static int rdmsr_interception(struct vcpu_svm
*svm
)
3081 u32 ecx
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
3082 struct msr_data msr_info
;
3084 msr_info
.index
= ecx
;
3085 msr_info
.host_initiated
= false;
3086 if (svm_get_msr(&svm
->vcpu
, &msr_info
)) {
3087 trace_kvm_msr_read_ex(ecx
);
3088 kvm_inject_gp(&svm
->vcpu
, 0);
3090 trace_kvm_msr_read(ecx
, msr_info
.data
);
3092 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
,
3093 msr_info
.data
& 0xffffffff);
3094 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RDX
,
3095 msr_info
.data
>> 32);
3096 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3097 skip_emulated_instruction(&svm
->vcpu
);
3102 static int svm_set_vm_cr(struct kvm_vcpu
*vcpu
, u64 data
)
3104 struct vcpu_svm
*svm
= to_svm(vcpu
);
3105 int svm_dis
, chg_mask
;
3107 if (data
& ~SVM_VM_CR_VALID_MASK
)
3110 chg_mask
= SVM_VM_CR_VALID_MASK
;
3112 if (svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
)
3113 chg_mask
&= ~(SVM_VM_CR_SVM_LOCK_MASK
| SVM_VM_CR_SVM_DIS_MASK
);
3115 svm
->nested
.vm_cr_msr
&= ~chg_mask
;
3116 svm
->nested
.vm_cr_msr
|= (data
& chg_mask
);
3118 svm_dis
= svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
;
3120 /* check for svm_disable while efer.svme is set */
3121 if (svm_dis
&& (vcpu
->arch
.efer
& EFER_SVME
))
3127 static int svm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
3129 struct vcpu_svm
*svm
= to_svm(vcpu
);
3131 u32 ecx
= msr
->index
;
3132 u64 data
= msr
->data
;
3135 kvm_write_tsc(vcpu
, msr
);
3138 svm
->vmcb
->save
.star
= data
;
3140 #ifdef CONFIG_X86_64
3142 svm
->vmcb
->save
.lstar
= data
;
3145 svm
->vmcb
->save
.cstar
= data
;
3147 case MSR_KERNEL_GS_BASE
:
3148 svm
->vmcb
->save
.kernel_gs_base
= data
;
3150 case MSR_SYSCALL_MASK
:
3151 svm
->vmcb
->save
.sfmask
= data
;
3154 case MSR_IA32_SYSENTER_CS
:
3155 svm
->vmcb
->save
.sysenter_cs
= data
;
3157 case MSR_IA32_SYSENTER_EIP
:
3158 svm
->sysenter_eip
= data
;
3159 svm
->vmcb
->save
.sysenter_eip
= data
;
3161 case MSR_IA32_SYSENTER_ESP
:
3162 svm
->sysenter_esp
= data
;
3163 svm
->vmcb
->save
.sysenter_esp
= data
;
3165 case MSR_IA32_DEBUGCTLMSR
:
3166 if (!boot_cpu_has(X86_FEATURE_LBRV
)) {
3167 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3171 if (data
& DEBUGCTL_RESERVED_BITS
)
3174 svm
->vmcb
->save
.dbgctl
= data
;
3175 mark_dirty(svm
->vmcb
, VMCB_LBR
);
3176 if (data
& (1ULL<<0))
3177 svm_enable_lbrv(svm
);
3179 svm_disable_lbrv(svm
);
3181 case MSR_VM_HSAVE_PA
:
3182 svm
->nested
.hsave_msr
= data
;
3185 return svm_set_vm_cr(vcpu
, data
);
3187 vcpu_unimpl(vcpu
, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
3190 return kvm_set_msr_common(vcpu
, msr
);
3195 static int wrmsr_interception(struct vcpu_svm
*svm
)
3197 struct msr_data msr
;
3198 u32 ecx
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
3199 u64 data
= kvm_read_edx_eax(&svm
->vcpu
);
3203 msr
.host_initiated
= false;
3205 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3206 if (kvm_set_msr(&svm
->vcpu
, &msr
)) {
3207 trace_kvm_msr_write_ex(ecx
, data
);
3208 kvm_inject_gp(&svm
->vcpu
, 0);
3210 trace_kvm_msr_write(ecx
, data
);
3211 skip_emulated_instruction(&svm
->vcpu
);
3216 static int msr_interception(struct vcpu_svm
*svm
)
3218 if (svm
->vmcb
->control
.exit_info_1
)
3219 return wrmsr_interception(svm
);
3221 return rdmsr_interception(svm
);
3224 static int interrupt_window_interception(struct vcpu_svm
*svm
)
3226 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3227 svm_clear_vintr(svm
);
3228 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
3229 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3230 ++svm
->vcpu
.stat
.irq_window_exits
;
3234 static int pause_interception(struct vcpu_svm
*svm
)
3236 kvm_vcpu_on_spin(&(svm
->vcpu
));
3240 static int nop_interception(struct vcpu_svm
*svm
)
3242 skip_emulated_instruction(&(svm
->vcpu
));
3246 static int monitor_interception(struct vcpu_svm
*svm
)
3248 printk_once(KERN_WARNING
"kvm: MONITOR instruction emulated as NOP!\n");
3249 return nop_interception(svm
);
3252 static int mwait_interception(struct vcpu_svm
*svm
)
3254 printk_once(KERN_WARNING
"kvm: MWAIT instruction emulated as NOP!\n");
3255 return nop_interception(svm
);
3258 static int (*const svm_exit_handlers
[])(struct vcpu_svm
*svm
) = {
3259 [SVM_EXIT_READ_CR0
] = cr_interception
,
3260 [SVM_EXIT_READ_CR3
] = cr_interception
,
3261 [SVM_EXIT_READ_CR4
] = cr_interception
,
3262 [SVM_EXIT_READ_CR8
] = cr_interception
,
3263 [SVM_EXIT_CR0_SEL_WRITE
] = cr_interception
,
3264 [SVM_EXIT_WRITE_CR0
] = cr_interception
,
3265 [SVM_EXIT_WRITE_CR3
] = cr_interception
,
3266 [SVM_EXIT_WRITE_CR4
] = cr_interception
,
3267 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
3268 [SVM_EXIT_READ_DR0
] = dr_interception
,
3269 [SVM_EXIT_READ_DR1
] = dr_interception
,
3270 [SVM_EXIT_READ_DR2
] = dr_interception
,
3271 [SVM_EXIT_READ_DR3
] = dr_interception
,
3272 [SVM_EXIT_READ_DR4
] = dr_interception
,
3273 [SVM_EXIT_READ_DR5
] = dr_interception
,
3274 [SVM_EXIT_READ_DR6
] = dr_interception
,
3275 [SVM_EXIT_READ_DR7
] = dr_interception
,
3276 [SVM_EXIT_WRITE_DR0
] = dr_interception
,
3277 [SVM_EXIT_WRITE_DR1
