irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / arch / x86 / mm / fault.c
blobeef44d9a3f77e2acc88baa424683388f67985e24
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/kdebug.h> /* oops_begin/end, ... */
8 #include <linux/module.h> /* search_exception_table */
9 #include <linux/bootmem.h> /* max_low_pfn */
10 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
11 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
12 #include <linux/perf_event.h> /* perf_sw_event */
13 #include <linux/hugetlb.h> /* hstate_index_to_shift */
14 #include <linux/prefetch.h> /* prefetchw */
15 #include <linux/context_tracking.h> /* exception_enter(), ... */
16 #include <linux/uaccess.h> /* faulthandler_disabled() */
18 #include <asm/traps.h> /* dotraplinkage, ... */
19 #include <asm/pgalloc.h> /* pgd_*(), ... */
20 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
21 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
22 #include <asm/vsyscall.h> /* emulate_vsyscall */
23 #include <asm/vm86.h> /* struct vm86 */
25 #define CREATE_TRACE_POINTS
26 #include <asm/trace/exceptions.h>
29 * Page fault error code bits:
31 * bit 0 == 0: no page found 1: protection fault
32 * bit 1 == 0: read access 1: write access
33 * bit 2 == 0: kernel-mode access 1: user-mode access
34 * bit 3 == 1: use of reserved bit detected
35 * bit 4 == 1: fault was an instruction fetch
37 enum x86_pf_error_code {
39 PF_PROT = 1 << 0,
40 PF_WRITE = 1 << 1,
41 PF_USER = 1 << 2,
42 PF_RSVD = 1 << 3,
43 PF_INSTR = 1 << 4,
47 * Returns 0 if mmiotrace is disabled, or if the fault is not
48 * handled by mmiotrace:
50 static nokprobe_inline int
51 kmmio_fault(struct pt_regs *regs, unsigned long addr)
53 if (unlikely(is_kmmio_active()))
54 if (kmmio_handler(regs, addr) == 1)
55 return -1;
56 return 0;
59 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
61 int ret = 0;
63 /* kprobe_running() needs smp_processor_id() */
64 if (kprobes_built_in() && !user_mode(regs)) {
65 preempt_disable();
66 if (kprobe_running() && kprobe_fault_handler(regs, 14))
67 ret = 1;
68 preempt_enable();
71 return ret;
75 * Prefetch quirks:
77 * 32-bit mode:
79 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
80 * Check that here and ignore it.
82 * 64-bit mode:
84 * Sometimes the CPU reports invalid exceptions on prefetch.
85 * Check that here and ignore it.
87 * Opcode checker based on code by Richard Brunner.
89 static inline int
90 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
91 unsigned char opcode, int *prefetch)
93 unsigned char instr_hi = opcode & 0xf0;
94 unsigned char instr_lo = opcode & 0x0f;
96 switch (instr_hi) {
97 case 0x20:
98 case 0x30:
100 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
101 * In X86_64 long mode, the CPU will signal invalid
102 * opcode if some of these prefixes are present so
103 * X86_64 will never get here anyway
105 return ((instr_lo & 7) == 0x6);
106 #ifdef CONFIG_X86_64
107 case 0x40:
109 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
110 * Need to figure out under what instruction mode the
111 * instruction was issued. Could check the LDT for lm,
112 * but for now it's good enough to assume that long
113 * mode only uses well known segments or kernel.
