2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/trace_events.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
42 #include <asm/virtext.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
49 #include <asm/irq_remapping.h>
54 #define __ex(x) __kvm_handle_fault_on_reboot(x)
55 #define __ex_clear(x, reg) \
56 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
58 MODULE_AUTHOR("Qumranet");
59 MODULE_LICENSE("GPL");
61 static const struct x86_cpu_id vmx_cpu_id
[] = {
62 X86_FEATURE_MATCH(X86_FEATURE_VMX
),
65 MODULE_DEVICE_TABLE(x86cpu
, vmx_cpu_id
);
67 static bool __read_mostly enable_vpid
= 1;
68 module_param_named(vpid
, enable_vpid
, bool, 0444);
70 static bool __read_mostly flexpriority_enabled
= 1;
71 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
73 static bool __read_mostly enable_ept
= 1;
74 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
76 static bool __read_mostly enable_unrestricted_guest
= 1;
77 module_param_named(unrestricted_guest
,
78 enable_unrestricted_guest
, bool, S_IRUGO
);
80 static bool __read_mostly enable_ept_ad_bits
= 1;
81 module_param_named(eptad
, enable_ept_ad_bits
, bool, S_IRUGO
);
83 static bool __read_mostly emulate_invalid_guest_state
= true;
84 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
86 static bool __read_mostly vmm_exclusive
= 1;
87 module_param(vmm_exclusive
, bool, S_IRUGO
);
89 static bool __read_mostly fasteoi
= 1;
90 module_param(fasteoi
, bool, S_IRUGO
);
92 static bool __read_mostly enable_apicv
= 1;
93 module_param(enable_apicv
, bool, S_IRUGO
);
95 static bool __read_mostly enable_shadow_vmcs
= 1;
96 module_param_named(enable_shadow_vmcs
, enable_shadow_vmcs
, bool, S_IRUGO
);
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
102 static bool __read_mostly nested
= 0;
103 module_param(nested
, bool, S_IRUGO
);
105 static u64 __read_mostly host_xss
;
107 static bool __read_mostly enable_pml
= 1;
108 module_param_named(pml
, enable_pml
, bool, S_IRUGO
);
110 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
112 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
113 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
114 #define KVM_VM_CR0_ALWAYS_ON \
115 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
116 #define KVM_CR4_GUEST_OWNED_BITS \
117 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
118 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
120 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
121 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
123 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
125 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
128 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
129 * ple_gap: upper bound on the amount of time between two successive
130 * executions of PAUSE in a loop. Also indicate if ple enabled.
131 * According to test, this time is usually smaller than 128 cycles.
132 * ple_window: upper bound on the amount of time a guest is allowed to execute
133 * in a PAUSE loop. Tests indicate that most spinlocks are held for
134 * less than 2^12 cycles
135 * Time is measured based on a counter that runs at the same rate as the TSC,
136 * refer SDM volume 3b section 21.6.13 & 22.1.3.
138 #define KVM_VMX_DEFAULT_PLE_GAP 128
139 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
140 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
141 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
142 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
143 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
145 static int ple_gap
= KVM_VMX_DEFAULT_PLE_GAP
;
146 module_param(ple_gap
, int, S_IRUGO
);
148 static int ple_window
= KVM_VMX_DEFAULT_PLE_WINDOW
;
149 module_param(ple_window
, int, S_IRUGO
);
151 /* Default doubles per-vcpu window every exit. */
152 static int ple_window_grow
= KVM_VMX_DEFAULT_PLE_WINDOW_GROW
;
153 module_param(ple_window_grow
, int, S_IRUGO
);
155 /* Default resets per-vcpu window every exit to ple_window. */
156 static int ple_window_shrink
= KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK
;
157 module_param(ple_window_shrink
, int, S_IRUGO
);
159 /* Default is to compute the maximum so we can never overflow. */
160 static int ple_window_actual_max
= KVM_VMX_DEFAULT_PLE_WINDOW_MAX
;
161 static int ple_window_max
= KVM_VMX_DEFAULT_PLE_WINDOW_MAX
;
162 module_param(ple_window_max
, int, S_IRUGO
);
164 extern const ulong vmx_return
;
166 #define NR_AUTOLOAD_MSRS 8
167 #define VMCS02_POOL_SIZE 1
176 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
177 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
178 * loaded on this CPU (so we can clear them if the CPU goes down).
184 struct list_head loaded_vmcss_on_cpu_link
;
187 struct shared_msr_entry
{
194 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
195 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
196 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
197 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
198 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
199 * More than one of these structures may exist, if L1 runs multiple L2 guests.
200 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
201 * underlying hardware which will be used to run L2.
202 * This structure is packed to ensure that its layout is identical across
203 * machines (necessary for live migration).
204 * If there are changes in this struct, VMCS12_REVISION must be changed.
206 typedef u64 natural_width
;
207 struct __packed vmcs12
{
208 /* According to the Intel spec, a VMCS region must start with the
209 * following two fields. Then follow implementation-specific data.
214 u32 launch_state
; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
215 u32 padding
[7]; /* room for future expansion */
220 u64 vm_exit_msr_store_addr
;
221 u64 vm_exit_msr_load_addr
;
222 u64 vm_entry_msr_load_addr
;
224 u64 virtual_apic_page_addr
;
225 u64 apic_access_addr
;
226 u64 posted_intr_desc_addr
;
228 u64 eoi_exit_bitmap0
;
229 u64 eoi_exit_bitmap1
;
230 u64 eoi_exit_bitmap2
;
231 u64 eoi_exit_bitmap3
;
233 u64 guest_physical_address
;
234 u64 vmcs_link_pointer
;
235 u64 guest_ia32_debugctl
;
238 u64 guest_ia32_perf_global_ctrl
;
246 u64 host_ia32_perf_global_ctrl
;
247 u64 padding64
[8]; /* room for future expansion */
249 * To allow migration of L1 (complete with its L2 guests) between
250 * machines of different natural widths (32 or 64 bit), we cannot have
251 * unsigned long fields with no explict size. We use u64 (aliased
252 * natural_width) instead. Luckily, x86 is little-endian.
254 natural_width cr0_guest_host_mask
;
255 natural_width cr4_guest_host_mask
;
256 natural_width cr0_read_shadow
;
257 natural_width cr4_read_shadow
;
258 natural_width cr3_target_value0
;
259 natural_width cr3_target_value1
;
260 natural_width cr3_target_value2
;
261 natural_width cr3_target_value3
;
262 natural_width exit_qualification
;
263 natural_width guest_linear_address
;
264 natural_width guest_cr0
;
265 natural_width guest_cr3
;
266 natural_width guest_cr4
;
267 natural_width guest_es_base
;
268 natural_width guest_cs_base
;
269 natural_width guest_ss_base
;
270 natural_width guest_ds_base
;
271 natural_width guest_fs_base
;
272 natural_width guest_gs_base
;
273 natural_width guest_ldtr_base
;
274 natural_width guest_tr_base
;
275 natural_width guest_gdtr_base
;
276 natural_width guest_idtr_base
;
277 natural_width guest_dr7
;
278 natural_width guest_rsp
;
279 natural_width guest_rip
;
280 natural_width guest_rflags
;
281 natural_width guest_pending_dbg_exceptions
;
282 natural_width guest_sysenter_esp
;
283 natural_width guest_sysenter_eip
;
284 natural_width host_cr0
;
285 natural_width host_cr3
;
286 natural_width host_cr4
;
287 natural_width host_fs_base
;
288 natural_width host_gs_base
;
289 natural_width host_tr_base
;
290 natural_width host_gdtr_base
;
291 natural_width host_idtr_base
;
292 natural_width host_ia32_sysenter_esp
;
293 natural_width host_ia32_sysenter_eip
;
294 natural_width host_rsp
;
295 natural_width host_rip
;
296 natural_width paddingl
[8]; /* room for future expansion */
297 u32 pin_based_vm_exec_control
;
298 u32 cpu_based_vm_exec_control
;
299 u32 exception_bitmap
;
300 u32 page_fault_error_code_mask
;
301 u32 page_fault_error_code_match
;
302 u32 cr3_target_count
;
303 u32 vm_exit_controls
;
304 u32 vm_exit_msr_store_count
;
305 u32 vm_exit_msr_load_count
;
306 u32 vm_entry_controls
;
307 u32 vm_entry_msr_load_count
;
308 u32 vm_entry_intr_info_field
;
309 u32 vm_entry_exception_error_code
;
310 u32 vm_entry_instruction_len
;
312 u32 secondary_vm_exec_control
;
313 u32 vm_instruction_error
;
315 u32 vm_exit_intr_info
;
316 u32 vm_exit_intr_error_code
;
317 u32 idt_vectoring_info_field
;
318 u32 idt_vectoring_error_code
;
319 u32 vm_exit_instruction_len
;
320 u32 vmx_instruction_info
;
327 u32 guest_ldtr_limit
;
329 u32 guest_gdtr_limit
;
330 u32 guest_idtr_limit
;
331 u32 guest_es_ar_bytes
;
332 u32 guest_cs_ar_bytes
;
333 u32 guest_ss_ar_bytes
;
334 u32 guest_ds_ar_bytes
;
335 u32 guest_fs_ar_bytes
;
336 u32 guest_gs_ar_bytes
;
337 u32 guest_ldtr_ar_bytes
;
338 u32 guest_tr_ar_bytes
;
339 u32 guest_interruptibility_info
;
340 u32 guest_activity_state
;
341 u32 guest_sysenter_cs
;
342 u32 host_ia32_sysenter_cs
;
343 u32 vmx_preemption_timer_value
;
344 u32 padding32
[7]; /* room for future expansion */
345 u16 virtual_processor_id
;
347 u16 guest_es_selector
;
348 u16 guest_cs_selector
;
349 u16 guest_ss_selector
;
350 u16 guest_ds_selector
;
351 u16 guest_fs_selector
;
352 u16 guest_gs_selector
;
353 u16 guest_ldtr_selector
;
354 u16 guest_tr_selector
;
355 u16 guest_intr_status
;
356 u16 host_es_selector
;
357 u16 host_cs_selector
;
358 u16 host_ss_selector
;
359 u16 host_ds_selector
;
360 u16 host_fs_selector
;
361 u16 host_gs_selector
;
362 u16 host_tr_selector
;
366 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
367 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
368 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
370 #define VMCS12_REVISION 0x11e57ed0
373 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
374 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
375 * current implementation, 4K are reserved to avoid future complications.
377 #define VMCS12_SIZE 0x1000
379 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
381 struct list_head list
;
383 struct loaded_vmcs vmcs02
;
387 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
388 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
391 /* Has the level1 guest done vmxon? */
395 /* The guest-physical address of the current VMCS L1 keeps for L2 */
397 /* The host-usable pointer to the above */
398 struct page
*current_vmcs12_page
;
399 struct vmcs12
*current_vmcs12
;
400 struct vmcs
*current_shadow_vmcs
;
402 * Indicates if the shadow vmcs must be updated with the
403 * data hold by vmcs12
405 bool sync_shadow_vmcs
;
407 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
408 struct list_head vmcs02_pool
;
410 u64 vmcs01_tsc_offset
;
411 /* L2 must run next, and mustn't decide to exit to L1. */
412 bool nested_run_pending
;
414 * Guest pages referred to in vmcs02 with host-physical pointers, so
415 * we must keep them pinned while L2 runs.
417 struct page
*apic_access_page
;
418 struct page
*virtual_apic_page
;
419 struct page
*pi_desc_page
;
420 struct pi_desc
*pi_desc
;
423 u64 msr_ia32_feature_control
;
425 struct hrtimer preemption_timer
;
426 bool preemption_timer_expired
;
428 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
434 u32 nested_vmx_procbased_ctls_low
;
435 u32 nested_vmx_procbased_ctls_high
;
436 u32 nested_vmx_true_procbased_ctls_low
;
437 u32 nested_vmx_secondary_ctls_low
;
438 u32 nested_vmx_secondary_ctls_high
;
439 u32 nested_vmx_pinbased_ctls_low
;
440 u32 nested_vmx_pinbased_ctls_high
;
441 u32 nested_vmx_exit_ctls_low
;
442 u32 nested_vmx_exit_ctls_high
;
443 u32 nested_vmx_true_exit_ctls_low
;
444 u32 nested_vmx_entry_ctls_low
;
445 u32 nested_vmx_entry_ctls_high
;
446 u32 nested_vmx_true_entry_ctls_low
;
447 u32 nested_vmx_misc_low
;
448 u32 nested_vmx_misc_high
;
449 u32 nested_vmx_ept_caps
;
450 u32 nested_vmx_vpid_caps
;
453 #define POSTED_INTR_ON 0
454 #define POSTED_INTR_SN 1
456 /* Posted-Interrupt Descriptor */
458 u32 pir
[8]; /* Posted interrupt requested */
461 /* bit 256 - Outstanding Notification */
463 /* bit 257 - Suppress Notification */
465 /* bit 271:258 - Reserved */
467 /* bit 279:272 - Notification Vector */
469 /* bit 287:280 - Reserved */
471 /* bit 319:288 - Notification Destination */
479 static bool pi_test_and_set_on(struct pi_desc
*pi_desc
)
481 return test_and_set_bit(POSTED_INTR_ON
,
482 (unsigned long *)&pi_desc
->control
);
485 static bool pi_test_and_clear_on(struct pi_desc
*pi_desc
)
487 return test_and_clear_bit(POSTED_INTR_ON
,
488 (unsigned long *)&pi_desc
->control
);
491 static int pi_test_and_set_pir(int vector
, struct pi_desc
*pi_desc
)
493 return test_and_set_bit(vector
, (unsigned long *)pi_desc
->pir
);
496 static inline void pi_clear_sn(struct pi_desc
*pi_desc
)
498 return clear_bit(POSTED_INTR_SN
,
499 (unsigned long *)&pi_desc
->control
);
502 static inline void pi_set_sn(struct pi_desc
*pi_desc
)
504 return set_bit(POSTED_INTR_SN
,
505 (unsigned long *)&pi_desc
->control
);
508 static inline int pi_test_on(struct pi_desc
*pi_desc
)
510 return test_bit(POSTED_INTR_ON
,
511 (unsigned long *)&pi_desc
->control
);
514 static inline int pi_test_sn(struct pi_desc
*pi_desc
)
516 return test_bit(POSTED_INTR_SN
,
517 (unsigned long *)&pi_desc
->control
);
521 struct kvm_vcpu vcpu
;
522 unsigned long host_rsp
;
524 bool nmi_known_unmasked
;
526 u32 idt_vectoring_info
;
528 struct shared_msr_entry
*guest_msrs
;
531 unsigned long host_idt_base
;
533 u64 msr_host_kernel_gs_base
;
534 u64 msr_guest_kernel_gs_base
;
536 u32 vm_entry_controls_shadow
;
537 u32 vm_exit_controls_shadow
;
539 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
540 * non-nested (L1) guest, it always points to vmcs01. For a nested
541 * guest (L2), it points to a different VMCS.
543 struct loaded_vmcs vmcs01
;
544 struct loaded_vmcs
*loaded_vmcs
;
545 bool __launched
; /* temporary, used in vmx_vcpu_run */
546 struct msr_autoload
{
548 struct vmx_msr_entry guest
[NR_AUTOLOAD_MSRS
];
549 struct vmx_msr_entry host
[NR_AUTOLOAD_MSRS
];
553 u16 fs_sel
, gs_sel
, ldt_sel
;
557 int gs_ldt_reload_needed
;
558 int fs_reload_needed
;
559 u64 msr_host_bndcfgs
;
560 unsigned long vmcs_host_cr4
; /* May not match real cr4 */
565 struct kvm_segment segs
[8];
568 u32 bitmask
; /* 4 bits per segment (1 bit per field) */
569 struct kvm_save_segment
{
577 bool emulation_required
;
579 /* Support for vnmi-less CPUs */
580 int soft_vnmi_blocked
;
582 s64 vnmi_blocked_time
;
585 /* Posted interrupt descriptor */
586 struct pi_desc pi_desc
;
588 /* Support for a guest hypervisor (nested VMX) */
589 struct nested_vmx nested
;
591 /* Dynamic PLE window. */
593 bool ple_window_dirty
;
595 /* Support for PML */
596 #define PML_ENTITY_NUM 512
600 enum segment_cache_field
{
609 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
611 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
614 static struct pi_desc
*vcpu_to_pi_desc(struct kvm_vcpu
*vcpu
)
616 return &(to_vmx(vcpu
)->pi_desc
);
619 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
620 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
621 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
622 [number##_HIGH] = VMCS12_OFFSET(name)+4
625 static unsigned long shadow_read_only_fields
[] = {
627 * We do NOT shadow fields that are modified when L0
628 * traps and emulates any vmx instruction (e.g. VMPTRLD,
629 * VMXON...) executed by L1.
630 * For example, VM_INSTRUCTION_ERROR is read
631 * by L1 if a vmx instruction fails (part of the error path).
632 * Note the code assumes this logic. If for some reason
633 * we start shadowing these fields then we need to
634 * force a shadow sync when L0 emulates vmx instructions
635 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
636 * by nested_vmx_failValid)
640 VM_EXIT_INSTRUCTION_LEN
,
641 IDT_VECTORING_INFO_FIELD
,
642 IDT_VECTORING_ERROR_CODE
,
643 VM_EXIT_INTR_ERROR_CODE
,
645 GUEST_LINEAR_ADDRESS
,
646 GUEST_PHYSICAL_ADDRESS
648 static int max_shadow_read_only_fields
=
649 ARRAY_SIZE(shadow_read_only_fields
);
651 static unsigned long shadow_read_write_fields
[] = {
658 GUEST_INTERRUPTIBILITY_INFO
,
671 CPU_BASED_VM_EXEC_CONTROL
,
672 VM_ENTRY_EXCEPTION_ERROR_CODE
,
673 VM_ENTRY_INTR_INFO_FIELD
,
674 VM_ENTRY_INSTRUCTION_LEN
,
675 VM_ENTRY_EXCEPTION_ERROR_CODE
,
681 static int max_shadow_read_write_fields
=
682 ARRAY_SIZE(shadow_read_write_fields
);
684 static const unsigned short vmcs_field_to_offset_table
[] = {
685 FIELD(VIRTUAL_PROCESSOR_ID
, virtual_processor_id
),
686 FIELD(POSTED_INTR_NV
, posted_intr_nv
),
687 FIELD(GUEST_ES_SELECTOR
, guest_es_selector
),
688 FIELD(GUEST_CS_SELECTOR
, guest_cs_selector
),
689 FIELD(GUEST_SS_SELECTOR
, guest_ss_selector
),
690 FIELD(GUEST_DS_SELECTOR
, guest_ds_selector
),
691 FIELD(GUEST_FS_SELECTOR
, guest_fs_selector
),
692 FIELD(GUEST_GS_SELECTOR
, guest_gs_selector
),
693 FIELD(GUEST_LDTR_SELECTOR
, guest_ldtr_selector
),
694 FIELD(GUEST_TR_SELECTOR
, guest_tr_selector
),
695 FIELD(GUEST_INTR_STATUS
, guest_intr_status
),
696 FIELD(HOST_ES_SELECTOR
, host_es_selector
),
697 FIELD(HOST_CS_SELECTOR
, host_cs_selector
),
698 FIELD(HOST_SS_SELECTOR
, host_ss_selector
),
699 FIELD(HOST_DS_SELECTOR
, host_ds_selector
),
700 FIELD(HOST_FS_SELECTOR
, host_fs_selector
),
701 FIELD(HOST_GS_SELECTOR
, host_gs_selector
),
702 FIELD(HOST_TR_SELECTOR
, host_tr_selector
),
703 FIELD64(IO_BITMAP_A
, io_bitmap_a
),
704 FIELD64(IO_BITMAP_B
, io_bitmap_b
),
705 FIELD64(MSR_BITMAP
, msr_bitmap
),
706 FIELD64(VM_EXIT_MSR_STORE_ADDR
, vm_exit_msr_store_addr
),
707 FIELD64(VM_EXIT_MSR_LOAD_ADDR
, vm_exit_msr_load_addr
),
708 FIELD64(VM_ENTRY_MSR_LOAD_ADDR
, vm_entry_msr_load_addr
),
709 FIELD64(TSC_OFFSET
, tsc_offset
),
710 FIELD64(VIRTUAL_APIC_PAGE_ADDR
, virtual_apic_page_addr
),
711 FIELD64(APIC_ACCESS_ADDR
, apic_access_addr
),
712 FIELD64(POSTED_INTR_DESC_ADDR
, posted_intr_desc_addr
),
713 FIELD64(EPT_POINTER
, ept_pointer
),
714 FIELD64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap0
),
715 FIELD64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap1
),
716 FIELD64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap2
),
717 FIELD64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap3
),
718 FIELD64(XSS_EXIT_BITMAP
, xss_exit_bitmap
),
719 FIELD64(GUEST_PHYSICAL_ADDRESS
, guest_physical_address
),
720 FIELD64(VMCS_LINK_POINTER
, vmcs_link_pointer
),
721 FIELD64(GUEST_IA32_DEBUGCTL
, guest_ia32_debugctl
),
722 FIELD64(GUEST_IA32_PAT
, guest_ia32_pat
),
723 FIELD64(GUEST_IA32_EFER
, guest_ia32_efer
),
724 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL
, guest_ia32_perf_global_ctrl
),
725 FIELD64(GUEST_PDPTR0
, guest_pdptr0
),
726 FIELD64(GUEST_PDPTR1
, guest_pdptr1
),
727 FIELD64(GUEST_PDPTR2
, guest_pdptr2
),
728 FIELD64(GUEST_PDPTR3
, guest_pdptr3
),
729 FIELD64(GUEST_BNDCFGS
, guest_bndcfgs
),
730 FIELD64(HOST_IA32_PAT
, host_ia32_pat
),
731 FIELD64(HOST_IA32_EFER
, host_ia32_efer
),
732 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL
, host_ia32_perf_global_ctrl
),
733 FIELD(PIN_BASED_VM_EXEC_CONTROL
, pin_based_vm_exec_control
),
734 FIELD(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
),
735 FIELD(EXCEPTION_BITMAP
, exception_bitmap
),
736 FIELD(PAGE_FAULT_ERROR_CODE_MASK
, page_fault_error_code_mask
),
737 FIELD(PAGE_FAULT_ERROR_CODE_MATCH
, page_fault_error_code_match
),
738 FIELD(CR3_TARGET_COUNT
, cr3_target_count
),
739 FIELD(VM_EXIT_CONTROLS
, vm_exit_controls
),
740 FIELD(VM_EXIT_MSR_STORE_COUNT
, vm_exit_msr_store_count
),
741 FIELD(VM_EXIT_MSR_LOAD_COUNT
, vm_exit_msr_load_count
),
742 FIELD(VM_ENTRY_CONTROLS
, vm_entry_controls
),
743 FIELD(VM_ENTRY_MSR_LOAD_COUNT
, vm_entry_msr_load_count
),
744 FIELD(VM_ENTRY_INTR_INFO_FIELD
, vm_entry_intr_info_field
),
745 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE
, vm_entry_exception_error_code
),
746 FIELD(VM_ENTRY_INSTRUCTION_LEN
, vm_entry_instruction_len
),
747 FIELD(TPR_THRESHOLD
, tpr_threshold
),
748 FIELD(SECONDARY_VM_EXEC_CONTROL
, secondary_vm_exec_control
),
749 FIELD(VM_INSTRUCTION_ERROR
, vm_instruction_error
),
750 FIELD(VM_EXIT_REASON
, vm_exit_reason
),
751 FIELD(VM_EXIT_INTR_INFO
, vm_exit_intr_info
),
752 FIELD(VM_EXIT_INTR_ERROR_CODE
, vm_exit_intr_error_code
),
753 FIELD(IDT_VECTORING_INFO_FIELD
, idt_vectoring_info_field
),
754 FIELD(IDT_VECTORING_ERROR_CODE
, idt_vectoring_error_code
),
755 FIELD(VM_EXIT_INSTRUCTION_LEN
, vm_exit_instruction_len
),
756 FIELD(VMX_INSTRUCTION_INFO
, vmx_instruction_info
),
757 FIELD(GUEST_ES_LIMIT
, guest_es_limit
),
758 FIELD(GUEST_CS_LIMIT
, guest_cs_limit
),
759 FIELD(GUEST_SS_LIMIT
, guest_ss_limit
),
760 FIELD(GUEST_DS_LIMIT
, guest_ds_limit
),
761 FIELD(GUEST_FS_LIMIT
, guest_fs_limit
),
762 FIELD(GUEST_GS_LIMIT
, guest_gs_limit
),
763 FIELD(GUEST_LDTR_LIMIT
, guest_ldtr_limit
),
764 FIELD(GUEST_TR_LIMIT
, guest_tr_limit
),
765 FIELD(GUEST_GDTR_LIMIT
, guest_gdtr_limit
),
766 FIELD(GUEST_IDTR_LIMIT
, guest_idtr_limit
),
767 FIELD(GUEST_ES_AR_BYTES
, guest_es_ar_bytes
),
768 FIELD(GUEST_CS_AR_BYTES
, guest_cs_ar_bytes
),
769 FIELD(GUEST_SS_AR_BYTES
, guest_ss_ar_bytes
),
770 FIELD(GUEST_DS_AR_BYTES
, guest_ds_ar_bytes
),
771 FIELD(GUEST_FS_AR_BYTES
, guest_fs_ar_bytes
),
772 FIELD(GUEST_GS_AR_BYTES
, guest_gs_ar_bytes
),
773 FIELD(GUEST_LDTR_AR_BYTES
, guest_ldtr_ar_bytes
),
774 FIELD(GUEST_TR_AR_BYTES
, guest_tr_ar_bytes
),
775 FIELD(GUEST_INTERRUPTIBILITY_INFO
, guest_interruptibility_info
),
776 FIELD(GUEST_ACTIVITY_STATE
, guest_activity_state
),
777 FIELD(GUEST_SYSENTER_CS
, guest_sysenter_cs
),
778 FIELD(HOST_IA32_SYSENTER_CS
, host_ia32_sysenter_cs
),
779 FIELD(VMX_PREEMPTION_TIMER_VALUE
, vmx_preemption_timer_value
),
780 FIELD(CR0_GUEST_HOST_MASK
, cr0_guest_host_mask
),
781 FIELD(CR4_GUEST_HOST_MASK
, cr4_guest_host_mask
),
782 FIELD(CR0_READ_SHADOW
, cr0_read_shadow
),
783 FIELD(CR4_READ_SHADOW
, cr4_read_shadow
),
784 FIELD(CR3_TARGET_VALUE0
, cr3_target_value0
),
785 FIELD(CR3_TARGET_VALUE1
, cr3_target_value1
),
786 FIELD(CR3_TARGET_VALUE2
, cr3_target_value2
),
787 FIELD(CR3_TARGET_VALUE3
, cr3_target_value3
),
788 FIELD(EXIT_QUALIFICATION
, exit_qualification
),
789 FIELD(GUEST_LINEAR_ADDRESS
, guest_linear_address
),
790 FIELD(GUEST_CR0
, guest_cr0
),
791 FIELD(GUEST_CR3
, guest_cr3
),
792 FIELD(GUEST_CR4
, guest_cr4
),
793 FIELD(GUEST_ES_BASE
, guest_es_base
),
794 FIELD(GUEST_CS_BASE
, guest_cs_base
),
795 FIELD(GUEST_SS_BASE
, guest_ss_base
),
796 FIELD(GUEST_DS_BASE
, guest_ds_base
),
797 FIELD(GUEST_FS_BASE
, guest_fs_base
),
798 FIELD(GUEST_GS_BASE
, guest_gs_base
),
799 FIELD(GUEST_LDTR_BASE
, guest_ldtr_base
),
800 FIELD(GUEST_TR_BASE
, guest_tr_base
),
801 FIELD(GUEST_GDTR_BASE
, guest_gdtr_base
),
802 FIELD(GUEST_IDTR_BASE
, guest_idtr_base
),
803 FIELD(GUEST_DR7
, guest_dr7
),
804 FIELD(GUEST_RSP
, guest_rsp
),
805 FIELD(GUEST_RIP
, guest_rip
),
806 FIELD(GUEST_RFLAGS
, guest_rflags
),
807 FIELD(GUEST_PENDING_DBG_EXCEPTIONS
, guest_pending_dbg_exceptions
),
808 FIELD(GUEST_SYSENTER_ESP
, guest_sysenter_esp
),
809 FIELD(GUEST_SYSENTER_EIP
, guest_sysenter_eip
),
810 FIELD(HOST_CR0
, host_cr0
),
811 FIELD(HOST_CR3
, host_cr3
),
812 FIELD(HOST_CR4
, host_cr4
),
813 FIELD(HOST_FS_BASE
, host_fs_base
),
814 FIELD(HOST_GS_BASE
, host_gs_base
),
815 FIELD(HOST_TR_BASE
, host_tr_base
),
816 FIELD(HOST_GDTR_BASE
, host_gdtr_base
),
817 FIELD(HOST_IDTR_BASE
, host_idtr_base
),
818 FIELD(HOST_IA32_SYSENTER_ESP
, host_ia32_sysenter_esp
),
819 FIELD(HOST_IA32_SYSENTER_EIP
, host_ia32_sysenter_eip
),
820 FIELD(HOST_RSP
, host_rsp
),
821 FIELD(HOST_RIP
, host_rip
),
824 static inline short vmcs_field_to_offset(unsigned long field
)
826 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table
) > SHRT_MAX
);
828 if (field
>= ARRAY_SIZE(vmcs_field_to_offset_table
) ||
829 vmcs_field_to_offset_table
[field
] == 0)
832 return vmcs_field_to_offset_table
[field
];
835 static inline struct vmcs12
*get_vmcs12(struct kvm_vcpu
*vcpu
)
837 return to_vmx(vcpu
)->nested
.current_vmcs12
;
840 static struct page
*nested_get_page(struct kvm_vcpu
*vcpu
, gpa_t addr
)
842 struct page
*page
= kvm_vcpu_gfn_to_page(vcpu
, addr
>> PAGE_SHIFT
);
843 if (is_error_page(page
))
849 static void nested_release_page(struct page
*page
)
851 kvm_release_page_dirty(page
);
854 static void nested_release_page_clean(struct page
*page
)
856 kvm_release_page_clean(page
);
859 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
);
860 static u64
construct_eptp(unsigned long root_hpa
);
861 static void kvm_cpu_vmxon(u64 addr
);
862 static void kvm_cpu_vmxoff(void);
863 static bool vmx_mpx_supported(void);
864 static bool vmx_xsaves_supported(void);
865 static int vmx_cpu_uses_apicv(struct kvm_vcpu
*vcpu
);
866 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
);
867 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
868 struct kvm_segment
*var
, int seg
);
869 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
870 struct kvm_segment
*var
, int seg
);
871 static bool guest_state_valid(struct kvm_vcpu
*vcpu
);
872 static u32
vmx_segment_access_rights(struct kvm_segment
*var
);
873 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu
*vcpu
);
874 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
);
875 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
);
876 static int alloc_identity_pagetable(struct kvm
*kvm
);
878 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
879 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
881 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
882 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
884 static DEFINE_PER_CPU(struct list_head
, loaded_vmcss_on_cpu
);
885 static DEFINE_PER_CPU(struct desc_ptr
, host_gdt
);
888 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
889 * can find which vCPU should be waken up.
891 static DEFINE_PER_CPU(struct list_head
, blocked_vcpu_on_cpu
);
892 static DEFINE_PER_CPU(spinlock_t
, blocked_vcpu_on_cpu_lock
);
894 static unsigned long *vmx_io_bitmap_a
;
895 static unsigned long *vmx_io_bitmap_b
;
896 static unsigned long *vmx_msr_bitmap_legacy
;
897 static unsigned long *vmx_msr_bitmap_longmode
;
898 static unsigned long *vmx_msr_bitmap_legacy_x2apic
;
899 static unsigned long *vmx_msr_bitmap_longmode_x2apic
;
900 static unsigned long *vmx_msr_bitmap_nested
;
901 static unsigned long *vmx_vmread_bitmap
;
902 static unsigned long *vmx_vmwrite_bitmap
;
904 static bool cpu_has_load_ia32_efer
;
905 static bool cpu_has_load_perf_global_ctrl
;
907 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
908 static DEFINE_SPINLOCK(vmx_vpid_lock
);
910 static struct vmcs_config
{
914 u32 pin_based_exec_ctrl
;
915 u32 cpu_based_exec_ctrl
;
916 u32 cpu_based_2nd_exec_ctrl
;
921 static struct vmx_capability
{
926 #define VMX_SEGMENT_FIELD(seg) \
927 [VCPU_SREG_##seg] = { \
928 .selector = GUEST_##seg##_SELECTOR, \
929 .base = GUEST_##seg##_BASE, \
930 .limit = GUEST_##seg##_LIMIT, \
931 .ar_bytes = GUEST_##seg##_AR_BYTES, \
934 static const struct kvm_vmx_segment_field
{
939 } kvm_vmx_segment_fields
[] = {
940 VMX_SEGMENT_FIELD(CS
),
941 VMX_SEGMENT_FIELD(DS
),
942 VMX_SEGMENT_FIELD(ES
),
943 VMX_SEGMENT_FIELD(FS
),
944 VMX_SEGMENT_FIELD(GS
),
945 VMX_SEGMENT_FIELD(SS
),
946 VMX_SEGMENT_FIELD(TR
),
947 VMX_SEGMENT_FIELD(LDTR
),
950 static u64 host_efer
;
952 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
955 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
956 * away by decrementing the array size.
958 static const u32 vmx_msr_index
[] = {
960 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
,
962 MSR_EFER
, MSR_TSC_AUX
, MSR_STAR
,
965 static inline bool is_page_fault(u32 intr_info
)
967 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
968 INTR_INFO_VALID_MASK
)) ==
969 (INTR_TYPE_HARD_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
972 static inline bool is_no_device(u32 intr_info
)
974 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
975 INTR_INFO_VALID_MASK
)) ==
976 (INTR_TYPE_HARD_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
979 static inline bool is_invalid_opcode(u32 intr_info
)
981 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
982 INTR_INFO_VALID_MASK
)) ==
983 (INTR_TYPE_HARD_EXCEPTION
| UD_VECTOR
| INTR_INFO_VALID_MASK
);
986 static inline bool is_external_interrupt(u32 intr_info
)
988 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
989 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
992 static inline bool is_machine_check(u32 intr_info
)
994 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
995 INTR_INFO_VALID_MASK
)) ==
996 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
999 static inline bool cpu_has_vmx_msr_bitmap(void)
1001 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
1004 static inline bool cpu_has_vmx_tpr_shadow(void)
1006 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
1009 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu
*vcpu
)
1011 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu
);
1014 static inline bool cpu_has_secondary_exec_ctrls(void)
1016 return vmcs_config
.cpu_based_exec_ctrl
&
1017 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
1020 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1022 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1023 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
1026 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1028 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1029 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
1032 static inline bool cpu_has_vmx_apic_register_virt(void)
1034 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1035 SECONDARY_EXEC_APIC_REGISTER_VIRT
;
1038 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1040 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1041 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
;
1044 static inline bool cpu_has_vmx_posted_intr(void)
1046 return IS_ENABLED(CONFIG_X86_LOCAL_APIC
) &&
1047 vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
;
1050 static inline bool cpu_has_vmx_apicv(void)
1052 return cpu_has_vmx_apic_register_virt() &&
1053 cpu_has_vmx_virtual_intr_delivery() &&
1054 cpu_has_vmx_posted_intr();
1057 static inline bool cpu_has_vmx_flexpriority(void)
1059 return cpu_has_vmx_tpr_shadow() &&
1060 cpu_has_vmx_virtualize_apic_accesses();
1063 static inline bool cpu_has_vmx_ept_execute_only(void)
1065 return vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
;
1068 static inline bool cpu_has_vmx_ept_2m_page(void)
1070 return vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
;
1073 static inline bool cpu_has_vmx_ept_1g_page(void)
1075 return vmx_capability
.ept
& VMX_EPT_1GB_PAGE_BIT
;
1078 static inline bool cpu_has_vmx_ept_4levels(void)
1080 return vmx_capability
.ept
& VMX_EPT_PAGE_WALK_4_BIT
;
1083 static inline bool cpu_has_vmx_ept_ad_bits(void)
1085 return vmx_capability
.ept
& VMX_EPT_AD_BIT
;
1088 static inline bool cpu_has_vmx_invept_context(void)
1090 return vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
;
1093 static inline bool cpu_has_vmx_invept_global(void)
1095 return vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
;
1098 static inline bool cpu_has_vmx_invvpid_single(void)
1100 return vmx_capability
.vpid
& VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT
;
1103 static inline bool cpu_has_vmx_invvpid_global(void)
1105 return vmx_capability
.vpid
& VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
1108 static inline bool cpu_has_vmx_ept(void)
1110 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1111 SECONDARY_EXEC_ENABLE_EPT
;
1114 static inline bool cpu_has_vmx_unrestricted_guest(void)
1116 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1117 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
1120 static inline bool cpu_has_vmx_ple(void)
1122 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1123 SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
1126 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu
*vcpu
)
1128 return flexpriority_enabled
&& lapic_in_kernel(vcpu
);
1131 static inline bool cpu_has_vmx_vpid(void)
1133 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1134 SECONDARY_EXEC_ENABLE_VPID
;
1137 static inline bool cpu_has_vmx_rdtscp(void)
1139 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1140 SECONDARY_EXEC_RDTSCP
;
1143 static inline bool cpu_has_vmx_invpcid(void)
1145 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1146 SECONDARY_EXEC_ENABLE_INVPCID
;
1149 static inline bool cpu_has_virtual_nmis(void)
1151 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
1154 static inline bool cpu_has_vmx_wbinvd_exit(void)
1156 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1157 SECONDARY_EXEC_WBINVD_EXITING
;
1160 static inline bool cpu_has_vmx_shadow_vmcs(void)
1163 rdmsrl(MSR_IA32_VMX_MISC
, vmx_msr
);
1164 /* check if the cpu supports writing r/o exit information fields */
1165 if (!(vmx_msr
& MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS
))
1168 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1169 SECONDARY_EXEC_SHADOW_VMCS
;
1172 static inline bool cpu_has_vmx_pml(void)
1174 return vmcs_config
.cpu_based_2nd_exec_ctrl
& SECONDARY_EXEC_ENABLE_PML
;
1177 static inline bool cpu_has_vmx_tsc_scaling(void)
1179 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1180 SECONDARY_EXEC_TSC_SCALING
;
1183 static inline bool report_flexpriority(void)
1185 return flexpriority_enabled
;
1188 static inline bool nested_cpu_has(struct vmcs12
*vmcs12
, u32 bit
)
1190 return vmcs12
->cpu_based_vm_exec_control
& bit
;
1193 static inline bool nested_cpu_has2(struct vmcs12
*vmcs12
, u32 bit
)
1195 return (vmcs12
->cpu_based_vm_exec_control
&
1196 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) &&
1197 (vmcs12
->secondary_vm_exec_control
& bit
);
1200 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12
*vmcs12
)
1202 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_VIRTUAL_NMIS
;
1205 static inline bool nested_cpu_has_preemption_timer(struct vmcs12
*vmcs12
)
1207 return vmcs12
->pin_based_vm_exec_control
&
1208 PIN_BASED_VMX_PREEMPTION_TIMER
;
1211 static inline int nested_cpu_has_ept(struct vmcs12
*vmcs12
)
1213 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_EPT
);
1216 static inline bool nested_cpu_has_xsaves(struct vmcs12
*vmcs12
)
1218 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_XSAVES
) &&
1219 vmx_xsaves_supported();
1222 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12
*vmcs12
)
1224 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
);
1227 static inline bool nested_cpu_has_vpid(struct vmcs12
*vmcs12
)
1229 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_VPID
);
1232 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12
*vmcs12
)
1234 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_APIC_REGISTER_VIRT
);
1237 static inline bool nested_cpu_has_vid(struct vmcs12
*vmcs12
)
1239 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
1242 static inline bool nested_cpu_has_posted_intr(struct vmcs12
*vmcs12
)
1244 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_POSTED_INTR
;
1247 static inline bool is_exception(u32 intr_info
)
1249 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
1250 == (INTR_TYPE_HARD_EXCEPTION
| INTR_INFO_VALID_MASK
);
1253 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
1255 unsigned long exit_qualification
);
1256 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
1257 struct vmcs12
*vmcs12
,
1258 u32 reason
, unsigned long qualification
);
1260 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
1264 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
1265 if (vmx_msr_index
[vmx
->guest_msrs
[i
].index
] == msr
)
1270 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
1276 } operand
= { vpid
, 0, gva
};
1278 asm volatile (__ex(ASM_VMX_INVVPID
)
1279 /* CF==1 or ZF==1 --> rc = -1 */
1280 "; ja 1f ; ud2 ; 1:"
1281 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
1284 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
1288 } operand
= {eptp
, gpa
};
1290 asm volatile (__ex(ASM_VMX_INVEPT
)
1291 /* CF==1 or ZF==1 --> rc = -1 */
1292 "; ja 1f ; ud2 ; 1:\n"
1293 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
1296 static struct shared_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
1300 i
= __find_msr_index(vmx
, msr
);
1302 return &vmx
->guest_msrs
[i
];
1306 static void vmcs_clear(struct vmcs
*vmcs
)
1308 u64 phys_addr
= __pa(vmcs
);
1311 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
1312 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1315 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
1319 static inline void loaded_vmcs_init(struct loaded_vmcs
*loaded_vmcs
)
1321 vmcs_clear(loaded_vmcs
->vmcs
);
1322 loaded_vmcs
->cpu
= -1;
1323 loaded_vmcs
->launched
= 0;
1326 static void vmcs_load(struct vmcs
*vmcs
)
1328 u64 phys_addr
= __pa(vmcs
);
1331 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
1332 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1335 printk(KERN_ERR
"kvm: vmptrld %p/%llx failed\n",
1339 #ifdef CONFIG_KEXEC_CORE
1341 * This bitmap is used to indicate whether the vmclear
1342 * operation is enabled on all cpus. All disabled by
1345 static cpumask_t crash_vmclear_enabled_bitmap
= CPU_MASK_NONE
;
1347 static inline void crash_enable_local_vmclear(int cpu
)
1349 cpumask_set_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1352 static inline void crash_disable_local_vmclear(int cpu
)
1354 cpumask_clear_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1357 static inline int crash_local_vmclear_enabled(int cpu
)
1359 return cpumask_test_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1362 static void crash_vmclear_local_loaded_vmcss(void)
1364 int cpu
= raw_smp_processor_id();
1365 struct loaded_vmcs
*v
;
1367 if (!crash_local_vmclear_enabled(cpu
))
1370 list_for_each_entry(v
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
1371 loaded_vmcss_on_cpu_link
)
1372 vmcs_clear(v
->vmcs
);
1375 static inline void crash_enable_local_vmclear(int cpu
) { }
1376 static inline void crash_disable_local_vmclear(int cpu
) { }
1377 #endif /* CONFIG_KEXEC_CORE */
1379 static void __loaded_vmcs_clear(void *arg
)
1381 struct loaded_vmcs
*loaded_vmcs
= arg
;
1382 int cpu
= raw_smp_processor_id();
1384 if (loaded_vmcs
->cpu
!= cpu
)
1385 return; /* vcpu migration can race with cpu offline */
1386 if (per_cpu(current_vmcs
, cpu
) == loaded_vmcs
->vmcs
)
1387 per_cpu(current_vmcs
, cpu
) = NULL
;
1388 crash_disable_local_vmclear(cpu
);
1389 list_del(&loaded_vmcs
->loaded_vmcss_on_cpu_link
);
1392 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1393 * is before setting loaded_vmcs->vcpu to -1 which is done in
1394 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1395 * then adds the vmcs into percpu list before it is deleted.