] = dr_interception
,
3278 [SVM_EXIT_WRITE_DR2
] = dr_interception
,
3279 [SVM_EXIT_WRITE_DR3
] = dr_interception
,
3280 [SVM_EXIT_WRITE_DR4
] = dr_interception
,
3281 [SVM_EXIT_WRITE_DR5
] = dr_interception
,
3282 [SVM_EXIT_WRITE_DR6
] = dr_interception
,
3283 [SVM_EXIT_WRITE_DR7
] = dr_interception
,
3284 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
3285 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
3286 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
3287 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
3288 [SVM_EXIT_EXCP_BASE
+ NM_VECTOR
] = nm_interception
,
3289 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
3290 [SVM_EXIT_EXCP_BASE
+ AC_VECTOR
] = ac_interception
,
3291 [SVM_EXIT_INTR
] = intr_interception
,
3292 [SVM_EXIT_NMI
] = nmi_interception
,
3293 [SVM_EXIT_SMI
] = nop_on_interception
,
3294 [SVM_EXIT_INIT
] = nop_on_interception
,
3295 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
3296 [SVM_EXIT_RDPMC
] = rdpmc_interception
,
3297 [SVM_EXIT_CPUID
] = cpuid_interception
,
3298 [SVM_EXIT_IRET
] = iret_interception
,
3299 [SVM_EXIT_INVD
] = emulate_on_interception
,
3300 [SVM_EXIT_PAUSE
] = pause_interception
,
3301 [SVM_EXIT_HLT
] = halt_interception
,
3302 [SVM_EXIT_INVLPG
] = invlpg_interception
,
3303 [SVM_EXIT_INVLPGA
] = invlpga_interception
,
3304 [SVM_EXIT_IOIO
] = io_interception
,
3305 [SVM_EXIT_MSR
] = msr_interception
,
3306 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
3307 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
3308 [SVM_EXIT_VMRUN
] = vmrun_interception
,
3309 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
3310 [SVM_EXIT_VMLOAD
] = vmload_interception
,
3311 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
3312 [SVM_EXIT_STGI
] = stgi_interception
,
3313 [SVM_EXIT_CLGI
] = clgi_interception
,
3314 [SVM_EXIT_SKINIT
] = skinit_interception
,
3315 [SVM_EXIT_WBINVD
] = wbinvd_interception
,
3316 [SVM_EXIT_MONITOR
] = monitor_interception
,
3317 [SVM_EXIT_MWAIT
] = mwait_interception
,
3318 [SVM_EXIT_XSETBV
] = xsetbv_interception
,
3319 [SVM_EXIT_NPF
] = pf_interception
,
3320 [SVM_EXIT_RSM
] = emulate_on_interception
,
3323 static void dump_vmcb(struct kvm_vcpu
*vcpu
)
3325 struct vcpu_svm
*svm
= to_svm(vcpu
);
3326 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
3327 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
3329 pr_err("VMCB Control Area:\n");
3330 pr_err("%-20s%04x\n", "cr_read:", control
->intercept_cr
& 0xffff);
3331 pr_err("%-20s%04x\n", "cr_write:", control
->intercept_cr
>> 16);
3332 pr_err("%-20s%04x\n", "dr_read:", control
->intercept_dr
& 0xffff);
3333 pr_err("%-20s%04x\n", "dr_write:", control
->intercept_dr
>> 16);
3334 pr_err("%-20s%08x\n", "exceptions:", control
->intercept_exceptions
);
3335 pr_err("%-20s%016llx\n", "intercepts:", control
->intercept
);
3336 pr_err("%-20s%d\n", "pause filter count:", control
->pause_filter_count
);
3337 pr_err("%-20s%016llx\n", "iopm_base_pa:", control
->iopm_base_pa
);
3338 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control
->msrpm_base_pa
);
3339 pr_err("%-20s%016llx\n", "tsc_offset:", control
->tsc_offset
);
3340 pr_err("%-20s%d\n", "asid:", control
->asid
);
3341 pr_err("%-20s%d\n", "tlb_ctl:", control
->tlb_ctl
);
3342 pr_err("%-20s%08x\n", "int_ctl:", control
->int_ctl
);
3343 pr_err("%-20s%08x\n", "int_vector:", control
->int_vector
);
3344 pr_err("%-20s%08x\n", "int_state:", control
->int_state
);
3345 pr_err("%-20s%08x\n", "exit_code:", control
->exit_code
);
3346 pr_err("%-20s%016llx\n", "exit_info1:", control
->exit_info_1
);
3347 pr_err("%-20s%016llx\n", "exit_info2:", control
->exit_info_2
);
3348 pr_err("%-20s%08x\n", "exit_int_info:", control
->exit_int_info
);
3349 pr_err("%-20s%08x\n", "exit_int_info_err:", control
->exit_int_info_err
);
3350 pr_err("%-20s%lld\n", "nested_ctl:", control
->nested_ctl
);
3351 pr_err("%-20s%016llx\n", "nested_cr3:", control
->nested_cr3
);
3352 pr_err("%-20s%08x\n", "event_inj:", control
->event_inj
);
3353 pr_err("%-20s%08x\n", "event_inj_err:", control
->event_inj_err
);
3354 pr_err("%-20s%lld\n", "lbr_ctl:", control
->lbr_ctl
);
3355 pr_err("%-20s%016llx\n", "next_rip:", control
->next_rip
);
3356 pr_err("VMCB State Save Area:\n");
3357 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3359 save
->es
.selector
, save
->es
.attrib
,
3360 save
->es
.limit
, save
->es
.base
);
3361 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3363 save
->cs
.selector
, save
->cs
.attrib
,
3364 save
->cs
.limit
, save
->cs
.base
);
3365 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3367 save
->ss
.selector
, save
->ss
.attrib
,
3368 save
->ss
.limit
, save
->ss
.base
);
3369 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3371 save
->ds
.selector
, save
->ds
.attrib
,
3372 save
->ds
.limit
, save
->ds
.base
);
3373 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3375 save
->fs
.selector
, save
->fs
.attrib
,
3376 save
->fs
.limit
, save
->fs
.base
);
3377 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3379 save
->gs
.selector
, save
->gs
.attrib
,
3380 save
->gs
.limit
, save
->gs
.base
);
3381 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3383 save