115 return (!user_mode(regs) || user_64bit_mode(regs));
116 #endif
117 case 0x60:
118 /* 0x64 thru 0x67 are valid prefixes in all modes. */
119 return (instr_lo & 0xC) == 0x4;
120 case 0xF0:
121 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
122 return !instr_lo || (instr_lo>>1) == 1;
123 case 0x00:
124 /* Prefetch instruction is 0x0F0D or 0x0F18 */
125 if (probe_kernel_address(instr, opcode))
126 return 0;
128 *prefetch = (instr_lo == 0xF) &&
129 (opcode == 0x0D || opcode == 0x18);
130 return 0;
131 default:
132 return 0;
136 static int
137 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
139 unsigned char *max_instr;
140 unsigned char *instr;
141 int prefetch = 0;
144 * If it was a exec (instruction fetch) fault on NX page, then
145 * do not ignore the fault:
147 if (error_code & PF_INSTR)
148 return 0;
150 instr = (void *)convert_ip_to_linear(current, regs);
151 max_instr = instr + 15;
153 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
154 return 0;
156 while (instr < max_instr) {
157 unsigned char opcode;
159 if (probe_kernel_address(instr, opcode))
160 break;
162 instr++;
164 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
165 break;
167 return prefetch;
170 static void
171 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
172 struct task_struct *tsk, int fault)
174 unsigned lsb = 0;
175 siginfo_t info;
177 info.si_signo = si_signo;
178 info.si_errno = 0;
179 info.si_code = si_code;
180 info.si_addr = (void __user *)address;
181 if (fault & VM_FAULT_HWPOISON_LARGE)
182 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
183 if (fault & VM_FAULT_HWPOISON)
184 lsb = PAGE_SHIFT;
185 info.si_addr_lsb = lsb;
187 force_sig_info(si_signo, &info, tsk);
190 DEFINE_SPINLOCK(pgd_lock);
191 LIST_HEAD(pgd_list);
193 #ifdef CONFIG_X86_32
194 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
196 unsigned index = pgd_index(address);
197 pgd_t *pgd_k;
198 pud_t *pud, *pud_k;
199 pmd_t *pmd, *pmd_k;
201 pgd += index;
202 pgd_k = init_mm.pgd + index;
204 if (!pgd_present(*pgd_k))
205 return NULL;
208 * set_pgd(pgd, *pgd_k); here would be useless on PAE
209 * and redundant with the set_pmd() on non-PAE. As would
210 * set_pud.
212 pud = pud_offset(pgd, address);
213 pud_k = pud_offset(pgd_k, address);
214 if (!pud_present(*pud_k))
215 return NULL;
217 pmd = pmd_offset(pud, address);
218 pmd_k = pmd_offset(pud_k, address);
219 if (!pmd_present(*pmd_k))
220 return NULL;
222 if (!pmd_present(*pmd))
223 set_pmd(pmd, *pmd_k);
224 else
225 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
227 return pmd_k;
230 void vmalloc_sync_all(void)
232 unsigned long address;
234 if (SHARED_KERNEL_PMD)
235 return;
237 for (address = VMALLOC_START & PMD_MASK;
238 address >= TASK_SIZE && address < FIXADDR_TOP;
239 address += PMD_SIZE) {
240 struct page *page;
242 spin_lock(&pgd_lock);
243 list_for_each_entry(page, &pgd_list, lru) {
244 spinlock_t *pgt_lock;
245 pmd_t *ret;
247 /* the pgt_lock only for Xen */
248 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
250 spin_lock(pgt_lock);
251 ret = vmalloc_sync_one(page_address(page), address);
252 spin_unlock(pgt_lock);
254 if (!ret)
255 break;
257 spin_unlock(&pgd_lock);
262 * 32-bit:
264 * Handle a fault on the vmalloc or module mapping area
266 static noinline int vmalloc_fault(unsigned long address)
268 unsigned long pgd_paddr;
269 pmd_t *pmd_k;
270 pte_t *pte_k;
272 /* Make sure we are in vmalloc area: */
273 if (!(address >= VMALLOC_START && address < VMALLOC_END))
274 return -1;
276 WARN_ON_ONCE(in_nmi());
279 * Synchronize this task's top level page-table
280 * with the 'reference' page table.
282 * Do _not_ use "current" here. We might be inside
283 * an interrupt in the middle of a task switch..
285 pgd_paddr = read_cr3();
286 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
287 if (!pmd_k)
288 return -1;
290 pte_k = pte_offset_kernel(pmd_k, address);
291 if (!pte_present(*pte_k))
292 return -1;
294 return 0;
296 NOKPROBE_SYMBOL(vmalloc_fault);
299 * Did it hit the DOS screen memory VA from vm86 mode?
301 static inline void
302 check_v8086_mode(struct pt_regs *regs, unsigned long address,
303 struct task_struct *tsk)
305 #ifdef CONFIG_VM86
306 unsigned long bit;
308 if (!v8086_mode(regs) || !tsk->thread.vm86)
309 return;
311 bit = (address - 0xA0000) >> PAGE_SHIFT;
312 if (bit < 32)
313 tsk->thread.vm86->screen_bitmap |= 1 << bit;
314 #endif
317 static bool low_pfn(unsigned long pfn)
319 return pfn < max_low_pfn;
322 static void dump_pagetable(unsigned long address)
324 pgd_t *base = __va(read_cr3());
325 pgd_t *pgd = &base[pgd_index(address)];
326 pmd_t *pmd;
327 pte_t *pte;
329 #ifdef CONFIG_X86_PAE
330 printk("*pdpt = %016Lx ", pgd_val(*pgd));
331 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
332 goto out;
333 #endif
334 pmd = pmd_offset(pud_offset(pgd, address), address);
335 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
338 * We must not directly access the pte in the highpte
339 * case if the page table is located in highmem.