1399 loaded_vmcs_init(loaded_vmcs
);
1400 crash_enable_local_vmclear(cpu
);
1403 static void loaded_vmcs_clear(struct loaded_vmcs
*loaded_vmcs
)
1405 int cpu
= loaded_vmcs
->cpu
;
1408 smp_call_function_single(cpu
,
1409 __loaded_vmcs_clear
, loaded_vmcs
, 1);
1412 static inline void vpid_sync_vcpu_single(int vpid
)
1417 if (cpu_has_vmx_invvpid_single())
1418 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vpid
, 0);
1421 static inline void vpid_sync_vcpu_global(void)
1423 if (cpu_has_vmx_invvpid_global())
1424 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT
, 0, 0);
1427 static inline void vpid_sync_context(int vpid
)
1429 if (cpu_has_vmx_invvpid_single())
1430 vpid_sync_vcpu_single(vpid
);
1432 vpid_sync_vcpu_global();
1435 static inline void ept_sync_global(void)
1437 if (cpu_has_vmx_invept_global())
1438 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
1441 static inline void ept_sync_context(u64 eptp
)
1444 if (cpu_has_vmx_invept_context())
1445 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
1451 static __always_inline
unsigned long vmcs_readl(unsigned long field
)
1453 unsigned long value
;
1455 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX
, "%0")
1456 : "=a"(value
) : "d"(field
) : "cc");
1460 static __always_inline u16
vmcs_read16(unsigned long field
)
1462 return vmcs_readl(field
);
1465 static __always_inline u32
vmcs_read32(unsigned long field
)
1467 return vmcs_readl(field
);
1470 static __always_inline u64
vmcs_read64(unsigned long field
)
1472 #ifdef CONFIG_X86_64
1473 return vmcs_readl(field
);
1475 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
1479 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
1481 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
1482 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
1486 static void vmcs_writel(unsigned long field
, unsigned long value
)
1490 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
1491 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
1492 if (unlikely(error
))
1493 vmwrite_error(field
, value
);
1496 static void vmcs_write16(unsigned long field
, u16 value
)
1498 vmcs_writel(field
, value
);
1501 static void vmcs_write32(unsigned long field
, u32 value
)
1503 vmcs_writel(field
, value
);
1506 static void vmcs_write64(unsigned long field
, u64 value
)
1508 vmcs_writel(field
, value
);
1509 #ifndef CONFIG_X86_64
1511 vmcs_writel(field
+1, value
>> 32);
1515 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
1517 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
1520 static void vmcs_set_bits(unsigned long field
, u32 mask
)
1522 vmcs_writel(field
, vmcs_readl(field
) | mask
);
1525 static inline void vm_entry_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
1527 vmcs_write32(VM_ENTRY_CONTROLS
, val
);
1528 vmx
->vm_entry_controls_shadow
= val
;
1531 static inline void vm_entry_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
1533 if (vmx
->vm_entry_controls_shadow
!= val
)
1534 vm_entry_controls_init(vmx
, val
);
1537 static inline u32
vm_entry_controls_get(struct vcpu_vmx
*vmx
)
1539 return vmx
->vm_entry_controls_shadow
;
1543 static inline void vm_entry_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
1545 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) | val
);
1548 static inline void vm_entry_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
1550 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) & ~val
);
1553 static inline void vm_exit_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
1555 vmcs_write32(VM_EXIT_CONTROLS
, val
);
1556 vmx
->vm_exit_controls_shadow
= val
;
1559 static inline void vm_exit_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
1561 if (vmx
->vm_exit_controls_shadow
!= val
)
1562 vm_exit_controls_init(vmx
, val
);
1565 static inline u32
vm_exit_controls_get(struct vcpu_vmx
*vmx
)
1567 return vmx
->vm_exit_controls_shadow
;
1571 static inline void vm_exit_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
1573 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) | val
);
1576 static inline void vm_exit_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
1578 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) & ~val
);
1581 static void vmx_segment_cache_clear(struct vcpu_vmx
*vmx
)
1583 vmx
->segment_cache
.bitmask
= 0;
1586 static bool vmx_segment_cache_test_set(struct vcpu_vmx
*vmx
, unsigned seg
,
1590 u32 mask
= 1 << (seg
* SEG_FIELD_NR
+ field
);
1592 if (!(vmx
->vcpu
.arch
.regs_avail
& (1 << VCPU_EXREG_SEGMENTS
))) {
1593 vmx
->vcpu
.arch
.regs_avail
|= (1 << VCPU_EXREG_SEGMENTS
);
1594 vmx
->segment_cache
.bitmask
= 0;
1596 ret
= vmx
->segment_cache
.bitmask
& mask
;
1597 vmx
->segment_cache
.bitmask
|= mask
;
1601 static u16
vmx_read_guest_seg_selector(struct vcpu_vmx
*vmx
, unsigned seg
)
1603 u16
*p
= &vmx
->segment_cache
.seg
[seg
].selector
;
1605 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_SEL
))
1606 *p
= vmcs_read16(kvm_vmx_segment_fields
[seg
].selector
);
1610 static ulong
vmx_read_guest_seg_base(struct vcpu_vmx
*vmx
, unsigned seg
)
1612 ulong
*p
= &vmx
->segment_cache
.seg
[seg
].base
;
1614 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_BASE
))
1615 *p
= vmcs_readl(kvm_vmx_segment_fields
[seg
].base
);
1619 static u32
vmx_read_guest_seg_limit(struct vcpu_vmx
*vmx
, unsigned seg
)
1621 u32
*p
= &vmx
->segment_cache
.seg
[seg
].limit
;
1623 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_LIMIT
))
1624 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].limit
);
1628 static u32
vmx_read_guest_seg_ar(struct vcpu_vmx
*vmx
, unsigned seg
)
1630 u32
*p
= &vmx
->segment_cache
.seg
[seg
].ar
;
1632 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_AR
))
1633 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].ar_bytes
);
1637 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
1641 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
) |
1642 (1u << NM_VECTOR
) | (1u << DB_VECTOR
) | (1u << AC_VECTOR
);
1643 if ((vcpu
->guest_debug
&
1644 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
)) ==
1645 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
))
1646 eb
|= 1u << BP_VECTOR
;
1647 if (to_vmx(vcpu
)->rmode
.vm86_active
)
1650 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
1651 if (vcpu
->fpu_active
)
1652 eb
&= ~(1u << NM_VECTOR
);
1654 /* When we are running a nested L2 guest and L1 specified for it a
1655 * certain exception bitmap, we must trap the same exceptions and pass
1656 * them to L1. When running L2, we will only handle the exceptions
1657 * specified above if L1 did not want them.
1659 if (is_guest_mode(vcpu
))
1660 eb
|= get_vmcs12(vcpu
)->exception_bitmap
;
1662 vmcs_write32(EXCEPTION_BITMAP
, eb
);
1665 static void clear_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
1666 unsigned long entry
, unsigned long exit
)
1668 vm_entry_controls_clearbit(vmx
, entry
);
1669 vm_exit_controls_clearbit(vmx
, exit
);
1672 static void clear_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
)
1675 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1679 if (cpu_has_load_ia32_efer
) {
1680 clear_atomic_switch_msr_special(vmx
,
1681 VM_ENTRY_LOAD_IA32_EFER
,
1682 VM_EXIT_LOAD_IA32_EFER
);
1686 case MSR_CORE_PERF_GLOBAL_CTRL
:
1687 if (cpu_has_load_perf_global_ctrl
) {
1688 clear_atomic_switch_msr_special(vmx
,
1689 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1690 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
1696 for (i
= 0; i
< m
->nr
; ++i
)
1697 if (m
->guest
[i
].index
== msr
)
1703 m
->guest
[i
] = m
->guest
[m
->nr
];
1704 m
->host
[i
] = m
->host
[m
->nr
];
1705 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1706 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1709 static void add_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
1710 unsigned long entry
, unsigned long exit
,
1711 unsigned long guest_val_vmcs
, unsigned long host_val_vmcs
,
1712 u64 guest_val
, u64 host_val
)
1714 vmcs_write64(guest_val_vmcs
, guest_val
);
1715 vmcs_write64(host_val_vmcs
, host_val
);
1716 vm_entry_controls_setbit(vmx
, entry
);
1717 vm_exit_controls_setbit(vmx
, exit
);
1720 static void add_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
,
1721 u64 guest_val
, u64 host_val
)
1724 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1728 if (cpu_has_load_ia32_efer
) {
1729 add_atomic_switch_msr_special(vmx
,
1730 VM_ENTRY_LOAD_IA32_EFER
,
1731 VM_EXIT_LOAD_IA32_EFER
,
1734 guest_val
, host_val
);
1738 case MSR_CORE_PERF_GLOBAL_CTRL
:
1739 if (cpu_has_load_perf_global_ctrl
) {
1740 add_atomic_switch_msr_special(vmx
,
1741 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1742 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
,
1743 GUEST_IA32_PERF_GLOBAL_CTRL
,
1744 HOST_IA32_PERF_GLOBAL_CTRL
,
1745 guest_val
, host_val
);
1751 for (i
= 0; i
< m
->nr
; ++i
)
1752 if (m
->guest
[i
].index
== msr
)
1755 if (i
== NR_AUTOLOAD_MSRS
) {
1756 printk_once(KERN_WARNING
"Not enough msr switch entries. "
1757 "Can't add msr %x\n", msr
);
1759 } else if (i
== m
->nr
) {
1761 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1762 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1765 m
->guest
[i
].index
= msr
;
1766 m
->guest
[i
].value
= guest_val
;
1767 m
->host
[i
].index
= msr
;
1768 m
->host
[i
].value
= host_val
;
1771 static void reload_tss(void)
1774 * VT restores TR but not its size. Useless.
1776 struct desc_ptr
*gdt
= this_cpu_ptr(&host_gdt
);
1777 struct desc_struct
*descs
;
1779 descs
= (void *)gdt
->address
;
1780 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
1784 static bool update_transition_efer(struct vcpu_vmx
*vmx
, int efer_offset
)
1789 guest_efer
= vmx
->vcpu
.arch
.efer
;
1792 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1795 ignore_bits
= EFER_NX
| EFER_SCE
;
1796 #ifdef CONFIG_X86_64
1797 ignore_bits
|= EFER_LMA
| EFER_LME
;
1798 /* SCE is meaningful only in long mode on Intel */
1799 if (guest_efer
& EFER_LMA
)
1800 ignore_bits
&= ~(u64
)EFER_SCE
;
1802 guest_efer
&= ~ignore_bits
;
1803 guest_efer
|= host_efer
& ignore_bits
;
1804 vmx
->guest_msrs
[efer_offset
].data
= guest_efer
;
1805 vmx
->guest_msrs
[efer_offset
].mask
= ~ignore_bits
;
1807 clear_atomic_switch_msr(vmx
, MSR_EFER
);
1810 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1811 * On CPUs that support "load IA32_EFER", always switch EFER
1812 * atomically, since it's faster than switching it manually.
1814 if (cpu_has_load_ia32_efer
||
1815 (enable_ept
&& ((vmx
->vcpu
.arch
.efer
^ host_efer
) & EFER_NX
))) {
1816 guest_efer
= vmx
->vcpu
.arch
.efer
;
1817 if (!(guest_efer
& EFER_LMA
))
1818 guest_efer
&= ~EFER_LME
;
1819 if (guest_efer
!= host_efer
)
1820 add_atomic_switch_msr(vmx
, MSR_EFER
,
1821 guest_efer
, host_efer
);
1828 static unsigned long segment_base(u16 selector
)
1830 struct desc_ptr
*gdt
= this_cpu_ptr(&host_gdt
);
1831 struct desc_struct
*d
;
1832 unsigned long table_base
;
1835 if (!(selector
& ~3))
1838 table_base
= gdt
->address
;
1840 if (selector
& 4) { /* from ldt */
1841 u16 ldt_selector
= kvm_read_ldt();
1843 if (!(ldt_selector
& ~3))
1846 table_base
= segment_base(ldt_selector
);
1848 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
1849 v
= get_desc_base(d
);
1850 #ifdef CONFIG_X86_64
1851 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
1852 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
1857 static inline unsigned long kvm_read_tr_base(void)
1860 asm("str %0" : "=g"(tr
));
1861 return segment_base(tr
);
1864 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
1866 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1869 if (vmx
->host_state
.loaded
)
1872 vmx
->host_state
.loaded
= 1;
1874 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1875 * allow segment selectors with cpl > 0 or ti == 1.
1877 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
1878 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
1879 savesegment(fs
, vmx
->host_state
.fs_sel
);
1880 if (!(vmx
->host_state
.fs_sel
& 7)) {
1881 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
1882 vmx
->host_state
.fs_reload_needed
= 0;
1884 vmcs_write16(HOST_FS_SELECTOR
, 0);
1885 vmx
->host_state
.fs_reload_needed
= 1;
1887 savesegment(gs
, vmx
->host_state
.gs_sel
);
1888 if (!(vmx
->host_state
.gs_sel
& 7))
1889 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
1891 vmcs_write16(HOST_GS_SELECTOR
, 0);
1892 vmx
->host_state
.gs_ldt_reload_needed
= 1;
1895 #ifdef CONFIG_X86_64
1896 savesegment(ds
, vmx
->host_state
.ds_sel
);
1897 savesegment(es
, vmx
->host_state
.es_sel
);
1900 #ifdef CONFIG_X86_64
1901 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
1902 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
1904 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
1905 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
1908 #ifdef CONFIG_X86_64
1909 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
1910 if (is_long_mode(&vmx
->vcpu
))
1911 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
1913 if (boot_cpu_has(X86_FEATURE_MPX
))
1914 rdmsrl(MSR_IA32_BNDCFGS
, vmx
->host_state
.msr_host_bndcfgs
);
1915 for (i
= 0; i
< vmx
->save_nmsrs
; ++i
)
1916 kvm_set_shared_msr(vmx
->guest_msrs
[i
].index
,
1917 vmx
->guest_msrs
[i
].data
,
1918 vmx
->guest_msrs
[i
].mask
);
1921 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
1923 if (!vmx
->host_state
.loaded
)
1926 ++vmx
->vcpu
.stat
.host_state_reload
;
1927 vmx
->host_state
.loaded
= 0;
1928 #ifdef CONFIG_X86_64
1929 if (is_long_mode(&vmx
->vcpu
))
1930 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
1932 if (vmx
->host_state
.gs_ldt_reload_needed
) {
1933 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
1934 #ifdef CONFIG_X86_64
1935 load_gs_index(vmx
->host_state
.gs_sel
);
1937 loadsegment(gs
, vmx
->host_state
.gs_sel
);
1940 if (vmx
->host_state
.fs_reload_needed
)
1941 loadsegment(fs
, vmx
->host_state
.fs_sel
);
1942 #ifdef CONFIG_X86_64
1943 if (unlikely(vmx
->host_state
.ds_sel
| vmx
->host_state
.es_sel
)) {
1944 loadsegment(ds
, vmx
->host_state
.ds_sel
);
1945 loadsegment(es
, vmx
->host_state
.es_sel
);
1949 #ifdef CONFIG_X86_64
1950 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
1952 if (vmx
->host_state
.msr_host_bndcfgs
)
1953 wrmsrl(MSR_IA32_BNDCFGS
, vmx
->host_state
.msr_host_bndcfgs
);
1955 * If the FPU is not active (through the host task or
1956 * the guest vcpu), then restore the cr0.TS bit.
1958 if (!fpregs_active() && !vmx
->vcpu
.guest_fpu_loaded
)
1960 load_gdt(this_cpu_ptr(&host_gdt
));
1963 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
1966 __vmx_load_host_state(vmx
);
1970 static void vmx_vcpu_pi_load(struct kvm_vcpu
*vcpu
, int cpu
)
1972 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
1973 struct pi_desc old
, new;
1976 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
1977 !irq_remapping_cap(IRQ_POSTING_CAP
))
1981 old
.control
= new.control
= pi_desc
->control
;
1984 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
1985 * are two possible cases:
1986 * 1. After running 'pre_block', context switch
1987 * happened. For this case, 'sn' was set in
1988 * vmx_vcpu_put(), so we need to clear it here.
1989 * 2. After running 'pre_block', we were blocked,
1990 * and woken up by some other guy. For this case,
1991 * we don't need to do anything, 'pi_post_block'
1992 * will do everything for us. However, we cannot
1993 * check whether it is case #1 or case #2 here
1994 * (maybe, not needed), so we also clear sn here,
1995 * I think it is not a big deal.
1997 if (pi_desc
->nv
!= POSTED_INTR_WAKEUP_VECTOR
) {
1998 if (vcpu
->cpu
!= cpu
) {
1999 dest
= cpu_physical_id(cpu
);
2001 if (x2apic_enabled())
2004 new.ndst
= (dest
<< 8) & 0xFF00;
2007 /* set 'NV' to 'notification vector' */
2008 new.nv
= POSTED_INTR_VECTOR
;
2011 /* Allow posting non-urgent interrupts */
2013 } while (cmpxchg(&pi_desc
->control
, old
.control
,
2014 new.control
) != old
.control
);
2017 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2018 * vcpu mutex is already taken.
2020 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2022 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2023 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
2026 kvm_cpu_vmxon(phys_addr
);
2027 else if (vmx
->loaded_vmcs
->cpu
!= cpu
)
2028 loaded_vmcs_clear(vmx
->loaded_vmcs
);
2030 if (per_cpu(current_vmcs
, cpu
) != vmx
->loaded_vmcs
->vmcs
) {
2031 per_cpu(current_vmcs
, cpu
) = vmx
->loaded_vmcs
->vmcs
;
2032 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
2035 if (vmx
->loaded_vmcs
->cpu
!= cpu
) {
2036 struct desc_ptr
*gdt
= this_cpu_ptr(&host_gdt
);
2037 unsigned long sysenter_esp
;
2039 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
2040 local_irq_disable();
2041 crash_disable_local_vmclear(cpu
);
2044 * Read loaded_vmcs->cpu should be before fetching
2045 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2046 * See the comments in __loaded_vmcs_clear().
2050 list_add(&vmx
->loaded_vmcs
->loaded_vmcss_on_cpu_link
,
2051 &per_cpu(loaded_vmcss_on_cpu
, cpu
));
2052 crash_enable_local_vmclear(cpu
);
2056 * Linux uses per-cpu TSS and GDT, so set these when switching
2059 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
2060 vmcs_writel(HOST_GDTR_BASE
, gdt
->address
); /* 22.2.4 */
2062 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
2063 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
2065 /* Setup TSC multiplier */
2066 if (cpu_has_vmx_tsc_scaling())
2067 vmcs_write64(TSC_MULTIPLIER
,
2068 vcpu
->arch
.tsc_scaling_ratio
);
2070 vmx
->loaded_vmcs
->cpu
= cpu
;
2073 vmx_vcpu_pi_load(vcpu
, cpu
);
2076 static void vmx_vcpu_pi_put(struct kvm_vcpu
*vcpu
)
2078 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
2080 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
2081 !irq_remapping_cap(IRQ_POSTING_CAP
))
2084 /* Set SN when the vCPU is preempted */
2085 if (vcpu
->preempted
)
2089 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
2091 vmx_vcpu_pi_put(vcpu
);
2093 __vmx_load_host_state(to_vmx(vcpu
));
2094 if (!vmm_exclusive
) {
2095 __loaded_vmcs_clear(to_vmx(vcpu
)->loaded_vmcs
);
2101 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
2105 if (vcpu
->fpu_active
)
2107 vcpu
->fpu_active
= 1;
2108 cr0
= vmcs_readl(GUEST_CR0
);
2109 cr0
&= ~(X86_CR0_TS
| X86_CR0_MP
);
2110 cr0
|= kvm_read_cr0_bits(vcpu
, X86_CR0_TS
| X86_CR0_MP
);
2111 vmcs_writel(GUEST_CR0
, cr0
);
2112 update_exception_bitmap(vcpu
);
2113 vcpu
->arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
2114 if (is_guest_mode(vcpu
))
2115 vcpu
->arch
.cr0_guest_owned_bits
&=
2116 ~get_vmcs12(vcpu
)->cr0_guest_host_mask
;
2117 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
2120 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
);
2123 * Return the cr0 value that a nested guest would read. This is a combination
2124 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2125 * its hypervisor (cr0_read_shadow).
2127 static inline unsigned long nested_read_cr0(struct vmcs12
*fields
)
2129 return (fields
->guest_cr0
& ~fields
->cr0_guest_host_mask
) |
2130 (fields
->cr0_read_shadow
& fields
->cr0_guest_host_mask
);
2132 static inline unsigned long nested_read_cr4(struct vmcs12
*fields
)
2134 return (fields
->guest_cr4
& ~fields
->cr4_guest_host_mask
) |
2135 (fields
->cr4_read_shadow
& fields
->cr4_guest_host_mask
);
2138 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
2140 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2141 * set this *before* calling this function.
2143 vmx_decache_cr0_guest_bits(vcpu
);
2144 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
| X86_CR0_MP
);
2145 update_exception_bitmap(vcpu
);
2146 vcpu
->arch
.cr0_guest_owned_bits
= 0;
2147 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
2148 if (is_guest_mode(vcpu
)) {
2150 * L1's specified read shadow might not contain the TS bit,
2151 * so now that we turned on shadowing of this bit, we need to
2152 * set this bit of the shadow. Like in nested_vmx_run we need
2153 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2154 * up-to-date here because we just decached cr0.TS (and we'll
2155 * only update vmcs12->guest_cr0 on nested exit).
2157 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
2158 vmcs12
->guest_cr0
= (vmcs12
->guest_cr0
& ~X86_CR0_TS
) |
2159 (vcpu
->arch
.cr0
& X86_CR0_TS
);
2160 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
2162 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
2165 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
2167 unsigned long rflags
, save_rflags
;
2169 if (!test_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
)) {
2170 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
2171 rflags
= vmcs_readl(GUEST_RFLAGS
);
2172 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
2173 rflags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
2174 save_rflags
= to_vmx(vcpu
)->rmode
.save_rflags
;
2175 rflags
|= save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
2177 to_vmx(vcpu
)->rflags
= rflags
;
2179 return to_vmx(vcpu
)->rflags
;
2182 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
2184 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
2185 to_vmx(vcpu
)->rflags
= rflags
;
2186 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
2187 to_vmx(vcpu
)->rmode
.save_rflags
= rflags
;
2188 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
2190 vmcs_writel(GUEST_RFLAGS
, rflags
);
2193 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
)
2195 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
2198 if (interruptibility
& GUEST_INTR_STATE_STI
)
2199 ret
|= KVM_X86_SHADOW_INT_STI
;
2200 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
2201 ret
|= KVM_X86_SHADOW_INT_MOV_SS
;
2206 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
2208 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
2209 u32 interruptibility
= interruptibility_old
;
2211 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
2213 if (mask
& KVM_X86_SHADOW_INT_MOV_SS
)
2214 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
2215 else if (mask
& KVM_X86_SHADOW_INT_STI
)
2216 interruptibility
|= GUEST_INTR_STATE_STI
;
2218 if ((interruptibility
!= interruptibility_old
))
2219 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
2222 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
2226 rip
= kvm_rip_read(vcpu
);
2227 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
2228 kvm_rip_write(vcpu
, rip
);
2230 /* skipping an emulated instruction also counts */
2231 vmx_set_interrupt_shadow(vcpu
, 0);
2235 * KVM wants to inject page-faults which it got to the guest. This function
2236 * checks whether in a nested guest, we need to inject them to L1 or L2.
2238 static int nested_vmx_check_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
2240 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
2242 if (!(vmcs12
->exception_bitmap
& (1u << nr
)))
2245 nested_vmx_vmexit(vcpu
, to_vmx(vcpu
)->exit_reason
,
2246 vmcs_read32(VM_EXIT_INTR_INFO
),
2247 vmcs_readl(EXIT_QUALIFICATION
));
2251 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
2252 bool has_error_code
, u32 error_code
,
2255 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2256 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
2258 if (!reinject
&& is_guest_mode(vcpu
) &&
2259 nested_vmx_check_exception(vcpu
, nr
))
2262 if (has_error_code
) {
2263 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
2264 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
2267 if (vmx
->rmode
.vm86_active
) {
2269 if (kvm_exception_is_soft(nr
))
2270 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
2271 if (kvm_inject_realmode_interrupt(vcpu
, nr
, inc_eip
) != EMULATE_DONE
)
2272 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2276 if (kvm_exception_is_soft(nr
)) {
2277 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2278 vmx
->vcpu
.arch
.event_exit_inst_len
);
2279 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
2281 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
2283 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
2286 static bool vmx_rdtscp_supported(void)
2288 return cpu_has_vmx_rdtscp();
2291 static bool vmx_invpcid_supported(void)
2293 return cpu_has_vmx_invpcid() && enable_ept
;
2297 * Swap MSR entry in host/guest MSR entry array.
2299 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
2301 struct shared_msr_entry tmp
;
2303 tmp
= vmx
->guest_msrs
[to
];
2304 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
2305 vmx
->guest_msrs
[from
] = tmp
;
2308 static void vmx_set_msr_bitmap(struct kvm_vcpu
*vcpu
)
2310 unsigned long *msr_bitmap
;
2312 if (is_guest_mode(vcpu
))
2313 msr_bitmap
= vmx_msr_bitmap_nested
;
2314 else if (vcpu
->arch
.apic_base
& X2APIC_ENABLE
) {
2315 if (is_long_mode(vcpu
))
2316 msr_bitmap
= vmx_msr_bitmap_longmode_x2apic
;
2318 msr_bitmap
= vmx_msr_bitmap_legacy_x2apic
;
2320 if (is_long_mode(vcpu
))
2321 msr_bitmap
= vmx_msr_bitmap_longmode
;
2323 msr_bitmap
= vmx_msr_bitmap_legacy
;
2326 vmcs_write64(MSR_BITMAP
, __pa(msr_bitmap
));
2330 * Set up the vmcs to automatically save and restore system
2331 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2332 * mode, as fiddling with msrs is very expensive.
2334 static void setup_msrs(struct vcpu_vmx
*vmx
)
2336 int save_nmsrs
, index
;
2339 #ifdef CONFIG_X86_64
2340 if (is_long_mode(&vmx
->vcpu
)) {
2341 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
2343 move_msr_up(vmx
, index
, save_nmsrs
++);
2344 index
= __find_msr_index(vmx
, MSR_LSTAR
);
2346 move_msr_up(vmx
, index
, save_nmsrs
++);
2347 index
= __find_msr_index(vmx
, MSR_CSTAR
);
2349 move_msr_up(vmx
, index
, save_nmsrs
++);
2350 index
= __find_msr_index(vmx
, MSR_TSC_AUX
);
2351 if (index
>= 0 && guest_cpuid_has_rdtscp(&vmx
->vcpu
))
2352 move_msr_up(vmx
, index
, save_nmsrs
++);
2354 * MSR_STAR is only needed on long mode guests, and only
2355 * if efer.sce is enabled.
2357 index
= __find_msr_index(vmx
, MSR_STAR
);
2358 if ((index
>= 0) && (vmx
->vcpu
.arch
.efer
& EFER_SCE
))
2359 move_msr_up(vmx
, index
, save_nmsrs
++);
2362 index
= __find_msr_index(vmx
, MSR_EFER
);
2363 if (index
>= 0 && update_transition_efer(vmx
, index
))
2364 move_msr_up(vmx
, index
, save_nmsrs
++);
2366 vmx
->save_nmsrs
= save_nmsrs
;
2368 if (cpu_has_vmx_msr_bitmap())
2369 vmx_set_msr_bitmap(&vmx
->vcpu
);
2373 * reads and returns guest's timestamp counter "register"
2374 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2375 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2377 static u64
guest_read_tsc(struct kvm_vcpu
*vcpu
)
2379 u64 host_tsc
, tsc_offset
;
2382 tsc_offset
= vmcs_read64(TSC_OFFSET
);
2383 return kvm_scale_tsc(vcpu
, host_tsc
) + tsc_offset
;
2387 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2388 * counter, even if a nested guest (L2) is currently running.
2390 static u64
vmx_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
2394 tsc_offset
= is_guest_mode(vcpu
) ?
2395 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
:
2396 vmcs_read64(TSC_OFFSET
);
2397 return host_tsc
+ tsc_offset
;
2400 static u64
vmx_read_tsc_offset(struct kvm_vcpu
*vcpu
)
2402 return vmcs_read64(TSC_OFFSET
);
2406 * writes 'offset' into guest's timestamp counter offset register
2408 static void vmx_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
2410 if (is_guest_mode(vcpu
)) {
2412 * We're here if L1 chose not to trap WRMSR to TSC. According
2413 * to the spec, this should set L1's TSC; The offset that L1
2414 * set for L2 remains unchanged, and still needs to be added
2415 * to the newly set TSC to get L2's TSC.
2417 struct vmcs12
*vmcs12
;
2418 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
= offset
;
2419 /* recalculate vmcs02.TSC_OFFSET: */
2420 vmcs12
= get_vmcs12(vcpu
);
2421 vmcs_write64(TSC_OFFSET
, offset
+
2422 (nested_cpu_has(vmcs12
, CPU_BASED_USE_TSC_OFFSETING
) ?
2423 vmcs12
->tsc_offset
: 0));
2425 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
2426 vmcs_read64(TSC_OFFSET
), offset
);
2427 vmcs_write64(TSC_OFFSET
, offset
);
2431 static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
, s64 adjustment
)
2433 u64 offset
= vmcs_read64(TSC_OFFSET
);
2435 vmcs_write64(TSC_OFFSET
, offset
+ adjustment
);
2436 if (is_guest_mode(vcpu
)) {
2437 /* Even when running L2, the adjustment needs to apply to L1 */
2438 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
+= adjustment
;
2440 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
, offset
,
2441 offset
+ adjustment
);
2444 static bool guest_cpuid_has_vmx(struct kvm_vcpu
*vcpu
)
2446 struct kvm_cpuid_entry2
*best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
2447 return best
&& (best
->ecx
& (1 << (X86_FEATURE_VMX
& 31)));
2451 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2452 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2453 * all guests if the "nested" module option is off, and can also be disabled
2454 * for a single guest by disabling its VMX cpuid bit.
2456 static inline bool nested_vmx_allowed(struct kvm_vcpu
*vcpu
)
2458 return nested
&& guest_cpuid_has_vmx(vcpu
);
2462 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2463 * returned for the various VMX controls MSRs when nested VMX is enabled.
2464 * The same values should also be used to verify that vmcs12 control fields are
2465 * valid during nested entry from L1 to L2.
2466 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2467 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2468 * bit in the high half is on if the corresponding bit in the control field
2469 * may be on. See also vmx_control_verify().
2471 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx
*vmx
)
2474 * Note that as a general rule, the high half of the MSRs (bits in
2475 * the control fields which may be 1) should be initialized by the
2476 * intersection of the underlying hardware's MSR (i.e., features which
2477 * can be supported) and the list of features we want to expose -
2478 * because they are known to be properly supported in our code.
2479 * Also, usually, the low half of the MSRs (bits which must be 1) can
2480 * be set to 0, meaning that L1 may turn off any of these bits. The
2481 * reason is that if one of these bits is necessary, it will appear
2482 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2483 * fields of vmcs01 and vmcs02, will turn these bits off - and
2484 * nested_vmx_exit_handled() will not pass related exits to L1.
2485 * These rules have exceptions below.
2488 /* pin-based controls */
2489 rdmsr(MSR_IA32_VMX_PINBASED_CTLS
,
2490 vmx
->nested
.nested_vmx_pinbased_ctls_low
,
2491 vmx
->nested
.nested_vmx_pinbased_ctls_high
);
2492 vmx
->nested
.nested_vmx_pinbased_ctls_low
|=
2493 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2494 vmx
->nested
.nested_vmx_pinbased_ctls_high
&=
2495 PIN_BASED_EXT_INTR_MASK
|
2496 PIN_BASED_NMI_EXITING
|
2497 PIN_BASED_VIRTUAL_NMIS
;
2498 vmx
->nested
.nested_vmx_pinbased_ctls_high
|=
2499 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
2500 PIN_BASED_VMX_PREEMPTION_TIMER
;
2501 if (vmx_cpu_uses_apicv(&vmx
->vcpu
))
2502 vmx
->nested
.nested_vmx_pinbased_ctls_high
|=
2503 PIN_BASED_POSTED_INTR
;
2506 rdmsr(MSR_IA32_VMX_EXIT_CTLS
,
2507 vmx
->nested
.nested_vmx_exit_ctls_low
,
2508 vmx
->nested
.nested_vmx_exit_ctls_high
);
2509 vmx
->nested
.nested_vmx_exit_ctls_low
=
2510 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
;
2512 vmx
->nested
.nested_vmx_exit_ctls_high
&=
2513 #ifdef CONFIG_X86_64
2514 VM_EXIT_HOST_ADDR_SPACE_SIZE
|
2516 VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_SAVE_IA32_PAT
;
2517 vmx
->nested
.nested_vmx_exit_ctls_high
|=
2518 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
|
2519 VM_EXIT_LOAD_IA32_EFER
| VM_EXIT_SAVE_IA32_EFER
|
2520 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
| VM_EXIT_ACK_INTR_ON_EXIT
;
2522 if (vmx_mpx_supported())
2523 vmx
->nested
.nested_vmx_exit_ctls_high
|= VM_EXIT_CLEAR_BNDCFGS
;
2525 /* We support free control of debug control saving. */
2526 vmx
->nested
.nested_vmx_true_exit_ctls_low
=
2527 vmx
->nested
.nested_vmx_exit_ctls_low
&
2528 ~VM_EXIT_SAVE_DEBUG_CONTROLS
;
2530 /* entry controls */
2531 rdmsr(MSR_IA32_VMX_ENTRY_CTLS
,
2532 vmx
->nested
.nested_vmx_entry_ctls_low
,
2533 vmx
->nested
.nested_vmx_entry_ctls_high
);
2534 vmx
->nested
.nested_vmx_entry_ctls_low
=
2535 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
;
2536 vmx
->nested
.nested_vmx_entry_ctls_high
&=
2537 #ifdef CONFIG_X86_64
2538 VM_ENTRY_IA32E_MODE
|
2540 VM_ENTRY_LOAD_IA32_PAT
;
2541 vmx
->nested
.nested_vmx_entry_ctls_high
|=
2542 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
| VM_ENTRY_LOAD_IA32_EFER
);
2543 if (vmx_mpx_supported())
2544 vmx
->nested
.nested_vmx_entry_ctls_high
|= VM_ENTRY_LOAD_BNDCFGS
;
2546 /* We support free control of debug control loading. */
2547 vmx
->nested
.nested_vmx_true_entry_ctls_low
=
2548 vmx
->nested
.nested_vmx_entry_ctls_low
&
2549 ~VM_ENTRY_LOAD_DEBUG_CONTROLS
;
2551 /* cpu-based controls */
2552 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS
,
2553 vmx
->nested
.nested_vmx_procbased_ctls_low
,
2554 vmx
->nested
.nested_vmx_procbased_ctls_high
);
2555 vmx
->nested
.nested_vmx_procbased_ctls_low
=
2556 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2557 vmx
->nested
.nested_vmx_procbased_ctls_high
&=
2558 CPU_BASED_VIRTUAL_INTR_PENDING
|
2559 CPU_BASED_VIRTUAL_NMI_PENDING
| CPU_BASED_USE_TSC_OFFSETING
|
2560 CPU_BASED_HLT_EXITING
| CPU_BASED_INVLPG_EXITING
|
2561 CPU_BASED_MWAIT_EXITING
| CPU_BASED_CR3_LOAD_EXITING
|
2562 CPU_BASED_CR3_STORE_EXITING
|
2563 #ifdef CONFIG_X86_64
2564 CPU_BASED_CR8_LOAD_EXITING
| CPU_BASED_CR8_STORE_EXITING
|
2566 CPU_BASED_MOV_DR_EXITING
| CPU_BASED_UNCOND_IO_EXITING
|
2567 CPU_BASED_USE_IO_BITMAPS
| CPU_BASED_MONITOR_TRAP_FLAG
|
2568 CPU_BASED_MONITOR_EXITING
| CPU_BASED_RDPMC_EXITING
|
2569 CPU_BASED_RDTSC_EXITING
| CPU_BASED_PAUSE_EXITING
|
2570 CPU_BASED_TPR_SHADOW
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
2572 * We can allow some features even when not supported by the
2573 * hardware. For example, L1 can specify an MSR bitmap - and we
2574 * can use it to avoid exits to L1 - even when L0 runs L2
2575 * without MSR bitmaps.
2577 vmx
->nested
.nested_vmx_procbased_ctls_high
|=
2578 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
2579 CPU_BASED_USE_MSR_BITMAPS
;
2581 /* We support free control of CR3 access interception. */
2582 vmx
->nested
.nested_vmx_true_procbased_ctls_low
=
2583 vmx
->nested
.nested_vmx_procbased_ctls_low
&
2584 ~(CPU_BASED_CR3_LOAD_EXITING
| CPU_BASED_CR3_STORE_EXITING
);
2586 /* secondary cpu-based controls */
2587 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2
,
2588 vmx
->nested
.nested_vmx_secondary_ctls_low
,
2589 vmx
->nested
.nested_vmx_secondary_ctls_high
);
2590 vmx
->nested
.nested_vmx_secondary_ctls_low
= 0;
2591 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
2592 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
2593 SECONDARY_EXEC_RDTSCP
|
2594 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
2595 SECONDARY_EXEC_ENABLE_VPID
|
2596 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
2597 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
2598 SECONDARY_EXEC_WBINVD_EXITING
|
2599 SECONDARY_EXEC_XSAVES
|
2600 SECONDARY_EXEC_PCOMMIT
;
2603 /* nested EPT: emulate EPT also to L1 */
2604 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
2605 SECONDARY_EXEC_ENABLE_EPT
;
2606 vmx
->nested
.nested_vmx_ept_caps
= VMX_EPT_PAGE_WALK_4_BIT
|
2607 VMX_EPTP_WB_BIT
| VMX_EPT_2MB_PAGE_BIT
|
2609 vmx
->nested
.nested_vmx_ept_caps
&= vmx_capability
.ept
;
2611 * For nested guests, we don't do anything specific
2612 * for single context invalidation. Hence, only advertise
2613 * support for global context invalidation.
2615 vmx
->nested
.nested_vmx_ept_caps
|= VMX_EPT_EXTENT_GLOBAL_BIT
;
2617 vmx
->nested
.nested_vmx_ept_caps
= 0;
2620 vmx
->nested
.nested_vmx_vpid_caps
= VMX_VPID_INVVPID_BIT
|
2621 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
2623 vmx
->nested
.nested_vmx_vpid_caps
= 0;
2625 if (enable_unrestricted_guest
)
2626 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
2627 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
2629 /* miscellaneous data */
2630 rdmsr(MSR_IA32_VMX_MISC
,
2631 vmx
->nested
.nested_vmx_misc_low
,
2632 vmx
->nested
.nested_vmx_misc_high
);
2633 vmx
->nested
.nested_vmx_misc_low
&= VMX_MISC_SAVE_EFER_LMA
;
2634 vmx
->nested
.nested_vmx_misc_low
|=
2635 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
|
2636 VMX_MISC_ACTIVITY_HLT
;
2637 vmx
->nested
.nested_vmx_misc_high
= 0;
2640 static inline bool vmx_control_verify(u32 control
, u32 low
, u32 high
)
2643 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2645 return ((control
& high
) | low
) == control
;
2648 static inline u64
vmx_control_msr(u32 low
, u32 high
)
2650 return low
| ((u64
)high
<< 32);
2653 /* Returns 0 on success, non-0 otherwise. */
2654 static int vmx_get_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2656 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2658 switch (msr_index
) {
2659 case MSR_IA32_VMX_BASIC
:
2661 * This MSR reports some information about VMX support. We
2662 * should return information about the VMX we emulate for the
2663 * guest, and the VMCS structure we give it - not about the
2664 * VMX support of the underlying hardware.
