irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / arch / x86 / mm / tlb.c
blob8ddb5d0d66fb6f6353e735760489a47a0b98dea7
1 #include <linux/init.h>
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/module.h>
8 #include <linux/cpu.h>
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
18 * Smarter SMP flushing macros.
19 * c/o Linus Torvalds.
21 * These mean you can really definitely utterly forget about
22 * writing to user space from interrupts. (Its not allowed anyway).
24 * Optimizations Manfred Spraul <manfred@colorfullife.com>
26 * More scalable flush, from Andi Kleen
28 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
31 struct flush_tlb_info {
32 struct mm_struct *flush_mm;
33 unsigned long flush_start;
34 unsigned long flush_end;
38 * We cannot call mmdrop() because we are in interrupt context,
39 * instead update mm->cpu_vm_mask.
41 void leave_mm(int cpu)
43 struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
44 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
45 BUG();
46 if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
47 cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
48 load_cr3(swapper_pg_dir);
50 * This gets called in the idle path where RCU
51 * functions differently. Tracing normally
52 * uses RCU, so we have to call the tracepoint
53 * specially here.
55 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
58 EXPORT_SYMBOL_GPL(leave_mm);
61 * The flush IPI assumes that a thread switch happens in this order:
62 * [cpu0: the cpu that switches]
63 * 1) switch_mm() either 1a) or 1b)
64 * 1a) thread switch to a different mm
65 * 1a1) set cpu_tlbstate to TLBSTATE_OK
66 * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
67 * if cpu0 was in lazy tlb mode.
68 * 1a2) update cpu active_mm
69 * Now cpu0 accepts tlb flushes for the new mm.
70 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
71 * Now the other cpus will send tlb flush ipis.
72 * 1a4) change cr3.
73 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
74 * Stop ipi delivery for the old mm. This is not synchronized with
75 * the other cpus, but flush_tlb_func ignore flush ipis for the wrong
76 * mm, and in the worst case we perform a superfluous tlb flush.
77 * 1b) thread switch without mm change
78 * cpu active_mm is correct, cpu0 already handles flush ipis.
79 * 1b1) set cpu_tlbstate to TLBSTATE_OK
80 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
81 * Atomically set the bit [other cpus will start sending flush ipis],
82 * and test the bit.
83 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
84 * 2) switch %%esp, ie current
86 * The interrupt must handle 2 special cases:
87 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
88 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
89 * runs in kernel space, the cpu could load tlb entries for user space
90 * pages.
92 * The good news is that cpu_tlbstate is local to each cpu, no
93 * write/read ordering problems.
97 * TLB flush funcation:
98 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
99 * 2) Leave the mm if we are in the lazy tlb mode.
101 static void flush_tlb_func(void *info)
103 struct flush_tlb_info *f = info;
105 inc_irq_stat(irq_tlb_count);
107 if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
108 return;
109 if (!f->flush_end)
110 f->flush_end = f->flush_start + PAGE_SIZE;
112 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
113 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
114 if (f->flush_end == TLB_FLUSH_ALL) {
115 local_flush_tlb();
116 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
117 } else {
118 unsigned long addr;
119 unsigned long nr_pages =
120 (f->flush_end - f->flush_start) / PAGE_SIZE;
121 addr = f->flush_start;
122 while (addr < f->flush_end) {
123 __flush_tlb_single(addr);
124 addr += PAGE_SIZE;
126 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
128 } else
129 leave_mm(smp_processor_id());
133 void native_flush_tlb_others(const struct cpumask *cpumask,
134 struct mm_struct *mm, unsigned long start,
135 unsigned long end)
137 struct flush_tlb_info info;
138 info.flush_mm = mm;
139 info.flush_start = start;
140 info.flush_end = end;
142 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
143 trace_tlb_flush(TLB_REMOTE_SEND_IPI, end - start);
144 if (is_uv_system()) {
145 unsigned int cpu;
147 cpu = smp_processor_id();
148 cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
149 if (cpumask)
150 smp_call_function_many(cpumask, flush_tlb_func,
151 &info, 1);
152 return;
154 smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
157 void flush_tlb_current_task(void)
159 struct mm_struct *mm = current->mm;
161 preempt_disable();
163 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
164 local_flush_tlb();
165 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
166 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
167 flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
168 preempt_enable();
172 * See Documentation/x86/tlb.txt for details. We choose 33
173 * because it is large enough to cover the vast majority (at
174 * least 95%) of allocations, and is small enough that we are
175 * confident it will not cause too much overhead. Each single
176 * flush is about 100 ns, so this caps the maximum overhead at
177 * _about_ 3,000 ns.