->gdtr
.selector
, save
->gdtr
.attrib
,
3384 save
->gdtr
.limit
, save
->gdtr
.base
);
3385 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3387 save
->ldtr
.selector
, save
->ldtr
.attrib
,
3388 save
->ldtr
.limit
, save
->ldtr
.base
);
3389 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3391 save
->idtr
.selector
, save
->idtr
.attrib
,
3392 save
->idtr
.limit
, save
->idtr
.base
);
3393 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3395 save
->tr
.selector
, save
->tr
.attrib
,
3396 save
->tr
.limit
, save
->tr
.base
);
3397 pr_err("cpl: %d efer: %016llx\n",
3398 save
->cpl
, save
->efer
);
3399 pr_err("%-15s %016llx %-13s %016llx\n",
3400 "cr0:", save
->cr0
, "cr2:", save
->cr2
);
3401 pr_err("%-15s %016llx %-13s %016llx\n",
3402 "cr3:", save
->cr3
, "cr4:", save
->cr4
);
3403 pr_err("%-15s %016llx %-13s %016llx\n",
3404 "dr6:", save
->dr6
, "dr7:", save
->dr7
);
3405 pr_err("%-15s %016llx %-13s %016llx\n",
3406 "rip:", save
->rip
, "rflags:", save
->rflags
);
3407 pr_err("%-15s %016llx %-13s %016llx\n",
3408 "rsp:", save
->rsp
, "rax:", save
->rax
);
3409 pr_err("%-15s %016llx %-13s %016llx\n",
3410 "star:", save
->star
, "lstar:", save
->lstar
);
3411 pr_err("%-15s %016llx %-13s %016llx\n",
3412 "cstar:", save
->cstar
, "sfmask:", save
->sfmask
);
3413 pr_err("%-15s %016llx %-13s %016llx\n",
3414 "kernel_gs_base:", save
->kernel_gs_base
,
3415 "sysenter_cs:", save
->sysenter_cs
);
3416 pr_err("%-15s %016llx %-13s %016llx\n",
3417 "sysenter_esp:", save
->sysenter_esp
,
3418 "sysenter_eip:", save
->sysenter_eip
);
3419 pr_err("%-15s %016llx %-13s %016llx\n",
3420 "gpat:", save
->g_pat
, "dbgctl:", save
->dbgctl
);
3421 pr_err("%-15s %016llx %-13s %016llx\n",
3422 "br_from:", save
->br_from
, "br_to:", save
->br_to
);
3423 pr_err("%-15s %016llx %-13s %016llx\n",
3424 "excp_from:", save
->last_excp_from
,
3425 "excp_to:", save
->last_excp_to
);
3428 static void svm_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
3430 struct vmcb_control_area
*control
= &to_svm(vcpu
)->vmcb
->control
;
3432 *info1
= control
->exit_info_1
;
3433 *info2
= control
->exit_info_2
;
3436 static int handle_exit(struct kvm_vcpu
*vcpu
)
3438 struct vcpu_svm
*svm
= to_svm(vcpu
);
3439 struct kvm_run
*kvm_run
= vcpu
->run
;
3440 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
3442 trace_kvm_exit(exit_code
, vcpu
, KVM_ISA_SVM
);
3444 if (!is_cr_intercept(svm
, INTERCEPT_CR0_WRITE
))
3445 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
3447 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
3449 if (unlikely(svm
->nested
.exit_required
)) {
3450 nested_svm_vmexit(svm
);
3451 svm
->nested
.exit_required
= false;
3456 if (is_guest_mode(vcpu
)) {
3459 trace_kvm_nested_vmexit(svm
->vmcb
->save
.rip
, exit_code
,
3460 svm
->vmcb
->control
.exit_info_1
,
3461 svm
->vmcb
->control
.exit_info_2
,
3462 svm
->vmcb
->control
.exit_int_info
,
3463 svm
->vmcb
->control
.exit_int_info_err
,
3466 vmexit
= nested_svm_exit_special(svm
);
3468 if (vmexit
== NESTED_EXIT_CONTINUE
)
3469 vmexit
= nested_svm_exit_handled(svm
);
3471 if (vmexit
== NESTED_EXIT_DONE
)
3475 svm_complete_interrupts(svm
);
3477 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
3478 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3479 kvm_run
->fail_entry
.hardware_entry_failure_reason
3480 = svm
->vmcb
->control
.exit_code
;
3481 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3486 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
3487 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
3488 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
&&
3489 exit_code
!= SVM_EXIT_INTR
&& exit_code
!= SVM_EXIT_NMI
)
3490 printk(KERN_ERR
"%s: unexpected exit_int_info 0x%x "
3492 __func__
, svm
->vmcb
->control
.exit_int_info
,
3495 if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
3496 || !svm_exit_handlers
[exit_code
]) {
3497 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code
);
3498 kvm_queue_exception(vcpu
, UD_VECTOR
);
3502 return svm_exit_handlers
[exit_code
](svm
);
3505 static void reload_tss(struct kvm_vcpu
*vcpu
)
3507 int cpu
= raw_smp_processor_id();
3509 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
3510 sd
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
3514 static void pre_svm_run(struct vcpu_svm
*svm
)
3516 int cpu
= raw_smp_processor_id();
3518 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
3520 /* FIXME: handle wraparound of asid_generation */
3521 if (svm
->asid_generation
!= sd
->asid_generation
)
3525 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
3527 struct vcpu_svm
*svm
= to_svm(vcpu
);
3529 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
3530 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
3531 set_intercept(svm
, INTERCEPT_IRET
);
3532 ++vcpu
->stat
.nmi_injections
;
3535 static inline void svm_inject_irq(struct vcpu_svm
*svm
, int irq
)
3537 struct vmcb_control_area
*control
;
3539 control
= &svm
->vmcb
->control
;
3540 control
->int_vector
= irq
;
3541 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
3542 control
->int_ctl
|= V_IRQ_MASK
|
3543 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