340 * And let's rather not kmap-atomic the pte, just in case
341 * it's allocated already:
343 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
344 goto out;
346 pte = pte_offset_kernel(pmd, address);
347 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
348 out:
349 printk("\n");
352 #else /* CONFIG_X86_64: */
354 void vmalloc_sync_all(void)
356 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
360 * 64-bit:
362 * Handle a fault on the vmalloc area
364 * This assumes no large pages in there.
366 static noinline int vmalloc_fault(unsigned long address)
368 pgd_t *pgd, *pgd_ref;
369 pud_t *pud, *pud_ref;
370 pmd_t *pmd, *pmd_ref;
371 pte_t *pte, *pte_ref;
373 /* Make sure we are in vmalloc area: */
374 if (!(address >= VMALLOC_START && address < VMALLOC_END))
375 return -1;
377 WARN_ON_ONCE(in_nmi());
380 * Copy kernel mappings over when needed. This can also
381 * happen within a race in page table update. In the later
382 * case just flush:
384 pgd = pgd_offset(current->active_mm, address);
385 pgd_ref = pgd_offset_k(address);
386 if (pgd_none(*pgd_ref))
387 return -1;
389 if (pgd_none(*pgd)) {
390 set_pgd(pgd, *pgd_ref);
391 arch_flush_lazy_mmu_mode();
392 } else {
393 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
397 * Below here mismatches are bugs because these lower tables
398 * are shared:
401 pud = pud_offset(pgd, address);
402 pud_ref = pud_offset(pgd_ref, address);
403 if (pud_none(*pud_ref))
404 return -1;
406 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
407 BUG();
409 pmd = pmd_offset(pud, address);
410 pmd_ref = pmd_offset(pud_ref, address);
411 if (pmd_none(*pmd_ref))
412 return -1;
414 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
415 BUG();
417 pte_ref = pte_offset_kernel(pmd_ref, address);
418 if (!pte_present(*pte_ref))
419 return -1;
421 pte = pte_offset_kernel(pmd, address);
424 * Don't use pte_page here, because the mappings can point
425 * outside mem_map, and the NUMA hash lookup cannot handle
426 * that:
428 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
429 BUG();
431 return 0;
433 NOKPROBE_SYMBOL(vmalloc_fault);
435 #ifdef CONFIG_CPU_SUP_AMD
436 static const char errata93_warning[] =
437 KERN_ERR
438 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
439 "******* Working around it, but it may cause SEGVs or burn power.\n"
440 "******* Please consider a BIOS update.\n"
441 "******* Disabling USB legacy in the BIOS may also help.\n";
442 #endif
445 * No vm86 mode in 64-bit mode:
447 static inline void
448 check_v8086_mode(struct pt_regs *regs, unsigned long address,
449 struct task_struct *tsk)
453 static int bad_address(void *p)
455 unsigned long dummy;
457 return probe_kernel_address((unsigned long *)p, dummy);
460 static void dump_pagetable(unsigned long address)
462 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
463 pgd_t *pgd = base + pgd_index(address);
464 pud_t *pud;
465 pmd_t *pmd;
466 pte_t *pte;
468 if (bad_address(pgd))
469 goto bad;
471 printk("PGD %lx ", pgd_val(*pgd));
473 if (!pgd_present(*pgd))
474 goto out;
476 pud = pud_offset(pgd, address);
477 if (bad_address(pud))
478 goto bad;
480 printk("PUD %lx ", pud_val(*pud));
481 if (!pud_present(*pud) || pud_large(*pud))
482 goto out;
484 pmd = pmd_offset(pud, address);
485 if (bad_address(pmd))
486 goto bad;
488 printk("PMD %lx ", pmd_val(*pmd));
489 if (!pmd_present(*pmd) || pmd_large(*pmd))
490 goto out;
492 pte = pte_offset_kernel(pmd, address);
493 if (bad_address(pte))
494 goto bad;
496 printk("PTE %lx", pte_val(*pte));
497 out:
498 printk("\n");
499 return;
500 bad:
501 printk("BAD\n");
504 #endif /* CONFIG_X86_64 */
507 * Workaround for K8 erratum #93 & buggy BIOS.