2666 *pdata
= VMCS12_REVISION
| VMX_BASIC_TRUE_CTLS
|
2667 ((u64
)VMCS12_SIZE
<< VMX_BASIC_VMCS_SIZE_SHIFT
) |
2668 (VMX_BASIC_MEM_TYPE_WB
<< VMX_BASIC_MEM_TYPE_SHIFT
);
2670 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
2671 case MSR_IA32_VMX_PINBASED_CTLS
:
2672 *pdata
= vmx_control_msr(
2673 vmx
->nested
.nested_vmx_pinbased_ctls_low
,
2674 vmx
->nested
.nested_vmx_pinbased_ctls_high
);
2676 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
2677 *pdata
= vmx_control_msr(
2678 vmx
->nested
.nested_vmx_true_procbased_ctls_low
,
2679 vmx
->nested
.nested_vmx_procbased_ctls_high
);
2681 case MSR_IA32_VMX_PROCBASED_CTLS
:
2682 *pdata
= vmx_control_msr(
2683 vmx
->nested
.nested_vmx_procbased_ctls_low
,
2684 vmx
->nested
.nested_vmx_procbased_ctls_high
);
2686 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
2687 *pdata
= vmx_control_msr(
2688 vmx
->nested
.nested_vmx_true_exit_ctls_low
,
2689 vmx
->nested
.nested_vmx_exit_ctls_high
);
2691 case MSR_IA32_VMX_EXIT_CTLS
:
2692 *pdata
= vmx_control_msr(
2693 vmx
->nested
.nested_vmx_exit_ctls_low
,
2694 vmx
->nested
.nested_vmx_exit_ctls_high
);
2696 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
2697 *pdata
= vmx_control_msr(
2698 vmx
->nested
.nested_vmx_true_entry_ctls_low
,
2699 vmx
->nested
.nested_vmx_entry_ctls_high
);
2701 case MSR_IA32_VMX_ENTRY_CTLS
:
2702 *pdata
= vmx_control_msr(
2703 vmx
->nested
.nested_vmx_entry_ctls_low
,
2704 vmx
->nested
.nested_vmx_entry_ctls_high
);
2706 case MSR_IA32_VMX_MISC
:
2707 *pdata
= vmx_control_msr(
2708 vmx
->nested
.nested_vmx_misc_low
,
2709 vmx
->nested
.nested_vmx_misc_high
);
2712 * These MSRs specify bits which the guest must keep fixed (on or off)
2713 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2714 * We picked the standard core2 setting.
2716 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2717 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2718 case MSR_IA32_VMX_CR0_FIXED0
:
2719 *pdata
= VMXON_CR0_ALWAYSON
;
2721 case MSR_IA32_VMX_CR0_FIXED1
:
2724 case MSR_IA32_VMX_CR4_FIXED0
:
2725 *pdata
= VMXON_CR4_ALWAYSON
;
2727 case MSR_IA32_VMX_CR4_FIXED1
:
2730 case MSR_IA32_VMX_VMCS_ENUM
:
2731 *pdata
= 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2733 case MSR_IA32_VMX_PROCBASED_CTLS2
:
2734 *pdata
= vmx_control_msr(
2735 vmx
->nested
.nested_vmx_secondary_ctls_low
,
2736 vmx
->nested
.nested_vmx_secondary_ctls_high
);
2738 case MSR_IA32_VMX_EPT_VPID_CAP
:
2739 /* Currently, no nested vpid support */
2740 *pdata
= vmx
->nested
.nested_vmx_ept_caps
|
2741 ((u64
)vmx
->nested
.nested_vmx_vpid_caps
<< 32);
2751 * Reads an msr value (of 'msr_index') into 'pdata'.
2752 * Returns 0 on success, non-0 otherwise.
2753 * Assumes vcpu_load() was already called.
2755 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2757 struct shared_msr_entry
*msr
;
2759 switch (msr_info
->index
) {
2760 #ifdef CONFIG_X86_64
2762 msr_info
->data
= vmcs_readl(GUEST_FS_BASE
);
2765 msr_info
->data
= vmcs_readl(GUEST_GS_BASE
);
2767 case MSR_KERNEL_GS_BASE
:
2768 vmx_load_host_state(to_vmx(vcpu
));
2769 msr_info
->data
= to_vmx(vcpu
)->msr_guest_kernel_gs_base
;
2773 return kvm_get_msr_common(vcpu
, msr_info
);
2775 msr_info
->data
= guest_read_tsc(vcpu
);
2777 case MSR_IA32_SYSENTER_CS
:
2778 msr_info
->data
= vmcs_read32(GUEST_SYSENTER_CS
);
2780 case MSR_IA32_SYSENTER_EIP
:
2781 msr_info
->data
= vmcs_readl(GUEST_SYSENTER_EIP
);
2783 case MSR_IA32_SYSENTER_ESP
:
2784 msr_info
->data
= vmcs_readl(GUEST_SYSENTER_ESP
);
2786 case MSR_IA32_BNDCFGS
:
2787 if (!vmx_mpx_supported())
2789 msr_info
->data
= vmcs_read64(GUEST_BNDCFGS
);
2791 case MSR_IA32_FEATURE_CONTROL
:
2792 if (!nested_vmx_allowed(vcpu
))
2794 msr_info
->data
= to_vmx(vcpu
)->nested
.msr_ia32_feature_control
;
2796 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
2797 if (!nested_vmx_allowed(vcpu
))
2799 return vmx_get_vmx_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2801 if (!vmx_xsaves_supported())
2803 msr_info
->data
= vcpu
->arch
.ia32_xss
;
2806 if (!guest_cpuid_has_rdtscp(vcpu
) && !msr_info
->host_initiated
)
2808 /* Otherwise falls through */
2810 msr
= find_msr_entry(to_vmx(vcpu
), msr_info
->index
);
2812 msr_info
->data
= msr
->data
;
2815 return kvm_get_msr_common(vcpu
, msr_info
);
2821 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
);
2824 * Writes msr value into into the appropriate "register".
2825 * Returns 0 on success, non-0 otherwise.
2826 * Assumes vcpu_load() was already called.
2828 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2830 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2831 struct shared_msr_entry
*msr
;
2833 u32 msr_index
= msr_info
->index
;
2834 u64 data
= msr_info
->data
;
2836 switch (msr_index
) {
2838 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2840 #ifdef CONFIG_X86_64
2842 vmx_segment_cache_clear(vmx
);
2843 vmcs_writel(GUEST_FS_BASE
, data
);
2846 vmx_segment_cache_clear(vmx
);
2847 vmcs_writel(GUEST_GS_BASE
, data
);
2849 case MSR_KERNEL_GS_BASE
:
2850 vmx_load_host_state(vmx
);
2851 vmx
->msr_guest_kernel_gs_base
= data
;
2854 case MSR_IA32_SYSENTER_CS
:
2855 vmcs_write32(GUEST_SYSENTER_CS
, data
);
2857 case MSR_IA32_SYSENTER_EIP
:
2858 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
2860 case MSR_IA32_SYSENTER_ESP
:
2861 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
2863 case MSR_IA32_BNDCFGS
:
2864 if (!vmx_mpx_supported())
2866 vmcs_write64(GUEST_BNDCFGS
, data
);
2869 kvm_write_tsc(vcpu
, msr_info
);
2871 case MSR_IA32_CR_PAT
:
2872 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
2873 if (!kvm_mtrr_valid(vcpu
, MSR_IA32_CR_PAT
, data
))
2875 vmcs_write64(GUEST_IA32_PAT
, data
);
2876 vcpu
->arch
.pat
= data
;
2879 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2881 case MSR_IA32_TSC_ADJUST
:
2882 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2884 case MSR_IA32_FEATURE_CONTROL
:
2885 if (!nested_vmx_allowed(vcpu
) ||
2886 (to_vmx(vcpu
)->nested
.msr_ia32_feature_control
&
2887 FEATURE_CONTROL_LOCKED
&& !msr_info
->host_initiated
))
2889 vmx
->nested
.msr_ia32_feature_control
= data
;
2890 if (msr_info
->host_initiated
&& data
== 0)
2891 vmx_leave_nested(vcpu
);
2893 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
2894 return 1; /* they are read-only */
2896 if (!vmx_xsaves_supported())
2899 * The only supported bit as of Skylake is bit 8, but
2900 * it is not supported on KVM.
2904 vcpu
->arch
.ia32_xss
= data
;
2905 if (vcpu
->arch
.ia32_xss
!= host_xss
)
2906 add_atomic_switch_msr(vmx
, MSR_IA32_XSS
,
2907 vcpu
->arch
.ia32_xss
, host_xss
);
2909 clear_atomic_switch_msr(vmx
, MSR_IA32_XSS
);
2912 if (!guest_cpuid_has_rdtscp(vcpu
) && !msr_info
->host_initiated
)
2914 /* Check reserved bit, higher 32 bits should be zero */
2915 if ((data
>> 32) != 0)
2917 /* Otherwise falls through */
2919 msr
= find_msr_entry(vmx
, msr_index
);
2921 u64 old_msr_data
= msr
->data
;
2923 if (msr
- vmx
->guest_msrs
< vmx
->save_nmsrs
) {
2925 ret
= kvm_set_shared_msr(msr
->index
, msr
->data
,
2929 msr
->data
= old_msr_data
;
2933 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2939 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
2941 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
2944 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
2947 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
2949 case VCPU_EXREG_PDPTR
:
2951 ept_save_pdptrs(vcpu
);
2958 static __init
int cpu_has_kvm_support(void)
2960 return cpu_has_vmx();
2963 static __init
int vmx_disabled_by_bios(void)
2967 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
2968 if (msr
& FEATURE_CONTROL_LOCKED
) {
2969 /* launched w/ TXT and VMX disabled */
2970 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
2973 /* launched w/o TXT and VMX only enabled w/ TXT */
2974 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
2975 && (msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
2976 && !tboot_enabled()) {
2977 printk(KERN_WARNING
"kvm: disable TXT in the BIOS or "
2978 "activate TXT before enabling KVM\n");
2981 /* launched w/o TXT and VMX disabled */
2982 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
2983 && !tboot_enabled())
2990 static void kvm_cpu_vmxon(u64 addr
)
2992 asm volatile (ASM_VMX_VMXON_RAX
2993 : : "a"(&addr
), "m"(addr
)
2997 static int hardware_enable(void)
2999 int cpu
= raw_smp_processor_id();
3000 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
3003 if (cr4_read_shadow() & X86_CR4_VMXE
)
3006 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu
, cpu
));
3007 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu
, cpu
));
3008 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
3011 * Now we can enable the vmclear operation in kdump
3012 * since the loaded_vmcss_on_cpu list on this cpu
3013 * has been initialized.
3015 * Though the cpu is not in VMX operation now, there
3016 * is no problem to enable the vmclear operation
3017 * for the loaded_vmcss_on_cpu list is empty!
3019 crash_enable_local_vmclear(cpu
);
3021 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
3023 test_bits
= FEATURE_CONTROL_LOCKED
;
3024 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
3025 if (tboot_enabled())
3026 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
;
3028 if ((old
& test_bits
) != test_bits
) {
3029 /* enable and lock */
3030 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
| test_bits
);
3032 cr4_set_bits(X86_CR4_VMXE
);
3034 if (vmm_exclusive
) {
3035 kvm_cpu_vmxon(phys_addr
);
3039 native_store_gdt(this_cpu_ptr(&host_gdt
));
3044 static void vmclear_local_loaded_vmcss(void)
3046 int cpu
= raw_smp_processor_id();
3047 struct loaded_vmcs
*v
, *n
;
3049 list_for_each_entry_safe(v
, n
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
3050 loaded_vmcss_on_cpu_link
)
3051 __loaded_vmcs_clear(v
);
3055 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3058 static void kvm_cpu_vmxoff(void)
3060 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
3063 static void hardware_disable(void)
3065 if (vmm_exclusive
) {
3066 vmclear_local_loaded_vmcss();
3069 cr4_clear_bits(X86_CR4_VMXE
);
3072 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
3073 u32 msr
, u32
*result
)
3075 u32 vmx_msr_low
, vmx_msr_high
;
3076 u32 ctl
= ctl_min
| ctl_opt
;
3078 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
3080 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
3081 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
3083 /* Ensure minimum (required) set of control bits are supported. */
3091 static __init
bool allow_1_setting(u32 msr
, u32 ctl
)
3093 u32 vmx_msr_low
, vmx_msr_high
;
3095 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
3096 return vmx_msr_high
& ctl
;
3099 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
3101 u32 vmx_msr_low
, vmx_msr_high
;
3102 u32 min
, opt
, min2
, opt2
;
3103 u32 _pin_based_exec_control
= 0;
3104 u32 _cpu_based_exec_control
= 0;
3105 u32 _cpu_based_2nd_exec_control
= 0;
3106 u32 _vmexit_control
= 0;
3107 u32 _vmentry_control
= 0;
3109 min
= CPU_BASED_HLT_EXITING
|
3110 #ifdef CONFIG_X86_64
3111 CPU_BASED_CR8_LOAD_EXITING
|
3112 CPU_BASED_CR8_STORE_EXITING
|
3114 CPU_BASED_CR3_LOAD_EXITING
|
3115 CPU_BASED_CR3_STORE_EXITING
|
3116 CPU_BASED_USE_IO_BITMAPS
|
3117 CPU_BASED_MOV_DR_EXITING
|
3118 CPU_BASED_USE_TSC_OFFSETING
|
3119 CPU_BASED_MWAIT_EXITING
|
3120 CPU_BASED_MONITOR_EXITING
|
3121 CPU_BASED_INVLPG_EXITING
|
3122 CPU_BASED_RDPMC_EXITING
;
3124 opt
= CPU_BASED_TPR_SHADOW
|
3125 CPU_BASED_USE_MSR_BITMAPS
|
3126 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
3127 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
3128 &_cpu_based_exec_control
) < 0)
3130 #ifdef CONFIG_X86_64
3131 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
3132 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
3133 ~CPU_BASED_CR8_STORE_EXITING
;
3135 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
3137 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
3138 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
3139 SECONDARY_EXEC_WBINVD_EXITING
|
3140 SECONDARY_EXEC_ENABLE_VPID
|
3141 SECONDARY_EXEC_ENABLE_EPT
|
3142 SECONDARY_EXEC_UNRESTRICTED_GUEST
|
3143 SECONDARY_EXEC_PAUSE_LOOP_EXITING
|
3144 SECONDARY_EXEC_RDTSCP
|
3145 SECONDARY_EXEC_ENABLE_INVPCID
|
3146 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
3147 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
3148 SECONDARY_EXEC_SHADOW_VMCS
|
3149 SECONDARY_EXEC_XSAVES
|
3150 SECONDARY_EXEC_ENABLE_PML
|
3151 SECONDARY_EXEC_PCOMMIT
|
3152 SECONDARY_EXEC_TSC_SCALING
;
3153 if (adjust_vmx_controls(min2
, opt2
,
3154 MSR_IA32_VMX_PROCBASED_CTLS2
,
3155 &_cpu_based_2nd_exec_control
) < 0)
3158 #ifndef CONFIG_X86_64
3159 if (!(_cpu_based_2nd_exec_control
&
3160 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
3161 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
3164 if (!(_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
3165 _cpu_based_2nd_exec_control
&= ~(
3166 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
3167 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
3168 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
3170 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
3171 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3173 _cpu_based_exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
3174 CPU_BASED_CR3_STORE_EXITING
|
3175 CPU_BASED_INVLPG_EXITING
);
3176 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
3177 vmx_capability
.ept
, vmx_capability
.vpid
);
3180 min
= VM_EXIT_SAVE_DEBUG_CONTROLS
;
3181 #ifdef CONFIG_X86_64
3182 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
3184 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
|
3185 VM_EXIT_ACK_INTR_ON_EXIT
| VM_EXIT_CLEAR_BNDCFGS
;
3186 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
3187 &_vmexit_control
) < 0)
3190 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
3191 opt
= PIN_BASED_VIRTUAL_NMIS
| PIN_BASED_POSTED_INTR
;
3192 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
3193 &_pin_based_exec_control
) < 0)
3196 if (!(_cpu_based_2nd_exec_control
&
3197 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
) ||
3198 !(_vmexit_control
& VM_EXIT_ACK_INTR_ON_EXIT
))
3199 _pin_based_exec_control
&= ~PIN_BASED_POSTED_INTR
;
3201 min
= VM_ENTRY_LOAD_DEBUG_CONTROLS
;
3202 opt
= VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_LOAD_BNDCFGS
;
3203 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
3204 &_vmentry_control
) < 0)
3207 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
3209 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3210 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
3213 #ifdef CONFIG_X86_64
3214 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3215 if (vmx_msr_high
& (1u<<16))
3219 /* Require Write-Back (WB) memory type for VMCS accesses. */
3220 if (((vmx_msr_high
>> 18) & 15) != 6)
3223 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
3224 vmcs_conf
->order
= get_order(vmcs_config
.size
);
3225 vmcs_conf
->revision_id
= vmx_msr_low
;
3227 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
3228 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
3229 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
3230 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
3231 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
3233 cpu_has_load_ia32_efer
=
3234 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
3235 VM_ENTRY_LOAD_IA32_EFER
)
3236 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
3237 VM_EXIT_LOAD_IA32_EFER
);
3239 cpu_has_load_perf_global_ctrl
=
3240 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
3241 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
3242 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
3243 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
3246 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3247 * but due to arrata below it can't be used. Workaround is to use
3248 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3250 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3255 * BC86,AAY89,BD102 (model 44)
3259 if (cpu_has_load_perf_global_ctrl
&& boot_cpu_data
.x86
== 0x6) {
3260 switch (boot_cpu_data
.x86_model
) {
3266 cpu_has_load_perf_global_ctrl
= false;
3267 printk_once(KERN_WARNING
"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3268 "does not work properly. Using workaround\n");
3276 rdmsrl(MSR_IA32_XSS
, host_xss
);
3281 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
3283 int node
= cpu_to_node(cpu
);
3287 pages
= __alloc_pages_node(node
, GFP_KERNEL
, vmcs_config
.order
);
3290 vmcs
= page_address(pages
);
3291 memset(vmcs
, 0, vmcs_config
.size
);
3292 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
3296 static struct vmcs
*alloc_vmcs(void)
3298 return alloc_vmcs_cpu(raw_smp_processor_id());
3301 static void free_vmcs(struct vmcs
*vmcs
)
3303 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
3307 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3309 static void free_loaded_vmcs(struct loaded_vmcs
*loaded_vmcs
)
3311 if (!loaded_vmcs
->vmcs
)
3313 loaded_vmcs_clear(loaded_vmcs
);
3314 free_vmcs(loaded_vmcs
->vmcs
);
3315 loaded_vmcs
->vmcs
= NULL
;
3318 static void free_kvm_area(void)
3322 for_each_possible_cpu(cpu
) {
3323 free_vmcs(per_cpu(vmxarea
, cpu
));
3324 per_cpu(vmxarea
, cpu
) = NULL
;
3328 static void init_vmcs_shadow_fields(void)
3332 /* No checks for read only fields yet */
3334 for (i
= j
= 0; i
< max_shadow_read_write_fields
; i
++) {
3335 switch (shadow_read_write_fields
[i
]) {
3337 if (!vmx_mpx_supported())
3345 shadow_read_write_fields
[j
] =
3346 shadow_read_write_fields
[i
];
3349 max_shadow_read_write_fields
= j
;
3351 /* shadowed fields guest access without vmexit */
3352 for (i
= 0; i
< max_shadow_read_write_fields
; i
++) {
3353 clear_bit(shadow_read_write_fields
[i
],
3354 vmx_vmwrite_bitmap
);
3355 clear_bit(shadow_read_write_fields
[i
],
3358 for (i
= 0; i
< max_shadow_read_only_fields
; i
++)
3359 clear_bit(shadow_read_only_fields
[i
],
3363 static __init
int alloc_kvm_area(void)
3367 for_each_possible_cpu(cpu
) {
3370 vmcs
= alloc_vmcs_cpu(cpu
);
3376 per_cpu(vmxarea
, cpu
) = vmcs
;
3381 static bool emulation_required(struct kvm_vcpu
*vcpu
)
3383 return emulate_invalid_guest_state
&& !guest_state_valid(vcpu
);
3386 static void fix_pmode_seg(struct kvm_vcpu
*vcpu
, int seg
,
3387 struct kvm_segment
*save
)
3389 if (!emulate_invalid_guest_state
) {
3391 * CS and SS RPL should be equal during guest entry according
3392 * to VMX spec, but in reality it is not always so. Since vcpu
3393 * is in the middle of the transition from real mode to
3394 * protected mode it is safe to assume that RPL 0 is a good
3397 if (seg
== VCPU_SREG_CS
|| seg
== VCPU_SREG_SS
)
3398 save
->selector
&= ~SEGMENT_RPL_MASK
;
3399 save
->dpl
= save
->selector
& SEGMENT_RPL_MASK
;
3402 vmx_set_segment(vcpu
, save
, seg
);
3405 static void enter_pmode(struct kvm_vcpu
*vcpu
)
3407 unsigned long flags
;
3408 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3411 * Update real mode segment cache. It may be not up-to-date if sement
3412 * register was written while vcpu was in a guest mode.
3414 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
3415 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
3416 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
3417 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
3418 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
3419 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
3421 vmx
->rmode
.vm86_active
= 0;
3423 vmx_segment_cache_clear(vmx
);
3425 vmx_set_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3427 flags
= vmcs_readl(GUEST_RFLAGS
);
3428 flags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
3429 flags
|= vmx
->rmode
.save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
3430 vmcs_writel(GUEST_RFLAGS
, flags
);
3432 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
3433 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
3435 update_exception_bitmap(vcpu
);
3437 fix_pmode_seg(vcpu
, VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
3438 fix_pmode_seg(vcpu
, VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
3439 fix_pmode_seg(vcpu
, VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
3440 fix_pmode_seg(vcpu
, VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
3441 fix_pmode_seg(vcpu
, VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
3442 fix_pmode_seg(vcpu
, VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
3445 static void fix_rmode_seg(int seg
, struct kvm_segment
*save
)
3447 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3448 struct kvm_segment var
= *save
;
3451 if (seg
== VCPU_SREG_CS
)
3454 if (!emulate_invalid_guest_state
) {
3455 var
.selector
= var
.base
>> 4;
3456 var
.base
= var
.base
& 0xffff0;
3466 if (save
->base
& 0xf)
3467 printk_once(KERN_WARNING
"kvm: segment base is not "
3468 "paragraph aligned when entering "
3469 "protected mode (seg=%d)", seg
);
3472 vmcs_write16(sf
->selector
, var
.selector
);
3473 vmcs_write32(sf
->base
, var
.base
);
3474 vmcs_write32(sf
->limit
, var
.limit
);
3475 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(&var
));
3478 static void enter_rmode(struct kvm_vcpu
*vcpu
)
3480 unsigned long flags
;
3481 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3483 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3484 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
3485 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
3486 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
3487 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
3488 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
3489 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
3491 vmx
->rmode
.vm86_active
= 1;
3494 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3495 * vcpu. Warn the user that an update is overdue.
3497 if (!vcpu
->kvm
->arch
.tss_addr
)
3498 printk_once(KERN_WARNING
"kvm: KVM_SET_TSS_ADDR need to be "
3499 "called before entering vcpu\n");
3501 vmx_segment_cache_clear(vmx
);
3503 vmcs_writel(GUEST_TR_BASE
, vcpu
->kvm
->arch
.tss_addr
);
3504 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
3505 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
3507 flags
= vmcs_readl(GUEST_RFLAGS
);
3508 vmx
->rmode
.save_rflags
= flags
;
3510 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
3512 vmcs_writel(GUEST_RFLAGS
, flags
);
3513 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
3514 update_exception_bitmap(vcpu
);
3516 fix_rmode_seg(VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
3517 fix_rmode_seg(VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
3518 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
3519 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
3520 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
3521 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
3523 kvm_mmu_reset_context(vcpu
);
3526 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
3528 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3529 struct shared_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
3535 * Force kernel_gs_base reloading before EFER changes, as control
3536 * of this msr depends on is_long_mode().
3538 vmx_load_host_state(to_vmx(vcpu
));
3539 vcpu
->arch
.efer
= efer
;
3540 if (efer
& EFER_LMA
) {
3541 vm_entry_controls_setbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
3544 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
3546 msr
->data
= efer
& ~EFER_LME
;
3551 #ifdef CONFIG_X86_64
3553 static void enter_lmode(struct kvm_vcpu
*vcpu
)
3557 vmx_segment_cache_clear(to_vmx(vcpu
));
3559 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
3560 if ((guest_tr_ar
& VMX_AR_TYPE_MASK
) != VMX_AR_TYPE_BUSY_64_TSS
) {
3561 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3563 vmcs_write32(GUEST_TR_AR_BYTES
,
3564 (guest_tr_ar
& ~VMX_AR_TYPE_MASK
)
3565 | VMX_AR_TYPE_BUSY_64_TSS
);
3567 vmx_set_efer(vcpu
, vcpu
->arch
.efer
| EFER_LMA
);
3570 static void exit_lmode(struct kvm_vcpu
*vcpu
)
3572 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
3573 vmx_set_efer(vcpu
, vcpu
->arch
.efer
& ~EFER_LMA
);
3578 static inline void __vmx_flush_tlb(struct kvm_vcpu
*vcpu
, int vpid
)
3580 vpid_sync_context(vpid
);
3582 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3584 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
3588 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
3590 __vmx_flush_tlb(vcpu
, to_vmx(vcpu
)->vpid
);
3593 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
3595 ulong cr0_guest_owned_bits
= vcpu
->arch
.cr0_guest_owned_bits
;
3597 vcpu
->arch
.cr0
&= ~cr0_guest_owned_bits
;
3598 vcpu
->arch
.cr0
|= vmcs_readl(GUEST_CR0
) & cr0_guest_owned_bits
;
3601 static void vmx_decache_cr3(struct kvm_vcpu
*vcpu
)
3603 if (enable_ept
&& is_paging(vcpu
))
3604 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
3605 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
3608 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
3610 ulong cr4_guest_owned_bits
= vcpu
->arch
.cr4_guest_owned_bits
;
3612 vcpu
->arch
.cr4
&= ~cr4_guest_owned_bits
;
3613 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & cr4_guest_owned_bits
;
3616 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
3618 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
3620 if (!test_bit(VCPU_EXREG_PDPTR
,
3621 (unsigned long *)&vcpu
->arch
.regs_dirty
))
3624 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
3625 vmcs_write64(GUEST_PDPTR0
, mmu
->pdptrs
[0]);
3626 vmcs_write64(GUEST_PDPTR1
, mmu
->pdptrs
[1]);
3627 vmcs_write64(GUEST_PDPTR2
, mmu
->pdptrs
[2]);
3628 vmcs_write64(GUEST_PDPTR3
, mmu
->pdptrs
[3]);
3632 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
3634 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
3636 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
3637 mmu
->pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
3638 mmu
->pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
3639 mmu
->pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
3640 mmu
->pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
3643 __set_bit(VCPU_EXREG_PDPTR
,
3644 (unsigned long *)&vcpu
->arch
.regs_avail
);
3645 __set_bit(VCPU_EXREG_PDPTR
,
3646 (unsigned long *)&vcpu
->arch
.regs_dirty
);
3649 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
3651 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
3653 struct kvm_vcpu
*vcpu
)
3655 if (!test_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
))
3656 vmx_decache_cr3(vcpu
);
3657 if (!(cr0
& X86_CR0_PG
)) {
3658 /* From paging/starting to nonpaging */
3659 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
3660 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
3661 (CPU_BASED_CR3_LOAD_EXITING
|
3662 CPU_BASED_CR3_STORE_EXITING
));
3663 vcpu
->arch
.cr0
= cr0
;
3664 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
3665 } else if (!is_paging(vcpu
)) {
3666 /* From nonpaging to paging */
3667 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
3668 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
3669 ~(CPU_BASED_CR3_LOAD_EXITING
|
3670 CPU_BASED_CR3_STORE_EXITING
));
3671 vcpu
->arch
.cr0
= cr0
;
3672 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
3675 if (!(cr0
& X86_CR0_WP
))
3676 *hw_cr0
&= ~X86_CR0_WP
;
3679 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
3681 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3682 unsigned long hw_cr0
;
3684 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
);
3685 if (enable_unrestricted_guest
)
3686 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
3688 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON
;
3690 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
3693 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
3697 #ifdef CONFIG_X86_64
3698 if (vcpu
->arch
.efer
& EFER_LME
) {
3699 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
3701 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
3707 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
3709 if (!vcpu
->fpu_active
)
3710 hw_cr0
|= X86_CR0_TS
| X86_CR0_MP
;
3712 vmcs_writel(CR0_READ_SHADOW
, cr0
);
3713 vmcs_writel(GUEST_CR0
, hw_cr0
);
3714 vcpu
->arch
.cr0
= cr0
;
3716 /* depends on vcpu->arch.cr0 to be set to a new value */
3717 vmx
->emulation_required
= emulation_required(vcpu
);
3720 static u64
construct_eptp(unsigned long root_hpa
)
3724 /* TODO write the value reading from MSR */
3725 eptp
= VMX_EPT_DEFAULT_MT
|
3726 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
3727 if (enable_ept_ad_bits
)
3728 eptp
|= VMX_EPT_AD_ENABLE_BIT
;
3729 eptp
|= (root_hpa
& PAGE_MASK
);
3734 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
3736 unsigned long guest_cr3
;
3741 eptp
= construct_eptp(cr3
);
3742 vmcs_write64(EPT_POINTER
, eptp
);
3743 if (is_paging(vcpu
) || is_guest_mode(vcpu
))
3744 guest_cr3
= kvm_read_cr3(vcpu
);
3746 guest_cr3
= vcpu
->kvm
->arch
.ept_identity_map_addr
;
3747 ept_load_pdptrs(vcpu
);
3750 vmx_flush_tlb(vcpu
);
3751 vmcs_writel(GUEST_CR3
, guest_cr3
);
3754 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
3757 * Pass through host's Machine Check Enable value to hw_cr4, which
3758 * is in force while we are in guest mode. Do not let guests control
3759 * this bit, even if host CR4.MCE == 0.
3761 unsigned long hw_cr4
=
3762 (cr4_read_shadow() & X86_CR4_MCE
) |
3763 (cr4
& ~X86_CR4_MCE
) |
3764 (to_vmx(vcpu
)->rmode
.vm86_active
?
3765 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
3767 if (cr4
& X86_CR4_VMXE
) {
3769 * To use VMXON (and later other VMX instructions), a guest
3770 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3771 * So basically the check on whether to allow nested VMX
3774 if (!nested_vmx_allowed(vcpu
))
3777 if (to_vmx(vcpu
)->nested
.vmxon
&&
3778 ((cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
))
3781 vcpu
->arch
.cr4
= cr4
;
3783 if (!is_paging(vcpu
)) {
3784 hw_cr4
&= ~X86_CR4_PAE
;
3785 hw_cr4
|= X86_CR4_PSE
;
3786 } else if (!(cr4
& X86_CR4_PAE
)) {
3787 hw_cr4
&= ~X86_CR4_PAE
;
3791 if (!enable_unrestricted_guest
&& !is_paging(vcpu
))
3793 * SMEP/SMAP is disabled if CPU is in non-paging mode in
3794 * hardware. However KVM always uses paging mode without
3795 * unrestricted guest.
3796 * To emulate this behavior, SMEP/SMAP needs to be manually
3797 * disabled when guest switches to non-paging mode.
3799 hw_cr4
&= ~(X86_CR4_SMEP
| X86_CR4_SMAP
);
3801 vmcs_writel(CR4_READ_SHADOW
, cr4
);
3802 vmcs_writel(GUEST_CR4
, hw_cr4
);
3806 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
3807 struct kvm_segment
*var
, int seg
)
3809 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3812 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
3813 *var
= vmx
->rmode
.segs
[seg
];
3814 if (seg
== VCPU_SREG_TR
3815 || var
->selector
== vmx_read_guest_seg_selector(vmx
, seg
))
3817 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
3818 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
3821 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
3822 var
->limit
= vmx_read_guest_seg_limit(vmx
, seg
);
3823 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
3824 ar
= vmx_read_guest_seg_ar(vmx
, seg
);
3825 var
->unusable
= (ar
>> 16) & 1;
3826 var
->type
= ar
& 15;
3827 var
->s
= (ar
>> 4) & 1;
3828 var
->dpl
= (ar
>> 5) & 3;
3830 * Some userspaces do not preserve unusable property. Since usable
3831 * segment has to be present according to VMX spec we can use present
3832 * property to amend userspace bug by making unusable segment always
3833 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3834 * segment as unusable.
3836 var
->present
= !var
->unusable
;
3837 var
->avl
= (ar
>> 12) & 1;
3838 var
->l
= (ar
>> 13) & 1;
3839 var
->db
= (ar
>> 14) & 1;
3840 var
->g
= (ar
>> 15) & 1;
3843 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
3845 struct kvm_segment s
;
3847 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
3848 vmx_get_segment(vcpu
, &s
, seg
);
3851 return vmx_read_guest_seg_base(to_vmx(vcpu
), seg
);
3854 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
3856 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3858 if (unlikely(vmx
->rmode
.vm86_active
))
3861 int ar
= vmx_read_guest_seg_ar(vmx
, VCPU_SREG_SS
);
3862 return VMX_AR_DPL(ar
);
3866 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
3870 if (var
->unusable
|| !var
->present
)
3873 ar
= var
->type
& 15;
3874 ar
|= (var
->s
& 1) << 4;
3875 ar
|= (var
->dpl
& 3) << 5;
3876 ar
|= (var
->present
& 1) << 7;
3877 ar
|= (var
->avl
& 1) << 12;
3878 ar
|= (var
->l
& 1) << 13;
3879 ar
|= (var
->db
& 1) << 14;
3880 ar
|= (var
->g
& 1) << 15;
3886 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
3887 struct kvm_segment
*var
, int seg
)
3889 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3890 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3892 vmx_segment_cache_clear(vmx
);
3894 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
3895 vmx
->rmode
.segs
[seg
] = *var
;
3896 if (seg
== VCPU_SREG_TR
)
3897 vmcs_write16(sf
->selector
, var
->selector
);
3899 fix_rmode_seg(seg
, &vmx
->rmode
.segs
[seg
]);
3903 vmcs_writel(sf
->base
, var
->base
);
3904 vmcs_write32(sf
->limit
, var
->limit
);
3905 vmcs_write16(sf
->selector
, var
->selector
);
3908 * Fix the "Accessed" bit in AR field of segment registers for older
3910 * IA32 arch specifies that at the time of processor reset the
3911 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3912 * is setting it to 0 in the userland code. This causes invalid guest
3913 * state vmexit when "unrestricted guest" mode is turned on.
3914 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3915 * tree. Newer qemu binaries with that qemu fix would not need this
3918 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
3919 var
->type
|= 0x1; /* Accessed */
3921 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(var
));
3924 vmx
->emulation_required
= emulation_required(vcpu
);
3927 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3929 u32 ar
= vmx_read_guest_seg_ar(to_vmx(vcpu
), VCPU_SREG_CS
);
3931 *db
= (ar
>> 14) & 1;
3932 *l
= (ar
>> 13) & 1;
3935 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3937 dt
->size
= vmcs_read32(GUEST_IDTR_LIMIT
);
3938 dt
->address
= vmcs_readl(GUEST_IDTR_BASE
);
3941 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3943 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->size
);
3944 vmcs_writel(GUEST_IDTR_BASE
, dt
->address
);
3947 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3949 dt
->size
= vmcs_read32(GUEST_GDTR_LIMIT
);
3950 dt
->address
= vmcs_readl(GUEST_GDTR_BASE
);
3953 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3955 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->size
);
3956 vmcs_writel(GUEST_GDTR_BASE
, dt
->address
);
3959 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
3961 struct kvm_segment var
;
3964 vmx_get_segment(vcpu
, &var
, seg
);
3966 if (seg
== VCPU_SREG_CS
)
3968 ar
= vmx_segment_access_rights(&var
);
3970 if (var
.base
!= (var
.selector
<< 4))
3972 if (var
.limit
!= 0xffff)
3980 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
3982 struct kvm_segment cs
;
3983 unsigned int cs_rpl
;
3985 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3986 cs_rpl
= cs
.selector
& SEGMENT_RPL_MASK
;
3990 if (~cs
.type
& (VMX_AR_TYPE_CODE_MASK
|VMX_AR_TYPE_ACCESSES_MASK
))
3994 if (cs
.type
& VMX_AR_TYPE_WRITEABLE_MASK
) {
3995 if (cs
.dpl
> cs_rpl
)
3998 if (cs
.dpl
!= cs_rpl
)
4004 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4008 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
4010 struct kvm_segment ss
;
4011 unsigned int ss_rpl
;
4013 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
4014 ss_rpl
= ss
.selector
& SEGMENT_RPL_MASK
;
4018 if (ss
.type
!= 3 && ss
.type
!= 7)
4022 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
4030 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
4032 struct kvm_segment var
;
4035 vmx_get_segment(vcpu
, &var
, seg
);
4036 rpl
= var
.selector
& SEGMENT_RPL_MASK
;
4044 if (~var
.type
& (VMX_AR_TYPE_CODE_MASK
|VMX_AR_TYPE_WRITEABLE_MASK
)) {
4045 if (var
.dpl
< rpl
) /* DPL < RPL */
4049 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4055 static bool tr_valid(struct kvm_vcpu
*vcpu
)
4057 struct kvm_segment tr
;
4059 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
4063 if (tr
.selector
& SEGMENT_TI_MASK
) /* TI = 1 */
4065 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
4073 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
4075 struct kvm_segment ldtr
;
4077 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
4081 if (ldtr
.selector
& SEGMENT_TI_MASK
) /* TI = 1 */
4091 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
4093 struct kvm_segment cs
, ss
;
4095 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
4096 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
4098 return ((cs
.selector
& SEGMENT_RPL_MASK
) ==
4099 (ss
.selector
& SEGMENT_RPL_MASK
));
4103 * Check if guest state is valid. Returns true if valid, false if
4105 * We assume that registers are always usable
4107 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
4109 if (enable_unrestricted_guest
)
4112 /* real mode guest state checks */
4113 if (!is_protmode(vcpu
) || (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
4114 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
4116 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
4118 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
4120 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
4122 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
4124 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
4127 /* protected mode guest state checks */
4128 if (!cs_ss_rpl_check(vcpu
))
4130 if (!code_segment_valid(vcpu
))
4132 if (!stack_segment_valid(vcpu
))
4134 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
4136 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
4138 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
4140 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
4142 if (!tr_valid(vcpu
))
4144 if (!ldtr_valid(vcpu
))
4148 * - Add checks on RIP
4149 * - Add checks on RFLAGS
4155 static int init_rmode_tss(struct kvm
*kvm
)
4161 idx
= srcu_read_lock(&kvm
->srcu
);
4162 fn
= kvm
->arch
.tss_addr
>> PAGE_SHIFT
;
4163 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
4166 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
4167 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
4168 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
4171 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
4174 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
4178 r
= kvm_write_guest_page(kvm
, fn
, &data
,
4179 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
4182 srcu_read_unlock(&kvm
->srcu
, idx
);
4186 static int init_rmode_identity_map(struct kvm
*kvm
)
4189 pfn_t identity_map_pfn
;
4195 /* Protect kvm->arch.ept_identity_pagetable_done. */
4196 mutex_lock(&kvm
->slots_lock
);
4198 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
4201 identity_map_pfn
= kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
;
4203 r
= alloc_identity_pagetable(kvm
);
4207 idx
= srcu_read_lock(&kvm
->srcu
);
4208 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
4211 /* Set up identity-mapping pagetable for EPT in real mode */
4212 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
4213 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
4214 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
4215 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
4216 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
4220 kvm
->arch
.ept_identity_pagetable_done
= true;
4223 srcu_read_unlock(&kvm
->srcu
, idx
);
4226 mutex_unlock(&kvm
->slots_lock
);
4230 static void seg_setup(int seg
)
4232 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
4235 vmcs_write16(sf
->selector
, 0);
4236 vmcs_writel(sf
->base
, 0);
4237 vmcs_write32(sf
->limit
, 0xffff);
4239 if (seg
== VCPU_SREG_CS
)
4240 ar
|= 0x08; /* code segment */
4242 vmcs_write32(sf
->ar_bytes
, ar
);
4245 static int alloc_apic_access_page(struct kvm
*kvm
)
4250 mutex_lock(&kvm
->slots_lock
);
4251 if (kvm
->arch
.apic_access_page_done
)
4253 r
= __x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
,
4254 APIC_DEFAULT_PHYS_BASE
, PAGE_SIZE
);
4258 page
= gfn_to_page(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
4259 if (is_error_page(page
)) {
4265 * Do not pin the page in memory, so that memory hot-unplug
4266 * is able to migrate it.
4269 kvm
->arch
.apic_access_page_done
= true;
4271 mutex_unlock(&kvm
->slots_lock
);
4275 static int alloc_identity_pagetable(struct kvm
*kvm
)
4277 /* Called with kvm->slots_lock held. */
4281 BUG_ON(kvm
->arch
.ept_identity_pagetable_done
);
4283 r
= __x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
,
4284 kvm
->arch
.ept_identity_map_addr
, PAGE_SIZE
);
4289 static int allocate_vpid(void)
4295 spin_lock(&vmx_vpid_lock
);
4296 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
4297 if (vpid
< VMX_NR_VPIDS
)
4298 __set_bit(vpid
, vmx_vpid_bitmap
);
4301 spin_unlock(&vmx_vpid_lock
);
4305 static void free_vpid(int vpid
)
4307 if (!enable_vpid
|| vpid
== 0)
4309 spin_lock(&vmx_vpid_lock
);
4310 __clear_bit(vpid
, vmx_vpid_bitmap
);
4311 spin_unlock(&vmx_vpid_lock
);
4314 #define MSR_TYPE_R 1
4315 #define MSR_TYPE_W 2
4316 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
,
4319 int f
= sizeof(unsigned long);
4321 if (!cpu_has_vmx_msr_bitmap())
4325 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4326 * have the write-low and read-high bitmap offsets the wrong way round.