179 * This is in units of pages.
181 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
183 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
184 unsigned long end, unsigned long vmflag)
186 unsigned long addr;
187 /* do a global flush by default */
188 unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
190 preempt_disable();
191 if (current->active_mm != mm)
192 goto out;
194 if (!current->mm) {
195 leave_mm(smp_processor_id());
196 goto out;
199 if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
200 base_pages_to_flush = (end - start) >> PAGE_SHIFT;
202 if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
203 base_pages_to_flush = TLB_FLUSH_ALL;
204 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
205 local_flush_tlb();
206 } else {
207 /* flush range by one by one 'invlpg' */
208 for (addr = start; addr < end; addr += PAGE_SIZE) {
209 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
210 __flush_tlb_single(addr);
213 trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
214 out:
215 if (base_pages_to_flush == TLB_FLUSH_ALL) {
216 start = 0UL;
217 end = TLB_FLUSH_ALL;
219 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
220 flush_tlb_others(mm_cpumask(mm), mm, start, end);
221 preempt_enable();
224 void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
226 struct mm_struct *mm = vma->vm_mm;
228 preempt_disable();
230 if (current->active_mm == mm) {
231 if (current->mm)
232 __flush_tlb_one(start);
233 else
234 leave_mm(smp_processor_id());
237 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
238 flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
240 preempt_enable();
243 static void do_flush_tlb_all(void *info)
245 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
246 __flush_tlb_all();
247 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
248 leave_mm(smp_processor_id());
251 void flush_tlb_all(void)
253 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
254 on_each_cpu(do_flush_tlb_all, NULL, 1);
257 static void do_kernel_range_flush(void *info)
259 struct flush_tlb_info *f = info;
260 unsigned long addr;
262 /* flush range by one by one 'invlpg' */
263 for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
264 __flush_tlb_single(addr);
267 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
270 /* Balance as user space task's flush, a bit conservative */
271 if (end == TLB_FLUSH_ALL ||
272 (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
273 on_each_cpu(do_flush_tlb_all, NULL, 1);
274 } else {
275 struct flush_tlb_info info;
276 info.flush_start = start;
277 info.flush_end = end;
278 on_each_cpu(do_kernel_range_flush, &info, 1);
282 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
283 size_t count, loff_t *ppos)
285 char buf[32];
286 unsigned int len;
288 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
289 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
292 static ssize_t tlbflush_write_file(struct file *file,
293 const char __user *user_buf, size_t count, loff_t *ppos)
295 char buf[32];
296 ssize_t len;
297 int ceiling;
299 len = min(count, sizeof(buf) - 1);
300 if (copy_from_user(buf, user_buf, len))
301 return -EFAULT;
303 buf[len] = '\0';
304 if (kstrtoint(buf, 0, &ceiling))
305 return -EINVAL;
307 if (ceiling < 0)
308 return -EINVAL;
310 tlb_single_page_flush_ceiling = ceiling;
311 return count;
314 static const struct file_operations fops_tlbflush = {
315 .read = tlbflush_read_file,
316 .write = tlbflush_write_file,
317 .llseek = default_llseek,
320 static int __init create_tlb_single_page_flush_ceiling(void)
322 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
323 arch_debugfs_dir, NULL, &fops_tlbflush);
324 return 0;
326 late_initcall(create_tlb_single_page_flush_ceiling);