509 * BIOS SMM functions are required to use a specific workaround
510 * to avoid corruption of the 64bit RIP register on C stepping K8.
512 * A lot of BIOS that didn't get tested properly miss this.
514 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
515 * Try to work around it here.
517 * Note we only handle faults in kernel here.
518 * Does nothing on 32-bit.
520 static int is_errata93(struct pt_regs *regs, unsigned long address)
522 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
523 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
524 || boot_cpu_data.x86 != 0xf)
525 return 0;
527 if (address != regs->ip)
528 return 0;
530 if ((address >> 32) != 0)
531 return 0;
533 address |= 0xffffffffUL << 32;
534 if ((address >= (u64)_stext && address <= (u64)_etext) ||
535 (address >= MODULES_VADDR && address <= MODULES_END)) {
536 printk_once(errata93_warning);
537 regs->ip = address;
538 return 1;
540 #endif
541 return 0;
545 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
546 * to illegal addresses >4GB.
548 * We catch this in the page fault handler because these addresses
549 * are not reachable. Just detect this case and return. Any code
550 * segment in LDT is compatibility mode.
552 static int is_errata100(struct pt_regs *regs, unsigned long address)
554 #ifdef CONFIG_X86_64
555 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
556 return 1;
557 #endif
558 return 0;
561 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
563 #ifdef CONFIG_X86_F00F_BUG
564 unsigned long nr;
567 * Pentium F0 0F C7 C8 bug workaround:
569 if (boot_cpu_has_bug(X86_BUG_F00F)) {
570 nr = (address - idt_descr.address) >> 3;
572 if (nr == 6) {
573 do_invalid_op(regs, 0);
574 return 1;
577 #endif
578 return 0;
581 static const char nx_warning[] = KERN_CRIT
582 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
583 static const char smep_warning[] = KERN_CRIT
584 "unable to execute userspace code (SMEP?) (uid: %d)\n";
586 static void
587 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
588 unsigned long address)
590 if (!oops_may_print())
591 return;
593 if (error_code & PF_INSTR) {
594 unsigned int level;
595 pgd_t *pgd;
596 pte_t *pte;
598 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
599 pgd += pgd_index(address);
601 pte = lookup_address_in_pgd(pgd, address, &level);
603 if (pte && pte_present(*pte) && !pte_exec(*pte))
604 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
605 if (pte && pte_present(*pte) && pte_exec(*pte) &&
606 (pgd_flags(*pgd) & _PAGE_USER) &&
607 (__read_cr4() & X86_CR4_SMEP))
608 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
611 printk(KERN_ALERT "BUG: unable to handle kernel ");
612 if (address < PAGE_SIZE)
613 printk(KERN_CONT "NULL pointer dereference");
614 else
615 printk(KERN_CONT "paging request");
617 printk(KERN_CONT " at %p\n", (void *) address);
618 printk(KERN_ALERT "IP:");
619 printk_address(regs->ip);
621 dump_pagetable(address);
624 static noinline void
625 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
626 unsigned long address)
628 struct task_struct *tsk;
629 unsigned long flags;
630 int sig;
632 flags = oops_begin();
633 tsk = current;
634 sig = SIGKILL;
636 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
637 tsk->comm, address);
638 dump_pagetable(address);
640 tsk->thread.cr2 = address;
641 tsk->thread.trap_nr = X86_TRAP_PF;
642 tsk->thread.error_code = error_code;
644 if (__die("Bad pagetable", regs, error_code))
645 sig = 0;
647 oops_end(flags, regs, sig);
650 static noinline void
651 no_context(struct pt_regs *regs, unsigned long error_code,
652 unsigned long address, int signal, int si_code)
654 struct task_struct *tsk = current;
655 unsigned long flags;
656 int sig;
658 /* Are we prepared to handle this kernel fault? */
659 if (fixup_exception(regs)) {
661 * Any interrupt that takes a fault gets the fixup. This makes
662 * the below recursive fault logic only apply to a faults from
663 * task context.
665 if (in_interrupt())
666 return;
669 * Per the above we're !in_interrupt(), aka. task context.
671 * In this case we need to make sure we're not recursively
672 * faulting through the emulate_vsyscall() logic.