3544 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3547 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
3549 struct vcpu_svm
*svm
= to_svm(vcpu
);
3551 BUG_ON(!(gif_set(svm
)));
3553 trace_kvm_inj_virq(vcpu
->arch
.interrupt
.nr
);
3554 ++vcpu
->stat
.irq_injections
;
3556 svm
->vmcb
->control
.event_inj
= vcpu
->arch
.interrupt
.nr
|
3557 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
3560 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
3562 struct vcpu_svm
*svm
= to_svm(vcpu
);
3564 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3567 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3573 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3576 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu
*vcpu
, bool set
)
3581 static int svm_cpu_uses_apicv(struct kvm_vcpu
*vcpu
)
3586 static void svm_load_eoi_exitmap(struct kvm_vcpu
*vcpu
)
3591 static void svm_sync_pir_to_irr(struct kvm_vcpu
*vcpu
)
3596 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
3598 struct vcpu_svm
*svm
= to_svm(vcpu
);
3599 struct vmcb
*vmcb
= svm
->vmcb
;
3601 ret
= !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
3602 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3603 ret
= ret
&& gif_set(svm
) && nested_svm_nmi(svm
);
3608 static bool svm_get_nmi_mask(struct kvm_vcpu
*vcpu
)
3610 struct vcpu_svm
*svm
= to_svm(vcpu
);
3612 return !!(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3615 static void svm_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
3617 struct vcpu_svm
*svm
= to_svm(vcpu
);
3620 svm
->vcpu
.arch
.hflags
|= HF_NMI_MASK
;
3621 set_intercept(svm
, INTERCEPT_IRET
);
3623 svm
->vcpu
.arch
.hflags
&= ~HF_NMI_MASK
;
3624 clr_intercept(svm
, INTERCEPT_IRET
);
3628 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
3630 struct vcpu_svm
*svm
= to_svm(vcpu
);
3631 struct vmcb
*vmcb
= svm
->vmcb
;
3634 if (!gif_set(svm
) ||
3635 (vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
))
3638 ret
= !!(kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
);
3640 if (is_guest_mode(vcpu
))
3641 return ret
&& !(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
);
3646 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
3648 struct vcpu_svm
*svm
= to_svm(vcpu
);
3651 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3652 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3653 * get that intercept, this function will be called again though and
3654 * we'll get the vintr intercept.
3656 if (gif_set(svm
) && nested_svm_intr(svm
)) {
3658 svm_inject_irq(svm
, 0x0);
3662 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
3664 struct vcpu_svm
*svm
= to_svm(vcpu
);
3666 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
3668 return; /* IRET will cause a vm exit */
3671 * Something prevents NMI from been injected. Single step over possible
3672 * problem (IRET or exception injection or interrupt shadow)
3674 svm
->nmi_singlestep
= true;
3675 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3678 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
3683 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
)
3685 struct vcpu_svm
*svm
= to_svm(vcpu
);
3687 if (static_cpu_has(X86_FEATURE_FLUSHBYASID
))
3688 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ASID
;
3690 svm
->asid_generation
--;
3693 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
3697 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
3699 struct vcpu_svm
*svm
= to_svm(vcpu
);
3701 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3704 if (!is_cr_intercept(svm
, INTERCEPT_CR8_WRITE
)) {
3705 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
3706 kvm_set_cr8(vcpu
, cr8
);
3710 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
3712 struct vcpu_svm
*svm
= to_svm(vcpu
);
3715 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3718 cr8
= kvm_get_cr8(vcpu
);
3719 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
3720 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
3723 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
3727 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
3728 unsigned int3_injected
= svm
->int3_injected
;
3730 svm
->int3_injected
= 0;
3733 * If we've made progress since setting HF_IRET_MASK, we've
3734 * executed an IRET and can allow NMI injection.
3736 if ((svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
3737 && kvm_rip_read(&svm
->vcpu
) != svm
->nmi_iret_rip
) {
3738 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
3739 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3742 svm
->vcpu
.arch
.nmi_injected
= false;
3743 kvm_clear_exception_queue(&svm
->vcpu
);
3744 kvm_clear_interrupt_queue(&svm
->vcpu
);
3746 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
3749 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3751 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
3752 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
3755 case SVM_EXITINTINFO_TYPE_NMI
:
3756 svm
->vcpu
.arch
.nmi_injected
= true;
3758 case SVM_EXITINTINFO_TYPE_EXEPT
:
3760 * In case of software exceptions, do not reinject the vector,
3761 * but re-execute the instruction instead. Rewind RIP first
3762 * if we emulated INT3 before.