4327 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4329 if (msr
<= 0x1fff) {
4330 if (type
& MSR_TYPE_R
)
4332 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
);
4334 if (type
& MSR_TYPE_W
)
4336 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
);
4338 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4340 if (type
& MSR_TYPE_R
)
4342 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
);
4344 if (type
& MSR_TYPE_W
)
4346 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
);
4351 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap
,
4354 int f
= sizeof(unsigned long);
4356 if (!cpu_has_vmx_msr_bitmap())
4360 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4361 * have the write-low and read-high bitmap offsets the wrong way round.
4362 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4364 if (msr
<= 0x1fff) {
4365 if (type
& MSR_TYPE_R
)
4367 __set_bit(msr
, msr_bitmap
+ 0x000 / f
);
4369 if (type
& MSR_TYPE_W
)
4371 __set_bit(msr
, msr_bitmap
+ 0x800 / f
);
4373 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4375 if (type
& MSR_TYPE_R
)
4377 __set_bit(msr
, msr_bitmap
+ 0x400 / f
);
4379 if (type
& MSR_TYPE_W
)
4381 __set_bit(msr
, msr_bitmap
+ 0xc00 / f
);
4387 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4388 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4390 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1
,
4391 unsigned long *msr_bitmap_nested
,
4394 int f
= sizeof(unsigned long);
4396 if (!cpu_has_vmx_msr_bitmap()) {
4402 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4403 * have the write-low and read-high bitmap offsets the wrong way round.
4404 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4406 if (msr
<= 0x1fff) {
4407 if (type
& MSR_TYPE_R
&&
4408 !test_bit(msr
, msr_bitmap_l1
+ 0x000 / f
))
4410 __clear_bit(msr
, msr_bitmap_nested
+ 0x000 / f
);
4412 if (type
& MSR_TYPE_W
&&
4413 !test_bit(msr
, msr_bitmap_l1
+ 0x800 / f
))
4415 __clear_bit(msr
, msr_bitmap_nested
+ 0x800 / f
);
4417 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4419 if (type
& MSR_TYPE_R
&&
4420 !test_bit(msr
, msr_bitmap_l1
+ 0x400 / f
))
4422 __clear_bit(msr
, msr_bitmap_nested
+ 0x400 / f
);
4424 if (type
& MSR_TYPE_W
&&
4425 !test_bit(msr
, msr_bitmap_l1
+ 0xc00 / f
))
4427 __clear_bit(msr
, msr_bitmap_nested
+ 0xc00 / f
);
4432 static void vmx_disable_intercept_for_msr(u32 msr
, bool longmode_only
)
4435 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy
,
4436 msr
, MSR_TYPE_R
| MSR_TYPE_W
);
4437 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode
,
4438 msr
, MSR_TYPE_R
| MSR_TYPE_W
);
4441 static void vmx_enable_intercept_msr_read_x2apic(u32 msr
)
4443 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4445 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4449 static void vmx_disable_intercept_msr_read_x2apic(u32 msr
)
4451 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4453 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4457 static void vmx_disable_intercept_msr_write_x2apic(u32 msr
)
4459 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4461 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4465 static int vmx_cpu_uses_apicv(struct kvm_vcpu
*vcpu
)
4467 return enable_apicv
&& lapic_in_kernel(vcpu
);
4470 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu
*vcpu
)
4472 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4477 if (vmx
->nested
.pi_desc
&&
4478 vmx
->nested
.pi_pending
) {
4479 vmx
->nested
.pi_pending
= false;
4480 if (!pi_test_and_clear_on(vmx
->nested
.pi_desc
))
4483 max_irr
= find_last_bit(
4484 (unsigned long *)vmx
->nested
.pi_desc
->pir
, 256);
4489 vapic_page
= kmap(vmx
->nested
.virtual_apic_page
);
4494 __kvm_apic_update_irr(vmx
->nested
.pi_desc
->pir
, vapic_page
);
4495 kunmap(vmx
->nested
.virtual_apic_page
);
4497 status
= vmcs_read16(GUEST_INTR_STATUS
);
4498 if ((u8
)max_irr
> ((u8
)status
& 0xff)) {
4500 status
|= (u8
)max_irr
;
4501 vmcs_write16(GUEST_INTR_STATUS
, status
);
4507 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu
*vcpu
)
4510 if (vcpu
->mode
== IN_GUEST_MODE
) {
4511 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4514 * Currently, we don't support urgent interrupt,
4515 * all interrupts are recognized as non-urgent
4516 * interrupt, so we cannot post interrupts when
4519 * If the vcpu is in guest mode, it means it is
4520 * running instead of being scheduled out and
4521 * waiting in the run queue, and that's the only
4522 * case when 'SN' is set currently, warning if
4525 WARN_ON_ONCE(pi_test_sn(&vmx
->pi_desc
));
4527 apic
->send_IPI_mask(get_cpu_mask(vcpu
->cpu
),
4528 POSTED_INTR_VECTOR
);
4535 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu
*vcpu
,
4538 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4540 if (is_guest_mode(vcpu
) &&
4541 vector
== vmx
->nested
.posted_intr_nv
) {
4542 /* the PIR and ON have been set by L1. */
4543 kvm_vcpu_trigger_posted_interrupt(vcpu
);
4545 * If a posted intr is not recognized by hardware,
4546 * we will accomplish it in the next vmentry.
4548 vmx
->nested
.pi_pending
= true;
4549 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4555 * Send interrupt to vcpu via posted interrupt way.
4556 * 1. If target vcpu is running(non-root mode), send posted interrupt
4557 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4558 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4559 * interrupt from PIR in next vmentry.
4561 static void vmx_deliver_posted_interrupt(struct kvm_vcpu
*vcpu
, int vector
)
4563 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4566 r
= vmx_deliver_nested_posted_interrupt(vcpu
, vector
);
4570 if (pi_test_and_set_pir(vector
, &vmx
->pi_desc
))
4573 r
= pi_test_and_set_on(&vmx
->pi_desc
);
4574 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4575 if (r
|| !kvm_vcpu_trigger_posted_interrupt(vcpu
))
4576 kvm_vcpu_kick(vcpu
);
4579 static void vmx_sync_pir_to_irr(struct kvm_vcpu
*vcpu
)
4581 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4583 if (!pi_test_and_clear_on(&vmx
->pi_desc
))
4586 kvm_apic_update_irr(vcpu
, vmx
->pi_desc
.pir
);
4589 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu
*vcpu
)
4595 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4596 * will not change in the lifetime of the guest.
4597 * Note that host-state that does change is set elsewhere. E.g., host-state
4598 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4600 static void vmx_set_constant_host_state(struct vcpu_vmx
*vmx
)
4607 vmcs_writel(HOST_CR0
, read_cr0() & ~X86_CR0_TS
); /* 22.2.3 */
4608 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4610 /* Save the most likely value for this task's CR4 in the VMCS. */
4611 cr4
= cr4_read_shadow();
4612 vmcs_writel(HOST_CR4
, cr4
); /* 22.2.3, 22.2.5 */
4613 vmx
->host_state
.vmcs_host_cr4
= cr4
;
4615 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
4616 #ifdef CONFIG_X86_64
4618 * Load null selectors, so we can avoid reloading them in
4619 * __vmx_load_host_state(), in case userspace uses the null selectors
4620 * too (the expected case).
4622 vmcs_write16(HOST_DS_SELECTOR
, 0);
4623 vmcs_write16(HOST_ES_SELECTOR
, 0);
4625 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4626 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4628 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4629 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
4631 native_store_idt(&dt
);
4632 vmcs_writel(HOST_IDTR_BASE
, dt
.address
); /* 22.2.4 */
4633 vmx
->host_idt_base
= dt
.address
;
4635 vmcs_writel(HOST_RIP
, vmx_return
); /* 22.2.5 */
4637 rdmsr(MSR_IA32_SYSENTER_CS
, low32
, high32
);
4638 vmcs_write32(HOST_IA32_SYSENTER_CS
, low32
);
4639 rdmsrl(MSR_IA32_SYSENTER_EIP
, tmpl
);
4640 vmcs_writel(HOST_IA32_SYSENTER_EIP
, tmpl
); /* 22.2.3 */
4642 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
4643 rdmsr(MSR_IA32_CR_PAT
, low32
, high32
);
4644 vmcs_write64(HOST_IA32_PAT
, low32
| ((u64
) high32
<< 32));
4648 static void set_cr4_guest_host_mask(struct vcpu_vmx
*vmx
)
4650 vmx
->vcpu
.arch
.cr4_guest_owned_bits
= KVM_CR4_GUEST_OWNED_BITS
;
4652 vmx
->vcpu
.arch
.cr4_guest_owned_bits
|= X86_CR4_PGE
;
4653 if (is_guest_mode(&vmx
->vcpu
))
4654 vmx
->vcpu
.arch
.cr4_guest_owned_bits
&=
4655 ~get_vmcs12(&vmx
->vcpu
)->cr4_guest_host_mask
;
4656 vmcs_writel(CR4_GUEST_HOST_MASK
, ~vmx
->vcpu
.arch
.cr4_guest_owned_bits
);
4659 static u32
vmx_pin_based_exec_ctrl(struct vcpu_vmx
*vmx
)
4661 u32 pin_based_exec_ctrl
= vmcs_config
.pin_based_exec_ctrl
;
4663 if (!vmx_cpu_uses_apicv(&vmx
->vcpu
))
4664 pin_based_exec_ctrl
&= ~PIN_BASED_POSTED_INTR
;
4665 return pin_based_exec_ctrl
;
4668 static u32
vmx_exec_control(struct vcpu_vmx
*vmx
)
4670 u32 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
4672 if (vmx
->vcpu
.arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)
4673 exec_control
&= ~CPU_BASED_MOV_DR_EXITING
;
4675 if (!cpu_need_tpr_shadow(&vmx
->vcpu
)) {
4676 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
4677 #ifdef CONFIG_X86_64
4678 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
4679 CPU_BASED_CR8_LOAD_EXITING
;
4683 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
4684 CPU_BASED_CR3_LOAD_EXITING
|
4685 CPU_BASED_INVLPG_EXITING
;
4686 return exec_control
;
4689 static u32
vmx_secondary_exec_control(struct vcpu_vmx
*vmx
)
4691 u32 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
4692 if (!cpu_need_virtualize_apic_accesses(&vmx
->vcpu
))
4693 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
4695 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
4697 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
4698 enable_unrestricted_guest
= 0;
4699 /* Enable INVPCID for non-ept guests may cause performance regression. */
4700 exec_control
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
4702 if (!enable_unrestricted_guest
)
4703 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
4705 exec_control
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
4706 if (!vmx_cpu_uses_apicv(&vmx
->vcpu
))
4707 exec_control
&= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT
|
4708 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
4709 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
4710 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4712 We can NOT enable shadow_vmcs here because we don't have yet
4715 exec_control
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
4718 exec_control
&= ~SECONDARY_EXEC_ENABLE_PML
;
4720 /* Currently, we allow L1 guest to directly run pcommit instruction. */
4721 exec_control
&= ~SECONDARY_EXEC_PCOMMIT
;
4723 return exec_control
;
4726 static void ept_set_mmio_spte_mask(void)
4729 * EPT Misconfigurations can be generated if the value of bits 2:0
4730 * of an EPT paging-structure entry is 110b (write/execute).
4731 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4734 kvm_mmu_set_mmio_spte_mask((0x3ull
<< 62) | 0x6ull
);
4737 #define VMX_XSS_EXIT_BITMAP 0
4739 * Sets up the vmcs for emulated real mode.
4741 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
4743 #ifdef CONFIG_X86_64
4749 vmcs_write64(IO_BITMAP_A
, __pa(vmx_io_bitmap_a
));
4750 vmcs_write64(IO_BITMAP_B
, __pa(vmx_io_bitmap_b
));
4752 if (enable_shadow_vmcs
) {
4753 vmcs_write64(VMREAD_BITMAP
, __pa(vmx_vmread_bitmap
));
4754 vmcs_write64(VMWRITE_BITMAP
, __pa(vmx_vmwrite_bitmap
));
4756 if (cpu_has_vmx_msr_bitmap())
4757 vmcs_write64(MSR_BITMAP
, __pa(vmx_msr_bitmap_legacy
));
4759 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
4762 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, vmx_pin_based_exec_ctrl(vmx
));
4764 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, vmx_exec_control(vmx
));
4766 if (cpu_has_secondary_exec_ctrls())
4767 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
4768 vmx_secondary_exec_control(vmx
));
4770 if (vmx_cpu_uses_apicv(&vmx
->vcpu
)) {
4771 vmcs_write64(EOI_EXIT_BITMAP0
, 0);
4772 vmcs_write64(EOI_EXIT_BITMAP1
, 0);
4773 vmcs_write64(EOI_EXIT_BITMAP2
, 0);
4774 vmcs_write64(EOI_EXIT_BITMAP3
, 0);
4776 vmcs_write16(GUEST_INTR_STATUS
, 0);
4778 vmcs_write64(POSTED_INTR_NV
, POSTED_INTR_VECTOR
);
4779 vmcs_write64(POSTED_INTR_DESC_ADDR
, __pa((&vmx
->pi_desc
)));
4783 vmcs_write32(PLE_GAP
, ple_gap
);
4784 vmx
->ple_window
= ple_window
;
4785 vmx
->ple_window_dirty
= true;
4788 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
4789 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
4790 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
4792 vmcs_write16(HOST_FS_SELECTOR
, 0); /* 22.2.4 */
4793 vmcs_write16(HOST_GS_SELECTOR
, 0); /* 22.2.4 */
4794 vmx_set_constant_host_state(vmx
);
4795 #ifdef CONFIG_X86_64
4796 rdmsrl(MSR_FS_BASE
, a
);
4797 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
4798 rdmsrl(MSR_GS_BASE
, a
);
4799 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
4801 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
4802 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
4805 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
4806 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
4807 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
));
4808 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
4809 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
));
4811 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
4812 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
4814 for (i
= 0; i
< ARRAY_SIZE(vmx_msr_index
); ++i
) {
4815 u32 index
= vmx_msr_index
[i
];
4816 u32 data_low
, data_high
;
4819 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
4821 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
4823 vmx
->guest_msrs
[j
].index
= i
;
4824 vmx
->guest_msrs
[j
].data
= 0;
4825 vmx
->guest_msrs
[j
].mask
= -1ull;
4830 vm_exit_controls_init(vmx
, vmcs_config
.vmexit_ctrl
);
4832 /* 22.2.1, 20.8.1 */
4833 vm_entry_controls_init(vmx
, vmcs_config
.vmentry_ctrl
);
4835 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
4836 set_cr4_guest_host_mask(vmx
);
4838 if (vmx_xsaves_supported())
4839 vmcs_write64(XSS_EXIT_BITMAP
, VMX_XSS_EXIT_BITMAP
);
4844 static void vmx_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
4846 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4847 struct msr_data apic_base_msr
;
4850 vmx
->rmode
.vm86_active
= 0;
4852 vmx
->soft_vnmi_blocked
= 0;
4854 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
4855 kvm_set_cr8(vcpu
, 0);
4858 apic_base_msr
.data
= APIC_DEFAULT_PHYS_BASE
|
4859 MSR_IA32_APICBASE_ENABLE
;
4860 if (kvm_vcpu_is_reset_bsp(vcpu
))
4861 apic_base_msr
.data
|= MSR_IA32_APICBASE_BSP
;
4862 apic_base_msr
.host_initiated
= true;
4863 kvm_set_apic_base(vcpu
, &apic_base_msr
);
4866 vmx_segment_cache_clear(vmx
);
4868 seg_setup(VCPU_SREG_CS
);
4869 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
4870 vmcs_write32(GUEST_CS_BASE
, 0xffff0000);
4872 seg_setup(VCPU_SREG_DS
);
4873 seg_setup(VCPU_SREG_ES
);
4874 seg_setup(VCPU_SREG_FS
);
4875 seg_setup(VCPU_SREG_GS
);
4876 seg_setup(VCPU_SREG_SS
);
4878 vmcs_write16(GUEST_TR_SELECTOR
, 0);
4879 vmcs_writel(GUEST_TR_BASE
, 0);
4880 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
4881 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
4883 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
4884 vmcs_writel(GUEST_LDTR_BASE
, 0);
4885 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
4886 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
4889 vmcs_write32(GUEST_SYSENTER_CS
, 0);
4890 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
4891 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
4892 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
4895 vmcs_writel(GUEST_RFLAGS
, 0x02);
4896 kvm_rip_write(vcpu
, 0xfff0);
4898 vmcs_writel(GUEST_GDTR_BASE
, 0);
4899 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
4901 vmcs_writel(GUEST_IDTR_BASE
, 0);
4902 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
4904 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
4905 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
4906 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
4910 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
4912 if (cpu_has_vmx_tpr_shadow() && !init_event
) {
4913 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
4914 if (cpu_need_tpr_shadow(vcpu
))
4915 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
4916 __pa(vcpu
->arch
.apic
->regs
));
4917 vmcs_write32(TPR_THRESHOLD
, 0);
4920 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
);
4922 if (vmx_cpu_uses_apicv(vcpu
))
4923 memset(&vmx
->pi_desc
, 0, sizeof(struct pi_desc
));
4926 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
4928 cr0
= X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
;
4929 vmx_set_cr0(vcpu
, cr0
); /* enter rmode */
4930 vmx
->vcpu
.arch
.cr0
= cr0
;
4931 vmx_set_cr4(vcpu
, 0);
4932 vmx_set_efer(vcpu
, 0);
4933 vmx_fpu_activate(vcpu
);
4934 update_exception_bitmap(vcpu
);
4936 vpid_sync_context(vmx
->vpid
);
4940 * In nested virtualization, check if L1 asked to exit on external interrupts.
4941 * For most existing hypervisors, this will always return true.
4943 static bool nested_exit_on_intr(struct kvm_vcpu
*vcpu
)
4945 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
4946 PIN_BASED_EXT_INTR_MASK
;
4950 * In nested virtualization, check if L1 has set
4951 * VM_EXIT_ACK_INTR_ON_EXIT
4953 static bool nested_exit_intr_ack_set(struct kvm_vcpu
*vcpu
)
4955 return get_vmcs12(vcpu
)->vm_exit_controls
&
4956 VM_EXIT_ACK_INTR_ON_EXIT
;
4959 static bool nested_exit_on_nmi(struct kvm_vcpu
*vcpu
)
4961 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
4962 PIN_BASED_NMI_EXITING
;
4965 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
4967 u32 cpu_based_vm_exec_control
;
4969 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
4970 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
4971 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
4974 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
4976 u32 cpu_based_vm_exec_control
;
4978 if (!cpu_has_virtual_nmis() ||
4979 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_STI
) {
4980 enable_irq_window(vcpu
);
4984 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
4985 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
4986 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
4989 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
4991 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4993 int irq
= vcpu
->arch
.interrupt
.nr
;
4995 trace_kvm_inj_virq(irq
);
4997 ++vcpu
->stat
.irq_injections
;
4998 if (vmx
->rmode
.vm86_active
) {
5000 if (vcpu
->arch
.interrupt
.soft
)
5001 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
5002 if (kvm_inject_realmode_interrupt(vcpu
, irq
, inc_eip
) != EMULATE_DONE
)
5003 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5006 intr
= irq
| INTR_INFO_VALID_MASK
;
5007 if (vcpu
->arch
.interrupt
.soft
) {
5008 intr
|= INTR_TYPE_SOFT_INTR
;
5009 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
5010 vmx
->vcpu
.arch
.event_exit_inst_len
);
5012 intr
|= INTR_TYPE_EXT_INTR
;
5013 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
5016 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
5018 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5020 if (is_guest_mode(vcpu
))
5023 if (!cpu_has_virtual_nmis()) {
5025 * Tracking the NMI-blocked state in software is built upon
5026 * finding the next open IRQ window. This, in turn, depends on
5027 * well-behaving guests: They have to keep IRQs disabled at
5028 * least as long as the NMI handler runs. Otherwise we may
5029 * cause NMI nesting, maybe breaking the guest. But as this is
5030 * highly unlikely, we can live with the residual risk.
5032 vmx
->soft_vnmi_blocked
= 1;
5033 vmx
->vnmi_blocked_time
= 0;
5036 ++vcpu
->stat
.nmi_injections
;
5037 vmx
->nmi_known_unmasked
= false;
5038 if (vmx
->rmode
.vm86_active
) {
5039 if (kvm_inject_realmode_interrupt(vcpu
, NMI_VECTOR
, 0) != EMULATE_DONE
)
5040 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5043 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
5044 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
5047 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
)
5049 if (!cpu_has_virtual_nmis())
5050 return to_vmx(vcpu
)->soft_vnmi_blocked
;
5051 if (to_vmx(vcpu
)->nmi_known_unmasked
)
5053 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_NMI
;
5056 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
5058 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5060 if (!cpu_has_virtual_nmis()) {
5061 if (vmx
->soft_vnmi_blocked
!= masked
) {
5062 vmx
->soft_vnmi_blocked
= masked
;
5063 vmx
->vnmi_blocked_time
= 0;
5066 vmx
->nmi_known_unmasked
= !masked
;
5068 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
5069 GUEST_INTR_STATE_NMI
);
5071 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
5072 GUEST_INTR_STATE_NMI
);
5076 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
5078 if (to_vmx(vcpu
)->nested
.nested_run_pending
)
5081 if (!cpu_has_virtual_nmis() && to_vmx(vcpu
)->soft_vnmi_blocked
)
5084 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
5085 (GUEST_INTR_STATE_MOV_SS
| GUEST_INTR_STATE_STI
5086 | GUEST_INTR_STATE_NMI
));
5089 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
5091 return (!to_vmx(vcpu
)->nested
.nested_run_pending
&&
5092 vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
5093 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
5094 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
5097 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
5101 ret
= x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, addr
,
5105 kvm
->arch
.tss_addr
= addr
;
5106 return init_rmode_tss(kvm
);
5109 static bool rmode_exception(struct kvm_vcpu
*vcpu
, int vec
)
5114 * Update instruction length as we may reinject the exception
5115 * from user space while in guest debugging mode.
5117 to_vmx(vcpu
)->vcpu
.arch
.event_exit_inst_len
=
5118 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
5119 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
5123 if (vcpu
->guest_debug
&
5124 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
5141 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
5142 int vec
, u32 err_code
)
5145 * Instruction with address size override prefix opcode 0x67
5146 * Cause the #SS fault with 0 error code in VM86 mode.
5148 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0) {
5149 if (emulate_instruction(vcpu
, 0) == EMULATE_DONE
) {
5150 if (vcpu
->arch
.halt_request
) {
5151 vcpu
->arch
.halt_request
= 0;
5152 return kvm_vcpu_halt(vcpu
);
5160 * Forward all other exceptions that are valid in real mode.
5161 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5162 * the required debugging infrastructure rework.
5164 kvm_queue_exception(vcpu
, vec
);
5169 * Trigger machine check on the host. We assume all the MSRs are already set up
5170 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5171 * We pass a fake environment to the machine check handler because we want
5172 * the guest to be always treated like user space, no matter what context
5173 * it used internally.
5175 static void kvm_machine_check(void)
5177 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5178 struct pt_regs regs
= {
5179 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
5180 .flags
= X86_EFLAGS_IF
,
5183 do_machine_check(®s
, 0);
5187 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
5189 /* already handled by vcpu_run */
5193 static int handle_exception(struct kvm_vcpu
*vcpu
)
5195 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5196 struct kvm_run
*kvm_run
= vcpu
->run
;
5197 u32 intr_info
, ex_no
, error_code
;
5198 unsigned long cr2
, rip
, dr6
;
5200 enum emulation_result er
;
5202 vect_info
= vmx
->idt_vectoring_info
;
5203 intr_info
= vmx
->exit_intr_info
;
5205 if (is_machine_check(intr_info
))
5206 return handle_machine_check(vcpu
);
5208 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
)
5209 return 1; /* already handled by vmx_vcpu_run() */
5211 if (is_no_device(intr_info
)) {
5212 vmx_fpu_activate(vcpu
);
5216 if (is_invalid_opcode(intr_info
)) {
5217 if (is_guest_mode(vcpu
)) {
5218 kvm_queue_exception(vcpu
, UD_VECTOR
);
5221 er
= emulate_instruction(vcpu
, EMULTYPE_TRAP_UD
);
5222 if (er
!= EMULATE_DONE
)
5223 kvm_queue_exception(vcpu
, UD_VECTOR
);
5228 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
5229 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
5232 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5233 * MMIO, it is better to report an internal error.
5234 * See the comments in vmx_handle_exit.
5236 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
5237 !(is_page_fault(intr_info
) && !(error_code
& PFERR_RSVD_MASK
))) {
5238 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5239 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_SIMUL_EX
;
5240 vcpu
->run
->internal
.ndata
= 3;
5241 vcpu
->run
->internal
.data
[0] = vect_info
;
5242 vcpu
->run
->internal
.data
[1] = intr_info
;
5243 vcpu
->run
->internal
.data
[2] = error_code
;
5247 if (is_page_fault(intr_info
)) {
5248 /* EPT won't cause page fault directly */
5250 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
5251 trace_kvm_page_fault(cr2
, error_code
);
5253 if (kvm_event_needs_reinjection(vcpu
))
5254 kvm_mmu_unprotect_page_virt(vcpu
, cr2
);
5255 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
, NULL
, 0);
5258 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
5260 if (vmx
->rmode
.vm86_active
&& rmode_exception(vcpu
, ex_no
))
5261 return handle_rmode_exception(vcpu
, ex_no
, error_code
);
5265 kvm_queue_exception_e(vcpu
, AC_VECTOR
, error_code
);
5268 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
5269 if (!(vcpu
->guest_debug
&
5270 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
5271 vcpu
->arch
.dr6
&= ~15;
5272 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
5273 if (!(dr6
& ~DR6_RESERVED
)) /* icebp */
5274 skip_emulated_instruction(vcpu
);
5276 kvm_queue_exception(vcpu
, DB_VECTOR
);
5279 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
5280 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
5284 * Update instruction length as we may reinject #BP from
5285 * user space while in guest debugging mode. Reading it for
5286 * #DB as well causes no harm, it is not used in that case.
5288 vmx
->vcpu
.arch
.event_exit_inst_len
=
5289 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
5290 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5291 rip
= kvm_rip_read(vcpu
);
5292 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
5293 kvm_run
->debug
.arch
.exception
= ex_no
;
5296 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
5297 kvm_run
->ex
.exception
= ex_no
;
5298 kvm_run
->ex
.error_code
= error_code
;
5304 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
5306 ++vcpu
->stat
.irq_exits
;
5310 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
5312 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5316 static int handle_io(struct kvm_vcpu
*vcpu
)
5318 unsigned long exit_qualification
;
5319 int size
, in
, string
;
5322 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5323 string
= (exit_qualification
& 16) != 0;
5324 in
= (exit_qualification
& 8) != 0;
5326 ++vcpu
->stat
.io_exits
;
5329 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
5331 port
= exit_qualification
>> 16;
5332 size
= (exit_qualification
& 7) + 1;
5333 skip_emulated_instruction(vcpu
);
5335 return kvm_fast_pio_out(vcpu
, size
, port
);
5339 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
5342 * Patch in the VMCALL instruction:
5344 hypercall
[0] = 0x0f;
5345 hypercall
[1] = 0x01;
5346 hypercall
[2] = 0xc1;
5349 static bool nested_cr0_valid(struct kvm_vcpu
*vcpu
, unsigned long val
)
5351 unsigned long always_on
= VMXON_CR0_ALWAYSON
;
5352 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5354 if (to_vmx(vcpu
)->nested
.nested_vmx_secondary_ctls_high
&
5355 SECONDARY_EXEC_UNRESTRICTED_GUEST
&&
5356 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_UNRESTRICTED_GUEST
))
5357 always_on
&= ~(X86_CR0_PE
| X86_CR0_PG
);
5358 return (val
& always_on
) == always_on
;
5361 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5362 static int handle_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long val
)
5364 if (is_guest_mode(vcpu
)) {
5365 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5366 unsigned long orig_val
= val
;
5369 * We get here when L2 changed cr0 in a way that did not change
5370 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5371 * but did change L0 shadowed bits. So we first calculate the
5372 * effective cr0 value that L1 would like to write into the
5373 * hardware. It consists of the L2-owned bits from the new
5374 * value combined with the L1-owned bits from L1's guest_cr0.
5376 val
= (val
& ~vmcs12
->cr0_guest_host_mask
) |
5377 (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
);
5379 if (!nested_cr0_valid(vcpu
, val
))
5382 if (kvm_set_cr0(vcpu
, val
))
5384 vmcs_writel(CR0_READ_SHADOW
, orig_val
);
5387 if (to_vmx(vcpu
)->nested
.vmxon
&&
5388 ((val
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
))
5390 return kvm_set_cr0(vcpu
, val
);
5394 static int handle_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long val
)
5396 if (is_guest_mode(vcpu
)) {
5397 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5398 unsigned long orig_val
= val
;
5400 /* analogously to handle_set_cr0 */
5401 val
= (val
& ~vmcs12
->cr4_guest_host_mask
) |
5402 (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
);
5403 if (kvm_set_cr4(vcpu
, val
))
5405 vmcs_writel(CR4_READ_SHADOW
, orig_val
);
5408 return kvm_set_cr4(vcpu
, val
);
5411 /* called to set cr0 as approriate for clts instruction exit. */
5412 static void handle_clts(struct kvm_vcpu
*vcpu
)
5414 if (is_guest_mode(vcpu
)) {
5416 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5417 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5418 * just pretend it's off (also in arch.cr0 for fpu_activate).
5420 vmcs_writel(CR0_READ_SHADOW
,
5421 vmcs_readl(CR0_READ_SHADOW
) & ~X86_CR0_TS
);
5422 vcpu
->arch
.cr0
&= ~X86_CR0_TS
;
5424 vmx_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
5427 static int handle_cr(struct kvm_vcpu
*vcpu
)
5429 unsigned long exit_qualification
, val
;
5434 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5435 cr
= exit_qualification
& 15;
5436 reg
= (exit_qualification
>> 8) & 15;
5437 switch ((exit_qualification
>> 4) & 3) {
5438 case 0: /* mov to cr */
5439 val
= kvm_register_readl(vcpu
, reg
);
5440 trace_kvm_cr_write(cr
, val
);
5443 err
= handle_set_cr0(vcpu
, val
);
5444 kvm_complete_insn_gp(vcpu
, err
);
5447 err
= kvm_set_cr3(vcpu
, val
);
5448 kvm_complete_insn_gp(vcpu
, err
);
5451 err
= handle_set_cr4(vcpu
, val
);
5452 kvm_complete_insn_gp(vcpu
, err
);
5455 u8 cr8_prev
= kvm_get_cr8(vcpu
);
5457 err
= kvm_set_cr8(vcpu
, cr8
);
5458 kvm_complete_insn_gp(vcpu
, err
);
5459 if (lapic_in_kernel(vcpu
))
5461 if (cr8_prev
<= cr8
)
5463 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
5470 trace_kvm_cr_write(0, kvm_read_cr0(vcpu
));
5471 skip_emulated_instruction(vcpu
);
5472 vmx_fpu_activate(vcpu
);
5474 case 1: /*mov from cr*/
5477 val
= kvm_read_cr3(vcpu
);
5478 kvm_register_write(vcpu
, reg
, val
);
5479 trace_kvm_cr_read(cr
, val
);
5480 skip_emulated_instruction(vcpu
);
5483 val
= kvm_get_cr8(vcpu
);
5484 kvm_register_write(vcpu
, reg
, val
);
5485 trace_kvm_cr_read(cr
, val
);
5486 skip_emulated_instruction(vcpu
);
5491 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
5492 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu
) & ~0xful
) | val
);
5493 kvm_lmsw(vcpu
, val
);
5495 skip_emulated_instruction(vcpu
);
5500 vcpu
->run
->exit_reason
= 0;
5501 vcpu_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
5502 (int)(exit_qualification
>> 4) & 3, cr
);
5506 static int handle_dr(struct kvm_vcpu
*vcpu
)
5508 unsigned long exit_qualification
;
5511 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5512 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
5514 /* First, if DR does not exist, trigger UD */
5515 if (!kvm_require_dr(vcpu
, dr
))
5518 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5519 if (!kvm_require_cpl(vcpu
, 0))
5521 dr7
= vmcs_readl(GUEST_DR7
);
5524 * As the vm-exit takes precedence over the debug trap, we
5525 * need to emulate the latter, either for the host or the
5526 * guest debugging itself.
5528 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
5529 vcpu
->run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
5530 vcpu
->run
->debug
.arch
.dr7
= dr7
;
5531 vcpu
->run
->debug
.arch
.pc
= kvm_get_linear_rip(vcpu
);
5532 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
5533 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
5536 vcpu
->arch
.dr6
&= ~15;
5537 vcpu
->arch
.dr6
|= DR6_BD
| DR6_RTM
;
5538 kvm_queue_exception(vcpu
, DB_VECTOR
);
5543 if (vcpu
->guest_debug
== 0) {
5544 u32 cpu_based_vm_exec_control
;
5546 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5547 cpu_based_vm_exec_control
&= ~CPU_BASED_MOV_DR_EXITING
;
5548 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5551 * No more DR vmexits; force a reload of the debug registers
5552 * and reenter on this instruction. The next vmexit will
5553 * retrieve the full state of the debug registers.
5555 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
5559 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
5560 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
5563 if (kvm_get_dr(vcpu
, dr
, &val
))
5565 kvm_register_write(vcpu
, reg
, val
);
5567 if (kvm_set_dr(vcpu
, dr
, kvm_register_readl(vcpu
, reg
)))
5570 skip_emulated_instruction(vcpu
);
5574 static u64
vmx_get_dr6(struct kvm_vcpu
*vcpu
)
5576 return vcpu
->arch
.dr6
;
5579 static void vmx_set_dr6(struct kvm_vcpu
*vcpu
, unsigned long val
)
5583 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
5585 u32 cpu_based_vm_exec_control
;
5587 get_debugreg(vcpu
->arch
.db
[0], 0);
5588 get_debugreg(vcpu
->arch
.db
[1], 1);
5589 get_debugreg(vcpu
->arch
.db
[2], 2);
5590 get_debugreg(vcpu
->arch
.db
[3], 3);
5591 get_debugreg(vcpu
->arch
.dr6
, 6);
5592 vcpu
->arch
.dr7
= vmcs_readl(GUEST_DR7
);
5594 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
5596 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5597 cpu_based_vm_exec_control
|= CPU_BASED_MOV_DR_EXITING
;
5598 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5601 static void vmx_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long val
)
5603 vmcs_writel(GUEST_DR7
, val
);
5606 static int handle_cpuid(struct kvm_vcpu
*vcpu
)
5608 kvm_emulate_cpuid(vcpu
);
5612 static int handle_rdmsr(struct kvm_vcpu
*vcpu
)
5614 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
5615 struct msr_data msr_info
;
5617 msr_info
.index
= ecx
;
5618 msr_info
.host_initiated
= false;
5619 if (vmx_get_msr(vcpu
, &msr_info
)) {
5620 trace_kvm_msr_read_ex(ecx
);
5621 kvm_inject_gp(vcpu
, 0);
5625 trace_kvm_msr_read(ecx
, msr_info
.data
);
5627 /* FIXME: handling of bits 32:63 of rax, rdx */
5628 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = msr_info
.data
& -1u;
5629 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (msr_info
.data
>> 32) & -1u;
5630 skip_emulated_instruction(vcpu
);
5634 static int handle_wrmsr(struct kvm_vcpu
*vcpu
)
5636 struct msr_data msr
;
5637 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
5638 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
5639 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
5643 msr
.host_initiated
= false;
5644 if (kvm_set_msr(vcpu
, &msr
) != 0) {
5645 trace_kvm_msr_write_ex(ecx
, data
);
5646 kvm_inject_gp(vcpu
, 0);
5650 trace_kvm_msr_write(ecx
, data
);
5651 skip_emulated_instruction(vcpu
);
5655 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
5657 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5661 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
5663 u32 cpu_based_vm_exec_control
;
5665 /* clear pending irq */
5666 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5667 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
5668 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5670 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5672 ++vcpu
->stat
.irq_window_exits
;
5676 static int handle_halt(struct kvm_vcpu
*vcpu
)
5678 return kvm_emulate_halt(vcpu
);
5681 static int handle_vmcall(struct kvm_vcpu
*vcpu
)
5683 kvm_emulate_hypercall(vcpu
);
5687 static int handle_invd(struct kvm_vcpu
*vcpu
)
5689 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
5692 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
5694 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5696 kvm_mmu_invlpg(vcpu
, exit_qualification
);
5697 skip_emulated_instruction(vcpu
);
5701 static int handle_rdpmc(struct kvm_vcpu
*vcpu
)
5705 err
= kvm_rdpmc(vcpu
);
5706 kvm_complete_insn_gp(vcpu
, err
);
5711 static int handle_wbinvd(struct kvm_vcpu
*vcpu
)
5713 kvm_emulate_wbinvd(vcpu
);
5717 static int handle_xsetbv(struct kvm_vcpu
*vcpu
)
5719 u64 new_bv
= kvm_read_edx_eax(vcpu
);
5720 u32 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5722 if (kvm_set_xcr(vcpu
, index
, new_bv
) == 0)
5723 skip_emulated_instruction(vcpu
);
5727 static int handle_xsaves(struct kvm_vcpu
*vcpu
)
5729 skip_emulated_instruction(vcpu
);
5730 WARN(1, "this should never happen\n");
5734 static int handle_xrstors(struct kvm_vcpu
*vcpu
)
5736 skip_emulated_instruction(vcpu
);
5737 WARN(1, "this should never happen\n");
5741 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
5743 if (likely(fasteoi
)) {
5744 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5745 int access_type
, offset
;
5747 access_type
= exit_qualification
& APIC_ACCESS_TYPE
;
5748 offset
= exit_qualification
& APIC_ACCESS_OFFSET
;
5750 * Sane guest uses MOV to write EOI, with written value
5751 * not cared. So make a short-circuit here by avoiding
5752 * heavy instruction emulation.
5754 if ((access_type
== TYPE_LINEAR_APIC_INST_WRITE
) &&
5755 (offset
== APIC_EOI
)) {
5756 kvm_lapic_set_eoi(vcpu
);
5757 skip_emulated_instruction(vcpu
);
5761 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
5764 static int handle_apic_eoi_induced(struct kvm_vcpu
*vcpu
)
5766 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5767 int vector
= exit_qualification
& 0xff;
5769 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5770 kvm_apic_set_eoi_accelerated(vcpu
, vector
);
5774 static int handle_apic_write(struct kvm_vcpu
*vcpu
)
5776 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5777 u32 offset
= exit_qualification
& 0xfff;
5779 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5780 kvm_apic_write_nodecode(vcpu
, offset
);
5784 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
5786 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5787 unsigned long exit_qualification
;
5788 bool has_error_code
= false;
5791 int reason
, type
, idt_v
, idt_index
;
5793 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
5794 idt_index
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
);
5795 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
5797 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5799 reason
= (u32
)exit_qualification
>> 30;
5800 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
5802 case INTR_TYPE_NMI_INTR
:
5803 vcpu
->arch
.nmi_injected
= false;
5804 vmx_set_nmi_mask(vcpu
, true);
5806 case INTR_TYPE_EXT_INTR
:
5807 case INTR_TYPE_SOFT_INTR
:
5808 kvm_clear_interrupt_queue(vcpu
);
5810 case INTR_TYPE_HARD_EXCEPTION
:
5811 if (vmx
->idt_vectoring_info
&
5812 VECTORING_INFO_DELIVER_CODE_MASK
) {
5813 has_error_code
= true;
5815 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
5818 case INTR_TYPE_SOFT_EXCEPTION
:
5819 kvm_clear_exception_queue(vcpu
);
5825 tss_selector
= exit_qualification
;
5827 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
5828 type
!= INTR_TYPE_EXT_INTR
&&
5829 type
!= INTR_TYPE_NMI_INTR
))
5830 skip_emulated_instruction(vcpu
);
5832 if (kvm_task_switch(vcpu
, tss_selector
,
5833 type
== INTR_TYPE_SOFT_INTR
? idt_index
: -1, reason
,
5834 has_error_code
, error_code
) == EMULATE_FAIL
) {
5835 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5836 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5837 vcpu
->run
->internal
.ndata
= 0;
5842 * TODO: What about debug traps on tss switch?
5843 * Are we supposed to inject them and update dr6?
5849 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
5851 unsigned long exit_qualification
;
5856 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5858 gla_validity
= (exit_qualification
>> 7) & 0x3;
5859 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
5860 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
5861 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5862 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
5863 vmcs_readl(GUEST_LINEAR_ADDRESS
));
5864 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
5865 (long unsigned int)exit_qualification
);
5866 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
5867 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_VIOLATION
;
5872 * EPT violation happened while executing iret from NMI,
5873 * "blocked by NMI" bit has to be set before next VM entry.