674 if (current_thread_info()->sig_on_uaccess_error && signal) {
675 tsk->thread.trap_nr = X86_TRAP_PF;
676 tsk->thread.error_code = error_code | PF_USER;
677 tsk->thread.cr2 = address;
679 /* XXX: hwpoison faults will set the wrong code. */
680 force_sig_info_fault(signal, si_code, address, tsk, 0);
684 * Barring that, we can do the fixup and be happy.
686 return;
690 * 32-bit:
692 * Valid to do another page fault here, because if this fault
693 * had been triggered by is_prefetch fixup_exception would have
694 * handled it.
696 * 64-bit:
698 * Hall of shame of CPU/BIOS bugs.
700 if (is_prefetch(regs, error_code, address))
701 return;
703 if (is_errata93(regs, address))
704 return;
707 * Oops. The kernel tried to access some bad page. We'll have to
708 * terminate things with extreme prejudice:
710 flags = oops_begin();
712 show_fault_oops(regs, error_code, address);
714 if (task_stack_end_corrupted(tsk))
715 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
717 tsk->thread.cr2 = address;
718 tsk->thread.trap_nr = X86_TRAP_PF;
719 tsk->thread.error_code = error_code;
721 sig = SIGKILL;
722 if (__die("Oops", regs, error_code))
723 sig = 0;
725 /* Executive summary in case the body of the oops scrolled away */
726 printk(KERN_DEFAULT "CR2: %016lx\n", address);
728 oops_end(flags, regs, sig);
732 * Print out info about fatal segfaults, if the show_unhandled_signals
733 * sysctl is set:
735 static inline void
736 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
737 unsigned long address, struct task_struct *tsk)
739 if (!unhandled_signal(tsk, SIGSEGV))
740 return;
742 if (!printk_ratelimit())
743 return;
745 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
746 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
747 tsk->comm, task_pid_nr(tsk), address,
748 (void *)regs->ip, (void *)regs->sp, error_code);
750 print_vma_addr(KERN_CONT " in ", regs->ip);
752 printk(KERN_CONT "\n");
755 static void
756 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
757 unsigned long address, int si_code)
759 struct task_struct *tsk = current;
761 /* User mode accesses just cause a SIGSEGV */
762 if (error_code & PF_USER) {
764 * It's possible to have interrupts off here:
766 local_irq_enable();
769 * Valid to do another page fault here because this one came
770 * from user space:
772 if (is_prefetch(regs, error_code, address))
773 return;
775 if (is_errata100(regs, address))
776 return;
778 #ifdef CONFIG_X86_64
780 * Instruction fetch faults in the vsyscall page might need
781 * emulation.
783 if (unlikely((error_code & PF_INSTR) &&
784 ((address & ~0xfff) == VSYSCALL_ADDR))) {
785 if (emulate_vsyscall(regs, address))
786 return;
788 #endif
789 /* Kernel addresses are always protection faults: */
790 if (address >= TASK_SIZE)
791 error_code |= PF_PROT;
793 if (likely(show_unhandled_signals))
794 show_signal_msg(regs, error_code, address, tsk);
796 tsk->thread.cr2 = address;
797 tsk->thread.error_code = error_code;
798 tsk->thread.trap_nr = X86_TRAP_PF;
800 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
802 return;
805 if (is_f00f_bug(regs, address))
806 return;
808 no_context(regs, error_code, address, SIGSEGV, si_code);
811 static noinline void
812 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
813 unsigned long address)
815 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
818 static void
819 __bad_area(struct pt_regs *regs, unsigned long error_code,
820 unsigned long address, int si_code)
822 struct mm_struct *mm = current->mm;
825 * Something tried to access memory that isn't in our memory map..
826 * Fix it, but check if it's kernel or user first..