3764 if (kvm_exception_is_soft(vector
)) {
3765 if (vector
== BP_VECTOR
&& int3_injected
&&
3766 kvm_is_linear_rip(&svm
->vcpu
, svm
->int3_rip
))
3767 kvm_rip_write(&svm
->vcpu
,
3768 kvm_rip_read(&svm
->vcpu
) -
3772 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
3773 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
3774 kvm_requeue_exception_e(&svm
->vcpu
, vector
, err
);
3777 kvm_requeue_exception(&svm
->vcpu
, vector
);
3779 case SVM_EXITINTINFO_TYPE_INTR
:
3780 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
3787 static void svm_cancel_injection(struct kvm_vcpu
*vcpu
)
3789 struct vcpu_svm
*svm
= to_svm(vcpu
);
3790 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
3792 control
->exit_int_info
= control
->event_inj
;
3793 control
->exit_int_info_err
= control
->event_inj_err
;
3794 control
->event_inj
= 0;
3795 svm_complete_interrupts(svm
);
3798 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
)
3800 struct vcpu_svm
*svm
= to_svm(vcpu
);
3802 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
3803 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
3804 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
3807 * A vmexit emulation is required before the vcpu can be executed
3810 if (unlikely(svm
->nested
.exit_required
))
3815 sync_lapic_to_cr8(vcpu
);
3817 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
3824 "push %%" _ASM_BP
"; \n\t"
3825 "mov %c[rbx](%[svm]), %%" _ASM_BX
" \n\t"
3826 "mov %c[rcx](%[svm]), %%" _ASM_CX
" \n\t"
3827 "mov %c[rdx](%[svm]), %%" _ASM_DX
" \n\t"
3828 "mov %c[rsi](%[svm]), %%" _ASM_SI
" \n\t"
3829 "mov %c[rdi](%[svm]), %%" _ASM_DI
" \n\t"
3830 "mov %c[rbp](%[svm]), %%" _ASM_BP
" \n\t"
3831 #ifdef CONFIG_X86_64
3832 "mov %c[r8](%[svm]), %%r8 \n\t"
3833 "mov %c[r9](%[svm]), %%r9 \n\t"
3834 "mov %c[r10](%[svm]), %%r10 \n\t"
3835 "mov %c[r11](%[svm]), %%r11 \n\t"
3836 "mov %c[r12](%[svm]), %%r12 \n\t"
3837 "mov %c[r13](%[svm]), %%r13 \n\t"
3838 "mov %c[r14](%[svm]), %%r14 \n\t"
3839 "mov %c[r15](%[svm]), %%r15 \n\t"
3842 /* Enter guest mode */
3843 "push %%" _ASM_AX
" \n\t"
3844 "mov %c[vmcb](%[svm]), %%" _ASM_AX
" \n\t"
3845 __ex(SVM_VMLOAD
) "\n\t"
3846 __ex(SVM_VMRUN
) "\n\t"
3847 __ex(SVM_VMSAVE
) "\n\t"
3848 "pop %%" _ASM_AX
" \n\t"
3850 /* Save guest registers, load host registers */
3851 "mov %%" _ASM_BX
", %c[rbx](%[svm]) \n\t"
3852 "mov %%" _ASM_CX
", %c[rcx](%[svm]) \n\t"
3853 "mov %%" _ASM_DX
", %c[rdx](%[svm]) \n\t"
3854 "mov %%" _ASM_SI
", %c[rsi](%[svm]) \n\t"
3855 "mov %%" _ASM_DI
", %c[rdi](%[svm]) \n\t"
3856 "mov %%" _ASM_BP
", %c[rbp](%[svm]) \n\t"
3857 #ifdef CONFIG_X86_64
3858 "mov %%r8, %c[r8](%[svm]) \n\t"
3859 "mov %%r9, %c[r9](%[svm]) \n\t"
3860 "mov %%r10, %c[r10](%[svm]) \n\t"
3861 "mov %%r11, %c[r11](%[svm]) \n\t"
3862 "mov %%r12, %c[r12](%[svm]) \n\t"
3863 "mov %%r13, %c[r13](%[svm]) \n\t"
3864 "mov %%r14, %c[r14](%[svm]) \n\t"
3865 "mov %%r15, %c[r15](%[svm]) \n\t"
3870 [vmcb
]"i"(offsetof(struct vcpu_svm
, vmcb_pa
)),
3871 [rbx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
3872 [rcx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
3873 [rdx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
3874 [rsi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
3875 [rdi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
3876 [rbp
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBP
]))
3877 #ifdef CONFIG_X86_64
3878 , [r8
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
3879 [r9
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
3880 [r10
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
3881 [r11
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
3882 [r12
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
3883 [r13
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
3884 [r14
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
3885 [r15
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R15
]))
3888 #ifdef CONFIG_X86_64
3889 , "rbx", "rcx", "rdx", "rsi", "rdi"
3890 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3892 , "ebx", "ecx", "edx", "esi", "edi"
3896 #ifdef CONFIG_X86_64
3897 wrmsrl(MSR_GS_BASE
, svm
->host
.gs_base
);
3899 loadsegment(fs
, svm
->host
.fs
);
3900 #ifndef CONFIG_X86_32_LAZY_GS
3901 loadsegment(gs
, svm
->host
.gs
);
3907 local_irq_disable();
3909 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
3910 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