5874 * There are errata that may cause this bit to not be set:
5877 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
5878 cpu_has_virtual_nmis() &&
5879 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
5880 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
, GUEST_INTR_STATE_NMI
);
5882 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
5883 trace_kvm_page_fault(gpa
, exit_qualification
);
5885 /* It is a write fault? */
5886 error_code
= exit_qualification
& PFERR_WRITE_MASK
;
5887 /* It is a fetch fault? */
5888 error_code
|= (exit_qualification
<< 2) & PFERR_FETCH_MASK
;
5889 /* ept page table is present? */
5890 error_code
|= (exit_qualification
>> 3) & PFERR_PRESENT_MASK
;
5892 vcpu
->arch
.exit_qualification
= exit_qualification
;
5894 return kvm_mmu_page_fault(vcpu
, gpa
, error_code
, NULL
, 0);
5897 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
5902 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
5903 if (!kvm_io_bus_write(vcpu
, KVM_FAST_MMIO_BUS
, gpa
, 0, NULL
)) {
5904 skip_emulated_instruction(vcpu
);
5905 trace_kvm_fast_mmio(gpa
);
5909 ret
= handle_mmio_page_fault(vcpu
, gpa
, true);
5910 if (likely(ret
== RET_MMIO_PF_EMULATE
))
5911 return x86_emulate_instruction(vcpu
, gpa
, 0, NULL
, 0) ==
5914 if (unlikely(ret
== RET_MMIO_PF_INVALID
))
5915 return kvm_mmu_page_fault(vcpu
, gpa
, 0, NULL
, 0);
5917 if (unlikely(ret
== RET_MMIO_PF_RETRY
))
5920 /* It is the real ept misconfig */
5923 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
5924 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
5929 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
5931 u32 cpu_based_vm_exec_control
;
5933 /* clear pending NMI */
5934 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5935 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
5936 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5937 ++vcpu
->stat
.nmi_window_exits
;
5938 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5943 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
5945 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5946 enum emulation_result err
= EMULATE_DONE
;
5949 bool intr_window_requested
;
5950 unsigned count
= 130;
5952 cpu_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5953 intr_window_requested
= cpu_exec_ctrl
& CPU_BASED_VIRTUAL_INTR_PENDING
;
5955 while (vmx
->emulation_required
&& count
-- != 0) {
5956 if (intr_window_requested
&& vmx_interrupt_allowed(vcpu
))
5957 return handle_interrupt_window(&vmx
->vcpu
);
5959 if (test_bit(KVM_REQ_EVENT
, &vcpu
->requests
))
5962 err
= emulate_instruction(vcpu
, EMULTYPE_NO_REEXECUTE
);
5964 if (err
== EMULATE_USER_EXIT
) {
5965 ++vcpu
->stat
.mmio_exits
;
5970 if (err
!= EMULATE_DONE
) {
5971 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5972 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5973 vcpu
->run
->internal
.ndata
= 0;
5977 if (vcpu
->arch
.halt_request
) {
5978 vcpu
->arch
.halt_request
= 0;
5979 ret
= kvm_vcpu_halt(vcpu
);
5983 if (signal_pending(current
))
5993 static int __grow_ple_window(int val
)
5995 if (ple_window_grow
< 1)
5998 val
= min(val
, ple_window_actual_max
);
6000 if (ple_window_grow
< ple_window
)
6001 val
*= ple_window_grow
;
6003 val
+= ple_window_grow
;
6008 static int __shrink_ple_window(int val
, int modifier
, int minimum
)
6013 if (modifier
< ple_window
)
6018 return max(val
, minimum
);
6021 static void grow_ple_window(struct kvm_vcpu
*vcpu
)
6023 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6024 int old
= vmx
->ple_window
;
6026 vmx
->ple_window
= __grow_ple_window(old
);
6028 if (vmx
->ple_window
!= old
)
6029 vmx
->ple_window_dirty
= true;
6031 trace_kvm_ple_window_grow(vcpu
->vcpu_id
, vmx
->ple_window
, old
);
6034 static void shrink_ple_window(struct kvm_vcpu
*vcpu
)
6036 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6037 int old
= vmx
->ple_window
;
6039 vmx
->ple_window
= __shrink_ple_window(old
,
6040 ple_window_shrink
, ple_window
);
6042 if (vmx
->ple_window
!= old
)
6043 vmx
->ple_window_dirty
= true;
6045 trace_kvm_ple_window_shrink(vcpu
->vcpu_id
, vmx
->ple_window
, old
);
6049 * ple_window_actual_max is computed to be one grow_ple_window() below
6050 * ple_window_max. (See __grow_ple_window for the reason.)
6051 * This prevents overflows, because ple_window_max is int.
6052 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6054 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6056 static void update_ple_window_actual_max(void)
6058 ple_window_actual_max
=
6059 __shrink_ple_window(max(ple_window_max
, ple_window
),
6060 ple_window_grow
, INT_MIN
);
6064 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6066 static void wakeup_handler(void)
6068 struct kvm_vcpu
*vcpu
;
6069 int cpu
= smp_processor_id();
6071 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
6072 list_for_each_entry(vcpu
, &per_cpu(blocked_vcpu_on_cpu
, cpu
),
6073 blocked_vcpu_list
) {
6074 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
6076 if (pi_test_on(pi_desc
) == 1)
6077 kvm_vcpu_kick(vcpu
);
6079 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
6082 static __init
int hardware_setup(void)
6084 int r
= -ENOMEM
, i
, msr
;
6086 rdmsrl_safe(MSR_EFER
, &host_efer
);
6088 for (i
= 0; i
< ARRAY_SIZE(vmx_msr_index
); ++i
)
6089 kvm_define_shared_msr(i
, vmx_msr_index
[i
]);
6091 vmx_io_bitmap_a
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6092 if (!vmx_io_bitmap_a
)
6095 vmx_io_bitmap_b
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6096 if (!vmx_io_bitmap_b
)
6099 vmx_msr_bitmap_legacy
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6100 if (!vmx_msr_bitmap_legacy
)
6103 vmx_msr_bitmap_legacy_x2apic
=
6104 (unsigned long *)__get_free_page(GFP_KERNEL
);
6105 if (!vmx_msr_bitmap_legacy_x2apic
)
6108 vmx_msr_bitmap_longmode
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6109 if (!vmx_msr_bitmap_longmode
)
6112 vmx_msr_bitmap_longmode_x2apic
=
6113 (unsigned long *)__get_free_page(GFP_KERNEL
);
6114 if (!vmx_msr_bitmap_longmode_x2apic
)
6118 vmx_msr_bitmap_nested
=
6119 (unsigned long *)__get_free_page(GFP_KERNEL
);
6120 if (!vmx_msr_bitmap_nested
)
6124 vmx_vmread_bitmap
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6125 if (!vmx_vmread_bitmap
)
6128 vmx_vmwrite_bitmap
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6129 if (!vmx_vmwrite_bitmap
)
6132 memset(vmx_vmread_bitmap
, 0xff, PAGE_SIZE
);
6133 memset(vmx_vmwrite_bitmap
, 0xff, PAGE_SIZE
);
6136 * Allow direct access to the PC debug port (it is often used for I/O
6137 * delays, but the vmexits simply slow things down).
6139 memset(vmx_io_bitmap_a
, 0xff, PAGE_SIZE
);
6140 clear_bit(0x80, vmx_io_bitmap_a
);
6142 memset(vmx_io_bitmap_b
, 0xff, PAGE_SIZE
);
6144 memset(vmx_msr_bitmap_legacy
, 0xff, PAGE_SIZE
);
6145 memset(vmx_msr_bitmap_longmode
, 0xff, PAGE_SIZE
);
6147 memset(vmx_msr_bitmap_nested
, 0xff, PAGE_SIZE
);
6149 if (setup_vmcs_config(&vmcs_config
) < 0) {
6154 if (boot_cpu_has(X86_FEATURE_NX
))
6155 kvm_enable_efer_bits(EFER_NX
);
6157 if (!cpu_has_vmx_vpid())
6159 if (!cpu_has_vmx_shadow_vmcs())
6160 enable_shadow_vmcs
= 0;
6161 if (enable_shadow_vmcs
)
6162 init_vmcs_shadow_fields();
6164 if (!cpu_has_vmx_ept() ||
6165 !cpu_has_vmx_ept_4levels()) {
6167 enable_unrestricted_guest
= 0;
6168 enable_ept_ad_bits
= 0;
6171 if (!cpu_has_vmx_ept_ad_bits())
6172 enable_ept_ad_bits
= 0;
6174 if (!cpu_has_vmx_unrestricted_guest())
6175 enable_unrestricted_guest
= 0;
6177 if (!cpu_has_vmx_flexpriority())
6178 flexpriority_enabled
= 0;
6181 * set_apic_access_page_addr() is used to reload apic access
6182 * page upon invalidation. No need to do anything if not
6183 * using the APIC_ACCESS_ADDR VMCS field.
6185 if (!flexpriority_enabled
)
6186 kvm_x86_ops
->set_apic_access_page_addr
= NULL
;
6188 if (!cpu_has_vmx_tpr_shadow())
6189 kvm_x86_ops
->update_cr8_intercept
= NULL
;
6191 if (enable_ept
&& !cpu_has_vmx_ept_2m_page())
6192 kvm_disable_largepages();
6194 if (!cpu_has_vmx_ple())
6197 if (!cpu_has_vmx_apicv())
6200 if (cpu_has_vmx_tsc_scaling()) {
6201 kvm_has_tsc_control
= true;
6202 kvm_max_tsc_scaling_ratio
= KVM_VMX_TSC_MULTIPLIER_MAX
;
6203 kvm_tsc_scaling_ratio_frac_bits
= 48;
6207 kvm_x86_ops
->update_cr8_intercept
= NULL
;
6209 kvm_x86_ops
->hwapic_irr_update
= NULL
;
6210 kvm_x86_ops
->hwapic_isr_update
= NULL
;
6211 kvm_x86_ops
->deliver_posted_interrupt
= NULL
;
6212 kvm_x86_ops
->sync_pir_to_irr
= vmx_sync_pir_to_irr_dummy
;
6215 vmx_disable_intercept_for_msr(MSR_FS_BASE
, false);
6216 vmx_disable_intercept_for_msr(MSR_GS_BASE
, false);
6217 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE
, true);
6218 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS
, false);
6219 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP
, false);
6220 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP
, false);
6221 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS
, true);
6223 memcpy(vmx_msr_bitmap_legacy_x2apic
,
6224 vmx_msr_bitmap_legacy
, PAGE_SIZE
);
6225 memcpy(vmx_msr_bitmap_longmode_x2apic
,
6226 vmx_msr_bitmap_longmode
, PAGE_SIZE
);
6228 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
6231 for (msr
= 0x800; msr
<= 0x8ff; msr
++)
6232 vmx_disable_intercept_msr_read_x2apic(msr
);
6234 /* According SDM, in x2apic mode, the whole id reg is used.
6235 * But in KVM, it only use the highest eight bits. Need to
6237 vmx_enable_intercept_msr_read_x2apic(0x802);
6239 vmx_enable_intercept_msr_read_x2apic(0x839);
6241 vmx_disable_intercept_msr_write_x2apic(0x808);
6243 vmx_disable_intercept_msr_write_x2apic(0x80b);
6245 vmx_disable_intercept_msr_write_x2apic(0x83f);
6249 kvm_mmu_set_mask_ptes(0ull,
6250 (enable_ept_ad_bits
) ? VMX_EPT_ACCESS_BIT
: 0ull,
6251 (enable_ept_ad_bits
) ? VMX_EPT_DIRTY_BIT
: 0ull,
6252 0ull, VMX_EPT_EXECUTABLE_MASK
);
6253 ept_set_mmio_spte_mask();
6258 update_ple_window_actual_max();
6261 * Only enable PML when hardware supports PML feature, and both EPT
6262 * and EPT A/D bit features are enabled -- PML depends on them to work.
6264 if (!enable_ept
|| !enable_ept_ad_bits
|| !cpu_has_vmx_pml())
6268 kvm_x86_ops
->slot_enable_log_dirty
= NULL
;
6269 kvm_x86_ops
->slot_disable_log_dirty
= NULL
;
6270 kvm_x86_ops
->flush_log_dirty
= NULL
;
6271 kvm_x86_ops
->enable_log_dirty_pt_masked
= NULL
;
6274 kvm_set_posted_intr_wakeup_handler(wakeup_handler
);
6276 return alloc_kvm_area();
6279 free_page((unsigned long)vmx_vmwrite_bitmap
);
6281 free_page((unsigned long)vmx_vmread_bitmap
);
6284 free_page((unsigned long)vmx_msr_bitmap_nested
);
6286 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic
);
6288 free_page((unsigned long)vmx_msr_bitmap_longmode
);
6290 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic
);
6292 free_page((unsigned long)vmx_msr_bitmap_legacy
);
6294 free_page((unsigned long)vmx_io_bitmap_b
);
6296 free_page((unsigned long)vmx_io_bitmap_a
);
6301 static __exit
void hardware_unsetup(void)
6303 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic
);
6304 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic
);
6305 free_page((unsigned long)vmx_msr_bitmap_legacy
);
6306 free_page((unsigned long)vmx_msr_bitmap_longmode
);
6307 free_page((unsigned long)vmx_io_bitmap_b
);
6308 free_page((unsigned long)vmx_io_bitmap_a
);
6309 free_page((unsigned long)vmx_vmwrite_bitmap
);
6310 free_page((unsigned long)vmx_vmread_bitmap
);
6312 free_page((unsigned long)vmx_msr_bitmap_nested
);
6318 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6319 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6321 static int handle_pause(struct kvm_vcpu
*vcpu
)
6324 grow_ple_window(vcpu
);
6326 skip_emulated_instruction(vcpu
);
6327 kvm_vcpu_on_spin(vcpu
);
6332 static int handle_nop(struct kvm_vcpu
*vcpu
)
6334 skip_emulated_instruction(vcpu
);
6338 static int handle_mwait(struct kvm_vcpu
*vcpu
)
6340 printk_once(KERN_WARNING
"kvm: MWAIT instruction emulated as NOP!\n");
6341 return handle_nop(vcpu
);
6344 static int handle_monitor_trap(struct kvm_vcpu
*vcpu
)
6349 static int handle_monitor(struct kvm_vcpu
*vcpu
)
6351 printk_once(KERN_WARNING
"kvm: MONITOR instruction emulated as NOP!\n");
6352 return handle_nop(vcpu
);
6356 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6357 * We could reuse a single VMCS for all the L2 guests, but we also want the
6358 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6359 * allows keeping them loaded on the processor, and in the future will allow
6360 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6361 * every entry if they never change.
6362 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6363 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6365 * The following functions allocate and free a vmcs02 in this pool.
6368 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6369 static struct loaded_vmcs
*nested_get_current_vmcs02(struct vcpu_vmx
*vmx
)
6371 struct vmcs02_list
*item
;
6372 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
6373 if (item
->vmptr
== vmx
->nested
.current_vmptr
) {
6374 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
6375 return &item
->vmcs02
;
6378 if (vmx
->nested
.vmcs02_num
>= max(VMCS02_POOL_SIZE
, 1)) {
6379 /* Recycle the least recently used VMCS. */
6380 item
= list_entry(vmx
->nested
.vmcs02_pool
.prev
,
6381 struct vmcs02_list
, list
);
6382 item
->vmptr
= vmx
->nested
.current_vmptr
;
6383 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
6384 return &item
->vmcs02
;
6387 /* Create a new VMCS */
6388 item
= kmalloc(sizeof(struct vmcs02_list
), GFP_KERNEL
);
6391 item
->vmcs02
.vmcs
= alloc_vmcs();
6392 if (!item
->vmcs02
.vmcs
) {
6396 loaded_vmcs_init(&item
->vmcs02
);
6397 item
->vmptr
= vmx
->nested
.current_vmptr
;
6398 list_add(&(item
->list
), &(vmx
->nested
.vmcs02_pool
));
6399 vmx
->nested
.vmcs02_num
++;
6400 return &item
->vmcs02
;
6403 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6404 static void nested_free_vmcs02(struct vcpu_vmx
*vmx
, gpa_t vmptr
)
6406 struct vmcs02_list
*item
;
6407 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
6408 if (item
->vmptr
== vmptr
) {
6409 free_loaded_vmcs(&item
->vmcs02
);
6410 list_del(&item
->list
);
6412 vmx
->nested
.vmcs02_num
--;
6418 * Free all VMCSs saved for this vcpu, except the one pointed by
6419 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6420 * must be &vmx->vmcs01.
6422 static void nested_free_all_saved_vmcss(struct vcpu_vmx
*vmx
)
6424 struct vmcs02_list
*item
, *n
;
6426 WARN_ON(vmx
->loaded_vmcs
!= &vmx
->vmcs01
);
6427 list_for_each_entry_safe(item
, n
, &vmx
->nested
.vmcs02_pool
, list
) {
6429 * Something will leak if the above WARN triggers. Better than
6432 if (vmx
->loaded_vmcs
== &item
->vmcs02
)
6435 free_loaded_vmcs(&item
->vmcs02
);
6436 list_del(&item
->list
);
6438 vmx
->nested
.vmcs02_num
--;
6443 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6444 * set the success or error code of an emulated VMX instruction, as specified
6445 * by Vol 2B, VMX Instruction Reference, "Conventions".
6447 static void nested_vmx_succeed(struct kvm_vcpu
*vcpu
)
6449 vmx_set_rflags(vcpu
, vmx_get_rflags(vcpu
)
6450 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
6451 X86_EFLAGS_ZF
| X86_EFLAGS_SF
| X86_EFLAGS_OF
));
6454 static void nested_vmx_failInvalid(struct kvm_vcpu
*vcpu
)
6456 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
6457 & ~(X86_EFLAGS_PF
| X86_EFLAGS_AF
| X86_EFLAGS_ZF
|
6458 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
6462 static void nested_vmx_failValid(struct kvm_vcpu
*vcpu
,
6463 u32 vm_instruction_error
)
6465 if (to_vmx(vcpu
)->nested
.current_vmptr
== -1ull) {
6467 * failValid writes the error number to the current VMCS, which
6468 * can't be done there isn't a current VMCS.
6470 nested_vmx_failInvalid(vcpu
);
6473 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
6474 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
6475 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
6477 get_vmcs12(vcpu
)->vm_instruction_error
= vm_instruction_error
;
6479 * We don't need to force a shadow sync because
6480 * VM_INSTRUCTION_ERROR is not shadowed
6484 static void nested_vmx_abort(struct kvm_vcpu
*vcpu
, u32 indicator
)
6486 /* TODO: not to reset guest simply here. */
6487 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
6488 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator
);
6491 static enum hrtimer_restart
vmx_preemption_timer_fn(struct hrtimer
*timer
)
6493 struct vcpu_vmx
*vmx
=
6494 container_of(timer
, struct vcpu_vmx
, nested
.preemption_timer
);
6496 vmx
->nested
.preemption_timer_expired
= true;
6497 kvm_make_request(KVM_REQ_EVENT
, &vmx
->vcpu
);
6498 kvm_vcpu_kick(&vmx
->vcpu
);
6500 return HRTIMER_NORESTART
;
6504 * Decode the memory-address operand of a vmx instruction, as recorded on an
6505 * exit caused by such an instruction (run by a guest hypervisor).
6506 * On success, returns 0. When the operand is invalid, returns 1 and throws
6509 static int get_vmx_mem_address(struct kvm_vcpu
*vcpu
,
6510 unsigned long exit_qualification
,
6511 u32 vmx_instruction_info
, bool wr
, gva_t
*ret
)
6515 struct kvm_segment s
;
6518 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6519 * Execution", on an exit, vmx_instruction_info holds most of the
6520 * addressing components of the operand. Only the displacement part
6521 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6522 * For how an actual address is calculated from all these components,
6523 * refer to Vol. 1, "Operand Addressing".
6525 int scaling
= vmx_instruction_info
& 3;
6526 int addr_size
= (vmx_instruction_info
>> 7) & 7;
6527 bool is_reg
= vmx_instruction_info
& (1u << 10);
6528 int seg_reg
= (vmx_instruction_info
>> 15) & 7;
6529 int index_reg
= (vmx_instruction_info
>> 18) & 0xf;
6530 bool index_is_valid
= !(vmx_instruction_info
& (1u << 22));
6531 int base_reg
= (vmx_instruction_info
>> 23) & 0xf;
6532 bool base_is_valid
= !(vmx_instruction_info
& (1u << 27));
6535 kvm_queue_exception(vcpu
, UD_VECTOR
);
6539 /* Addr = segment_base + offset */
6540 /* offset = base + [index * scale] + displacement */
6541 off
= exit_qualification
; /* holds the displacement */
6543 off
+= kvm_register_read(vcpu
, base_reg
);
6545 off
+= kvm_register_read(vcpu
, index_reg
)<<scaling
;
6546 vmx_get_segment(vcpu
, &s
, seg_reg
);
6547 *ret
= s
.base
+ off
;
6549 if (addr_size
== 1) /* 32 bit */
6552 /* Checks for #GP/#SS exceptions. */
6554 if (is_protmode(vcpu
)) {
6555 /* Protected mode: apply checks for segment validity in the
6557 * - segment type check (#GP(0) may be thrown)
6558 * - usability check (#GP(0)/#SS(0))
6559 * - limit check (#GP(0)/#SS(0))
6562 /* #GP(0) if the destination operand is located in a
6563 * read-only data segment or any code segment.
6565 exn
= ((s
.type
& 0xa) == 0 || (s
.type
& 8));
6567 /* #GP(0) if the source operand is located in an
6568 * execute-only code segment
6570 exn
= ((s
.type
& 0xa) == 8);
6573 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
6576 if (is_long_mode(vcpu
)) {
6577 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6578 * non-canonical form. This is an only check for long mode.
6580 exn
= is_noncanonical_address(*ret
);
6581 } else if (is_protmode(vcpu
)) {
6582 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6584 exn
= (s
.unusable
!= 0);
6585 /* Protected mode: #GP(0)/#SS(0) if the memory
6586 * operand is outside the segment limit.
6588 exn
= exn
|| (off
+ sizeof(u64
) > s
.limit
);
6591 kvm_queue_exception_e(vcpu
,
6592 seg_reg
== VCPU_SREG_SS
?
6593 SS_VECTOR
: GP_VECTOR
,
6602 * This function performs the various checks including
6603 * - if it's 4KB aligned
6604 * - No bits beyond the physical address width are set
6605 * - Returns 0 on success or else 1
6606 * (Intel SDM Section 30.3)
6608 static int nested_vmx_check_vmptr(struct kvm_vcpu
*vcpu
, int exit_reason
,
6613 struct x86_exception e
;
6615 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6616 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
6618 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
6619 vmcs_read32(VMX_INSTRUCTION_INFO
), false, &gva
))
6622 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &vmptr
,
6623 sizeof(vmptr
), &e
)) {
6624 kvm_inject_page_fault(vcpu
, &e
);
6628 switch (exit_reason
) {
6629 case EXIT_REASON_VMON
:
6632 * The first 4 bytes of VMXON region contain the supported
6633 * VMCS revision identifier
6635 * Note - IA32_VMX_BASIC[48] will never be 1
6636 * for the nested case;
6637 * which replaces physical address width with 32
6640 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> maxphyaddr
)) {
6641 nested_vmx_failInvalid(vcpu
);
6642 skip_emulated_instruction(vcpu
);
6646 page
= nested_get_page(vcpu
, vmptr
);
6648 *(u32
*)kmap(page
) != VMCS12_REVISION
) {
6649 nested_vmx_failInvalid(vcpu
);
6651 skip_emulated_instruction(vcpu
);
6655 vmx
->nested
.vmxon_ptr
= vmptr
;
6657 case EXIT_REASON_VMCLEAR
:
6658 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> maxphyaddr
)) {
6659 nested_vmx_failValid(vcpu
,
6660 VMXERR_VMCLEAR_INVALID_ADDRESS
);
6661 skip_emulated_instruction(vcpu
);
6665 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
6666 nested_vmx_failValid(vcpu
,
6667 VMXERR_VMCLEAR_VMXON_POINTER
);
6668 skip_emulated_instruction(vcpu
);
6672 case EXIT_REASON_VMPTRLD
:
6673 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> maxphyaddr
)) {
6674 nested_vmx_failValid(vcpu
,
6675 VMXERR_VMPTRLD_INVALID_ADDRESS
);
6676 skip_emulated_instruction(vcpu
);
6680 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
6681 nested_vmx_failValid(vcpu
,
6682 VMXERR_VMCLEAR_VMXON_POINTER
);
6683 skip_emulated_instruction(vcpu
);
6688 return 1; /* shouldn't happen */
6697 * Emulate the VMXON instruction.
6698 * Currently, we just remember that VMX is active, and do not save or even
6699 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6700 * do not currently need to store anything in that guest-allocated memory
6701 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6702 * argument is different from the VMXON pointer (which the spec says they do).
6704 static int handle_vmon(struct kvm_vcpu
*vcpu
)
6706 struct kvm_segment cs
;
6707 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6708 struct vmcs
*shadow_vmcs
;
6709 const u64 VMXON_NEEDED_FEATURES
= FEATURE_CONTROL_LOCKED
6710 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
6712 /* The Intel VMX Instruction Reference lists a bunch of bits that
6713 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6714 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6715 * Otherwise, we should fail with #UD. We test these now:
6717 if (!kvm_read_cr4_bits(vcpu
, X86_CR4_VMXE
) ||
6718 !kvm_read_cr0_bits(vcpu
, X86_CR0_PE
) ||
6719 (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
6720 kvm_queue_exception(vcpu
, UD_VECTOR
);
6724 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6725 if (is_long_mode(vcpu
) && !cs
.l
) {
6726 kvm_queue_exception(vcpu
, UD_VECTOR
);
6730 if (vmx_get_cpl(vcpu
)) {
6731 kvm_inject_gp(vcpu
, 0);
6735 if (nested_vmx_check_vmptr(vcpu
, EXIT_REASON_VMON
, NULL
))
6738 if (vmx
->nested
.vmxon
) {
6739 nested_vmx_failValid(vcpu
, VMXERR_VMXON_IN_VMX_ROOT_OPERATION
);
6740 skip_emulated_instruction(vcpu
);
6744 if ((vmx
->nested
.msr_ia32_feature_control
& VMXON_NEEDED_FEATURES
)
6745 != VMXON_NEEDED_FEATURES
) {
6746 kvm_inject_gp(vcpu
, 0);
6750 if (enable_shadow_vmcs
) {
6751 shadow_vmcs
= alloc_vmcs();
6754 /* mark vmcs as shadow */
6755 shadow_vmcs
->revision_id
|= (1u << 31);
6756 /* init shadow vmcs */
6757 vmcs_clear(shadow_vmcs
);
6758 vmx
->nested
.current_shadow_vmcs
= shadow_vmcs
;
6761 INIT_LIST_HEAD(&(vmx
->nested
.vmcs02_pool
));
6762 vmx
->nested
.vmcs02_num
= 0;
6764 hrtimer_init(&vmx
->nested
.preemption_timer
, CLOCK_MONOTONIC
,
6766 vmx
->nested
.preemption_timer
.function
= vmx_preemption_timer_fn
;
6768 vmx
->nested
.vmxon
= true;
6770 skip_emulated_instruction(vcpu
);
6771 nested_vmx_succeed(vcpu
);
6776 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6777 * for running VMX instructions (except VMXON, whose prerequisites are
6778 * slightly different). It also specifies what exception to inject otherwise.
6780 static int nested_vmx_check_permission(struct kvm_vcpu
*vcpu
)
6782 struct kvm_segment cs
;
6783 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6785 if (!vmx
->nested
.vmxon
) {
6786 kvm_queue_exception(vcpu
, UD_VECTOR
);
6790 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6791 if ((vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) ||
6792 (is_long_mode(vcpu
) && !cs
.l
)) {
6793 kvm_queue_exception(vcpu
, UD_VECTOR
);
6797 if (vmx_get_cpl(vcpu
)) {
6798 kvm_inject_gp(vcpu
, 0);
6805 static inline void nested_release_vmcs12(struct vcpu_vmx
*vmx
)
6807 if (vmx
->nested
.current_vmptr
== -1ull)
6810 /* current_vmptr and current_vmcs12 are always set/reset together */
6811 if (WARN_ON(vmx
->nested
.current_vmcs12
== NULL
))
6814 if (enable_shadow_vmcs
) {
6815 /* copy to memory all shadowed fields in case
6816 they were modified */
6817 copy_shadow_to_vmcs12(vmx
);
6818 vmx
->nested
.sync_shadow_vmcs
= false;
6819 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL
,
6820 SECONDARY_EXEC_SHADOW_VMCS
);
6821 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
6823 vmx
->nested
.posted_intr_nv
= -1;
6824 kunmap(vmx
->nested
.current_vmcs12_page
);
6825 nested_release_page(vmx
->nested
.current_vmcs12_page
);
6826 vmx
->nested
.current_vmptr
= -1ull;
6827 vmx
->nested
.current_vmcs12
= NULL
;
6831 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6832 * just stops using VMX.
6834 static void free_nested(struct vcpu_vmx
*vmx
)
6836 if (!vmx
->nested
.vmxon
)
6839 vmx
->nested
.vmxon
= false;
6840 free_vpid(vmx
->nested
.vpid02
);
6841 nested_release_vmcs12(vmx
);
6842 if (enable_shadow_vmcs
)
6843 free_vmcs(vmx
->nested
.current_shadow_vmcs
);
6844 /* Unpin physical memory we referred to in current vmcs02 */
6845 if (vmx
->nested
.apic_access_page
) {
6846 nested_release_page(vmx
->nested
.apic_access_page
);
6847 vmx
->nested
.apic_access_page
= NULL
;
6849 if (vmx
->nested
.virtual_apic_page
) {
6850 nested_release_page(vmx
->nested
.virtual_apic_page
);
6851 vmx
->nested
.virtual_apic_page
= NULL
;
6853 if (vmx
->nested
.pi_desc_page
) {
6854 kunmap(vmx
->nested
.pi_desc_page
);
6855 nested_release_page(vmx
->nested
.pi_desc_page
);
6856 vmx
->nested
.pi_desc_page
= NULL
;
6857 vmx
->nested
.pi_desc
= NULL
;
6860 nested_free_all_saved_vmcss(vmx
);
6863 /* Emulate the VMXOFF instruction */
6864 static int handle_vmoff(struct kvm_vcpu
*vcpu
)
6866 if (!nested_vmx_check_permission(vcpu
))
6868 free_nested(to_vmx(vcpu
));
6869 skip_emulated_instruction(vcpu
);
6870 nested_vmx_succeed(vcpu
);
6874 /* Emulate the VMCLEAR instruction */
6875 static int handle_vmclear(struct kvm_vcpu
*vcpu
)
6877 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6879 struct vmcs12
*vmcs12
;
6882 if (!nested_vmx_check_permission(vcpu
))
6885 if (nested_vmx_check_vmptr(vcpu
, EXIT_REASON_VMCLEAR
, &vmptr
))
6888 if (vmptr
== vmx
->nested
.current_vmptr
)
6889 nested_release_vmcs12(vmx
);
6891 page
= nested_get_page(vcpu
, vmptr
);
6894 * For accurate processor emulation, VMCLEAR beyond available
6895 * physical memory should do nothing at all. However, it is
6896 * possible that a nested vmx bug, not a guest hypervisor bug,
6897 * resulted in this case, so let's shut down before doing any
6900 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
6903 vmcs12
= kmap(page
);
6904 vmcs12
->launch_state
= 0;
6906 nested_release_page(page
);
6908 nested_free_vmcs02(vmx
, vmptr
);
6910 skip_emulated_instruction(vcpu
);
6911 nested_vmx_succeed(vcpu
);
6915 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
);
6917 /* Emulate the VMLAUNCH instruction */
6918 static int handle_vmlaunch(struct kvm_vcpu
*vcpu
)
6920 return nested_vmx_run(vcpu
, true);
6923 /* Emulate the VMRESUME instruction */
6924 static int handle_vmresume(struct kvm_vcpu
*vcpu
)
6927 return nested_vmx_run(vcpu
, false);
6930 enum vmcs_field_type
{
6931 VMCS_FIELD_TYPE_U16
= 0,
6932 VMCS_FIELD_TYPE_U64
= 1,
6933 VMCS_FIELD_TYPE_U32
= 2,
6934 VMCS_FIELD_TYPE_NATURAL_WIDTH
= 3
6937 static inline int vmcs_field_type(unsigned long field
)
6939 if (0x1 & field
) /* the *_HIGH fields are all 32 bit */
6940 return VMCS_FIELD_TYPE_U32
;
6941 return (field
>> 13) & 0x3 ;
6944 static inline int vmcs_field_readonly(unsigned long field
)
6946 return (((field
>> 10) & 0x3) == 1);
6950 * Read a vmcs12 field. Since these can have varying lengths and we return
6951 * one type, we chose the biggest type (u64) and zero-extend the return value
6952 * to that size. Note that the caller, handle_vmread, might need to use only
6953 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6954 * 64-bit fields are to be returned).
6956 static inline int vmcs12_read_any(struct kvm_vcpu
*vcpu
,
6957 unsigned long field
, u64
*ret
)
6959 short offset
= vmcs_field_to_offset(field
);
6965 p
= ((char *)(get_vmcs12(vcpu
))) + offset
;
6967 switch (vmcs_field_type(field
)) {
6968 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
6969 *ret
= *((natural_width
*)p
);
6971 case VMCS_FIELD_TYPE_U16
:
6974 case VMCS_FIELD_TYPE_U32
:
6977 case VMCS_FIELD_TYPE_U64
:
6987 static inline int vmcs12_write_any(struct kvm_vcpu
*vcpu
,
6988 unsigned long field
, u64 field_value
){
6989 short offset
= vmcs_field_to_offset(field
);
6990 char *p
= ((char *) get_vmcs12(vcpu
)) + offset
;
6994 switch (vmcs_field_type(field
)) {
6995 case VMCS_FIELD_TYPE_U16
:
6996 *(u16
*)p
= field_value
;
6998 case VMCS_FIELD_TYPE_U32
:
6999 *(u32
*)p
= field_value
;
7001 case VMCS_FIELD_TYPE_U64
:
7002 *(u64
*)p
= field_value
;
7004 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
7005 *(natural_width
*)p
= field_value
;
7014 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
)
7017 unsigned long field
;
7019 struct vmcs
*shadow_vmcs
= vmx
->nested
.current_shadow_vmcs
;
7020 const unsigned long *fields
= shadow_read_write_fields
;
7021 const int num_fields
= max_shadow_read_write_fields
;
7025 vmcs_load(shadow_vmcs
);
7027 for (i
= 0; i
< num_fields
; i
++) {
7029 switch (vmcs_field_type(field
)) {
7030 case VMCS_FIELD_TYPE_U16
:
7031 field_value
= vmcs_read16(field
);
7033 case VMCS_FIELD_TYPE_U32
:
7034 field_value
= vmcs_read32(field
);
7036 case VMCS_FIELD_TYPE_U64
:
7037 field_value
= vmcs_read64(field
);
7039 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
7040 field_value
= vmcs_readl(field
);
7046 vmcs12_write_any(&vmx
->vcpu
, field
, field_value
);
7049 vmcs_clear(shadow_vmcs
);
7050 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
7055 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
)
7057 const unsigned long *fields
[] = {
7058 shadow_read_write_fields
,
7059 shadow_read_only_fields
7061 const int max_fields
[] = {
7062 max_shadow_read_write_fields
,
7063 max_shadow_read_only_fields
7066 unsigned long field
;
7067 u64 field_value
= 0;
7068 struct vmcs
*shadow_vmcs
= vmx
->nested
.current_shadow_vmcs
;
7070 vmcs_load(shadow_vmcs
);
7072 for (q
= 0; q
< ARRAY_SIZE(fields
); q
++) {
7073 for (i
= 0; i
< max_fields
[q
]; i
++) {
7074 field
= fields
[q
][i
];
7075 vmcs12_read_any(&vmx
->vcpu
, field
, &field_value
);
7077 switch (vmcs_field_type(field
)) {
7078 case VMCS_FIELD_TYPE_U16
:
7079 vmcs_write16(field
, (u16
)field_value
);
7081 case VMCS_FIELD_TYPE_U32
:
7082 vmcs_write32(field
, (u32
)field_value
);
7084 case VMCS_FIELD_TYPE_U64
:
7085 vmcs_write64(field
, (u64
)field_value
);
7087 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
7088 vmcs_writel(field
, (long)field_value
);
7097 vmcs_clear(shadow_vmcs
);
7098 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
7102 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7103 * used before) all generate the same failure when it is missing.
7105 static int nested_vmx_check_vmcs12(struct kvm_vcpu
*vcpu
)
7107 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7108 if (vmx
->nested
.current_vmptr
== -1ull) {
7109 nested_vmx_failInvalid(vcpu
);
7110 skip_emulated_instruction(vcpu
);
7116 static int handle_vmread(struct kvm_vcpu
*vcpu
)
7118 unsigned long field
;
7120 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7121 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7124 if (!nested_vmx_check_permission(vcpu
) ||
7125 !nested_vmx_check_vmcs12(vcpu
))
7128 /* Decode instruction info and find the field to read */
7129 field
= kvm_register_readl(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
7130 /* Read the field, zero-extended to a u64 field_value */
7131 if (vmcs12_read_any(vcpu
, field
, &field_value
) < 0) {
7132 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
7133 skip_emulated_instruction(vcpu
);
7137 * Now copy part of this value to register or memory, as requested.
7138 * Note that the number of bits actually copied is 32 or 64 depending
7139 * on the guest's mode (32 or 64 bit), not on the given field's length.
7141 if (vmx_instruction_info
& (1u << 10)) {
7142 kvm_register_writel(vcpu
, (((vmx_instruction_info
) >> 3) & 0xf),
7145 if (get_vmx_mem_address(vcpu
, exit_qualification
,
7146 vmx_instruction_info
, true, &gva
))
7148 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7149 kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, gva
,
7150 &field_value
, (is_long_mode(vcpu
) ? 8 : 4), NULL
);
7153 nested_vmx_succeed(vcpu
);
7154 skip_emulated_instruction(vcpu
);
7159 static int handle_vmwrite(struct kvm_vcpu
*vcpu
)
7161 unsigned long field
;
7163 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7164 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7165 /* The value to write might be 32 or 64 bits, depending on L1's long
7166 * mode, and eventually we need to write that into a field of several
7167 * possible lengths. The code below first zero-extends the value to 64
7168 * bit (field_value), and then copies only the approriate number of
7169 * bits into the vmcs12 field.
7171 u64 field_value
= 0;
7172 struct x86_exception e
;
7174 if (!nested_vmx_check_permission(vcpu
) ||
7175 !nested_vmx_check_vmcs12(vcpu
))
7178 if (vmx_instruction_info
& (1u << 10))
7179 field_value
= kvm_register_readl(vcpu
,
7180 (((vmx_instruction_info
) >> 3) & 0xf));
7182 if (get_vmx_mem_address(vcpu
, exit_qualification
,
7183 vmx_instruction_info
, false, &gva
))
7185 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
,
7186 &field_value
, (is_64_bit_mode(vcpu
) ? 8 : 4), &e
)) {
7187 kvm_inject_page_fault(vcpu
, &e
);
7193 field
= kvm_register_readl(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
7194 if (vmcs_field_readonly(field
)) {
7195 nested_vmx_failValid(vcpu
,
7196 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT
);
7197 skip_emulated_instruction(vcpu
);
7201 if (vmcs12_write_any(vcpu
, field
, field_value
) < 0) {
7202 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
7203 skip_emulated_instruction(vcpu
);
7207 nested_vmx_succeed(vcpu
);
7208 skip_emulated_instruction(vcpu
);
7212 /* Emulate the VMPTRLD instruction */
7213 static int handle_vmptrld(struct kvm_vcpu
*vcpu
)
7215 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7218 if (!nested_vmx_check_permission(vcpu
))
7221 if (nested_vmx_check_vmptr(vcpu
, EXIT_REASON_VMPTRLD
, &vmptr
))
7224 if (vmx
->nested
.current_vmptr
!= vmptr
) {
7225 struct vmcs12
*new_vmcs12
;
7227 page
= nested_get_page(vcpu
, vmptr
);
7229 nested_vmx_failInvalid(vcpu
);
7230 skip_emulated_instruction(vcpu
);
7233 new_vmcs12
= kmap(page
);
7234 if (new_vmcs12
->revision_id
!= VMCS12_REVISION
) {
7236 nested_release_page_clean(page
);
7237 nested_vmx_failValid(vcpu
,
7238 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID
);
7239 skip_emulated_instruction(vcpu
);
7243 nested_release_vmcs12(vmx
);
7244 vmx
->nested
.current_vmptr
= vmptr
;
7245 vmx
->nested
.current_vmcs12
= new_vmcs12
;
7246 vmx
->nested
.current_vmcs12_page
= page
;
7247 if (enable_shadow_vmcs
) {
7248 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL
,
7249 SECONDARY_EXEC_SHADOW_VMCS
);
7250 vmcs_write64(VMCS_LINK_POINTER
,
7251 __pa(vmx
->nested
.current_shadow_vmcs
));
7252 vmx
->nested
.sync_shadow_vmcs
= true;
7256 nested_vmx_succeed(vcpu
);
7257 skip_emulated_instruction(vcpu
);
7261 /* Emulate the VMPTRST instruction */
7262 static int handle_vmptrst(struct kvm_vcpu
*vcpu
)
7264 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7265 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7267 struct x86_exception e
;
7269 if (!nested_vmx_check_permission(vcpu
))
7272 if (get_vmx_mem_address(vcpu
, exit_qualification
,
7273 vmx_instruction_info
, true, &vmcs_gva
))
7275 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7276 if (kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, vmcs_gva
,
7277 (void *)&to_vmx(vcpu
)->nested
.current_vmptr
,
7279 kvm_inject_page_fault(vcpu
, &e
);
7282 nested_vmx_succeed(vcpu
);
7283 skip_emulated_instruction(vcpu
);
7287 /* Emulate the INVEPT instruction */
7288 static int handle_invept(struct kvm_vcpu
*vcpu
)
7290 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7291 u32 vmx_instruction_info
, types
;
7294 struct x86_exception e
;
7299 if (!(vmx
->nested
.nested_vmx_secondary_ctls_high
&
7300 SECONDARY_EXEC_ENABLE_EPT
) ||
7301 !(vmx
->nested
.nested_vmx_ept_caps
& VMX_EPT_INVEPT_BIT
)) {
7302 kvm_queue_exception(vcpu
, UD_VECTOR
);
7306 if (!nested_vmx_check_permission(vcpu
))
7309 if (!kvm_read_cr0_bits(vcpu
, X86_CR0_PE
)) {
7310 kvm_queue_exception(vcpu
, UD_VECTOR
);
7314 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7315 type
= kvm_register_readl(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
7317 types
= (vmx
->nested
.nested_vmx_ept_caps
>> VMX_EPT_EXTENT_SHIFT
) & 6;
7319 if (!(types
& (1UL << type
))) {
7320 nested_vmx_failValid(vcpu
,
7321 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
7325 /* According to the Intel VMX instruction reference, the memory
7326 * operand is read even if it isn't needed (e.g., for type==global)
7328 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
7329 vmx_instruction_info
, false, &gva
))
7331 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &operand
,
7332 sizeof(operand
), &e
)) {
7333 kvm_inject_page_fault(vcpu
, &e
);
7338 case VMX_EPT_EXTENT_GLOBAL
:
7339 kvm_mmu_sync_roots(vcpu
);
7340 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
7341 nested_vmx_succeed(vcpu
);
7344 /* Trap single context invalidation invept calls */
7349 skip_emulated_instruction(vcpu
);
7353 static int handle_invvpid(struct kvm_vcpu
*vcpu
)
7355 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7356 u32 vmx_instruction_info
;
7357 unsigned long type
, types
;
7359 struct x86_exception e
;
7362 if (!(vmx
->nested
.nested_vmx_secondary_ctls_high
&
7363 SECONDARY_EXEC_ENABLE_VPID
) ||
7364 !(vmx
->nested
.nested_vmx_vpid_caps
& VMX_VPID_INVVPID_BIT
)) {
7365 kvm_queue_exception(vcpu
, UD_VECTOR
);
7369 if (!nested_vmx_check_permission(vcpu
))
7372 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7373 type
= kvm_register_readl(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
7375 types
= (vmx
->nested
.nested_vmx_vpid_caps
>> 8) & 0x7;
7377 if (!(types
& (1UL << type
))) {
7378 nested_vmx_failValid(vcpu
,
7379 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
7383 /* according to the intel vmx instruction reference, the memory
7384 * operand is read even if it isn't needed (e.g., for type==global)
7386 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
7387 vmx_instruction_info
, false, &gva
))
7389 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &vpid
,
7391 kvm_inject_page_fault(vcpu
, &e
);
7396 case VMX_VPID_EXTENT_ALL_CONTEXT
:
7397 __vmx_flush_tlb(vcpu
, to_vmx(vcpu
)->nested
.vpid02
);
7398 nested_vmx_succeed(vcpu
);
7401 /* Trap single context invalidation invvpid calls */
7406 skip_emulated_instruction(vcpu
);
7410 static int handle_pml_full(struct kvm_vcpu
*vcpu
)
7412 unsigned long exit_qualification
;
7414 trace_kvm_pml_full(vcpu
->vcpu_id
);
7416 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7419 * PML buffer FULL happened while executing iret from NMI,
7420 * "blocked by NMI" bit has to be set before next VM entry.