828 up_read(&mm->mmap_sem);
830 __bad_area_nosemaphore(regs, error_code, address, si_code);
833 static noinline void
834 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
836 __bad_area(regs, error_code, address, SEGV_MAPERR);
839 static noinline void
840 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
841 unsigned long address)
843 __bad_area(regs, error_code, address, SEGV_ACCERR);
846 static void
847 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
848 unsigned int fault)
850 struct task_struct *tsk = current;
851 int code = BUS_ADRERR;
853 /* Kernel mode? Handle exceptions or die: */
854 if (!(error_code & PF_USER)) {
855 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
856 return;
859 /* User-space => ok to do another page fault: */
860 if (is_prefetch(regs, error_code, address))
861 return;
863 tsk->thread.cr2 = address;
864 tsk->thread.error_code = error_code;
865 tsk->thread.trap_nr = X86_TRAP_PF;
867 #ifdef CONFIG_MEMORY_FAILURE
868 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
869 printk(KERN_ERR
870 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
871 tsk->comm, tsk->pid, address);
872 code = BUS_MCEERR_AR;
874 #endif
875 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
878 static noinline void
879 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
880 unsigned long address, unsigned int fault)
882 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
883 no_context(regs, error_code, address, 0, 0);
884 return;
887 if (fault & VM_FAULT_OOM) {
888 /* Kernel mode? Handle exceptions or die: */
889 if (!(error_code & PF_USER)) {
890 no_context(regs, error_code, address,
891 SIGSEGV, SEGV_MAPERR);
892 return;
896 * We ran out of memory, call the OOM killer, and return the
897 * userspace (which will retry the fault, or kill us if we got
898 * oom-killed):
900 pagefault_out_of_memory();
901 } else {
902 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
903 VM_FAULT_HWPOISON_LARGE))
904 do_sigbus(regs, error_code, address, fault);
905 else if (fault & VM_FAULT_SIGSEGV)
906 bad_area_nosemaphore(regs, error_code, address);
907 else
908 BUG();
912 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
914 if ((error_code & PF_WRITE) && !pte_write(*pte))
915 return 0;
917 if ((error_code & PF_INSTR) && !pte_exec(*pte))
918 return 0;
920 return 1;
924 * Handle a spurious fault caused by a stale TLB entry.
926 * This allows us to lazily refresh the TLB when increasing the
927 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
928 * eagerly is very expensive since that implies doing a full
929 * cross-processor TLB flush, even if no stale TLB entries exist
930 * on other processors.
932 * Spurious faults may only occur if the TLB contains an entry with
933 * fewer permission than the page table entry. Non-present (P = 0)
934 * and reserved bit (R = 1) faults are never spurious.
936 * There are no security implications to leaving a stale TLB when
937 * increasing the permissions on a page.
939 * Returns non-zero if a spurious fault was handled, zero otherwise.
941 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
942 * (Optional Invalidation).
944 static noinline int
945 spurious_fault(unsigned long error_code, unsigned long address)
947 pgd_t *pgd;
948 pud_t *pud;
949 pmd_t *pmd;
950 pte_t *pte;
951 int ret;
954 * Only writes to RO or instruction fetches from NX may cause
955 * spurious faults.
957 * These could be from user or supervisor accesses but the TLB
958 * is only lazily flushed after a kernel mapping protection
959 * change, so user accesses are not expected to cause spurious
960 * faults.
962 if (error_code != (PF_WRITE | PF_PROT)
963 && error_code != (PF_INSTR | PF_PROT))
964 return 0;
966 pgd = init_mm.pgd + pgd_index(address);
967 if (!pgd_present(*pgd))
968 return 0;
970 pud = pud_offset(pgd, address);
971 if (!pud_present(*pud))
972 return 0;
974 if (pud_large(*pud))
975 return spurious_fault_check(error_code, (pte_t *) pud);
977 pmd = pmd_offset(pud, address);
978 if (!pmd_present(*pmd))
979 return 0;
981 if (pmd_large(*pmd))
982 return spurious_fault_check(error_code, (pte_t *) pmd);
984 pte = pte_offset_kernel(pmd, address);
985 if (!pte_present(*pte))
986 return 0;
988 ret = spurious_fault_check(error_code, pte);
989 if (!ret)
990 return 0;
993 * Make sure we have permissions in PMD.
994 * If not, then there's a bug in the page tables:
996 ret = spurious_fault_check(error_code, (pte_t *) pmd);
997 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
999 return ret;
1001 NOKPROBE_SYMBOL(spurious_fault);
1003 int show_unhandled_signals = 1;
1005 static inline int
1006 access_error(unsigned long error_code, struct vm_area_struct *vma)
1008 if (error_code & PF_WRITE) {
1009 /* write, present and write, not present: */
1010 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1011 return 1;
1012 return 0;
1015 /* read, present: */
1016 if (unlikely(error_code & PF_PROT))
1017 return 1;
1019 /* read, not present: */
1020 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1021 return 1;
1023 return 0;
1026 static int fault_in_kernel_space(unsigned long address)
1028 return address >= TASK_SIZE_MAX;
1031 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1033 if (!IS_ENABLED(CONFIG_X86_SMAP))
1034 return false;
1036 if (!static_cpu_has(X86_FEATURE_SMAP))
1037 return false;
1039 if (error_code & PF_USER)
1040 return false;
1042 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1043 return false;
1045 return true;
1049 * This routine handles page faults. It determines the address,
1050 * and the problem, and then passes it off to one of the appropriate
1051 * routines.