3911 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
3912 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
3914 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3915 kvm_before_handle_nmi(&svm
->vcpu
);
3919 /* Any pending NMI will happen here */
3921 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3922 kvm_after_handle_nmi(&svm
->vcpu
);
3924 sync_cr8_to_lapic(vcpu
);
3928 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
3930 /* if exit due to PF check for async PF */
3931 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
)
3932 svm
->apf_reason
= kvm_read_and_reset_pf_reason();
3935 vcpu
->arch
.regs_avail
&= ~(1 << VCPU_EXREG_PDPTR
);
3936 vcpu
->arch
.regs_dirty
&= ~(1 << VCPU_EXREG_PDPTR
);
3940 * We need to handle MC intercepts here before the vcpu has a chance to
3941 * change the physical cpu
3943 if (unlikely(svm
->vmcb
->control
.exit_code
==
3944 SVM_EXIT_EXCP_BASE
+ MC_VECTOR
))
3945 svm_handle_mce(svm
);
3947 mark_all_clean(svm
->vmcb
);
3950 static void svm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
3952 struct vcpu_svm
*svm
= to_svm(vcpu
);
3954 svm
->vmcb
->save
.cr3
= root
;
3955 mark_dirty(svm
->vmcb
, VMCB_CR
);
3956 svm_flush_tlb(vcpu
);
3959 static void set_tdp_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
3961 struct vcpu_svm
*svm
= to_svm(vcpu
);
3963 svm
->vmcb
->control
.nested_cr3
= root
;
3964 mark_dirty(svm
->vmcb
, VMCB_NPT
);
3966 /* Also sync guest cr3 here in case we live migrate */
3967 svm
->vmcb
->save
.cr3
= kvm_read_cr3(vcpu
);
3968 mark_dirty(svm
->vmcb
, VMCB_CR
);
3970 svm_flush_tlb(vcpu
);
3973 static int is_disabled(void)
3977 rdmsrl(MSR_VM_CR
, vm_cr
);
3978 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
3985 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
3988 * Patch in the VMMCALL instruction:
3990 hypercall
[0] = 0x0f;
3991 hypercall
[1] = 0x01;
3992 hypercall
[2] = 0xd9;
3995 static void svm_check_processor_compat(void *rtn
)
4000 static bool svm_cpu_has_accelerated_tpr(void)
4005 static bool svm_has_high_real_mode_segbase(void)
4010 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
4015 static void svm_cpuid_update(struct kvm_vcpu
*vcpu
)
4017 struct vcpu_svm
*svm
= to_svm(vcpu
);
4019 /* Update nrips enabled cache */
4020 svm
->nrips_enabled
= !!guest_cpuid_has_nrips(&svm
->vcpu
);
4023 static void svm_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
4028 entry
->ecx
|= (1 << 2); /* Set SVM bit */
4031 entry
->eax
= 1; /* SVM revision 1 */
4032 entry
->ebx
= 8; /* Lets support 8 ASIDs in case we add proper
4033 ASID emulation to nested SVM */
4034 entry
->ecx
= 0; /* Reserved */
4035 entry
->edx
= 0; /* Per default do not support any
4036 additional features */
4038 /* Support next_rip if host supports it */
4039 if (boot_cpu_has(X86_FEATURE_NRIPS
))
4040 entry
->edx
|= SVM_FEATURE_NRIP
;
4042 /* Support NPT for the guest if enabled */
4044 entry
->edx
|= SVM_FEATURE_NPT
;
4050 static int svm_get_lpage_level(void)
4052 return PT_PDPE_LEVEL
;
4055 static bool svm_rdtscp_supported(void)
4060 static bool svm_invpcid_supported(void)
4065 static bool svm_mpx_supported(void)
4070 static bool svm_xsaves_supported(void)
4075 static bool svm_has_wbinvd_exit(void)
4080 static void svm_fpu_deactivate(struct kvm_vcpu
*vcpu
)
4082 struct vcpu_svm
*svm
= to_svm(vcpu
);
4084 set_exception_intercept(svm
, NM_VECTOR
);
4085 update_cr0_intercept(svm
);
4088 #define PRE_EX(exit) { .exit_code = (exit), \
4089 .stage = X86_ICPT_PRE_EXCEPT, }
4090 #define POST_EX(exit) { .exit_code = (exit), \
4091 .stage = X86_ICPT_POST_EXCEPT, }
4092 #define POST_MEM(exit) { .exit_code = (exit), \
4093 .stage = X86_ICPT_POST_MEMACCESS, }
4095 static const struct __x86_intercept
{
4097 enum x86_intercept_stage stage
;
4098 } x86_intercept_map
[] = {
4099 [x86_intercept_cr_read
] = POST_EX(SVM_EXIT_READ_CR0
),
4100 [x86_intercept_cr_write
] = POST_EX(SVM_EXIT_WRITE_CR0
),
4101 [x86_intercept_clts
] = POST_EX(SVM_EXIT_WRITE_CR0
),
4102 [x86_intercept_lmsw
] = POST_EX(SVM_EXIT_WRITE_CR0
),
4103 [x86_intercept_smsw
] = POST_EX(SVM_EXIT_READ_CR0
),
4104 [x86_intercept_dr_read
] = POST_EX(SVM_EXIT_READ_DR0
),
4105 [x86_intercept_dr_write
] = POST_EX(SVM_EXIT_WRITE_DR0
),
4106 [x86_intercept_sldt
] = POST_EX(SVM_EXIT_LDTR_READ
),
4107 [x86_intercept_str
] = POST_EX(SVM_EXIT_TR_READ
),
4108 [x86_intercept_lldt
] = POST_EX(SVM_EXIT_LDTR_WRITE
),
4109 [x86_intercept_ltr