7422 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
7423 cpu_has_virtual_nmis() &&
7424 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
7425 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
7426 GUEST_INTR_STATE_NMI
);
7429 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7430 * here.., and there's no userspace involvement needed for PML.
7435 static int handle_pcommit(struct kvm_vcpu
*vcpu
)
7437 /* we never catch pcommit instruct for L1 guest. */
7443 * The exit handlers return 1 if the exit was handled fully and guest execution
7444 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7445 * to be done to userspace and return 0.
7447 static int (*const kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
7448 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
7449 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
7450 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
7451 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
7452 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
7453 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
7454 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
7455 [EXIT_REASON_CPUID
] = handle_cpuid
,
7456 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
7457 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
7458 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
7459 [EXIT_REASON_HLT
] = handle_halt
,
7460 [EXIT_REASON_INVD
] = handle_invd
,
7461 [EXIT_REASON_INVLPG
] = handle_invlpg
,
7462 [EXIT_REASON_RDPMC
] = handle_rdpmc
,
7463 [EXIT_REASON_VMCALL
] = handle_vmcall
,
7464 [EXIT_REASON_VMCLEAR
] = handle_vmclear
,
7465 [EXIT_REASON_VMLAUNCH
] = handle_vmlaunch
,
7466 [EXIT_REASON_VMPTRLD
] = handle_vmptrld
,
7467 [EXIT_REASON_VMPTRST
] = handle_vmptrst
,
7468 [EXIT_REASON_VMREAD
] = handle_vmread
,
7469 [EXIT_REASON_VMRESUME
] = handle_vmresume
,
7470 [EXIT_REASON_VMWRITE
] = handle_vmwrite
,
7471 [EXIT_REASON_VMOFF
] = handle_vmoff
,
7472 [EXIT_REASON_VMON
] = handle_vmon
,
7473 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
7474 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
7475 [EXIT_REASON_APIC_WRITE
] = handle_apic_write
,
7476 [EXIT_REASON_EOI_INDUCED
] = handle_apic_eoi_induced
,
7477 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
7478 [EXIT_REASON_XSETBV
] = handle_xsetbv
,
7479 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
7480 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
7481 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
7482 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
7483 [EXIT_REASON_PAUSE_INSTRUCTION
] = handle_pause
,
7484 [EXIT_REASON_MWAIT_INSTRUCTION
] = handle_mwait
,
7485 [EXIT_REASON_MONITOR_TRAP_FLAG
] = handle_monitor_trap
,
7486 [EXIT_REASON_MONITOR_INSTRUCTION
] = handle_monitor
,
7487 [EXIT_REASON_INVEPT
] = handle_invept
,
7488 [EXIT_REASON_INVVPID
] = handle_invvpid
,
7489 [EXIT_REASON_XSAVES
] = handle_xsaves
,
7490 [EXIT_REASON_XRSTORS
] = handle_xrstors
,
7491 [EXIT_REASON_PML_FULL
] = handle_pml_full
,
7492 [EXIT_REASON_PCOMMIT
] = handle_pcommit
,
7495 static const int kvm_vmx_max_exit_handlers
=
7496 ARRAY_SIZE(kvm_vmx_exit_handlers
);
7498 static bool nested_vmx_exit_handled_io(struct kvm_vcpu
*vcpu
,
7499 struct vmcs12
*vmcs12
)
7501 unsigned long exit_qualification
;
7502 gpa_t bitmap
, last_bitmap
;
7507 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_IO_BITMAPS
))
7508 return nested_cpu_has(vmcs12
, CPU_BASED_UNCOND_IO_EXITING
);
7510 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7512 port
= exit_qualification
>> 16;
7513 size
= (exit_qualification
& 7) + 1;
7515 last_bitmap
= (gpa_t
)-1;
7520 bitmap
= vmcs12
->io_bitmap_a
;
7521 else if (port
< 0x10000)
7522 bitmap
= vmcs12
->io_bitmap_b
;
7525 bitmap
+= (port
& 0x7fff) / 8;
7527 if (last_bitmap
!= bitmap
)
7528 if (kvm_vcpu_read_guest(vcpu
, bitmap
, &b
, 1))
7530 if (b
& (1 << (port
& 7)))
7535 last_bitmap
= bitmap
;
7542 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7543 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7544 * disinterest in the current event (read or write a specific MSR) by using an
7545 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7547 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu
*vcpu
,
7548 struct vmcs12
*vmcs12
, u32 exit_reason
)
7550 u32 msr_index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
7553 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
7557 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7558 * for the four combinations of read/write and low/high MSR numbers.
7559 * First we need to figure out which of the four to use:
7561 bitmap
= vmcs12
->msr_bitmap
;
7562 if (exit_reason
== EXIT_REASON_MSR_WRITE
)
7564 if (msr_index
>= 0xc0000000) {
7565 msr_index
-= 0xc0000000;
7569 /* Then read the msr_index'th bit from this bitmap: */
7570 if (msr_index
< 1024*8) {
7572 if (kvm_vcpu_read_guest(vcpu
, bitmap
+ msr_index
/8, &b
, 1))
7574 return 1 & (b
>> (msr_index
& 7));
7576 return true; /* let L1 handle the wrong parameter */
7580 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7581 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7582 * intercept (via guest_host_mask etc.) the current event.
7584 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu
*vcpu
,
7585 struct vmcs12
*vmcs12
)
7587 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7588 int cr
= exit_qualification
& 15;
7589 int reg
= (exit_qualification
>> 8) & 15;
7590 unsigned long val
= kvm_register_readl(vcpu
, reg
);
7592 switch ((exit_qualification
>> 4) & 3) {
7593 case 0: /* mov to cr */
7596 if (vmcs12
->cr0_guest_host_mask
&
7597 (val
^ vmcs12
->cr0_read_shadow
))
7601 if ((vmcs12
->cr3_target_count
>= 1 &&
7602 vmcs12
->cr3_target_value0
== val
) ||
7603 (vmcs12
->cr3_target_count
>= 2 &&
7604 vmcs12
->cr3_target_value1
== val
) ||
7605 (vmcs12
->cr3_target_count
>= 3 &&
7606 vmcs12
->cr3_target_value2
== val
) ||
7607 (vmcs12
->cr3_target_count
>= 4 &&
7608 vmcs12
->cr3_target_value3
== val
))
7610 if (nested_cpu_has(vmcs12
, CPU_BASED_CR3_LOAD_EXITING
))
7614 if (vmcs12
->cr4_guest_host_mask
&
7615 (vmcs12
->cr4_read_shadow
^ val
))
7619 if (nested_cpu_has(vmcs12
, CPU_BASED_CR8_LOAD_EXITING
))
7625 if ((vmcs12
->cr0_guest_host_mask
& X86_CR0_TS
) &&
7626 (vmcs12
->cr0_read_shadow
& X86_CR0_TS
))
7629 case 1: /* mov from cr */
7632 if (vmcs12
->cpu_based_vm_exec_control
&
7633 CPU_BASED_CR3_STORE_EXITING
)
7637 if (vmcs12
->cpu_based_vm_exec_control
&
7638 CPU_BASED_CR8_STORE_EXITING
)
7645 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7646 * cr0. Other attempted changes are ignored, with no exit.
7648 if (vmcs12
->cr0_guest_host_mask
& 0xe &
7649 (val
^ vmcs12
->cr0_read_shadow
))
7651 if ((vmcs12
->cr0_guest_host_mask
& 0x1) &&
7652 !(vmcs12
->cr0_read_shadow
& 0x1) &&
7661 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7662 * should handle it ourselves in L0 (and then continue L2). Only call this
7663 * when in is_guest_mode (L2).
7665 static bool nested_vmx_exit_handled(struct kvm_vcpu
*vcpu
)
7667 u32 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
7668 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7669 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
7670 u32 exit_reason
= vmx
->exit_reason
;
7672 trace_kvm_nested_vmexit(kvm_rip_read(vcpu
), exit_reason
,
7673 vmcs_readl(EXIT_QUALIFICATION
),
7674 vmx
->idt_vectoring_info
,
7676 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
),
7679 if (vmx
->nested
.nested_run_pending
)
7682 if (unlikely(vmx
->fail
)) {
7683 pr_info_ratelimited("%s failed vm entry %x\n", __func__
,
7684 vmcs_read32(VM_INSTRUCTION_ERROR
));
7688 switch (exit_reason
) {
7689 case EXIT_REASON_EXCEPTION_NMI
:
7690 if (!is_exception(intr_info
))
7692 else if (is_page_fault(intr_info
))
7694 else if (is_no_device(intr_info
) &&
7695 !(vmcs12
->guest_cr0
& X86_CR0_TS
))
7697 return vmcs12
->exception_bitmap
&
7698 (1u << (intr_info
& INTR_INFO_VECTOR_MASK
));
7699 case EXIT_REASON_EXTERNAL_INTERRUPT
:
7701 case EXIT_REASON_TRIPLE_FAULT
:
7703 case EXIT_REASON_PENDING_INTERRUPT
:
7704 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_INTR_PENDING
);
7705 case EXIT_REASON_NMI_WINDOW
:
7706 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_NMI_PENDING
);
7707 case EXIT_REASON_TASK_SWITCH
:
7709 case EXIT_REASON_CPUID
:
7710 if (kvm_register_read(vcpu
, VCPU_REGS_RAX
) == 0xa)
7713 case EXIT_REASON_HLT
:
7714 return nested_cpu_has(vmcs12
, CPU_BASED_HLT_EXITING
);
7715 case EXIT_REASON_INVD
:
7717 case EXIT_REASON_INVLPG
:
7718 return nested_cpu_has(vmcs12
, CPU_BASED_INVLPG_EXITING
);
7719 case EXIT_REASON_RDPMC
:
7720 return nested_cpu_has(vmcs12
, CPU_BASED_RDPMC_EXITING
);
7721 case EXIT_REASON_RDTSC
: case EXIT_REASON_RDTSCP
:
7722 return nested_cpu_has(vmcs12
, CPU_BASED_RDTSC_EXITING
);
7723 case EXIT_REASON_VMCALL
: case EXIT_REASON_VMCLEAR
:
7724 case EXIT_REASON_VMLAUNCH
: case EXIT_REASON_VMPTRLD
:
7725 case EXIT_REASON_VMPTRST
: case EXIT_REASON_VMREAD
:
7726 case EXIT_REASON_VMRESUME
: case EXIT_REASON_VMWRITE
:
7727 case EXIT_REASON_VMOFF
: case EXIT_REASON_VMON
:
7728 case EXIT_REASON_INVEPT
: case EXIT_REASON_INVVPID
:
7730 * VMX instructions trap unconditionally. This allows L1 to
7731 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7734 case EXIT_REASON_CR_ACCESS
:
7735 return nested_vmx_exit_handled_cr(vcpu
, vmcs12
);
7736 case EXIT_REASON_DR_ACCESS
:
7737 return nested_cpu_has(vmcs12
, CPU_BASED_MOV_DR_EXITING
);
7738 case EXIT_REASON_IO_INSTRUCTION
:
7739 return nested_vmx_exit_handled_io(vcpu
, vmcs12
);
7740 case EXIT_REASON_MSR_READ
:
7741 case EXIT_REASON_MSR_WRITE
:
7742 return nested_vmx_exit_handled_msr(vcpu
, vmcs12
, exit_reason
);
7743 case EXIT_REASON_INVALID_STATE
:
7745 case EXIT_REASON_MWAIT_INSTRUCTION
:
7746 return nested_cpu_has(vmcs12
, CPU_BASED_MWAIT_EXITING
);
7747 case EXIT_REASON_MONITOR_TRAP_FLAG
:
7748 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_TRAP_FLAG
);
7749 case EXIT_REASON_MONITOR_INSTRUCTION
:
7750 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_EXITING
);
7751 case EXIT_REASON_PAUSE_INSTRUCTION
:
7752 return nested_cpu_has(vmcs12
, CPU_BASED_PAUSE_EXITING
) ||
7753 nested_cpu_has2(vmcs12
,
7754 SECONDARY_EXEC_PAUSE_LOOP_EXITING
);
7755 case EXIT_REASON_MCE_DURING_VMENTRY
:
7757 case EXIT_REASON_TPR_BELOW_THRESHOLD
:
7758 return nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
);
7759 case EXIT_REASON_APIC_ACCESS
:
7760 return nested_cpu_has2(vmcs12
,
7761 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
7762 case EXIT_REASON_APIC_WRITE
:
7763 case EXIT_REASON_EOI_INDUCED
:
7764 /* apic_write and eoi_induced should exit unconditionally. */
7766 case EXIT_REASON_EPT_VIOLATION
:
7768 * L0 always deals with the EPT violation. If nested EPT is
7769 * used, and the nested mmu code discovers that the address is
7770 * missing in the guest EPT table (EPT12), the EPT violation
7771 * will be injected with nested_ept_inject_page_fault()
7774 case EXIT_REASON_EPT_MISCONFIG
:
7776 * L2 never uses directly L1's EPT, but rather L0's own EPT
7777 * table (shadow on EPT) or a merged EPT table that L0 built
7778 * (EPT on EPT). So any problems with the structure of the
7779 * table is L0's fault.
7782 case EXIT_REASON_WBINVD
:
7783 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_WBINVD_EXITING
);
7784 case EXIT_REASON_XSETBV
:
7786 case EXIT_REASON_XSAVES
: case EXIT_REASON_XRSTORS
:
7788 * This should never happen, since it is not possible to
7789 * set XSS to a non-zero value---neither in L1 nor in L2.
7790 * If if it were, XSS would have to be checked against
7791 * the XSS exit bitmap in vmcs12.
7793 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_XSAVES
);
7794 case EXIT_REASON_PCOMMIT
:
7795 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_PCOMMIT
);
7801 static void vmx_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
7803 *info1
= vmcs_readl(EXIT_QUALIFICATION
);
7804 *info2
= vmcs_read32(VM_EXIT_INTR_INFO
);
7807 static int vmx_create_pml_buffer(struct vcpu_vmx
*vmx
)
7809 struct page
*pml_pg
;
7811 pml_pg
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
7815 vmx
->pml_pg
= pml_pg
;
7817 vmcs_write64(PML_ADDRESS
, page_to_phys(vmx
->pml_pg
));
7818 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
7823 static void vmx_destroy_pml_buffer(struct vcpu_vmx
*vmx
)
7826 __free_page(vmx
->pml_pg
);
7831 static void vmx_flush_pml_buffer(struct kvm_vcpu
*vcpu
)
7833 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7837 pml_idx
= vmcs_read16(GUEST_PML_INDEX
);
7839 /* Do nothing if PML buffer is empty */
7840 if (pml_idx
== (PML_ENTITY_NUM
- 1))
7843 /* PML index always points to next available PML buffer entity */
7844 if (pml_idx
>= PML_ENTITY_NUM
)
7849 pml_buf
= page_address(vmx
->pml_pg
);
7850 for (; pml_idx
< PML_ENTITY_NUM
; pml_idx
++) {
7853 gpa
= pml_buf
[pml_idx
];
7854 WARN_ON(gpa
& (PAGE_SIZE
- 1));
7855 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
7858 /* reset PML index */
7859 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
7863 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7864 * Called before reporting dirty_bitmap to userspace.
7866 static void kvm_flush_pml_buffers(struct kvm
*kvm
)
7869 struct kvm_vcpu
*vcpu
;
7871 * We only need to kick vcpu out of guest mode here, as PML buffer
7872 * is flushed at beginning of all VMEXITs, and it's obvious that only
7873 * vcpus running in guest are possible to have unflushed GPAs in PML
7876 kvm_for_each_vcpu(i
, vcpu
, kvm
)
7877 kvm_vcpu_kick(vcpu
);
7880 static void vmx_dump_sel(char *name
, uint32_t sel
)
7882 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7883 name
, vmcs_read32(sel
),
7884 vmcs_read32(sel
+ GUEST_ES_AR_BYTES
- GUEST_ES_SELECTOR
),
7885 vmcs_read32(sel
+ GUEST_ES_LIMIT
- GUEST_ES_SELECTOR
),
7886 vmcs_readl(sel
+ GUEST_ES_BASE
- GUEST_ES_SELECTOR
));
7889 static void vmx_dump_dtsel(char *name
, uint32_t limit
)
7891 pr_err("%s limit=0x%08x, base=0x%016lx\n",
7892 name
, vmcs_read32(limit
),
7893 vmcs_readl(limit
+ GUEST_GDTR_BASE
- GUEST_GDTR_LIMIT
));
7896 static void dump_vmcs(void)
7898 u32 vmentry_ctl
= vmcs_read32(VM_ENTRY_CONTROLS
);
7899 u32 vmexit_ctl
= vmcs_read32(VM_EXIT_CONTROLS
);
7900 u32 cpu_based_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
7901 u32 pin_based_exec_ctrl
= vmcs_read32(PIN_BASED_VM_EXEC_CONTROL
);
7902 u32 secondary_exec_control
= 0;
7903 unsigned long cr4
= vmcs_readl(GUEST_CR4
);
7904 u64 efer
= vmcs_readl(GUEST_IA32_EFER
);
7907 if (cpu_has_secondary_exec_ctrls())
7908 secondary_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
7910 pr_err("*** Guest State ***\n");
7911 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7912 vmcs_readl(GUEST_CR0
), vmcs_readl(CR0_READ_SHADOW
),
7913 vmcs_readl(CR0_GUEST_HOST_MASK
));
7914 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7915 cr4
, vmcs_readl(CR4_READ_SHADOW
), vmcs_readl(CR4_GUEST_HOST_MASK
));
7916 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3
));
7917 if ((secondary_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) &&
7918 (cr4
& X86_CR4_PAE
) && !(efer
& EFER_LMA
))
7920 pr_err("PDPTR0 = 0x%016lx PDPTR1 = 0x%016lx\n",
7921 vmcs_readl(GUEST_PDPTR0
), vmcs_readl(GUEST_PDPTR1
));
7922 pr_err("PDPTR2 = 0x%016lx PDPTR3 = 0x%016lx\n",
7923 vmcs_readl(GUEST_PDPTR2
), vmcs_readl(GUEST_PDPTR3
));
7925 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
7926 vmcs_readl(GUEST_RSP
), vmcs_readl(GUEST_RIP
));
7927 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
7928 vmcs_readl(GUEST_RFLAGS
), vmcs_readl(GUEST_DR7
));
7929 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7930 vmcs_readl(GUEST_SYSENTER_ESP
),
7931 vmcs_read32(GUEST_SYSENTER_CS
), vmcs_readl(GUEST_SYSENTER_EIP
));
7932 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR
);
7933 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR
);
7934 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR
);
7935 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR
);
7936 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR
);
7937 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR
);
7938 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT
);
7939 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR
);
7940 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT
);
7941 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR
);
7942 if ((vmexit_ctl
& (VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_SAVE_IA32_EFER
)) ||
7943 (vmentry_ctl
& (VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_LOAD_IA32_EFER
)))
7944 pr_err("EFER = 0x%016llx PAT = 0x%016lx\n",
7945 efer
, vmcs_readl(GUEST_IA32_PAT
));
7946 pr_err("DebugCtl = 0x%016lx DebugExceptions = 0x%016lx\n",
7947 vmcs_readl(GUEST_IA32_DEBUGCTL
),
7948 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
));
7949 if (vmentry_ctl
& VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
7950 pr_err("PerfGlobCtl = 0x%016lx\n",
7951 vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL
));
7952 if (vmentry_ctl
& VM_ENTRY_LOAD_BNDCFGS
)
7953 pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS
));
7954 pr_err("Interruptibility = %08x ActivityState = %08x\n",
7955 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
),
7956 vmcs_read32(GUEST_ACTIVITY_STATE
));
7957 if (secondary_exec_control
& SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
)
7958 pr_err("InterruptStatus = %04x\n",
7959 vmcs_read16(GUEST_INTR_STATUS
));
7961 pr_err("*** Host State ***\n");
7962 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
7963 vmcs_readl(HOST_RIP
), vmcs_readl(HOST_RSP
));
7964 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
7965 vmcs_read16(HOST_CS_SELECTOR
), vmcs_read16(HOST_SS_SELECTOR
),
7966 vmcs_read16(HOST_DS_SELECTOR
), vmcs_read16(HOST_ES_SELECTOR
),
7967 vmcs_read16(HOST_FS_SELECTOR
), vmcs_read16(HOST_GS_SELECTOR
),
7968 vmcs_read16(HOST_TR_SELECTOR
));
7969 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
7970 vmcs_readl(HOST_FS_BASE
), vmcs_readl(HOST_GS_BASE
),
7971 vmcs_readl(HOST_TR_BASE
));
7972 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
7973 vmcs_readl(HOST_GDTR_BASE
), vmcs_readl(HOST_IDTR_BASE
));
7974 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
7975 vmcs_readl(HOST_CR0
), vmcs_readl(HOST_CR3
),
7976 vmcs_readl(HOST_CR4
));
7977 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7978 vmcs_readl(HOST_IA32_SYSENTER_ESP
),
7979 vmcs_read32(HOST_IA32_SYSENTER_CS
),
7980 vmcs_readl(HOST_IA32_SYSENTER_EIP
));
7981 if (vmexit_ctl
& (VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_LOAD_IA32_EFER
))
7982 pr_err("EFER = 0x%016lx PAT = 0x%016lx\n",
7983 vmcs_readl(HOST_IA32_EFER
), vmcs_readl(HOST_IA32_PAT
));
7984 if (vmexit_ctl
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
7985 pr_err("PerfGlobCtl = 0x%016lx\n",
7986 vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL
));
7988 pr_err("*** Control State ***\n");
7989 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
7990 pin_based_exec_ctrl
, cpu_based_exec_ctrl
, secondary_exec_control
);
7991 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl
, vmexit_ctl
);
7992 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
7993 vmcs_read32(EXCEPTION_BITMAP
),
7994 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK
),
7995 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH
));
7996 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
7997 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
7998 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE
),
7999 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN
));
8000 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8001 vmcs_read32(VM_EXIT_INTR_INFO
),
8002 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
),
8003 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
));
8004 pr_err(" reason=%08x qualification=%016lx\n",
8005 vmcs_read32(VM_EXIT_REASON
), vmcs_readl(EXIT_QUALIFICATION
));
8006 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8007 vmcs_read32(IDT_VECTORING_INFO_FIELD
),
8008 vmcs_read32(IDT_VECTORING_ERROR_CODE
));
8009 pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET
));
8010 if (secondary_exec_control
& SECONDARY_EXEC_TSC_SCALING
)
8011 pr_err("TSC Multiplier = 0x%016lx\n",
8012 vmcs_readl(TSC_MULTIPLIER
));
8013 if (cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
)
8014 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD
));
8015 if (pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
)
8016 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV
));
8017 if ((secondary_exec_control
& SECONDARY_EXEC_ENABLE_EPT
))
8018 pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER
));
8019 n
= vmcs_read32(CR3_TARGET_COUNT
);
8020 for (i
= 0; i
+ 1 < n
; i
+= 4)
8021 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8022 i
, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2),
8023 i
+ 1, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2 + 2));
8025 pr_err("CR3 target%u=%016lx\n",
8026 i
, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2));
8027 if (secondary_exec_control
& SECONDARY_EXEC_PAUSE_LOOP_EXITING
)
8028 pr_err("PLE Gap=%08x Window=%08x\n",
8029 vmcs_read32(PLE_GAP
), vmcs_read32(PLE_WINDOW
));
8030 if (secondary_exec_control
& SECONDARY_EXEC_ENABLE_VPID
)
8031 pr_err("Virtual processor ID = 0x%04x\n",
8032 vmcs_read16(VIRTUAL_PROCESSOR_ID
));
8036 * The guest has exited. See if we can fix it or if we need userspace
8039 static int vmx_handle_exit(struct kvm_vcpu
*vcpu
)
8041 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8042 u32 exit_reason
= vmx
->exit_reason
;
8043 u32 vectoring_info
= vmx
->idt_vectoring_info
;
8045 trace_kvm_exit(exit_reason
, vcpu
, KVM_ISA_VMX
);
8048 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8049 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8050 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8051 * mode as if vcpus is in root mode, the PML buffer must has been
8055 vmx_flush_pml_buffer(vcpu
);
8057 /* If guest state is invalid, start emulating */
8058 if (vmx
->emulation_required
)
8059 return handle_invalid_guest_state(vcpu
);
8061 if (is_guest_mode(vcpu
) && nested_vmx_exit_handled(vcpu
)) {
8062 nested_vmx_vmexit(vcpu
, exit_reason
,
8063 vmcs_read32(VM_EXIT_INTR_INFO
),
8064 vmcs_readl(EXIT_QUALIFICATION
));
8068 if (exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
) {
8070 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
8071 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
8076 if (unlikely(vmx
->fail
)) {
8077 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
8078 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
8079 = vmcs_read32(VM_INSTRUCTION_ERROR
);
8085 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8086 * delivery event since it indicates guest is accessing MMIO.
8087 * The vm-exit can be triggered again after return to guest that
8088 * will cause infinite loop.
8090 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
8091 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
8092 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
8093 exit_reason
!= EXIT_REASON_TASK_SWITCH
)) {
8094 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
8095 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_DELIVERY_EV
;
8096 vcpu
->run
->internal
.ndata
= 2;
8097 vcpu
->run
->internal
.data
[0] = vectoring_info
;
8098 vcpu
->run
->internal
.data
[1] = exit_reason
;
8102 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
&&
8103 !(is_guest_mode(vcpu
) && nested_cpu_has_virtual_nmis(
8104 get_vmcs12(vcpu
))))) {
8105 if (vmx_interrupt_allowed(vcpu
)) {
8106 vmx
->soft_vnmi_blocked
= 0;
8107 } else if (vmx
->vnmi_blocked_time
> 1000000000LL &&
8108 vcpu
->arch
.nmi_pending
) {
8110 * This CPU don't support us in finding the end of an
8111 * NMI-blocked window if the guest runs with IRQs
8112 * disabled. So we pull the trigger after 1 s of
8113 * futile waiting, but inform the user about this.
8115 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
8116 "state on VCPU %d after 1 s timeout\n",
8117 __func__
, vcpu
->vcpu_id
);
8118 vmx
->soft_vnmi_blocked
= 0;
8122 if (exit_reason
< kvm_vmx_max_exit_handlers
8123 && kvm_vmx_exit_handlers
[exit_reason
])
8124 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
);
8126 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason
);
8127 kvm_queue_exception(vcpu
, UD_VECTOR
);
8132 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
8134 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
8136 if (is_guest_mode(vcpu
) &&
8137 nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
8140 if (irr
== -1 || tpr
< irr
) {
8141 vmcs_write32(TPR_THRESHOLD
, 0);
8145 vmcs_write32(TPR_THRESHOLD
, irr
);
8148 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu
*vcpu
, bool set
)
8150 u32 sec_exec_control
;
8153 * There is not point to enable virtualize x2apic without enable
8156 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8157 !vmx_cpu_uses_apicv(vcpu
))
8160 if (!cpu_need_tpr_shadow(vcpu
))
8163 sec_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
8166 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
8167 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
8169 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
8170 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
8172 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, sec_exec_control
);
8174 vmx_set_msr_bitmap(vcpu
);
8177 static void vmx_set_apic_access_page_addr(struct kvm_vcpu
*vcpu
, hpa_t hpa
)
8179 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8182 * Currently we do not handle the nested case where L2 has an
8183 * APIC access page of its own; that page is still pinned.
8184 * Hence, we skip the case where the VCPU is in guest mode _and_
8185 * L1 prepared an APIC access page for L2.
8187 * For the case where L1 and L2 share the same APIC access page
8188 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8189 * in the vmcs12), this function will only update either the vmcs01
8190 * or the vmcs02. If the former, the vmcs02 will be updated by
8191 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8192 * the next L2->L1 exit.
8194 if (!is_guest_mode(vcpu
) ||
8195 !nested_cpu_has2(vmx
->nested
.current_vmcs12
,
8196 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
8197 vmcs_write64(APIC_ACCESS_ADDR
, hpa
);
8200 static void vmx_hwapic_isr_update(struct kvm
*kvm
, int isr
)
8208 status
= vmcs_read16(GUEST_INTR_STATUS
);
8213 vmcs_write16(GUEST_INTR_STATUS
, status
);
8217 static void vmx_set_rvi(int vector
)
8225 status
= vmcs_read16(GUEST_INTR_STATUS
);
8226 old
= (u8
)status
& 0xff;
8227 if ((u8
)vector
!= old
) {
8229 status
|= (u8
)vector
;
8230 vmcs_write16(GUEST_INTR_STATUS
, status
);
8234 static void vmx_hwapic_irr_update(struct kvm_vcpu
*vcpu
, int max_irr
)
8236 if (!is_guest_mode(vcpu
)) {
8237 vmx_set_rvi(max_irr
);
8245 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8248 if (nested_exit_on_intr(vcpu
))
8252 * Else, fall back to pre-APICv interrupt injection since L2
8253 * is run without virtual interrupt delivery.
8255 if (!kvm_event_needs_reinjection(vcpu
) &&
8256 vmx_interrupt_allowed(vcpu
)) {
8257 kvm_queue_interrupt(vcpu
, max_irr
, false);
8258 vmx_inject_irq(vcpu
);
8262 static void vmx_load_eoi_exitmap(struct kvm_vcpu
*vcpu
)
8264 u64
*eoi_exit_bitmap
= vcpu
->arch
.eoi_exit_bitmap
;
8265 if (!vmx_cpu_uses_apicv(vcpu
))
8268 vmcs_write64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap
[0]);
8269 vmcs_write64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap
[1]);
8270 vmcs_write64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap
[2]);
8271 vmcs_write64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap
[3]);
8274 static void vmx_complete_atomic_exit(struct vcpu_vmx
*vmx
)
8278 if (!(vmx
->exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
8279 || vmx
->exit_reason
== EXIT_REASON_EXCEPTION_NMI
))
8282 vmx
->exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8283 exit_intr_info
= vmx
->exit_intr_info
;
8285 /* Handle machine checks before interrupts are enabled */
8286 if (is_machine_check(exit_intr_info
))
8287 kvm_machine_check();
8289 /* We need to handle NMIs before interrupts are enabled */
8290 if ((exit_intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
&&
8291 (exit_intr_info
& INTR_INFO_VALID_MASK
)) {
8292 kvm_before_handle_nmi(&vmx
->vcpu
);
8294 kvm_after_handle_nmi(&vmx
->vcpu
);
8298 static void vmx_handle_external_intr(struct kvm_vcpu
*vcpu
)
8300 u32 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8303 * If external interrupt exists, IF bit is set in rflags/eflags on the
8304 * interrupt stack frame, and interrupt will be enabled on a return
8305 * from interrupt handler.
8307 if ((exit_intr_info
& (INTR_INFO_VALID_MASK
| INTR_INFO_INTR_TYPE_MASK
))
8308 == (INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
)) {
8309 unsigned int vector
;
8310 unsigned long entry
;
8312 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8313 #ifdef CONFIG_X86_64
8317 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
8318 desc
= (gate_desc
*)vmx
->host_idt_base
+ vector
;
8319 entry
= gate_offset(*desc
);
8321 #ifdef CONFIG_X86_64
8322 "mov %%" _ASM_SP
", %[sp]\n\t"
8323 "and $0xfffffffffffffff0, %%" _ASM_SP
"\n\t"
8328 "orl $0x200, (%%" _ASM_SP
")\n\t"
8329 __ASM_SIZE(push
) " $%c[cs]\n\t"
8330 "call *%[entry]\n\t"
8332 #ifdef CONFIG_X86_64
8337 [ss
]"i"(__KERNEL_DS
),
8338 [cs
]"i"(__KERNEL_CS
)
8344 static bool vmx_has_high_real_mode_segbase(void)
8346 return enable_unrestricted_guest
|| emulate_invalid_guest_state
;
8349 static bool vmx_mpx_supported(void)
8351 return (vmcs_config
.vmexit_ctrl
& VM_EXIT_CLEAR_BNDCFGS
) &&
8352 (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_BNDCFGS
);
8355 static bool vmx_xsaves_supported(void)
8357 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
8358 SECONDARY_EXEC_XSAVES
;
8361 static void vmx_recover_nmi_blocking(struct vcpu_vmx
*vmx
)
8366 bool idtv_info_valid
;
8368 idtv_info_valid
= vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
8370 if (cpu_has_virtual_nmis()) {
8371 if (vmx
->nmi_known_unmasked
)
8374 * Can't use vmx->exit_intr_info since we're not sure what
8375 * the exit reason is.
8377 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8378 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
8379 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
8381 * SDM 3: 27.7.1.2 (September 2008)
8382 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8383 * a guest IRET fault.
8384 * SDM 3: 23.2.2 (September 2008)
8385 * Bit 12 is undefined in any of the following cases:
8386 * If the VM exit sets the valid bit in the IDT-vectoring
8387 * information field.
8388 * If the VM exit is due to a double fault.
8390 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
8391 vector
!= DF_VECTOR
&& !idtv_info_valid
)
8392 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
8393 GUEST_INTR_STATE_NMI
);
8395 vmx
->nmi_known_unmasked
=
8396 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
)
8397 & GUEST_INTR_STATE_NMI
);
8398 } else if (unlikely(vmx
->soft_vnmi_blocked
))
8399 vmx
->vnmi_blocked_time
+=
8400 ktime_to_ns(ktime_sub(ktime_get(), vmx
->entry_time
));
8403 static void __vmx_complete_interrupts(struct kvm_vcpu
*vcpu
,
8404 u32 idt_vectoring_info
,
8405 int instr_len_field
,
8406 int error_code_field
)
8410 bool idtv_info_valid
;
8412 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
8414 vcpu
->arch
.nmi_injected
= false;
8415 kvm_clear_exception_queue(vcpu
);
8416 kvm_clear_interrupt_queue(vcpu
);
8418 if (!idtv_info_valid
)
8421 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8423 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
8424 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
8427 case INTR_TYPE_NMI_INTR
:
8428 vcpu
->arch
.nmi_injected
= true;
8430 * SDM 3: 27.7.1.2 (September 2008)
8431 * Clear bit "block by NMI" before VM entry if a NMI
8434 vmx_set_nmi_mask(vcpu
, false);
8436 case INTR_TYPE_SOFT_EXCEPTION
:
8437 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
8439 case INTR_TYPE_HARD_EXCEPTION
:
8440 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
8441 u32 err
= vmcs_read32(error_code_field
);
8442 kvm_requeue_exception_e(vcpu
, vector
, err
);
8444 kvm_requeue_exception(vcpu
, vector
);
8446 case INTR_TYPE_SOFT_INTR
:
8447 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
8449 case INTR_TYPE_EXT_INTR
:
8450 kvm_queue_interrupt(vcpu
, vector
, type
== INTR_TYPE_SOFT_INTR
);
8457 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
8459 __vmx_complete_interrupts(&vmx
->vcpu
, vmx
->idt_vectoring_info
,
8460 VM_EXIT_INSTRUCTION_LEN
,
8461 IDT_VECTORING_ERROR_CODE
);
8464 static void vmx_cancel_injection(struct kvm_vcpu
*vcpu
)
8466 __vmx_complete_interrupts(vcpu
,
8467 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
8468 VM_ENTRY_INSTRUCTION_LEN
,
8469 VM_ENTRY_EXCEPTION_ERROR_CODE
);
8471 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
8474 static void atomic_switch_perf_msrs(struct vcpu_vmx
*vmx
)
8477 struct perf_guest_switch_msr
*msrs
;
8479 msrs
= perf_guest_get_msrs(&nr_msrs
);
8484 for (i
= 0; i
< nr_msrs
; i
++)
8485 if (msrs
[i
].host
== msrs
[i
].guest
)
8486 clear_atomic_switch_msr(vmx
, msrs
[i
].msr
);
8488 add_atomic_switch_msr(vmx
, msrs
[i
].msr
, msrs
[i
].guest
,
8492 static void __noclone
vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
8494 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8495 unsigned long debugctlmsr
, cr4
;
8497 /* Record the guest's net vcpu time for enforced NMI injections. */
8498 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
))
8499 vmx
->entry_time
= ktime_get();
8501 /* Don't enter VMX if guest state is invalid, let the exit handler
8502 start emulation until we arrive back to a valid state */
8503 if (vmx
->emulation_required
)
8506 if (vmx
->ple_window_dirty
) {
8507 vmx
->ple_window_dirty
= false;
8508 vmcs_write32(PLE_WINDOW
, vmx
->ple_window
);
8511 if (vmx
->nested
.sync_shadow_vmcs
) {
8512 copy_vmcs12_to_shadow(vmx
);
8513 vmx
->nested
.sync_shadow_vmcs
= false;
8516 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
8517 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
8518 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
8519 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
8521 cr4
= cr4_read_shadow();
8522 if (unlikely(cr4
!= vmx
->host_state
.vmcs_host_cr4
)) {
8523 vmcs_writel(HOST_CR4
, cr4
);
8524 vmx
->host_state
.vmcs_host_cr4
= cr4
;
8527 /* When single-stepping over STI and MOV SS, we must clear the
8528 * corresponding interruptibility bits in the guest state. Otherwise
8529 * vmentry fails as it then expects bit 14 (BS) in pending debug
8530 * exceptions being set, but that's not correct for the guest debugging
8532 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
8533 vmx_set_interrupt_shadow(vcpu
, 0);
8535 atomic_switch_perf_msrs(vmx
);
8536 debugctlmsr
= get_debugctlmsr();
8538 vmx
->__launched
= vmx
->loaded_vmcs
->launched
;
8540 /* Store host registers */
8541 "push %%" _ASM_DX
"; push %%" _ASM_BP
";"
8542 "push %%" _ASM_CX
" \n\t" /* placeholder for guest rcx */
8543 "push %%" _ASM_CX
" \n\t"
8544 "cmp %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
8546 "mov %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
8547 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
8549 /* Reload cr2 if changed */
8550 "mov %c[cr2](%0), %%" _ASM_AX
" \n\t"
8551 "mov %%cr2, %%" _ASM_DX
" \n\t"
8552 "cmp %%" _ASM_AX
", %%" _ASM_DX
" \n\t"
8554 "mov %%" _ASM_AX
", %%cr2 \n\t"
8556 /* Check if vmlaunch of vmresume is needed */
8557 "cmpl $0, %c[launched](%0) \n\t"
8558 /* Load guest registers. Don't clobber flags. */
8559 "mov %c[rax](%0), %%" _ASM_AX
" \n\t"
8560 "mov %c[rbx](%0), %%" _ASM_BX
" \n\t"
8561 "mov %c[rdx](%0), %%" _ASM_DX
" \n\t"
8562 "mov %c[rsi](%0), %%" _ASM_SI
" \n\t"
8563 "mov %c[rdi](%0), %%" _ASM_DI
" \n\t"
8564 "mov %c[rbp](%0), %%" _ASM_BP
" \n\t"
8565 #ifdef CONFIG_X86_64
8566 "mov %c[r8](%0), %%r8 \n\t"
8567 "mov %c[r9](%0), %%r9 \n\t"
8568 "mov %c[r10](%0), %%r10 \n\t"
8569 "mov %c[r11](%0), %%r11 \n\t"
8570 "mov %c[r12](%0), %%r12 \n\t"
8571 "mov %c[r13](%0), %%r13 \n\t"
8572 "mov %c[r14](%0), %%r14 \n\t"
8573 "mov %c[r15](%0), %%r15 \n\t"
8575 "mov %c[rcx](%0), %%" _ASM_CX
" \n\t" /* kills %0 (ecx) */
8577 /* Enter guest mode */
8579 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
8581 "1: " __ex(ASM_VMX_VMRESUME
) "\n\t"
8583 /* Save guest registers, load host registers, keep flags */
8584 "mov %0, %c[wordsize](%%" _ASM_SP
") \n\t"
8586 "mov %%" _ASM_AX
", %c[rax](%0) \n\t"
8587 "mov %%" _ASM_BX
", %c[rbx](%0) \n\t"
8588 __ASM_SIZE(pop
) " %c[rcx](%0) \n\t"
8589 "mov %%" _ASM_DX
", %c[rdx](%0) \n\t"
8590 "mov %%" _ASM_SI
", %c[rsi](%0) \n\t"
8591 "mov %%" _ASM_DI
", %c[rdi](%0) \n\t"
8592 "mov %%" _ASM_BP
", %c[rbp](%0) \n\t"
8593 #ifdef CONFIG_X86_64
8594 "mov %%r8, %c[r8](%0) \n\t"
8595 "mov %%r9, %c[r9](%0) \n\t"
8596 "mov %%r10, %c[r10](%0) \n\t"
8597 "mov %%r11, %c[r11](%0) \n\t"
8598 "mov %%r12, %c[r12](%0) \n\t"
8599 "mov %%r13, %c[r13](%0) \n\t"
8600 "mov %%r14, %c[r14](%0) \n\t"
8601 "mov %%r15, %c[r15](%0) \n\t"
8603 "mov %%cr2, %%" _ASM_AX
" \n\t"
8604 "mov %%" _ASM_AX
", %c[cr2](%0) \n\t"
8606 "pop %%" _ASM_BP
"; pop %%" _ASM_DX
" \n\t"
8607 "setbe %c[fail](%0) \n\t"
8608 ".pushsection .rodata \n\t"
8609 ".global vmx_return \n\t"
8610 "vmx_return: " _ASM_PTR
" 2b \n\t"
8612 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
8613 [launched
]"i"(offsetof(struct vcpu_vmx
, __launched
)),
8614 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
8615 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
8616 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
8617 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
8618 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
8619 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
8620 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
8621 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
8622 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
8623 #ifdef CONFIG_X86_64
8624 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
8625 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
8626 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
8627 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
8628 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
8629 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
8630 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
8631 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
8633 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
)),
8634 [wordsize
]"i"(sizeof(ulong
))
8636 #ifdef CONFIG_X86_64
8637 , "rax", "rbx", "rdi", "rsi"
8638 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8640 , "eax", "ebx", "edi", "esi"
8644 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8646 update_debugctlmsr(debugctlmsr
);
8648 #ifndef CONFIG_X86_64
8650 * The sysexit path does not restore ds/es, so we must set them to
8651 * a reasonable value ourselves.
