2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
23 #include "transaction.h"
26 #define BTRFS_DELAYED_WRITEBACK 512
27 #define BTRFS_DELAYED_BACKGROUND 128
28 #define BTRFS_DELAYED_BATCH 16
30 static struct kmem_cache
*delayed_node_cache
;
32 int __init
btrfs_delayed_inode_init(void)
34 delayed_node_cache
= kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node
),
37 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
39 if (!delayed_node_cache
)
44 void btrfs_delayed_inode_exit(void)
46 if (delayed_node_cache
)
47 kmem_cache_destroy(delayed_node_cache
);
50 static inline void btrfs_init_delayed_node(
51 struct btrfs_delayed_node
*delayed_node
,
52 struct btrfs_root
*root
, u64 inode_id
)
54 delayed_node
->root
= root
;
55 delayed_node
->inode_id
= inode_id
;
56 atomic_set(&delayed_node
->refs
, 0);
57 delayed_node
->count
= 0;
58 delayed_node
->flags
= 0;
59 delayed_node
->ins_root
= RB_ROOT
;
60 delayed_node
->del_root
= RB_ROOT
;
61 mutex_init(&delayed_node
->mutex
);
62 delayed_node
->index_cnt
= 0;
63 INIT_LIST_HEAD(&delayed_node
->n_list
);
64 INIT_LIST_HEAD(&delayed_node
->p_list
);
65 delayed_node
->bytes_reserved
= 0;
66 memset(&delayed_node
->inode_item
, 0, sizeof(delayed_node
->inode_item
));
69 static inline int btrfs_is_continuous_delayed_item(
70 struct btrfs_delayed_item
*item1
,
71 struct btrfs_delayed_item
*item2
)
73 if (item1
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
74 item1
->key
.objectid
== item2
->key
.objectid
&&
75 item1
->key
.type
== item2
->key
.type
&&
76 item1
->key
.offset
+ 1 == item2
->key
.offset
)
81 static inline struct btrfs_delayed_root
*btrfs_get_delayed_root(
82 struct btrfs_root
*root
)
84 return root
->fs_info
->delayed_root
;
87 static struct btrfs_delayed_node
*btrfs_get_delayed_node(struct inode
*inode
)
89 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
90 struct btrfs_root
*root
= btrfs_inode
->root
;
91 u64 ino
= btrfs_ino(inode
);
92 struct btrfs_delayed_node
*node
;
94 node
= ACCESS_ONCE(btrfs_inode
->delayed_node
);
96 atomic_inc(&node
->refs
);
100 spin_lock(&root
->inode_lock
);
101 node
= radix_tree_lookup(&root
->delayed_nodes_tree
, ino
);
103 if (btrfs_inode
->delayed_node
) {
104 atomic_inc(&node
->refs
); /* can be accessed */
105 BUG_ON(btrfs_inode
->delayed_node
!= node
);
106 spin_unlock(&root
->inode_lock
);
109 btrfs_inode
->delayed_node
= node
;
110 /* can be accessed and cached in the inode */
111 atomic_add(2, &node
->refs
);
112 spin_unlock(&root
->inode_lock
);
115 spin_unlock(&root
->inode_lock
);
120 /* Will return either the node or PTR_ERR(-ENOMEM) */
121 static struct btrfs_delayed_node
*btrfs_get_or_create_delayed_node(
124 struct btrfs_delayed_node
*node
;
125 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
126 struct btrfs_root
*root
= btrfs_inode
->root
;
127 u64 ino
= btrfs_ino(inode
);
131 node
= btrfs_get_delayed_node(inode
);
135 node
= kmem_cache_alloc(delayed_node_cache
, GFP_NOFS
);
137 return ERR_PTR(-ENOMEM
);
138 btrfs_init_delayed_node(node
, root
, ino
);
140 /* cached in the btrfs inode and can be accessed */
141 atomic_add(2, &node
->refs
);
143 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
145 kmem_cache_free(delayed_node_cache
, node
);
149 spin_lock(&root
->inode_lock
);
150 ret
= radix_tree_insert(&root
->delayed_nodes_tree
, ino
, node
);
151 if (ret
== -EEXIST
) {
152 spin_unlock(&root
->inode_lock
);
153 kmem_cache_free(delayed_node_cache
, node
);
154 radix_tree_preload_end();
157 btrfs_inode
->delayed_node
= node
;
158 spin_unlock(&root
->inode_lock
);
159 radix_tree_preload_end();
165 * Call it when holding delayed_node->mutex
167 * If mod = 1, add this node into the prepared list.