] = POST_EX(SVM_EXIT_TR_WRITE
),
4110 [x86_intercept_sgdt
] = POST_EX(SVM_EXIT_GDTR_READ
),
4111 [x86_intercept_sidt
] = POST_EX(SVM_EXIT_IDTR_READ
),
4112 [x86_intercept_lgdt
] = POST_EX(SVM_EXIT_GDTR_WRITE
),
4113 [x86_intercept_lidt
] = POST_EX(SVM_EXIT_IDTR_WRITE
),
4114 [x86_intercept_vmrun
] = POST_EX(SVM_EXIT_VMRUN
),
4115 [x86_intercept_vmmcall
] = POST_EX(SVM_EXIT_VMMCALL
),
4116 [x86_intercept_vmload
] = POST_EX(SVM_EXIT_VMLOAD
),
4117 [x86_intercept_vmsave
] = POST_EX(SVM_EXIT_VMSAVE
),
4118 [x86_intercept_stgi
] = POST_EX(SVM_EXIT_STGI
),
4119 [x86_intercept_clgi
] = POST_EX(SVM_EXIT_CLGI
),
4120 [x86_intercept_skinit
] = POST_EX(SVM_EXIT_SKINIT
),
4121 [x86_intercept_invlpga
] = POST_EX(SVM_EXIT_INVLPGA
),
4122 [x86_intercept_rdtscp
] = POST_EX(SVM_EXIT_RDTSCP
),
4123 [x86_intercept_monitor
] = POST_MEM(SVM_EXIT_MONITOR
),
4124 [x86_intercept_mwait
] = POST_EX(SVM_EXIT_MWAIT
),
4125 [x86_intercept_invlpg
] = POST_EX(SVM_EXIT_INVLPG
),
4126 [x86_intercept_invd
] = POST_EX(SVM_EXIT_INVD
),
4127 [x86_intercept_wbinvd
] = POST_EX(SVM_EXIT_WBINVD
),
4128 [x86_intercept_wrmsr
] = POST_EX(SVM_EXIT_MSR
),
4129 [x86_intercept_rdtsc
] = POST_EX(SVM_EXIT_RDTSC
),
4130 [x86_intercept_rdmsr
] = POST_EX(SVM_EXIT_MSR
),
4131 [x86_intercept_rdpmc
] = POST_EX(SVM_EXIT_RDPMC
),
4132 [x86_intercept_cpuid
] = PRE_EX(SVM_EXIT_CPUID
),
4133 [x86_intercept_rsm
] = PRE_EX(SVM_EXIT_RSM
),
4134 [x86_intercept_pause
] = PRE_EX(SVM_EXIT_PAUSE
),
4135 [x86_intercept_pushf
] = PRE_EX(SVM_EXIT_PUSHF
),
4136 [x86_intercept_popf
] = PRE_EX(SVM_EXIT_POPF
),
4137 [x86_intercept_intn
] = PRE_EX(SVM_EXIT_SWINT
),
4138 [x86_intercept_iret
] = PRE_EX(SVM_EXIT_IRET
),
4139 [x86_intercept_icebp
] = PRE_EX(SVM_EXIT_ICEBP
),
4140 [x86_intercept_hlt
] = POST_EX(SVM_EXIT_HLT
),
4141 [x86_intercept_in
] = POST_EX(SVM_EXIT_IOIO
),
4142 [x86_intercept_ins
] = POST_EX(SVM_EXIT_IOIO
),
4143 [x86_intercept_out
] = POST_EX(SVM_EXIT_IOIO
),
4144 [x86_intercept_outs
] = POST_EX(SVM_EXIT_IOIO
),
4151 static int svm_check_intercept(struct kvm_vcpu
*vcpu
,
4152 struct x86_instruction_info
*info
,
4153 enum x86_intercept_stage stage
)
4155 struct vcpu_svm
*svm
= to_svm(vcpu
);
4156 int vmexit
, ret
= X86EMUL_CONTINUE
;
4157 struct __x86_intercept icpt_info
;
4158 struct vmcb
*vmcb
= svm
->vmcb
;
4160 if (info
->intercept
>= ARRAY_SIZE(x86_intercept_map
))
4163 icpt_info
= x86_intercept_map
[info
->intercept
];
4165 if (stage
!= icpt_info
.stage
)
4168 switch (icpt_info
.exit_code
) {
4169 case SVM_EXIT_READ_CR0
:
4170 if (info
->intercept
== x86_intercept_cr_read
)
4171 icpt_info
.exit_code
+= info
->modrm_reg
;
4173 case SVM_EXIT_WRITE_CR0
: {
4174 unsigned long cr0
, val
;
4177 if (info
->intercept
== x86_intercept_cr_write
)
4178 icpt_info
.exit_code
+= info
->modrm_reg
;
4180 if (icpt_info
.exit_code
!= SVM_EXIT_WRITE_CR0
||
4181 info
->intercept
== x86_intercept_clts
)
4184 intercept
= svm
->nested
.intercept
;
4186 if (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
)))
4189 cr0
= vcpu
->arch
.cr0
& ~SVM_CR0_SELECTIVE_MASK
;
4190 val
= info
->src_val
& ~SVM_CR0_SELECTIVE_MASK
;
4192 if (info
->intercept
== x86_intercept_lmsw
) {
4195 /* lmsw can't clear PE - catch this here */
4196 if (cr0
& X86_CR0_PE
)
4201 icpt_info
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
4205 case SVM_EXIT_READ_DR0
:
4206 case SVM_EXIT_WRITE_DR0
:
4207 icpt_info
.exit_code
+= info
->modrm_reg
;
4210 if (info
->intercept
== x86_intercept_wrmsr
)
4211 vmcb
->control
.exit_info_1
= 1;
4213 vmcb
->control
.exit_info_1
= 0;
4215 case SVM_EXIT_PAUSE
:
4217 * We get this for NOP only, but pause
4218 * is rep not, check this here
4220 if (info
->rep_prefix
!= REPE_PREFIX
)
4222 case SVM_EXIT_IOIO
: {
4226 if (info
->intercept
== x86_intercept_in
||
4227 info
->intercept
== x86_intercept_ins
) {
4228 exit_info
= ((info
->src_val
& 0xffff) << 16) |
4230 bytes
= info
->dst_bytes
;
4232 exit_info
= (info
->dst_val
& 0xffff) << 16;
4233 bytes
= info
->src_bytes
;
4236 if (info
->intercept
== x86_intercept_outs
||
4237 info
->intercept
== x86_intercept_ins
)
4238 exit_info
|= SVM_IOIO_STR_MASK
;
4240 if (info
->rep_prefix
)
4241 exit_info
|= SVM_IOIO_REP_MASK
;
4243 bytes
= min(bytes
, 4u);
4245 exit_info
|= bytes
<< SVM_IOIO_SIZE_SHIFT
;
4247 exit_info
|= (u32
)info
->ad_bytes
<< (SVM_IOIO_ASIZE_SHIFT
- 1);
4249 vmcb
->control
.exit_info_1
= exit_info
;
4250 vmcb
->control
.exit_info_2
= info
->next_rip
;