8653 * We can't defer this to vmx_load_host_state() since that function
8654 * may be executed in interrupt context, which saves and restore segments
8655 * around it, nullifying its effect.
8657 loadsegment(ds
, __USER_DS
);
8658 loadsegment(es
, __USER_DS
);
8661 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
8662 | (1 << VCPU_EXREG_RFLAGS
)
8663 | (1 << VCPU_EXREG_PDPTR
)
8664 | (1 << VCPU_EXREG_SEGMENTS
)
8665 | (1 << VCPU_EXREG_CR3
));
8666 vcpu
->arch
.regs_dirty
= 0;
8668 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
8670 vmx
->loaded_vmcs
->launched
= 1;
8672 vmx
->exit_reason
= vmcs_read32(VM_EXIT_REASON
);
8675 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8676 * we did not inject a still-pending event to L1 now because of
8677 * nested_run_pending, we need to re-enable this bit.
8679 if (vmx
->nested
.nested_run_pending
)
8680 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8682 vmx
->nested
.nested_run_pending
= 0;
8684 vmx_complete_atomic_exit(vmx
);
8685 vmx_recover_nmi_blocking(vmx
);
8686 vmx_complete_interrupts(vmx
);
8689 static void vmx_load_vmcs01(struct kvm_vcpu
*vcpu
)
8691 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8694 if (vmx
->loaded_vmcs
== &vmx
->vmcs01
)
8698 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
8700 vmx_vcpu_load(vcpu
, cpu
);
8705 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
8707 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8710 vmx_destroy_pml_buffer(vmx
);
8711 free_vpid(vmx
->vpid
);
8712 leave_guest_mode(vcpu
);
8713 vmx_load_vmcs01(vcpu
);
8715 free_loaded_vmcs(vmx
->loaded_vmcs
);
8716 kfree(vmx
->guest_msrs
);
8717 kvm_vcpu_uninit(vcpu
);
8718 kmem_cache_free(kvm_vcpu_cache
, vmx
);
8721 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
8724 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
8728 return ERR_PTR(-ENOMEM
);
8730 vmx
->vpid
= allocate_vpid();
8732 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
8736 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
8737 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index
) * sizeof(vmx
->guest_msrs
[0])
8741 if (!vmx
->guest_msrs
) {
8745 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
8746 vmx
->loaded_vmcs
->vmcs
= alloc_vmcs();
8747 if (!vmx
->loaded_vmcs
->vmcs
)
8750 kvm_cpu_vmxon(__pa(per_cpu(vmxarea
, raw_smp_processor_id())));
8751 loaded_vmcs_init(vmx
->loaded_vmcs
);
8756 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
8757 vmx
->vcpu
.cpu
= cpu
;
8758 err
= vmx_vcpu_setup(vmx
);
8759 vmx_vcpu_put(&vmx
->vcpu
);
8763 if (cpu_need_virtualize_apic_accesses(&vmx
->vcpu
)) {
8764 err
= alloc_apic_access_page(kvm
);
8770 if (!kvm
->arch
.ept_identity_map_addr
)
8771 kvm
->arch
.ept_identity_map_addr
=
8772 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
8773 err
= init_rmode_identity_map(kvm
);
8779 nested_vmx_setup_ctls_msrs(vmx
);
8780 vmx
->nested
.vpid02
= allocate_vpid();
8783 vmx
->nested
.posted_intr_nv
= -1;
8784 vmx
->nested
.current_vmptr
= -1ull;
8785 vmx
->nested
.current_vmcs12
= NULL
;
8788 * If PML is turned on, failure on enabling PML just results in failure
8789 * of creating the vcpu, therefore we can simplify PML logic (by
8790 * avoiding dealing with cases, such as enabling PML partially on vcpus
8791 * for the guest, etc.
8794 err
= vmx_create_pml_buffer(vmx
);
8802 free_vpid(vmx
->nested
.vpid02
);
8803 free_loaded_vmcs(vmx
->loaded_vmcs
);
8805 kfree(vmx
->guest_msrs
);
8807 kvm_vcpu_uninit(&vmx
->vcpu
);
8809 free_vpid(vmx
->vpid
);
8810 kmem_cache_free(kvm_vcpu_cache
, vmx
);
8811 return ERR_PTR(err
);
8814 static void __init
vmx_check_processor_compat(void *rtn
)
8816 struct vmcs_config vmcs_conf
;
8819 if (setup_vmcs_config(&vmcs_conf
) < 0)
8821 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
8822 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
8823 smp_processor_id());
8828 static int get_ept_level(void)
8830 return VMX_EPT_DEFAULT_GAW
+ 1;
8833 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
8838 /* For VT-d and EPT combination
8839 * 1. MMIO: always map as UC
8841 * a. VT-d without snooping control feature: can't guarantee the
8842 * result, try to trust guest.
8843 * b. VT-d with snooping control feature: snooping control feature of
8844 * VT-d engine can guarantee the cache correctness. Just set it
8845 * to WB to keep consistent with host. So the same as item 3.
8846 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8847 * consistent with host MTRR
8850 cache
= MTRR_TYPE_UNCACHABLE
;
8854 if (!kvm_arch_has_noncoherent_dma(vcpu
->kvm
)) {
8855 ipat
= VMX_EPT_IPAT_BIT
;
8856 cache
= MTRR_TYPE_WRBACK
;
8860 if (kvm_read_cr0(vcpu
) & X86_CR0_CD
) {
8861 ipat
= VMX_EPT_IPAT_BIT
;
8862 if (kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
8863 cache
= MTRR_TYPE_WRBACK
;
8865 cache
= MTRR_TYPE_UNCACHABLE
;
8869 cache
= kvm_mtrr_get_guest_memory_type(vcpu
, gfn
);
8872 return (cache
<< VMX_EPT_MT_EPTE_SHIFT
) | ipat
;
8875 static int vmx_get_lpage_level(void)
8877 if (enable_ept
&& !cpu_has_vmx_ept_1g_page())
8878 return PT_DIRECTORY_LEVEL
;
8880 /* For shadow and EPT supported 1GB page */
8881 return PT_PDPE_LEVEL
;
8884 static void vmcs_set_secondary_exec_control(u32 new_ctl
)
8887 * These bits in the secondary execution controls field
8888 * are dynamic, the others are mostly based on the hypervisor
8889 * architecture and the guest's CPUID. Do not touch the
8893 SECONDARY_EXEC_SHADOW_VMCS
|
8894 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
8895 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
8897 u32 cur_ctl
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
8899 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
8900 (new_ctl
& ~mask
) | (cur_ctl
& mask
));
8903 static void vmx_cpuid_update(struct kvm_vcpu
*vcpu
)
8905 struct kvm_cpuid_entry2
*best
;
8906 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8907 u32 secondary_exec_ctl
= vmx_secondary_exec_control(vmx
);
8909 if (vmx_rdtscp_supported()) {
8910 bool rdtscp_enabled
= guest_cpuid_has_rdtscp(vcpu
);
8911 if (!rdtscp_enabled
)
8912 secondary_exec_ctl
&= ~SECONDARY_EXEC_RDTSCP
;
8916 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
8917 SECONDARY_EXEC_RDTSCP
;
8919 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
8920 ~SECONDARY_EXEC_RDTSCP
;
8924 /* Exposing INVPCID only when PCID is exposed */
8925 best
= kvm_find_cpuid_entry(vcpu
, 0x7, 0);
8926 if (vmx_invpcid_supported() &&
8927 (!best
|| !(best
->ebx
& bit(X86_FEATURE_INVPCID
)) ||
8928 !guest_cpuid_has_pcid(vcpu
))) {
8929 secondary_exec_ctl
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
8932 best
->ebx
&= ~bit(X86_FEATURE_INVPCID
);
8935 vmcs_set_secondary_exec_control(secondary_exec_ctl
);
8937 if (static_cpu_has(X86_FEATURE_PCOMMIT
) && nested
) {
8938 if (guest_cpuid_has_pcommit(vcpu
))
8939 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
8940 SECONDARY_EXEC_PCOMMIT
;
8942 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
8943 ~SECONDARY_EXEC_PCOMMIT
;
8947 static void vmx_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
8949 if (func
== 1 && nested
)
8950 entry
->ecx
|= bit(X86_FEATURE_VMX
);
8953 static void nested_ept_inject_page_fault(struct kvm_vcpu
*vcpu
,
8954 struct x86_exception
*fault
)
8956 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
8959 if (fault
->error_code
& PFERR_RSVD_MASK
)
8960 exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
8962 exit_reason
= EXIT_REASON_EPT_VIOLATION
;
8963 nested_vmx_vmexit(vcpu
, exit_reason
, 0, vcpu
->arch
.exit_qualification
);
8964 vmcs12
->guest_physical_address
= fault
->address
;
8967 /* Callbacks for nested_ept_init_mmu_context: */
8969 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
)
8971 /* return the page table to be shadowed - in our case, EPT12 */
8972 return get_vmcs12(vcpu
)->ept_pointer
;
8975 static void nested_ept_init_mmu_context(struct kvm_vcpu
*vcpu
)
8977 WARN_ON(mmu_is_nested(vcpu
));
8978 kvm_init_shadow_ept_mmu(vcpu
,
8979 to_vmx(vcpu
)->nested
.nested_vmx_ept_caps
&
8980 VMX_EPT_EXECUTE_ONLY_BIT
);
8981 vcpu
->arch
.mmu
.set_cr3
= vmx_set_cr3
;
8982 vcpu
->arch
.mmu
.get_cr3
= nested_ept_get_cr3
;
8983 vcpu
->arch
.mmu
.inject_page_fault
= nested_ept_inject_page_fault
;
8985 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
8988 static void nested_ept_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
8990 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
8993 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12
*vmcs12
,
8996 bool inequality
, bit
;
8998 bit
= (vmcs12
->exception_bitmap
& (1u << PF_VECTOR
)) != 0;
9000 (error_code
& vmcs12
->page_fault_error_code_mask
) !=
9001 vmcs12
->page_fault_error_code_match
;
9002 return inequality
^ bit
;
9005 static void vmx_inject_page_fault_nested(struct kvm_vcpu
*vcpu
,
9006 struct x86_exception
*fault
)
9008 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
9010 WARN_ON(!is_guest_mode(vcpu
));
9012 if (nested_vmx_is_page_fault_vmexit(vmcs12
, fault
->error_code
))
9013 nested_vmx_vmexit(vcpu
, to_vmx(vcpu
)->exit_reason
,
9014 vmcs_read32(VM_EXIT_INTR_INFO
),
9015 vmcs_readl(EXIT_QUALIFICATION
));
9017 kvm_inject_page_fault(vcpu
, fault
);
9020 static bool nested_get_vmcs12_pages(struct kvm_vcpu
*vcpu
,
9021 struct vmcs12
*vmcs12
)
9023 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9024 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
9026 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
9027 if (!PAGE_ALIGNED(vmcs12
->apic_access_addr
) ||
9028 vmcs12
->apic_access_addr
>> maxphyaddr
)
9032 * Translate L1 physical address to host physical
9033 * address for vmcs02. Keep the page pinned, so this
9034 * physical address remains valid. We keep a reference
9035 * to it so we can release it later.
9037 if (vmx
->nested
.apic_access_page
) /* shouldn't happen */
9038 nested_release_page(vmx
->nested
.apic_access_page
);
9039 vmx
->nested
.apic_access_page
=
9040 nested_get_page(vcpu
, vmcs12
->apic_access_addr
);
9043 if (nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
)) {
9044 if (!PAGE_ALIGNED(vmcs12
->virtual_apic_page_addr
) ||
9045 vmcs12
->virtual_apic_page_addr
>> maxphyaddr
)
9048 if (vmx
->nested
.virtual_apic_page
) /* shouldn't happen */
9049 nested_release_page(vmx
->nested
.virtual_apic_page
);
9050 vmx
->nested
.virtual_apic_page
=
9051 nested_get_page(vcpu
, vmcs12
->virtual_apic_page_addr
);
9054 * Failing the vm entry is _not_ what the processor does
9055 * but it's basically the only possibility we have.
9056 * We could still enter the guest if CR8 load exits are
9057 * enabled, CR8 store exits are enabled, and virtualize APIC
9058 * access is disabled; in this case the processor would never
9059 * use the TPR shadow and we could simply clear the bit from
9060 * the execution control. But such a configuration is useless,
9061 * so let's keep the code simple.
9063 if (!vmx
->nested
.virtual_apic_page
)
9067 if (nested_cpu_has_posted_intr(vmcs12
)) {
9068 if (!IS_ALIGNED(vmcs12
->posted_intr_desc_addr
, 64) ||
9069 vmcs12
->posted_intr_desc_addr
>> maxphyaddr
)
9072 if (vmx
->nested
.pi_desc_page
) { /* shouldn't happen */
9073 kunmap(vmx
->nested
.pi_desc_page
);
9074 nested_release_page(vmx
->nested
.pi_desc_page
);
9076 vmx
->nested
.pi_desc_page
=
9077 nested_get_page(vcpu
, vmcs12
->posted_intr_desc_addr
);
9078 if (!vmx
->nested
.pi_desc_page
)
9081 vmx
->nested
.pi_desc
=
9082 (struct pi_desc
*)kmap(vmx
->nested
.pi_desc_page
);
9083 if (!vmx
->nested
.pi_desc
) {
9084 nested_release_page_clean(vmx
->nested
.pi_desc_page
);
9087 vmx
->nested
.pi_desc
=
9088 (struct pi_desc
*)((void *)vmx
->nested
.pi_desc
+
9089 (unsigned long)(vmcs12
->posted_intr_desc_addr
&
9096 static void vmx_start_preemption_timer(struct kvm_vcpu
*vcpu
)
9098 u64 preemption_timeout
= get_vmcs12(vcpu
)->vmx_preemption_timer_value
;
9099 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9101 if (vcpu
->arch
.virtual_tsc_khz
== 0)
9104 /* Make sure short timeouts reliably trigger an immediate vmexit.
9105 * hrtimer_start does not guarantee this. */
9106 if (preemption_timeout
<= 1) {
9107 vmx_preemption_timer_fn(&vmx
->nested
.preemption_timer
);
9111 preemption_timeout
<<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
9112 preemption_timeout
*= 1000000;
9113 do_div(preemption_timeout
, vcpu
->arch
.virtual_tsc_khz
);
9114 hrtimer_start(&vmx
->nested
.preemption_timer
,
9115 ns_to_ktime(preemption_timeout
), HRTIMER_MODE_REL
);
9118 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu
*vcpu
,
9119 struct vmcs12
*vmcs12
)
9124 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
9127 if (vmcs12_read_any(vcpu
, MSR_BITMAP
, &addr
)) {
9131 maxphyaddr
= cpuid_maxphyaddr(vcpu
);
9133 if (!PAGE_ALIGNED(vmcs12
->msr_bitmap
) ||
9134 ((addr
+ PAGE_SIZE
) >> maxphyaddr
))
9141 * Merge L0's and L1's MSR bitmap, return false to indicate that
9142 * we do not use the hardware.
9144 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu
*vcpu
,
9145 struct vmcs12
*vmcs12
)
9149 unsigned long *msr_bitmap
;
9151 if (!nested_cpu_has_virt_x2apic_mode(vmcs12
))
9154 page
= nested_get_page(vcpu
, vmcs12
->msr_bitmap
);
9159 msr_bitmap
= (unsigned long *)kmap(page
);
9161 nested_release_page_clean(page
);
9166 if (nested_cpu_has_virt_x2apic_mode(vmcs12
)) {
9167 if (nested_cpu_has_apic_reg_virt(vmcs12
))
9168 for (msr
= 0x800; msr
<= 0x8ff; msr
++)
9169 nested_vmx_disable_intercept_for_msr(
9171 vmx_msr_bitmap_nested
,
9173 /* TPR is allowed */
9174 nested_vmx_disable_intercept_for_msr(msr_bitmap
,
9175 vmx_msr_bitmap_nested
,
9176 APIC_BASE_MSR
+ (APIC_TASKPRI
>> 4),
9177 MSR_TYPE_R
| MSR_TYPE_W
);
9178 if (nested_cpu_has_vid(vmcs12
)) {
9179 /* EOI and self-IPI are allowed */
9180 nested_vmx_disable_intercept_for_msr(
9182 vmx_msr_bitmap_nested
,
9183 APIC_BASE_MSR
+ (APIC_EOI
>> 4),
9185 nested_vmx_disable_intercept_for_msr(
9187 vmx_msr_bitmap_nested
,
9188 APIC_BASE_MSR
+ (APIC_SELF_IPI
>> 4),
9193 * Enable reading intercept of all the x2apic
9194 * MSRs. We should not rely on vmcs12 to do any
9195 * optimizations here, it may have been modified
9198 for (msr
= 0x800; msr
<= 0x8ff; msr
++)
9199 __vmx_enable_intercept_for_msr(
9200 vmx_msr_bitmap_nested
,
9204 __vmx_enable_intercept_for_msr(
9205 vmx_msr_bitmap_nested
,
9206 APIC_BASE_MSR
+ (APIC_TASKPRI
>> 4),
9208 __vmx_enable_intercept_for_msr(
9209 vmx_msr_bitmap_nested
,
9210 APIC_BASE_MSR
+ (APIC_EOI
>> 4),
9212 __vmx_enable_intercept_for_msr(
9213 vmx_msr_bitmap_nested
,
9214 APIC_BASE_MSR
+ (APIC_SELF_IPI
>> 4),
9218 nested_release_page_clean(page
);
9223 static int nested_vmx_check_apicv_controls(struct kvm_vcpu
*vcpu
,
9224 struct vmcs12
*vmcs12
)
9226 if (!nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
9227 !nested_cpu_has_apic_reg_virt(vmcs12
) &&
9228 !nested_cpu_has_vid(vmcs12
) &&
9229 !nested_cpu_has_posted_intr(vmcs12
))
9233 * If virtualize x2apic mode is enabled,
9234 * virtualize apic access must be disabled.
9236 if (nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
9237 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
9241 * If virtual interrupt delivery is enabled,
9242 * we must exit on external interrupts.
9244 if (nested_cpu_has_vid(vmcs12
) &&
9245 !nested_exit_on_intr(vcpu
))
9249 * bits 15:8 should be zero in posted_intr_nv,
9250 * the descriptor address has been already checked
9251 * in nested_get_vmcs12_pages.
9253 if (nested_cpu_has_posted_intr(vmcs12
) &&
9254 (!nested_cpu_has_vid(vmcs12
) ||
9255 !nested_exit_intr_ack_set(vcpu
) ||
9256 vmcs12
->posted_intr_nv
& 0xff00))
9259 /* tpr shadow is needed by all apicv features. */
9260 if (!nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
9266 static int nested_vmx_check_msr_switch(struct kvm_vcpu
*vcpu
,
9267 unsigned long count_field
,
9268 unsigned long addr_field
)
9273 if (vmcs12_read_any(vcpu
, count_field
, &count
) ||
9274 vmcs12_read_any(vcpu
, addr_field
, &addr
)) {
9280 maxphyaddr
= cpuid_maxphyaddr(vcpu
);
9281 if (!IS_ALIGNED(addr
, 16) || addr
>> maxphyaddr
||
9282 (addr
+ count
* sizeof(struct vmx_msr_entry
) - 1) >> maxphyaddr
) {
9283 pr_warn_ratelimited(
9284 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9285 addr_field
, maxphyaddr
, count
, addr
);
9291 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu
*vcpu
,
9292 struct vmcs12
*vmcs12
)
9294 if (vmcs12
->vm_exit_msr_load_count
== 0 &&
9295 vmcs12
->vm_exit_msr_store_count
== 0 &&
9296 vmcs12
->vm_entry_msr_load_count
== 0)
9297 return 0; /* Fast path */
9298 if (nested_vmx_check_msr_switch(vcpu
, VM_EXIT_MSR_LOAD_COUNT
,
9299 VM_EXIT_MSR_LOAD_ADDR
) ||
9300 nested_vmx_check_msr_switch(vcpu
, VM_EXIT_MSR_STORE_COUNT
,
9301 VM_EXIT_MSR_STORE_ADDR
) ||
9302 nested_vmx_check_msr_switch(vcpu
, VM_ENTRY_MSR_LOAD_COUNT
,
9303 VM_ENTRY_MSR_LOAD_ADDR
))
9308 static int nested_vmx_msr_check_common(struct kvm_vcpu
*vcpu
,
9309 struct vmx_msr_entry
*e
)
9311 /* x2APIC MSR accesses are not allowed */
9312 if (vcpu
->arch
.apic_base
& X2APIC_ENABLE
&& e
->index
>> 8 == 0x8)
9314 if (e
->index
== MSR_IA32_UCODE_WRITE
|| /* SDM Table 35-2 */
9315 e
->index
== MSR_IA32_UCODE_REV
)
9317 if (e
->reserved
!= 0)
9322 static int nested_vmx_load_msr_check(struct kvm_vcpu
*vcpu
,
9323 struct vmx_msr_entry
*e
)
9325 if (e
->index
== MSR_FS_BASE
||
9326 e
->index
== MSR_GS_BASE
||
9327 e
->index
== MSR_IA32_SMM_MONITOR_CTL
|| /* SMM is not supported */
9328 nested_vmx_msr_check_common(vcpu
, e
))
9333 static int nested_vmx_store_msr_check(struct kvm_vcpu
*vcpu
,
9334 struct vmx_msr_entry
*e
)
9336 if (e
->index
== MSR_IA32_SMBASE
|| /* SMM is not supported */
9337 nested_vmx_msr_check_common(vcpu
, e
))
9343 * Load guest's/host's msr at nested entry/exit.
9344 * return 0 for success, entry index for failure.
9346 static u32
nested_vmx_load_msr(struct kvm_vcpu
*vcpu
, u64 gpa
, u32 count
)
9349 struct vmx_msr_entry e
;
9350 struct msr_data msr
;
9352 msr
.host_initiated
= false;
9353 for (i
= 0; i
< count
; i
++) {
9354 if (kvm_vcpu_read_guest(vcpu
, gpa
+ i
* sizeof(e
),
9356 pr_warn_ratelimited(
9357 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9358 __func__
, i
, gpa
+ i
* sizeof(e
));
9361 if (nested_vmx_load_msr_check(vcpu
, &e
)) {
9362 pr_warn_ratelimited(
9363 "%s check failed (%u, 0x%x, 0x%x)\n",
9364 __func__
, i
, e
.index
, e
.reserved
);
9367 msr
.index
= e
.index
;
9369 if (kvm_set_msr(vcpu
, &msr
)) {
9370 pr_warn_ratelimited(
9371 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9372 __func__
, i
, e
.index
, e
.value
);
9381 static int nested_vmx_store_msr(struct kvm_vcpu
*vcpu
, u64 gpa
, u32 count
)
9384 struct vmx_msr_entry e
;
9386 for (i
= 0; i
< count
; i
++) {
9387 struct msr_data msr_info
;
9388 if (kvm_vcpu_read_guest(vcpu
,
9389 gpa
+ i
* sizeof(e
),
9390 &e
, 2 * sizeof(u32
))) {
9391 pr_warn_ratelimited(
9392 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9393 __func__
, i
, gpa
+ i
* sizeof(e
));
9396 if (nested_vmx_store_msr_check(vcpu
, &e
)) {
9397 pr_warn_ratelimited(
9398 "%s check failed (%u, 0x%x, 0x%x)\n",
9399 __func__
, i
, e
.index
, e
.reserved
);
9402 msr_info
.host_initiated
= false;
9403 msr_info
.index
= e
.index
;
9404 if (kvm_get_msr(vcpu
, &msr_info
)) {
9405 pr_warn_ratelimited(
9406 "%s cannot read MSR (%u, 0x%x)\n",
9407 __func__
, i
, e
.index
);
9410 if (kvm_vcpu_write_guest(vcpu
,
9411 gpa
+ i
* sizeof(e
) +
9412 offsetof(struct vmx_msr_entry
, value
),
9413 &msr_info
.data
, sizeof(msr_info
.data
))) {
9414 pr_warn_ratelimited(
9415 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9416 __func__
, i
, e
.index
, msr_info
.data
);
9424 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9425 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9426 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9427 * guest in a way that will both be appropriate to L1's requests, and our
9428 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9429 * function also has additional necessary side-effects, like setting various
9430 * vcpu->arch fields.
9432 static void prepare_vmcs02(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
9434 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9437 vmcs_write16(GUEST_ES_SELECTOR
, vmcs12
->guest_es_selector
);
9438 vmcs_write16(GUEST_CS_SELECTOR
, vmcs12
->guest_cs_selector
);
9439 vmcs_write16(GUEST_SS_SELECTOR
, vmcs12
->guest_ss_selector
);
9440 vmcs_write16(GUEST_DS_SELECTOR
, vmcs12
->guest_ds_selector
);
9441 vmcs_write16(GUEST_FS_SELECTOR
, vmcs12
->guest_fs_selector
);
9442 vmcs_write16(GUEST_GS_SELECTOR
, vmcs12
->guest_gs_selector
);
9443 vmcs_write16(GUEST_LDTR_SELECTOR
, vmcs12
->guest_ldtr_selector
);
9444 vmcs_write16(GUEST_TR_SELECTOR
, vmcs12
->guest_tr_selector
);
9445 vmcs_write32(GUEST_ES_LIMIT
, vmcs12
->guest_es_limit
);
9446 vmcs_write32(GUEST_CS_LIMIT
, vmcs12
->guest_cs_limit
);
9447 vmcs_write32(GUEST_SS_LIMIT
, vmcs12
->guest_ss_limit
);
9448 vmcs_write32(GUEST_DS_LIMIT
, vmcs12
->guest_ds_limit
);
9449 vmcs_write32(GUEST_FS_LIMIT
, vmcs12
->guest_fs_limit
);
9450 vmcs_write32(GUEST_GS_LIMIT
, vmcs12
->guest_gs_limit
);
9451 vmcs_write32(GUEST_LDTR_LIMIT
, vmcs12
->guest_ldtr_limit
);
9452 vmcs_write32(GUEST_TR_LIMIT
, vmcs12
->guest_tr_limit
);
9453 vmcs_write32(GUEST_GDTR_LIMIT
, vmcs12
->guest_gdtr_limit
);
9454 vmcs_write32(GUEST_IDTR_LIMIT
, vmcs12
->guest_idtr_limit
);
9455 vmcs_write32(GUEST_ES_AR_BYTES
, vmcs12
->guest_es_ar_bytes
);
9456 vmcs_write32(GUEST_CS_AR_BYTES
, vmcs12
->guest_cs_ar_bytes
);
9457 vmcs_write32(GUEST_SS_AR_BYTES
, vmcs12
->guest_ss_ar_bytes
);
9458 vmcs_write32(GUEST_DS_AR_BYTES
, vmcs12
->guest_ds_ar_bytes
);
9459 vmcs_write32(GUEST_FS_AR_BYTES
, vmcs12
->guest_fs_ar_bytes
);
9460 vmcs_write32(GUEST_GS_AR_BYTES
, vmcs12
->guest_gs_ar_bytes
);
9461 vmcs_write32(GUEST_LDTR_AR_BYTES
, vmcs12
->guest_ldtr_ar_bytes
);
9462 vmcs_write32(GUEST_TR_AR_BYTES
, vmcs12
->guest_tr_ar_bytes
);
9463 vmcs_writel(GUEST_ES_BASE
, vmcs12
->guest_es_base
);
9464 vmcs_writel(GUEST_CS_BASE
, vmcs12
->guest_cs_base
);
9465 vmcs_writel(GUEST_SS_BASE
, vmcs12
->guest_ss_base
);
9466 vmcs_writel(GUEST_DS_BASE
, vmcs12
->guest_ds_base
);
9467 vmcs_writel(GUEST_FS_BASE
, vmcs12
->guest_fs_base
);
9468 vmcs_writel(GUEST_GS_BASE
, vmcs12
->guest_gs_base
);
9469 vmcs_writel(GUEST_LDTR_BASE
, vmcs12
->guest_ldtr_base
);
9470 vmcs_writel(GUEST_TR_BASE
, vmcs12
->guest_tr_base
);
9471 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->guest_gdtr_base
);
9472 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->guest_idtr_base
);
9474 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
) {
9475 kvm_set_dr(vcpu
, 7, vmcs12
->guest_dr7
);
9476 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmcs12
->guest_ia32_debugctl
);
9478 kvm_set_dr(vcpu
, 7, vcpu
->arch
.dr7
);
9479 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmx
->nested
.vmcs01_debugctl
);
9481 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
9482 vmcs12
->vm_entry_intr_info_field
);
9483 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
9484 vmcs12
->vm_entry_exception_error_code
);
9485 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
9486 vmcs12
->vm_entry_instruction_len
);
9487 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
9488 vmcs12
->guest_interruptibility_info
);
9489 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->guest_sysenter_cs
);
9490 vmx_set_rflags(vcpu
, vmcs12
->guest_rflags
);
9491 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
,
9492 vmcs12
->guest_pending_dbg_exceptions
);
9493 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->guest_sysenter_esp
);
9494 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->guest_sysenter_eip
);
9496 if (nested_cpu_has_xsaves(vmcs12
))
9497 vmcs_write64(XSS_EXIT_BITMAP
, vmcs12
->xss_exit_bitmap
);
9498 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
9500 exec_control
= vmcs12
->pin_based_vm_exec_control
;
9501 exec_control
|= vmcs_config
.pin_based_exec_ctrl
;
9502 exec_control
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
9504 if (nested_cpu_has_posted_intr(vmcs12
)) {
9506 * Note that we use L0's vector here and in
9507 * vmx_deliver_nested_posted_interrupt.
9509 vmx
->nested
.posted_intr_nv
= vmcs12
->posted_intr_nv
;
9510 vmx
->nested
.pi_pending
= false;
9511 vmcs_write64(POSTED_INTR_NV
, POSTED_INTR_VECTOR
);
9512 vmcs_write64(POSTED_INTR_DESC_ADDR
,
9513 page_to_phys(vmx
->nested
.pi_desc_page
) +
9514 (unsigned long)(vmcs12
->posted_intr_desc_addr
&
9517 exec_control
&= ~PIN_BASED_POSTED_INTR
;
9519 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, exec_control
);
9521 vmx
->nested
.preemption_timer_expired
= false;
9522 if (nested_cpu_has_preemption_timer(vmcs12
))
9523 vmx_start_preemption_timer(vcpu
);
9526 * Whether page-faults are trapped is determined by a combination of
9527 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9528 * If enable_ept, L0 doesn't care about page faults and we should
9529 * set all of these to L1's desires. However, if !enable_ept, L0 does
9530 * care about (at least some) page faults, and because it is not easy
9531 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9532 * to exit on each and every L2 page fault. This is done by setting
9533 * MASK=MATCH=0 and (see below) EB.PF=1.
9534 * Note that below we don't need special code to set EB.PF beyond the
9535 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9536 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9537 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9539 * A problem with this approach (when !enable_ept) is that L1 may be
9540 * injected with more page faults than it asked for. This could have
9541 * caused problems, but in practice existing hypervisors don't care.
9542 * To fix this, we will need to emulate the PFEC checking (on the L1
9543 * page tables), using walk_addr(), when injecting PFs to L1.
9545 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
,
9546 enable_ept
? vmcs12
->page_fault_error_code_mask
: 0);
9547 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
,
9548 enable_ept
? vmcs12
->page_fault_error_code_match
: 0);
9550 if (cpu_has_secondary_exec_ctrls()) {
9551 exec_control
= vmx_secondary_exec_control(vmx
);
9553 /* Take the following fields only from vmcs12 */
9554 exec_control
&= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
9555 SECONDARY_EXEC_RDTSCP
|
9556 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
9557 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
9558 SECONDARY_EXEC_PCOMMIT
);
9559 if (nested_cpu_has(vmcs12
,
9560 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
))
9561 exec_control
|= vmcs12
->secondary_vm_exec_control
;
9563 if (exec_control
& SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
) {
9565 * If translation failed, no matter: This feature asks
9566 * to exit when accessing the given address, and if it
9567 * can never be accessed, this feature won't do
9570 if (!vmx
->nested
.apic_access_page
)
9572 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
9574 vmcs_write64(APIC_ACCESS_ADDR
,
9575 page_to_phys(vmx
->nested
.apic_access_page
));
9576 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12
)) &&
9577 cpu_need_virtualize_apic_accesses(&vmx
->vcpu
)) {
9579 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
9580 kvm_vcpu_reload_apic_access_page(vcpu
);
9583 if (exec_control
& SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
) {
9584 vmcs_write64(EOI_EXIT_BITMAP0
,
9585 vmcs12
->eoi_exit_bitmap0
);
9586 vmcs_write64(EOI_EXIT_BITMAP1
,
9587 vmcs12
->eoi_exit_bitmap1
);
9588 vmcs_write64(EOI_EXIT_BITMAP2
,
9589 vmcs12
->eoi_exit_bitmap2
);
9590 vmcs_write64(EOI_EXIT_BITMAP3
,
9591 vmcs12
->eoi_exit_bitmap3
);
9592 vmcs_write16(GUEST_INTR_STATUS
,
9593 vmcs12
->guest_intr_status
);
9596 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
9601 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9602 * Some constant fields are set here by vmx_set_constant_host_state().
9603 * Other fields are different per CPU, and will be set later when
9604 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9606 vmx_set_constant_host_state(vmx
);
9609 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9610 * entry, but only if the current (host) sp changed from the value
9611 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9612 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9613 * here we just force the write to happen on entry.
9617 exec_control
= vmx_exec_control(vmx
); /* L0's desires */
9618 exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
9619 exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
9620 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
9621 exec_control
|= vmcs12
->cpu_based_vm_exec_control
;
9623 if (exec_control
& CPU_BASED_TPR_SHADOW
) {
9624 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
9625 page_to_phys(vmx
->nested
.virtual_apic_page
));
9626 vmcs_write32(TPR_THRESHOLD
, vmcs12
->tpr_threshold
);
9629 if (cpu_has_vmx_msr_bitmap() &&
9630 exec_control
& CPU_BASED_USE_MSR_BITMAPS
) {
9631 nested_vmx_merge_msr_bitmap(vcpu
, vmcs12
);
9632 /* MSR_BITMAP will be set by following vmx_set_efer. */
9634 exec_control
&= ~CPU_BASED_USE_MSR_BITMAPS
;
9637 * Merging of IO bitmap not currently supported.
9638 * Rather, exit every time.
9640 exec_control
&= ~CPU_BASED_USE_IO_BITMAPS
;
9641 exec_control
|= CPU_BASED_UNCOND_IO_EXITING
;
9643 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
9645 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9646 * bitwise-or of what L1 wants to trap for L2, and what we want to
9647 * trap. Note that CR0.TS also needs updating - we do this later.
9649 update_exception_bitmap(vcpu
);
9650 vcpu
->arch
.cr0_guest_owned_bits
&= ~vmcs12
->cr0_guest_host_mask
;
9651 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
9653 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9654 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9655 * bits are further modified by vmx_set_efer() below.
9657 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
9659 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9660 * emulated by vmx_set_efer(), below.
9662 vm_entry_controls_init(vmx
,
9663 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_LOAD_IA32_EFER
&
9664 ~VM_ENTRY_IA32E_MODE
) |
9665 (vmcs_config
.vmentry_ctrl
& ~VM_ENTRY_IA32E_MODE
));
9667 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_PAT
) {
9668 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->guest_ia32_pat
);
9669 vcpu
->arch
.pat
= vmcs12
->guest_ia32_pat
;
9670 } else if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
9671 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
9674 set_cr4_guest_host_mask(vmx
);
9676 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_BNDCFGS
)
9677 vmcs_write64(GUEST_BNDCFGS
, vmcs12
->guest_bndcfgs
);
9679 if (vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_TSC_OFFSETING
)
9680 vmcs_write64(TSC_OFFSET
,
9681 vmx
->nested
.vmcs01_tsc_offset
+ vmcs12
->tsc_offset
);
9683 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
9687 * There is no direct mapping between vpid02 and vpid12, the
9688 * vpid02 is per-vCPU for L0 and reused while the value of
9689 * vpid12 is changed w/ one invvpid during nested vmentry.
9690 * The vpid12 is allocated by L1 for L2, so it will not
9691 * influence global bitmap(for vpid01 and vpid02 allocation)
9692 * even if spawn a lot of nested vCPUs.
9694 if (nested_cpu_has_vpid(vmcs12
) && vmx
->nested
.vpid02
) {
9695 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->nested
.vpid02
);
9696 if (vmcs12
->virtual_processor_id
!= vmx
->nested
.last_vpid
) {
9697 vmx
->nested
.last_vpid
= vmcs12
->virtual_processor_id
;
9698 __vmx_flush_tlb(vcpu
, to_vmx(vcpu
)->nested
.vpid02
);
9701 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
9702 vmx_flush_tlb(vcpu
);
9707 if (nested_cpu_has_ept(vmcs12
)) {
9708 kvm_mmu_unload(vcpu
);
9709 nested_ept_init_mmu_context(vcpu
);
9712 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
)
9713 vcpu
->arch
.efer
= vmcs12
->guest_ia32_efer
;
9714 else if (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
)
9715 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
9717 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
9718 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9719 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
9722 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9723 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9724 * The CR0_READ_SHADOW is what L2 should have expected to read given
9725 * the specifications by L1; It's not enough to take
9726 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9727 * have more bits than L1 expected.
9729 vmx_set_cr0(vcpu
, vmcs12
->guest_cr0
);
9730 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
9732 vmx_set_cr4(vcpu
, vmcs12
->guest_cr4
);
9733 vmcs_writel(CR4_READ_SHADOW
, nested_read_cr4(vmcs12
));
9735 /* shadow page tables on either EPT or shadow page tables */
9736 kvm_set_cr3(vcpu
, vmcs12
->guest_cr3
);
9737 kvm_mmu_reset_context(vcpu
);
9740 vcpu
->arch
.walk_mmu
->inject_page_fault
= vmx_inject_page_fault_nested
;
9743 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9746 vmcs_write64(GUEST_PDPTR0
, vmcs12
->guest_pdptr0
);
9747 vmcs_write64(GUEST_PDPTR1
, vmcs12
->guest_pdptr1
);
9748 vmcs_write64(GUEST_PDPTR2
, vmcs12
->guest_pdptr2
);
9749 vmcs_write64(GUEST_PDPTR3
, vmcs12
->guest_pdptr3
);
9752 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->guest_rsp
);
9753 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->guest_rip
);
9757 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9758 * for running an L2 nested guest.
9760 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
)
9762 struct vmcs12
*vmcs12
;
9763 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9765 struct loaded_vmcs
*vmcs02
;
9769 if (!nested_vmx_check_permission(vcpu
) ||
9770 !nested_vmx_check_vmcs12(vcpu
))
9773 skip_emulated_instruction(vcpu
);
9774 vmcs12
= get_vmcs12(vcpu
);
9776 if (enable_shadow_vmcs
)
9777 copy_shadow_to_vmcs12(vmx
);
9780 * The nested entry process starts with enforcing various prerequisites
9781 * on vmcs12 as required by the Intel SDM, and act appropriately when
9782 * they fail: As the SDM explains, some conditions should cause the
9783 * instruction to fail, while others will cause the instruction to seem
9784 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9785 * To speed up the normal (success) code path, we should avoid checking
9786 * for misconfigurations which will anyway be caught by the processor
9787 * when using the merged vmcs02.