169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root
*root
,
170 struct btrfs_delayed_node
*node
,
173 spin_lock(&root
->lock
);
174 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
175 if (!list_empty(&node
->p_list
))
176 list_move_tail(&node
->p_list
, &root
->prepare_list
);
178 list_add_tail(&node
->p_list
, &root
->prepare_list
);
180 list_add_tail(&node
->n_list
, &root
->node_list
);
181 list_add_tail(&node
->p_list
, &root
->prepare_list
);
182 atomic_inc(&node
->refs
); /* inserted into list */
184 set_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
);
186 spin_unlock(&root
->lock
);
189 /* Call it when holding delayed_node->mutex */
190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root
*root
,
191 struct btrfs_delayed_node
*node
)
193 spin_lock(&root
->lock
);
194 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
196 atomic_dec(&node
->refs
); /* not in the list */
197 list_del_init(&node
->n_list
);
198 if (!list_empty(&node
->p_list
))
199 list_del_init(&node
->p_list
);
200 clear_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
);
202 spin_unlock(&root
->lock
);
205 static struct btrfs_delayed_node
*btrfs_first_delayed_node(
206 struct btrfs_delayed_root
*delayed_root
)
209 struct btrfs_delayed_node
*node
= NULL
;
211 spin_lock(&delayed_root
->lock
);
212 if (list_empty(&delayed_root
->node_list
))
215 p
= delayed_root
->node_list
.next
;
216 node
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
217 atomic_inc(&node
->refs
);
219 spin_unlock(&delayed_root
->lock
);
224 static struct btrfs_delayed_node
*btrfs_next_delayed_node(
225 struct btrfs_delayed_node
*node
)
227 struct btrfs_delayed_root
*delayed_root
;
229 struct btrfs_delayed_node
*next
= NULL
;
231 delayed_root
= node
->root
->fs_info
->delayed_root
;
232 spin_lock(&delayed_root
->lock
);
233 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
234 /* not in the list */
235 if (list_empty(&delayed_root
->node_list
))
237 p
= delayed_root
->node_list
.next
;
238 } else if (list_is_last(&node
->n_list
, &delayed_root
->node_list
))
241 p
= node
->n_list
.next
;
243 next
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
244 atomic_inc(&next
->refs
);
246 spin_unlock(&delayed_root
->lock
);
251 static void __btrfs_release_delayed_node(
252 struct btrfs_delayed_node
*delayed_node
,
255 struct btrfs_delayed_root
*delayed_root
;
260 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
262 mutex_lock(&delayed_node
->mutex
);
263 if (delayed_node
->count
)
264 btrfs_queue_delayed_node(delayed_root
, delayed_node
, mod
);
266 btrfs_dequeue_delayed_node(delayed_root
, delayed_node
);
267 mutex_unlock(&delayed_node
->mutex
);
269 if (atomic_dec_and_test(&delayed_node
->refs
)) {
271 struct btrfs_root
*root
= delayed_node
->root
;
272 spin_lock(&root
->inode_lock
);
273 if (atomic_read(&delayed_node
->refs
) == 0) {
274 radix_tree_delete(&root
->delayed_nodes_tree
,
275 delayed_node
->inode_id
);
278 spin_unlock(&root
->inode_lock
);
280 kmem_cache_free(delayed_node_cache
, delayed_node
);
284 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node
*node
)
286 __btrfs_release_delayed_node(node
, 0);
289 static struct btrfs_delayed_node
*btrfs_first_prepared_delayed_node(
290 struct btrfs_delayed_root
*delayed_root
)