4258 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4259 if (static_cpu_has(X86_FEATURE_NRIPS
))
4260 vmcb
->control
.next_rip
= info
->next_rip
;
4261 vmcb
->control
.exit_code
= icpt_info
.exit_code
;
4262 vmexit
= nested_svm_exit_handled(svm
);
4264 ret
= (vmexit
== NESTED_EXIT_DONE
) ? X86EMUL_INTERCEPTED
4271 static void svm_handle_external_intr(struct kvm_vcpu
*vcpu
)
4276 static void svm_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
4280 static struct kvm_x86_ops svm_x86_ops
= {
4281 .cpu_has_kvm_support
= has_svm
,
4282 .disabled_by_bios
= is_disabled
,
4283 .hardware_setup
= svm_hardware_setup
,
4284 .hardware_unsetup
= svm_hardware_unsetup
,
4285 .check_processor_compatibility
= svm_check_processor_compat
,
4286 .hardware_enable
= svm_hardware_enable
,
4287 .hardware_disable
= svm_hardware_disable
,
4288 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
4289 .cpu_has_high_real_mode_segbase
= svm_has_high_real_mode_segbase
,
4291 .vcpu_create
= svm_create_vcpu
,
4292 .vcpu_free
= svm_free_vcpu
,
4293 .vcpu_reset
= svm_vcpu_reset
,
4295 .prepare_guest_switch
= svm_prepare_guest_switch
,
4296 .vcpu_load
= svm_vcpu_load
,
4297 .vcpu_put
= svm_vcpu_put
,
4299 .update_bp_intercept
= update_bp_intercept
,
4300 .get_msr
= svm_get_msr
,
4301 .set_msr
= svm_set_msr
,
4302 .get_segment_base
= svm_get_segment_base
,
4303 .get_segment
= svm_get_segment
,
4304 .set_segment
= svm_set_segment
,
4305 .get_cpl
= svm_get_cpl
,
4306 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
4307 .decache_cr0_guest_bits
= svm_decache_cr0_guest_bits
,
4308 .decache_cr3
= svm_decache_cr3
,
4309 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
4310 .set_cr0
= svm_set_cr0
,
4311 .set_cr3
= svm_set_cr3
,
4312 .set_cr4
= svm_set_cr4
,
4313 .set_efer
= svm_set_efer
,
4314 .get_idt
= svm_get_idt
,
4315 .set_idt
= svm_set_idt
,
4316 .get_gdt
= svm_get_gdt
,
4317 .set_gdt
= svm_set_gdt
,
4318 .get_dr6
= svm_get_dr6
,
4319 .set_dr6
= svm_set_dr6
,
4320 .set_dr7
= svm_set_dr7
,
4321 .sync_dirty_debug_regs
= svm_sync_dirty_debug_regs
,
4322 .cache_reg
= svm_cache_reg
,
4323 .get_rflags
= svm_get_rflags
,
4324 .set_rflags
= svm_set_rflags
,
4325 .fpu_activate
= svm_fpu_activate
,
4326 .fpu_deactivate
= svm_fpu_deactivate
,
4328 .tlb_flush
= svm_flush_tlb
,
4330 .run
= svm_vcpu_run
,
4331 .handle_exit
= handle_exit
,
4332 .skip_emulated_instruction
= skip_emulated_instruction
,
4333 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
4334 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
4335 .patch_hypercall
= svm_patch_hypercall
,
4336 .set_irq
= svm_set_irq
,
4337 .set_nmi
= svm_inject_nmi
,
4338 .queue_exception
= svm_queue_exception
,
4339 .cancel_injection
= svm_cancel_injection
,
4340 .interrupt_allowed
= svm_interrupt_allowed
,
4341 .nmi_allowed
= svm_nmi_allowed
,
4342 .get_nmi_mask
= svm_get_nmi_mask
,
4343 .set_nmi_mask
= svm_set_nmi_mask
,
4344 .enable_nmi_window
= enable_nmi_window
,
4345 .enable_irq_window
= enable_irq_window
,
4346 .update_cr8_intercept
= update_cr8_intercept
,
4347 .set_virtual_x2apic_mode
= svm_set_virtual_x2apic_mode
,
4348 .cpu_uses_apicv
= svm_cpu_uses_apicv
,
4349 .load_eoi_exitmap
= svm_load_eoi_exitmap
,
4350 .sync_pir_to_irr
= svm_sync_pir_to_irr
,
4352 .set_tss_addr
= svm_set_tss_addr
,
4353 .get_tdp_level
= get_npt_level
,
4354 .get_mt_mask
= svm_get_mt_mask
,
4356 .get_exit_info
= svm_get_exit_info
,
4358 .get_lpage_level
= svm_get_lpage_level
,
4360 .cpuid_update
= svm_cpuid_update
,
4362 .rdtscp_supported
= svm_rdtscp_supported
,
4363 .invpcid_supported
= svm_invpcid_supported
,
4364 .mpx_supported
= svm_mpx_supported
,
4365 .xsaves_supported
= svm_xsaves_supported
,
4367 .set_supported_cpuid
= svm_set_supported_cpuid
,
4369 .has_wbinvd_exit
= svm_has_wbinvd_exit
,
4371 .read_tsc_offset
= svm_read_tsc_offset
,
4372 .write_tsc_offset
= svm_write_tsc_offset
,
4373 .adjust_tsc_offset_guest
= svm_adjust_tsc_offset_guest
,
4374 .read_l1_tsc
= svm_read_l1_tsc
,
4376 .set_tdp_cr3
= set_tdp_cr3
,
4378 .check_intercept
= svm_check_intercept
,
4379 .handle_external_intr
= svm_handle_external_intr
,
4381 .sched_in
= svm_sched_in
,
4383 .pmu_ops
= &amd_pmu_ops
,
4386 static int __init
svm_init(void)
4388 return kvm_init(&svm_x86_ops
, sizeof(struct vcpu_svm
),
4389 __alignof__(struct vcpu_svm
), THIS_MODULE
);
4392 static void __exit
svm_exit(void)
4397 module_init(svm_init
)
4398 module_exit(svm_exit
)