1053 * This function must have noinline because both callers
1054 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1055 * guarantees there's a function trace entry.
1057 static noinline void
1058 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1059 unsigned long address)
1061 struct vm_area_struct *vma;
1062 struct task_struct *tsk;
1063 struct mm_struct *mm;
1064 int fault, major = 0;
1065 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1067 tsk = current;
1068 mm = tsk->mm;
1071 * Detect and handle instructions that would cause a page fault for
1072 * both a tracked kernel page and a userspace page.
1074 if (kmemcheck_active(regs))
1075 kmemcheck_hide(regs);
1076 prefetchw(&mm->mmap_sem);
1078 if (unlikely(kmmio_fault(regs, address)))
1079 return;
1082 * We fault-in kernel-space virtual memory on-demand. The
1083 * 'reference' page table is init_mm.pgd.
1085 * NOTE! We MUST NOT take any locks for this case. We may
1086 * be in an interrupt or a critical region, and should
1087 * only copy the information from the master page table,
1088 * nothing more.
1090 * This verifies that the fault happens in kernel space
1091 * (error_code & 4) == 0, and that the fault was not a
1092 * protection error (error_code & 9) == 0.
1094 if (unlikely(fault_in_kernel_space(address))) {
1095 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1096 if (vmalloc_fault(address) >= 0)
1097 return;
1099 if (kmemcheck_fault(regs, address, error_code))
1100 return;
1103 /* Can handle a stale RO->RW TLB: */
1104 if (spurious_fault(error_code, address))
1105 return;
1107 /* kprobes don't want to hook the spurious faults: */
1108 if (kprobes_fault(regs))
1109 return;
1111 * Don't take the mm semaphore here. If we fixup a prefetch
1112 * fault we could otherwise deadlock:
1114 bad_area_nosemaphore(regs, error_code, address);
1116 return;
1119 /* kprobes don't want to hook the spurious faults: */
1120 if (unlikely(kprobes_fault(regs)))
1121 return;
1123 if (unlikely(error_code & PF_RSVD))
1124 pgtable_bad(regs, error_code, address);
1126 if (unlikely(smap_violation(error_code, regs))) {
1127 bad_area_nosemaphore(regs, error_code, address);
1128 return;
1132 * If we're in an interrupt, have no user context or are running
1133 * in a region with pagefaults disabled then we must not take the fault
1135 if (unlikely(faulthandler_disabled() || !mm)) {
1136 bad_area_nosemaphore(regs, error_code, address);
1137 return;
1141 * It's safe to allow irq's after cr2 has been saved and the
1142 * vmalloc fault has been handled.
1144 * User-mode registers count as a user access even for any
1145 * potential system fault or CPU buglet:
1147 if (user_mode(regs)) {
1148 local_irq_enable();
1149 error_code |= PF_USER;
1150 flags |= FAULT_FLAG_USER;
1151 } else {
1152 if (regs->flags & X86_EFLAGS_IF)
1153 local_irq_enable();
1156 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1158 if (error_code & PF_WRITE)
1159 flags |= FAULT_FLAG_WRITE;
1162 * When running in the kernel we expect faults to occur only to
1163 * addresses in user space. All other faults represent errors in
1164 * the kernel and should generate an OOPS. Unfortunately, in the
1165 * case of an erroneous fault occurring in a code path which already
1166 * holds mmap_sem we will deadlock attempting to validate the fault
1167 * against the address space. Luckily the kernel only validly
1168 * references user space from well defined areas of code, which are
1169 * listed in the exceptions table.