293 struct btrfs_delayed_node
*node
= NULL
;
295 spin_lock(&delayed_root
->lock
);
296 if (list_empty(&delayed_root
->prepare_list
))
299 p
= delayed_root
->prepare_list
.next
;
301 node
= list_entry(p
, struct btrfs_delayed_node
, p_list
);
302 atomic_inc(&node
->refs
);
304 spin_unlock(&delayed_root
->lock
);
309 static inline void btrfs_release_prepared_delayed_node(
310 struct btrfs_delayed_node
*node
)
312 __btrfs_release_delayed_node(node
, 1);
315 static struct btrfs_delayed_item
*btrfs_alloc_delayed_item(u32 data_len
)
317 struct btrfs_delayed_item
*item
;
318 item
= kmalloc(sizeof(*item
) + data_len
, GFP_NOFS
);
320 item
->data_len
= data_len
;
321 item
->ins_or_del
= 0;
322 item
->bytes_reserved
= 0;
323 item
->delayed_node
= NULL
;
324 atomic_set(&item
->refs
, 1);
330 * __btrfs_lookup_delayed_item - look up the delayed item by key
331 * @delayed_node: pointer to the delayed node
332 * @key: the key to look up
333 * @prev: used to store the prev item if the right item isn't found
334 * @next: used to store the next item if the right item isn't found
336 * Note: if we don't find the right item, we will return the prev item and
339 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_item(
340 struct rb_root
*root
,
341 struct btrfs_key
*key
,
342 struct btrfs_delayed_item
**prev
,
343 struct btrfs_delayed_item
**next
)
345 struct rb_node
*node
, *prev_node
= NULL
;
346 struct btrfs_delayed_item
*delayed_item
= NULL
;
349 node
= root
->rb_node
;
352 delayed_item
= rb_entry(node
, struct btrfs_delayed_item
,
355 ret
= btrfs_comp_cpu_keys(&delayed_item
->key
, key
);
357 node
= node
->rb_right
;
359 node
= node
->rb_left
;
368 *prev
= delayed_item
;
369 else if ((node
= rb_prev(prev_node
)) != NULL
) {
370 *prev
= rb_entry(node
, struct btrfs_delayed_item
,
380 *next
= delayed_item
;
381 else if ((node
= rb_next(prev_node
)) != NULL
) {
382 *next
= rb_entry(node
, struct btrfs_delayed_item
,
390 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_insertion_item(
391 struct btrfs_delayed_node
*delayed_node
,
392 struct btrfs_key
*key
)
394 struct btrfs_delayed_item
*item
;
396 item
= __btrfs_lookup_delayed_item(&delayed_node
->ins_root
, key
,
401 static int __btrfs_add_delayed_item(struct btrfs_delayed_node
*delayed_node
,
402 struct btrfs_delayed_item
*ins
,
405 struct rb_node
**p
, *node
;
406 struct rb_node
*parent_node
= NULL
;
407 struct rb_root
*root
;
408 struct btrfs_delayed_item
*item
;
411 if (action
== BTRFS_DELAYED_INSERTION_ITEM
)
412 root
= &delayed_node
->ins_root
;
413 else if (action
== BTRFS_DELAYED_DELETION_ITEM
)
414 root
= &delayed_node
->del_root
;
418 node
= &ins
->rb_node
;
422 item
= rb_entry(parent_node
, struct btrfs_delayed_item
,
425 cmp
= btrfs_comp_cpu_keys(&item
->key
, &ins
->key
);
434 rb_link_node(node
, parent_node
, p
);
435 rb_insert_color(node
, root
);
436 ins
->delayed_node
= delayed_node
;
437 ins
->ins_or_del
= action
;
439 if (ins
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
440 action
== BTRFS_DELAYED_INSERTION_ITEM
&&
441 ins
->key
.offset
>= delayed_node
->index_cnt
)
442 delayed_node
->index_cnt
= ins
->key
.offset
+ 1;
444 delayed_node
->count
++;
445 atomic_inc(&delayed_node
->root
->fs_info
->delayed_root
->items
);
449 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node