9789 if (vmcs12
->launch_state
== launch
) {
9790 nested_vmx_failValid(vcpu
,
9791 launch
? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9792 : VMXERR_VMRESUME_NONLAUNCHED_VMCS
);
9796 if (vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_ACTIVE
&&
9797 vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_HLT
) {
9798 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
9802 if (!nested_get_vmcs12_pages(vcpu
, vmcs12
)) {
9803 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
9807 if (nested_vmx_check_msr_bitmap_controls(vcpu
, vmcs12
)) {
9808 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
9812 if (nested_vmx_check_apicv_controls(vcpu
, vmcs12
)) {
9813 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
9817 if (nested_vmx_check_msr_switch_controls(vcpu
, vmcs12
)) {
9818 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
9822 if (!vmx_control_verify(vmcs12
->cpu_based_vm_exec_control
,
9823 vmx
->nested
.nested_vmx_true_procbased_ctls_low
,
9824 vmx
->nested
.nested_vmx_procbased_ctls_high
) ||
9825 !vmx_control_verify(vmcs12
->secondary_vm_exec_control
,
9826 vmx
->nested
.nested_vmx_secondary_ctls_low
,
9827 vmx
->nested
.nested_vmx_secondary_ctls_high
) ||
9828 !vmx_control_verify(vmcs12
->pin_based_vm_exec_control
,
9829 vmx
->nested
.nested_vmx_pinbased_ctls_low
,
9830 vmx
->nested
.nested_vmx_pinbased_ctls_high
) ||
9831 !vmx_control_verify(vmcs12
->vm_exit_controls
,
9832 vmx
->nested
.nested_vmx_true_exit_ctls_low
,
9833 vmx
->nested
.nested_vmx_exit_ctls_high
) ||
9834 !vmx_control_verify(vmcs12
->vm_entry_controls
,
9835 vmx
->nested
.nested_vmx_true_entry_ctls_low
,
9836 vmx
->nested
.nested_vmx_entry_ctls_high
))
9838 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
9842 if (((vmcs12
->host_cr0
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
) ||
9843 ((vmcs12
->host_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
9844 nested_vmx_failValid(vcpu
,
9845 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD
);
9849 if (!nested_cr0_valid(vcpu
, vmcs12
->guest_cr0
) ||
9850 ((vmcs12
->guest_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
9851 nested_vmx_entry_failure(vcpu
, vmcs12
,
9852 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
9855 if (vmcs12
->vmcs_link_pointer
!= -1ull) {
9856 nested_vmx_entry_failure(vcpu
, vmcs12
,
9857 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_VMCS_LINK_PTR
);
9862 * If the load IA32_EFER VM-entry control is 1, the following checks
9863 * are performed on the field for the IA32_EFER MSR:
9864 * - Bits reserved in the IA32_EFER MSR must be 0.
9865 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9866 * the IA-32e mode guest VM-exit control. It must also be identical
9867 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9870 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
) {
9871 ia32e
= (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
) != 0;
9872 if (!kvm_valid_efer(vcpu
, vmcs12
->guest_ia32_efer
) ||
9873 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LMA
) ||
9874 ((vmcs12
->guest_cr0
& X86_CR0_PG
) &&
9875 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LME
))) {
9876 nested_vmx_entry_failure(vcpu
, vmcs12
,
9877 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
9883 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9884 * IA32_EFER MSR must be 0 in the field for that register. In addition,
9885 * the values of the LMA and LME bits in the field must each be that of
9886 * the host address-space size VM-exit control.
9888 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
) {
9889 ia32e
= (vmcs12
->vm_exit_controls
&
9890 VM_EXIT_HOST_ADDR_SPACE_SIZE
) != 0;
9891 if (!kvm_valid_efer(vcpu
, vmcs12
->host_ia32_efer
) ||
9892 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LMA
) ||
9893 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LME
)) {
9894 nested_vmx_entry_failure(vcpu
, vmcs12
,
9895 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
9901 * We're finally done with prerequisite checking, and can start with
9905 vmcs02
= nested_get_current_vmcs02(vmx
);
9909 enter_guest_mode(vcpu
);
9911 vmx
->nested
.vmcs01_tsc_offset
= vmcs_read64(TSC_OFFSET
);
9913 if (!(vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
))
9914 vmx
->nested
.vmcs01_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
9917 vmx
->loaded_vmcs
= vmcs02
;
9919 vmx_vcpu_load(vcpu
, cpu
);
9923 vmx_segment_cache_clear(vmx
);
9925 prepare_vmcs02(vcpu
, vmcs12
);
9927 msr_entry_idx
= nested_vmx_load_msr(vcpu
,
9928 vmcs12
->vm_entry_msr_load_addr
,
9929 vmcs12
->vm_entry_msr_load_count
);
9930 if (msr_entry_idx
) {
9931 leave_guest_mode(vcpu
);
9932 vmx_load_vmcs01(vcpu
);
9933 nested_vmx_entry_failure(vcpu
, vmcs12
,
9934 EXIT_REASON_MSR_LOAD_FAIL
, msr_entry_idx
);
9938 vmcs12
->launch_state
= 1;
9940 if (vmcs12
->guest_activity_state
== GUEST_ACTIVITY_HLT
)
9941 return kvm_vcpu_halt(vcpu
);
9943 vmx
->nested
.nested_run_pending
= 1;
9946 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9947 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9948 * returned as far as L1 is concerned. It will only return (and set
9949 * the success flag) when L2 exits (see nested_vmx_vmexit()).
9955 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9956 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9957 * This function returns the new value we should put in vmcs12.guest_cr0.
9958 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9959 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9960 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9961 * didn't trap the bit, because if L1 did, so would L0).
9962 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9963 * been modified by L2, and L1 knows it. So just leave the old value of
9964 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9965 * isn't relevant, because if L0 traps this bit it can set it to anything.
9966 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9967 * changed these bits, and therefore they need to be updated, but L0
9968 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9969 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9971 static inline unsigned long
9972 vmcs12_guest_cr0(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
9975 /*1*/ (vmcs_readl(GUEST_CR0
) & vcpu
->arch
.cr0_guest_owned_bits
) |
9976 /*2*/ (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
) |
9977 /*3*/ (vmcs_readl(CR0_READ_SHADOW
) & ~(vmcs12
->cr0_guest_host_mask
|
9978 vcpu
->arch
.cr0_guest_owned_bits
));
9981 static inline unsigned long
9982 vmcs12_guest_cr4(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
9985 /*1*/ (vmcs_readl(GUEST_CR4
) & vcpu
->arch
.cr4_guest_owned_bits
) |
9986 /*2*/ (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
) |
9987 /*3*/ (vmcs_readl(CR4_READ_SHADOW
) & ~(vmcs12
->cr4_guest_host_mask
|
9988 vcpu
->arch
.cr4_guest_owned_bits
));
9991 static void vmcs12_save_pending_event(struct kvm_vcpu
*vcpu
,
9992 struct vmcs12
*vmcs12
)
9997 if (vcpu
->arch
.exception
.pending
&& vcpu
->arch
.exception
.reinject
) {
9998 nr
= vcpu
->arch
.exception
.nr
;
9999 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
10001 if (kvm_exception_is_soft(nr
)) {
10002 vmcs12
->vm_exit_instruction_len
=
10003 vcpu
->arch
.event_exit_inst_len
;
10004 idt_vectoring
|= INTR_TYPE_SOFT_EXCEPTION
;
10006 idt_vectoring
|= INTR_TYPE_HARD_EXCEPTION
;
10008 if (vcpu
->arch
.exception
.has_error_code
) {
10009 idt_vectoring
|= VECTORING_INFO_DELIVER_CODE_MASK
;
10010 vmcs12
->idt_vectoring_error_code
=
10011 vcpu
->arch
.exception
.error_code
;
10014 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
10015 } else if (vcpu
->arch
.nmi_injected
) {
10016 vmcs12
->idt_vectoring_info_field
=
10017 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
;
10018 } else if (vcpu
->arch
.interrupt
.pending
) {
10019 nr
= vcpu
->arch
.interrupt
.nr
;
10020 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
10022 if (vcpu
->arch
.interrupt
.soft
) {
10023 idt_vectoring
|= INTR_TYPE_SOFT_INTR
;
10024 vmcs12
->vm_entry_instruction_len
=
10025 vcpu
->arch
.event_exit_inst_len
;
10027 idt_vectoring
|= INTR_TYPE_EXT_INTR
;
10029 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
10033 static int vmx_check_nested_events(struct kvm_vcpu
*vcpu
, bool external_intr
)
10035 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10037 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu
)) &&
10038 vmx
->nested
.preemption_timer_expired
) {
10039 if (vmx
->nested
.nested_run_pending
)
10041 nested_vmx_vmexit(vcpu
, EXIT_REASON_PREEMPTION_TIMER
, 0, 0);
10045 if (vcpu
->arch
.nmi_pending
&& nested_exit_on_nmi(vcpu
)) {
10046 if (vmx
->nested
.nested_run_pending
||
10047 vcpu
->arch
.interrupt
.pending
)
10049 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
,
10050 NMI_VECTOR
| INTR_TYPE_NMI_INTR
|
10051 INTR_INFO_VALID_MASK
, 0);
10053 * The NMI-triggered VM exit counts as injection:
10054 * clear this one and block further NMIs.
10056 vcpu
->arch
.nmi_pending
= 0;
10057 vmx_set_nmi_mask(vcpu
, true);
10061 if ((kvm_cpu_has_interrupt(vcpu
) || external_intr
) &&
10062 nested_exit_on_intr(vcpu
)) {
10063 if (vmx
->nested
.nested_run_pending
)
10065 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXTERNAL_INTERRUPT
, 0, 0);
10069 return vmx_complete_nested_posted_interrupt(vcpu
);
10072 static u32
vmx_get_preemption_timer_value(struct kvm_vcpu
*vcpu
)
10074 ktime_t remaining
=
10075 hrtimer_get_remaining(&to_vmx(vcpu
)->nested
.preemption_timer
);
10078 if (ktime_to_ns(remaining
) <= 0)
10081 value
= ktime_to_ns(remaining
) * vcpu
->arch
.virtual_tsc_khz
;
10082 do_div(value
, 1000000);
10083 return value
>> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
10087 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10088 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10089 * and this function updates it to reflect the changes to the guest state while
10090 * L2 was running (and perhaps made some exits which were handled directly by L0
10091 * without going back to L1), and to reflect the exit reason.
10092 * Note that we do not have to copy here all VMCS fields, just those that
10093 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10094 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10095 * which already writes to vmcs12 directly.
10097 static void prepare_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
10098 u32 exit_reason
, u32 exit_intr_info
,
10099 unsigned long exit_qualification
)
10101 /* update guest state fields: */
10102 vmcs12
->guest_cr0
= vmcs12_guest_cr0(vcpu
, vmcs12
);
10103 vmcs12
->guest_cr4
= vmcs12_guest_cr4(vcpu
, vmcs12
);
10105 vmcs12
->guest_rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
10106 vmcs12
->guest_rip
= kvm_register_read(vcpu
, VCPU_REGS_RIP
);
10107 vmcs12
->guest_rflags
= vmcs_readl(GUEST_RFLAGS
);
10109 vmcs12
->guest_es_selector
= vmcs_read16(GUEST_ES_SELECTOR
);
10110 vmcs12
->guest_cs_selector
= vmcs_read16(GUEST_CS_SELECTOR
);
10111 vmcs12
->guest_ss_selector
= vmcs_read16(GUEST_SS_SELECTOR
);
10112 vmcs12
->guest_ds_selector
= vmcs_read16(GUEST_DS_SELECTOR
);
10113 vmcs12
->guest_fs_selector
= vmcs_read16(GUEST_FS_SELECTOR
);
10114 vmcs12
->guest_gs_selector
= vmcs_read16(GUEST_GS_SELECTOR
);
10115 vmcs12
->guest_ldtr_selector
= vmcs_read16(GUEST_LDTR_SELECTOR
);
10116 vmcs12
->guest_tr_selector
= vmcs_read16(GUEST_TR_SELECTOR
);
10117 vmcs12
->guest_es_limit
= vmcs_read32(GUEST_ES_LIMIT
);
10118 vmcs12
->guest_cs_limit
= vmcs_read32(GUEST_CS_LIMIT
);
10119 vmcs12
->guest_ss_limit
= vmcs_read32(GUEST_SS_LIMIT
);
10120 vmcs12
->guest_ds_limit
= vmcs_read32(GUEST_DS_LIMIT
);
10121 vmcs12
->guest_fs_limit
= vmcs_read32(GUEST_FS_LIMIT
);
10122 vmcs12
->guest_gs_limit
= vmcs_read32(GUEST_GS_LIMIT
);
10123 vmcs12
->guest_ldtr_limit
= vmcs_read32(GUEST_LDTR_LIMIT
);
10124 vmcs12
->guest_tr_limit
= vmcs_read32(GUEST_TR_LIMIT
);
10125 vmcs12
->guest_gdtr_limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
10126 vmcs12
->guest_idtr_limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
10127 vmcs12
->guest_es_ar_bytes
= vmcs_read32(GUEST_ES_AR_BYTES
);
10128 vmcs12
->guest_cs_ar_bytes
= vmcs_read32(GUEST_CS_AR_BYTES
);
10129 vmcs12
->guest_ss_ar_bytes
= vmcs_read32(GUEST_SS_AR_BYTES
);
10130 vmcs12
->guest_ds_ar_bytes
= vmcs_read32(GUEST_DS_AR_BYTES
);
10131 vmcs12
->guest_fs_ar_bytes
= vmcs_read32(GUEST_FS_AR_BYTES
);
10132 vmcs12
->guest_gs_ar_bytes
= vmcs_read32(GUEST_GS_AR_BYTES
);
10133 vmcs12
->guest_ldtr_ar_bytes
= vmcs_read32(GUEST_LDTR_AR_BYTES
);
10134 vmcs12
->guest_tr_ar_bytes
= vmcs_read32(GUEST_TR_AR_BYTES
);
10135 vmcs12
->guest_es_base
= vmcs_readl(GUEST_ES_BASE
);
10136 vmcs12
->guest_cs_base
= vmcs_readl(GUEST_CS_BASE
);
10137 vmcs12
->guest_ss_base
= vmcs_readl(GUEST_SS_BASE
);
10138 vmcs12
->guest_ds_base
= vmcs_readl(GUEST_DS_BASE
);
10139 vmcs12
->guest_fs_base
= vmcs_readl(GUEST_FS_BASE
);
10140 vmcs12
->guest_gs_base
= vmcs_readl(GUEST_GS_BASE
);
10141 vmcs12
->guest_ldtr_base
= vmcs_readl(GUEST_LDTR_BASE
);
10142 vmcs12
->guest_tr_base
= vmcs_readl(GUEST_TR_BASE
);
10143 vmcs12
->guest_gdtr_base
= vmcs_readl(GUEST_GDTR_BASE
);
10144 vmcs12
->guest_idtr_base
= vmcs_readl(GUEST_IDTR_BASE
);
10146 vmcs12
->guest_interruptibility_info
=
10147 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
10148 vmcs12
->guest_pending_dbg_exceptions
=
10149 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
);
10150 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
)
10151 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_HLT
;
10153 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_ACTIVE
;
10155 if (nested_cpu_has_preemption_timer(vmcs12
)) {
10156 if (vmcs12
->vm_exit_controls
&
10157 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
)
10158 vmcs12
->vmx_preemption_timer_value
=
10159 vmx_get_preemption_timer_value(vcpu
);
10160 hrtimer_cancel(&to_vmx(vcpu
)->nested
.preemption_timer
);
10164 * In some cases (usually, nested EPT), L2 is allowed to change its
10165 * own CR3 without exiting. If it has changed it, we must keep it.
10166 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10167 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10169 * Additionally, restore L2's PDPTR to vmcs12.
10172 vmcs12
->guest_cr3
= vmcs_read64(GUEST_CR3
);
10173 vmcs12
->guest_pdptr0
= vmcs_read64(GUEST_PDPTR0
);
10174 vmcs12
->guest_pdptr1
= vmcs_read64(GUEST_PDPTR1
);
10175 vmcs12
->guest_pdptr2
= vmcs_read64(GUEST_PDPTR2
);
10176 vmcs12
->guest_pdptr3
= vmcs_read64(GUEST_PDPTR3
);
10179 if (nested_cpu_has_vid(vmcs12
))
10180 vmcs12
->guest_intr_status
= vmcs_read16(GUEST_INTR_STATUS
);
10182 vmcs12
->vm_entry_controls
=
10183 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_IA32E_MODE
) |
10184 (vm_entry_controls_get(to_vmx(vcpu
)) & VM_ENTRY_IA32E_MODE
);
10186 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_DEBUG_CONTROLS
) {
10187 kvm_get_dr(vcpu
, 7, (unsigned long *)&vmcs12
->guest_dr7
);
10188 vmcs12
->guest_ia32_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
10191 /* TODO: These cannot have changed unless we have MSR bitmaps and
10192 * the relevant bit asks not to trap the change */
10193 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_PAT
)
10194 vmcs12
->guest_ia32_pat
= vmcs_read64(GUEST_IA32_PAT
);
10195 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_EFER
)
10196 vmcs12
->guest_ia32_efer
= vcpu
->arch
.efer
;
10197 vmcs12
->guest_sysenter_cs
= vmcs_read32(GUEST_SYSENTER_CS
);
10198 vmcs12
->guest_sysenter_esp
= vmcs_readl(GUEST_SYSENTER_ESP
);
10199 vmcs12
->guest_sysenter_eip
= vmcs_readl(GUEST_SYSENTER_EIP
);
10200 if (vmx_mpx_supported())
10201 vmcs12
->guest_bndcfgs
= vmcs_read64(GUEST_BNDCFGS
);
10202 if (nested_cpu_has_xsaves(vmcs12
))
10203 vmcs12
->xss_exit_bitmap
= vmcs_read64(XSS_EXIT_BITMAP
);
10205 /* update exit information fields: */
10207 vmcs12
->vm_exit_reason
= exit_reason
;
10208 vmcs12
->exit_qualification
= exit_qualification
;
10210 vmcs12
->vm_exit_intr_info
= exit_intr_info
;
10211 if ((vmcs12
->vm_exit_intr_info
&
10212 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
)) ==
10213 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
))
10214 vmcs12
->vm_exit_intr_error_code
=
10215 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
10216 vmcs12
->idt_vectoring_info_field
= 0;
10217 vmcs12
->vm_exit_instruction_len
= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
10218 vmcs12
->vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
10220 if (!(vmcs12
->vm_exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
)) {
10221 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10222 * instead of reading the real value. */
10223 vmcs12
->vm_entry_intr_info_field
&= ~INTR_INFO_VALID_MASK
;
10226 * Transfer the event that L0 or L1 may wanted to inject into
10227 * L2 to IDT_VECTORING_INFO_FIELD.
10229 vmcs12_save_pending_event(vcpu
, vmcs12
);
10233 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10234 * preserved above and would only end up incorrectly in L1.
10236 vcpu
->arch
.nmi_injected
= false;
10237 kvm_clear_exception_queue(vcpu
);
10238 kvm_clear_interrupt_queue(vcpu
);
10242 * A part of what we need to when the nested L2 guest exits and we want to
10243 * run its L1 parent, is to reset L1's guest state to the host state specified
10245 * This function is to be called not only on normal nested exit, but also on
10246 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10247 * Failures During or After Loading Guest State").
10248 * This function should be called when the active VMCS is L1's (vmcs01).
10250 static void load_vmcs12_host_state(struct kvm_vcpu
*vcpu
,
10251 struct vmcs12
*vmcs12
)
10253 struct kvm_segment seg
;
10255 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
)
10256 vcpu
->arch
.efer
= vmcs12
->host_ia32_efer
;
10257 else if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
10258 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
10260 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
10261 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
10263 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->host_rsp
);
10264 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->host_rip
);
10265 vmx_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
10267 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10268 * actually changed, because it depends on the current state of
10269 * fpu_active (which may have changed).
10270 * Note that vmx_set_cr0 refers to efer set above.
10272 vmx_set_cr0(vcpu
, vmcs12
->host_cr0
);
10274 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10275 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10276 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10278 update_exception_bitmap(vcpu
);
10279 vcpu
->arch
.cr0_guest_owned_bits
= (vcpu
->fpu_active
? X86_CR0_TS
: 0);
10280 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
10283 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10284 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10286 vcpu
->arch
.cr4_guest_owned_bits
= ~vmcs_readl(CR4_GUEST_HOST_MASK
);
10287 kvm_set_cr4(vcpu
, vmcs12
->host_cr4
);
10289 nested_ept_uninit_mmu_context(vcpu
);
10291 kvm_set_cr3(vcpu
, vmcs12
->host_cr3
);
10292 kvm_mmu_reset_context(vcpu
);
10295 vcpu
->arch
.walk_mmu
->inject_page_fault
= kvm_inject_page_fault
;
10299 * Trivially support vpid by letting L2s share their parent
10300 * L1's vpid. TODO: move to a more elaborate solution, giving
10301 * each L2 its own vpid and exposing the vpid feature to L1.
10303 vmx_flush_tlb(vcpu
);
10307 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->host_ia32_sysenter_cs
);
10308 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->host_ia32_sysenter_esp
);
10309 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->host_ia32_sysenter_eip
);
10310 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->host_idtr_base
);
10311 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->host_gdtr_base
);
10313 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10314 if (vmcs12
->vm_exit_controls
& VM_EXIT_CLEAR_BNDCFGS
)
10315 vmcs_write64(GUEST_BNDCFGS
, 0);
10317 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PAT
) {
10318 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->host_ia32_pat
);
10319 vcpu
->arch
.pat
= vmcs12
->host_ia32_pat
;
10321 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
10322 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL
,
10323 vmcs12
->host_ia32_perf_global_ctrl
);
10325 /* Set L1 segment info according to Intel SDM
10326 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10327 seg
= (struct kvm_segment
) {
10329 .limit
= 0xFFFFFFFF,
10330 .selector
= vmcs12
->host_cs_selector
,
10336 if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
10340 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_CS
);
10341 seg
= (struct kvm_segment
) {
10343 .limit
= 0xFFFFFFFF,
10350 seg
.selector
= vmcs12
->host_ds_selector
;
10351 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_DS
);
10352 seg
.selector
= vmcs12
->host_es_selector
;
10353 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_ES
);
10354 seg
.selector
= vmcs12
->host_ss_selector
;
10355 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_SS
);
10356 seg
.selector
= vmcs12
->host_fs_selector
;
10357 seg
.base
= vmcs12
->host_fs_base
;
10358 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_FS
);
10359 seg
.selector
= vmcs12
->host_gs_selector
;
10360 seg
.base
= vmcs12
->host_gs_base
;
10361 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_GS
);
10362 seg
= (struct kvm_segment
) {
10363 .base
= vmcs12
->host_tr_base
,
10365 .selector
= vmcs12
->host_tr_selector
,
10369 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_TR
);
10371 kvm_set_dr(vcpu
, 7, 0x400);
10372 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
10374 if (cpu_has_vmx_msr_bitmap())
10375 vmx_set_msr_bitmap(vcpu
);
10377 if (nested_vmx_load_msr(vcpu
, vmcs12
->vm_exit_msr_load_addr
,
10378 vmcs12
->vm_exit_msr_load_count
))
10379 nested_vmx_abort(vcpu
, VMX_ABORT_LOAD_HOST_MSR_FAIL
);
10383 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10384 * and modify vmcs12 to make it see what it would expect to see there if
10385 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10387 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
10388 u32 exit_intr_info
,
10389 unsigned long exit_qualification
)
10391 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10392 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
10394 /* trying to cancel vmlaunch/vmresume is a bug */
10395 WARN_ON_ONCE(vmx
->nested
.nested_run_pending
);
10397 leave_guest_mode(vcpu
);
10398 prepare_vmcs12(vcpu
, vmcs12
, exit_reason
, exit_intr_info
,
10399 exit_qualification
);
10401 if (nested_vmx_store_msr(vcpu
, vmcs12
->vm_exit_msr_store_addr
,
10402 vmcs12
->vm_exit_msr_store_count
))
10403 nested_vmx_abort(vcpu
, VMX_ABORT_SAVE_GUEST_MSR_FAIL
);
10405 vmx_load_vmcs01(vcpu
);
10407 if ((exit_reason
== EXIT_REASON_EXTERNAL_INTERRUPT
)
10408 && nested_exit_intr_ack_set(vcpu
)) {
10409 int irq
= kvm_cpu_get_interrupt(vcpu
);
10411 vmcs12
->vm_exit_intr_info
= irq
|
10412 INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
;
10415 trace_kvm_nested_vmexit_inject(vmcs12
->vm_exit_reason
,
10416 vmcs12
->exit_qualification
,
10417 vmcs12
->idt_vectoring_info_field
,
10418 vmcs12
->vm_exit_intr_info
,
10419 vmcs12
->vm_exit_intr_error_code
,
10422 vm_entry_controls_init(vmx
, vmcs_read32(VM_ENTRY_CONTROLS
));
10423 vm_exit_controls_init(vmx
, vmcs_read32(VM_EXIT_CONTROLS
));
10424 vmx_segment_cache_clear(vmx
);
10426 /* if no vmcs02 cache requested, remove the one we used */
10427 if (VMCS02_POOL_SIZE
== 0)
10428 nested_free_vmcs02(vmx
, vmx
->nested
.current_vmptr
);
10430 load_vmcs12_host_state(vcpu
, vmcs12
);
10432 /* Update TSC_OFFSET if TSC was changed while L2 ran */
10433 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
10435 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10438 /* Unpin physical memory we referred to in vmcs02 */
10439 if (vmx
->nested
.apic_access_page
) {
10440 nested_release_page(vmx
->nested
.apic_access_page
);
10441 vmx
->nested
.apic_access_page
= NULL
;
10443 if (vmx
->nested
.virtual_apic_page
) {
10444 nested_release_page(vmx
->nested
.virtual_apic_page
);
10445 vmx
->nested
.virtual_apic_page
= NULL
;
10447 if (vmx
->nested
.pi_desc_page
) {
10448 kunmap(vmx
->nested
.pi_desc_page
);
10449 nested_release_page(vmx
->nested
.pi_desc_page
);
10450 vmx
->nested
.pi_desc_page
= NULL
;
10451 vmx
->nested
.pi_desc
= NULL
;
10455 * We are now running in L2, mmu_notifier will force to reload the
10456 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10458 kvm_vcpu_reload_apic_access_page(vcpu
);
10461 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10462 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10463 * success or failure flag accordingly.
10465 if (unlikely(vmx
->fail
)) {
10467 nested_vmx_failValid(vcpu
, vmcs_read32(VM_INSTRUCTION_ERROR
));
10469 nested_vmx_succeed(vcpu
);
10470 if (enable_shadow_vmcs
)
10471 vmx
->nested
.sync_shadow_vmcs
= true;
10473 /* in case we halted in L2 */
10474 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
10478 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10480 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
)
10482 if (is_guest_mode(vcpu
))
10483 nested_vmx_vmexit(vcpu
, -1, 0, 0);
10484 free_nested(to_vmx(vcpu
));
10488 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10489 * 23.7 "VM-entry failures during or after loading guest state" (this also
10490 * lists the acceptable exit-reason and exit-qualification parameters).
10491 * It should only be called before L2 actually succeeded to run, and when
10492 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10494 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
10495 struct vmcs12
*vmcs12
,
10496 u32 reason
, unsigned long qualification
)
10498 load_vmcs12_host_state(vcpu
, vmcs12
);
10499 vmcs12
->vm_exit_reason
= reason
| VMX_EXIT_REASONS_FAILED_VMENTRY
;
10500 vmcs12
->exit_qualification
= qualification
;
10501 nested_vmx_succeed(vcpu
);
10502 if (enable_shadow_vmcs
)
10503 to_vmx(vcpu
)->nested
.sync_shadow_vmcs
= true;
10506 static int vmx_check_intercept(struct kvm_vcpu
*vcpu
,
10507 struct x86_instruction_info
*info
,
10508 enum x86_intercept_stage stage
)
10510 return X86EMUL_CONTINUE
;
10513 static void vmx_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
10516 shrink_ple_window(vcpu
);
10519 static void vmx_slot_enable_log_dirty(struct kvm
*kvm
,
10520 struct kvm_memory_slot
*slot
)
10522 kvm_mmu_slot_leaf_clear_dirty(kvm
, slot
);
10523 kvm_mmu_slot_largepage_remove_write_access(kvm
, slot
);
10526 static void vmx_slot_disable_log_dirty(struct kvm
*kvm
,
10527 struct kvm_memory_slot
*slot
)
10529 kvm_mmu_slot_set_dirty(kvm
, slot
);
10532 static void vmx_flush_log_dirty(struct kvm
*kvm
)
10534 kvm_flush_pml_buffers(kvm
);
10537 static void vmx_enable_log_dirty_pt_masked(struct kvm
*kvm
,
10538 struct kvm_memory_slot
*memslot
,
10539 gfn_t offset
, unsigned long mask
)
10541 kvm_mmu_clear_dirty_pt_masked(kvm
, memslot
, offset
, mask
);
10545 * This routine does the following things for vCPU which is going
10546 * to be blocked if VT-d PI is enabled.
10547 * - Store the vCPU to the wakeup list, so when interrupts happen
10548 * we can find the right vCPU to wake up.
10549 * - Change the Posted-interrupt descriptor as below:
10550 * 'NDST' <-- vcpu->pre_pcpu
10551 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10552 * - If 'ON' is set during this process, which means at least one
10553 * interrupt is posted for this vCPU, we cannot block it, in
10554 * this case, return 1, otherwise, return 0.
10557 static int vmx_pre_block(struct kvm_vcpu
*vcpu
)
10559 unsigned long flags
;
10561 struct pi_desc old
, new;
10562 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
10564 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
10565 !irq_remapping_cap(IRQ_POSTING_CAP
))
10568 vcpu
->pre_pcpu
= vcpu
->cpu
;
10569 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock
,
10570 vcpu
->pre_pcpu
), flags
);
10571 list_add_tail(&vcpu
->blocked_vcpu_list
,
10572 &per_cpu(blocked_vcpu_on_cpu
,
10574 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock
,
10575 vcpu
->pre_pcpu
), flags
);
10578 old
.control
= new.control
= pi_desc
->control
;
10581 * We should not block the vCPU if
10582 * an interrupt is posted for it.
10584 if (pi_test_on(pi_desc
) == 1) {
10585 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock
,
10586 vcpu
->pre_pcpu
), flags
);
10587 list_del(&vcpu
->blocked_vcpu_list
);
10588 spin_unlock_irqrestore(
10589 &per_cpu(blocked_vcpu_on_cpu_lock
,
10590 vcpu
->pre_pcpu
), flags
);
10591 vcpu
->pre_pcpu
= -1;
10596 WARN((pi_desc
->sn
== 1),
10597 "Warning: SN field of posted-interrupts "
10598 "is set before blocking\n");
10601 * Since vCPU can be preempted during this process,
10602 * vcpu->cpu could be different with pre_pcpu, we
10603 * need to set pre_pcpu as the destination of wakeup
10604 * notification event, then we can find the right vCPU
10605 * to wakeup in wakeup handler if interrupts happen
10606 * when the vCPU is in blocked state.
10608 dest
= cpu_physical_id(vcpu
->pre_pcpu
);
10610 if (x2apic_enabled())
10613 new.ndst
= (dest
<< 8) & 0xFF00;
10615 /* set 'NV' to 'wakeup vector' */
10616 new.nv
= POSTED_INTR_WAKEUP_VECTOR
;
10617 } while (cmpxchg(&pi_desc
->control
, old
.control
,
10618 new.control
) != old
.control
);
10623 static void vmx_post_block(struct kvm_vcpu
*vcpu
)
10625 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
10626 struct pi_desc old
, new;
10628 unsigned long flags
;
10630 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
10631 !irq_remapping_cap(IRQ_POSTING_CAP
))
10635 old
.control
= new.control
= pi_desc
->control
;
10637 dest
= cpu_physical_id(vcpu
->cpu
);
10639 if (x2apic_enabled())
10642 new.ndst
= (dest
<< 8) & 0xFF00;
10644 /* Allow posting non-urgent interrupts */
10647 /* set 'NV' to 'notification vector' */
10648 new.nv
= POSTED_INTR_VECTOR
;
10649 } while (cmpxchg(&pi_desc
->control
, old
.control
,
10650 new.control
) != old
.control
);
10652 if(vcpu
->pre_pcpu
!= -1) {
10654 &per_cpu(blocked_vcpu_on_cpu_lock
,
10655 vcpu
->pre_pcpu
), flags
);
10656 list_del(&vcpu
->blocked_vcpu_list
);
10657 spin_unlock_irqrestore(
10658 &per_cpu(blocked_vcpu_on_cpu_lock
,
10659 vcpu
->pre_pcpu
), flags
);
10660 vcpu
->pre_pcpu
= -1;
10665 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10668 * @host_irq: host irq of the interrupt
10669 * @guest_irq: gsi of the interrupt
10670 * @set: set or unset PI
10671 * returns 0 on success, < 0 on failure
10673 static int vmx_update_pi_irte(struct kvm
*kvm
, unsigned int host_irq
,
10674 uint32_t guest_irq
, bool set
)
10676 struct kvm_kernel_irq_routing_entry
*e
;
10677 struct kvm_irq_routing_table
*irq_rt
;
10678 struct kvm_lapic_irq irq
;
10679 struct kvm_vcpu
*vcpu
;
10680 struct vcpu_data vcpu_info
;
10681 int idx
, ret
= -EINVAL
;
10683 if (!kvm_arch_has_assigned_device(kvm
) ||
10684 !irq_remapping_cap(IRQ_POSTING_CAP
))
10687 idx
= srcu_read_lock(&kvm
->irq_srcu
);
10688 irq_rt
= srcu_dereference(kvm
->irq_routing
, &kvm
->irq_srcu
);
10689 BUG_ON(guest_irq
>= irq_rt
->nr_rt_entries
);
10691 hlist_for_each_entry(e
, &irq_rt
->map
[guest_irq
], link
) {
10692 if (e
->type
!= KVM_IRQ_ROUTING_MSI
)
10695 * VT-d PI cannot support posting multicast/broadcast
10696 * interrupts to a vCPU, we still use interrupt remapping
10697 * for these kind of interrupts.
10699 * For lowest-priority interrupts, we only support
10700 * those with single CPU as the destination, e.g. user
10701 * configures the interrupts via /proc/irq or uses
10702 * irqbalance to make the interrupts single-CPU.
10704 * We will support full lowest-priority interrupt later.
10707 kvm_set_msi_irq(e
, &irq
);
10708 if (!kvm_intr_is_single_vcpu(kvm
, &irq
, &vcpu
))
10711 vcpu_info
.pi_desc_addr
= __pa(vcpu_to_pi_desc(vcpu
));
10712 vcpu_info
.vector
= irq
.vector
;
10714 trace_kvm_pi_irte_update(vcpu
->vcpu_id
, e
->gsi
,
10715 vcpu_info
.vector
, vcpu_info
.pi_desc_addr
, set
);
10718 ret
= irq_set_vcpu_affinity(host_irq
, &vcpu_info
);
10720 /* suppress notification event before unposting */
10721 pi_set_sn(vcpu_to_pi_desc(vcpu
));
10722 ret
= irq_set_vcpu_affinity(host_irq
, NULL
);
10723 pi_clear_sn(vcpu_to_pi_desc(vcpu
));
10727 printk(KERN_INFO
"%s: failed to update PI IRTE\n",
10735 srcu_read_unlock(&kvm
->irq_srcu
, idx
);
10739 static struct kvm_x86_ops vmx_x86_ops
= {
10740 .cpu_has_kvm_support
= cpu_has_kvm_support
,
10741 .disabled_by_bios
= vmx_disabled_by_bios
,
10742 .hardware_setup
= hardware_setup
,
10743 .hardware_unsetup
= hardware_unsetup
,
10744 .check_processor_compatibility
= vmx_check_processor_compat
,
10745 .hardware_enable
= hardware_enable
,
10746 .hardware_disable
= hardware_disable
,
10747 .cpu_has_accelerated_tpr
= report_flexpriority
,
10748 .cpu_has_high_real_mode_segbase
= vmx_has_high_real_mode_segbase
,
10750 .vcpu_create
= vmx_create_vcpu
,
10751 .vcpu_free
= vmx_free_vcpu
,
10752 .vcpu_reset
= vmx_vcpu_reset
,
10754 .prepare_guest_switch
= vmx_save_host_state
,
10755 .vcpu_load
= vmx_vcpu_load
,
10756 .vcpu_put
= vmx_vcpu_put
,
10758 .update_bp_intercept
= update_exception_bitmap
,
10759 .get_msr
= vmx_get_msr
,
10760 .set_msr
= vmx_set_msr
,
10761 .get_segment_base
= vmx_get_segment_base
,
10762 .get_segment
= vmx_get_segment
,
10763 .set_segment
= vmx_set_segment
,
10764 .get_cpl
= vmx_get_cpl
,
10765 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
10766 .decache_cr0_guest_bits
= vmx_decache_cr0_guest_bits
,
10767 .decache_cr3
= vmx_decache_cr3
,
10768 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
10769 .set_cr0
= vmx_set_cr0
,
10770 .set_cr3
= vmx_set_cr3
,
10771 .set_cr4
= vmx_set_cr4
,
10772 .set_efer
= vmx_set_efer
,
10773 .get_idt
= vmx_get_idt
,
10774 .set_idt
= vmx_set_idt
,
10775 .get_gdt
= vmx_get_gdt
,
10776 .set_gdt
= vmx_set_gdt
,
10777 .get_dr6
= vmx_get_dr6
,
10778 .set_dr6
= vmx_set_dr6
,
10779 .set_dr7
= vmx_set_dr7
,
10780 .sync_dirty_debug_regs
= vmx_sync_dirty_debug_regs
,
10781 .cache_reg
= vmx_cache_reg
,
10782 .get_rflags
= vmx_get_rflags
,
10783 .set_rflags
= vmx_set_rflags
,
10784 .fpu_activate
= vmx_fpu_activate
,
10785 .fpu_deactivate
= vmx_fpu_deactivate
,
10787 .tlb_flush
= vmx_flush_tlb
,
10789 .run
= vmx_vcpu_run
,
10790 .handle_exit
= vmx_handle_exit
,
10791 .skip_emulated_instruction
= skip_emulated_instruction
,
10792 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
10793 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
10794 .patch_hypercall
= vmx_patch_hypercall
,
10795 .set_irq
= vmx_inject_irq
,
10796 .set_nmi
= vmx_inject_nmi
,
10797 .queue_exception
= vmx_queue_exception
,
10798 .cancel_injection
= vmx_cancel_injection
,
10799 .interrupt_allowed
= vmx_interrupt_allowed
,
10800 .nmi_allowed
= vmx_nmi_allowed
,
10801 .get_nmi_mask
= vmx_get_nmi_mask
,
10802 .set_nmi_mask
= vmx_set_nmi_mask
,
10803 .enable_nmi_window
= enable_nmi_window
,
10804 .enable_irq_window
= enable_irq_window
,
10805 .update_cr8_intercept
= update_cr8_intercept
,
10806 .set_virtual_x2apic_mode
= vmx_set_virtual_x2apic_mode
,
10807 .set_apic_access_page_addr
= vmx_set_apic_access_page_addr
,
10808 .cpu_uses_apicv
= vmx_cpu_uses_apicv
,
10809 .load_eoi_exitmap
= vmx_load_eoi_exitmap
,
10810 .hwapic_irr_update
= vmx_hwapic_irr_update
,
10811 .hwapic_isr_update
= vmx_hwapic_isr_update
,
10812 .sync_pir_to_irr
= vmx_sync_pir_to_irr
,
10813 .deliver_posted_interrupt
= vmx_deliver_posted_interrupt
,
10815 .set_tss_addr
= vmx_set_tss_addr
,
10816 .get_tdp_level
= get_ept_level
,
10817 .get_mt_mask
= vmx_get_mt_mask
,
10819 .get_exit_info
= vmx_get_exit_info
,
10821 .get_lpage_level
= vmx_get_lpage_level
,
10823 .cpuid_update
= vmx_cpuid_update
,
10825 .rdtscp_supported
= vmx_rdtscp_supported
,
10826 .invpcid_supported
= vmx_invpcid_supported
,
10828 .set_supported_cpuid
= vmx_set_supported_cpuid
,
10830 .has_wbinvd_exit
= cpu_has_vmx_wbinvd_exit
,
10832 .read_tsc_offset
= vmx_read_tsc_offset
,
10833 .write_tsc_offset
= vmx_write_tsc_offset
,
10834 .adjust_tsc_offset_guest
= vmx_adjust_tsc_offset_guest
,
10835 .read_l1_tsc
= vmx_read_l1_tsc
,
10837 .set_tdp_cr3
= vmx_set_cr3
,
10839 .check_intercept
= vmx_check_intercept
,
10840 .handle_external_intr
= vmx_handle_external_intr
,
10841 .mpx_supported
= vmx_mpx_supported
,
10842 .xsaves_supported
= vmx_xsaves_supported
,
10844 .check_nested_events
= vmx_check_nested_events
,
10846 .sched_in
= vmx_sched_in
,
10848 .slot_enable_log_dirty
= vmx_slot_enable_log_dirty
,
10849 .slot_disable_log_dirty
= vmx_slot_disable_log_dirty
,
10850 .flush_log_dirty
= vmx_flush_log_dirty
,
10851 .enable_log_dirty_pt_masked
= vmx_enable_log_dirty_pt_masked
,
10853 .pre_block
= vmx_pre_block
,
10854 .post_block
= vmx_post_block
,
10856 .pmu_ops
= &intel_pmu_ops
,
10858 .update_pi_irte
= vmx_update_pi_irte
,
10861 static int __init
vmx_init(void)
10863 int r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
),
10864 __alignof__(struct vcpu_vmx
), THIS_MODULE
);
10868 #ifdef CONFIG_KEXEC_CORE
10869 rcu_assign_pointer(crash_vmclear_loaded_vmcss
,
10870 crash_vmclear_local_loaded_vmcss
);
10876 static void __exit
vmx_exit(void)
10878 #ifdef CONFIG_KEXEC_CORE
10879 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss
, NULL
);
10886 module_init(vmx_init
)
10887 module_exit(vmx_exit
)