1171 * As the vast majority of faults will be valid we will only perform
1172 * the source reference check when there is a possibility of a
1173 * deadlock. Attempt to lock the address space, if we cannot we then
1174 * validate the source. If this is invalid we can skip the address
1175 * space check, thus avoiding the deadlock:
1177 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1178 if ((error_code & PF_USER) == 0 &&
1179 !search_exception_tables(regs->ip)) {
1180 bad_area_nosemaphore(regs, error_code, address);
1181 return;
1183 retry:
1184 down_read(&mm->mmap_sem);
1185 } else {
1187 * The above down_read_trylock() might have succeeded in
1188 * which case we'll have missed the might_sleep() from
1189 * down_read():
1191 might_sleep();
1194 vma = find_vma(mm, address);
1195 if (unlikely(!vma)) {
1196 bad_area(regs, error_code, address);
1197 return;
1199 if (likely(vma->vm_start <= address))
1200 goto good_area;
1201 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1202 bad_area(regs, error_code, address);
1203 return;
1205 if (error_code & PF_USER) {
1207 * Accessing the stack below %sp is always a bug.
1208 * The large cushion allows instructions like enter
1209 * and pusha to work. ("enter $65535, $31" pushes
1210 * 32 pointers and then decrements %sp by 65535.)
1212 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1213 bad_area(regs, error_code, address);
1214 return;
1217 if (unlikely(expand_stack(vma, address))) {
1218 bad_area(regs, error_code, address);
1219 return;
1223 * Ok, we have a good vm_area for this memory access, so
1224 * we can handle it..
1226 good_area:
1227 if (unlikely(access_error(error_code, vma))) {
1228 bad_area_access_error(regs, error_code, address);
1229 return;
1233 * If for any reason at all we couldn't handle the fault,
1234 * make sure we exit gracefully rather than endlessly redo
1235 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1236 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1238 fault = handle_mm_fault(mm, vma, address, flags);
1239 major |= fault & VM_FAULT_MAJOR;
1242 * If we need to retry the mmap_sem has already been released,
1243 * and if there is a fatal signal pending there is no guarantee
1244 * that we made any progress. Handle this case first.
1246 if (unlikely(fault & VM_FAULT_RETRY)) {
1247 /* Retry at most once */
1248 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1249 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1250 flags |= FAULT_FLAG_TRIED;
1251 if (!fatal_signal_pending(tsk))
1252 goto retry;
1255 /* User mode? Just return to handle the fatal exception */
1256 if (flags & FAULT_FLAG_USER)
1257 return;
1259 /* Not returning to user mode? Handle exceptions or die: */
1260 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1261 return;
1264 up_read(&mm->mmap_sem);
1265 if (unlikely(fault & VM_FAULT_ERROR)) {
1266 mm_fault_error(regs, error_code, address, fault);
1267 return;
1271 * Major/minor page fault accounting. If any of the events
1272 * returned VM_FAULT_MAJOR, we account it as a major fault.
1274 if (major) {
1275 tsk->maj_flt++;
1276 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1277 } else {
1278 tsk->min_flt++;
1279 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1282 check_v8086_mode(regs, address, tsk);
1284 NOKPROBE_SYMBOL(__do_page_fault);
1286 dotraplinkage void notrace
1287 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1289 unsigned long address = read_cr2(); /* Get the faulting address */
1290 enum ctx_state prev_state;
1293 * We must have this function tagged with __kprobes, notrace and call
1294 * read_cr2() before calling anything else. To avoid calling any kind
1295 * of tracing machinery before we've observed the CR2 value.
1297 * exception_{enter,exit}() contain all sorts of tracepoints.
1300 prev_state = exception_enter();
1301 __do_page_fault(regs, error_code, address);
1302 exception_exit(prev_state);
1304 NOKPROBE_SYMBOL(do_page_fault);
1306 #ifdef CONFIG_TRACING
1307 static nokprobe_inline void
1308 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1309 unsigned long error_code)
1311 if (user_mode(regs))
1312 trace_page_fault_user(address, regs, error_code);
1313 else
1314 trace_page_fault_kernel(address, regs, error_code);
1317 dotraplinkage void notrace
1318 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1321 * The exception_enter and tracepoint processing could
1322 * trigger another page faults (user space callchain
1323 * reading) and destroy the original cr2 value, so read
1324 * the faulting address now.
1326 unsigned long address = read_cr2();
1327 enum ctx_state prev_state;
1329 prev_state = exception_enter();
1330 trace_page_fault_entries(address, regs, error_code);
1331 __do_page_fault(regs, error_code, address);
1332 exception_exit(prev_state);
1334 NOKPROBE_SYMBOL(trace_do_page_fault);
1335 #endif /* CONFIG_TRACING */