*node
,
450 struct btrfs_delayed_item
*item
)
452 return __btrfs_add_delayed_item(node
, item
,
453 BTRFS_DELAYED_INSERTION_ITEM
);
456 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node
*node
,
457 struct btrfs_delayed_item
*item
)
459 return __btrfs_add_delayed_item(node
, item
,
460 BTRFS_DELAYED_DELETION_ITEM
);
463 static void finish_one_item(struct btrfs_delayed_root
*delayed_root
)
465 int seq
= atomic_inc_return(&delayed_root
->items_seq
);
468 * atomic_dec_return implies a barrier for waitqueue_active
470 if ((atomic_dec_return(&delayed_root
->items
) <
471 BTRFS_DELAYED_BACKGROUND
|| seq
% BTRFS_DELAYED_BATCH
== 0) &&
472 waitqueue_active(&delayed_root
->wait
))
473 wake_up(&delayed_root
->wait
);
476 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item
*delayed_item
)
478 struct rb_root
*root
;
479 struct btrfs_delayed_root
*delayed_root
;
481 delayed_root
= delayed_item
->delayed_node
->root
->fs_info
->delayed_root
;
483 BUG_ON(!delayed_root
);
484 BUG_ON(delayed_item
->ins_or_del
!= BTRFS_DELAYED_DELETION_ITEM
&&
485 delayed_item
->ins_or_del
!= BTRFS_DELAYED_INSERTION_ITEM
);
487 if (delayed_item
->ins_or_del
== BTRFS_DELAYED_INSERTION_ITEM
)
488 root
= &delayed_item
->delayed_node
->ins_root
;
490 root
= &delayed_item
->delayed_node
->del_root
;
492 rb_erase(&delayed_item
->rb_node
, root
);
493 delayed_item
->delayed_node
->count
--;
495 finish_one_item(delayed_root
);
498 static void btrfs_release_delayed_item(struct btrfs_delayed_item
*item
)
501 __btrfs_remove_delayed_item(item
);
502 if (atomic_dec_and_test(&item
->refs
))
507 static struct btrfs_delayed_item
*__btrfs_first_delayed_insertion_item(
508 struct btrfs_delayed_node
*delayed_node
)
511 struct btrfs_delayed_item
*item
= NULL
;
513 p
= rb_first(&delayed_node
->ins_root
);
515 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
520 static struct btrfs_delayed_item
*__btrfs_first_delayed_deletion_item(
521 struct btrfs_delayed_node
*delayed_node
)
524 struct btrfs_delayed_item
*item
= NULL
;
526 p
= rb_first(&delayed_node
->del_root
);
528 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
533 static struct btrfs_delayed_item
*__btrfs_next_delayed_item(
534 struct btrfs_delayed_item
*item
)
537 struct btrfs_delayed_item
*next
= NULL
;
539 p
= rb_next(&item
->rb_node
);
541 next
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
546 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle
*trans
,
547 struct btrfs_root
*root
,
548 struct btrfs_delayed_item
*item
)
550 struct btrfs_block_rsv
*src_rsv
;
551 struct btrfs_block_rsv
*dst_rsv
;
555 if (!trans
->bytes_reserved
)
558 src_rsv
= trans
->block_rsv
;
559 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
561 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
562 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
564 trace_btrfs_space_reservation(root
->fs_info
, "delayed_item",
567 item
->bytes_reserved
= num_bytes
;
573 static void btrfs_delayed_item_release_metadata(struct btrfs_root
*root
,
574 struct btrfs_delayed_item
*item
)
576 struct btrfs_block_rsv
*rsv
;
578 if (!item
->bytes_reserved
)
581 rsv
= &root
->fs_info
->delayed_block_rsv
;
582 trace_btrfs_space_reservation(root
->fs_info
, "delayed_item",
583 item
->key
.objectid
, item
->bytes_reserved
,
585 btrfs_block_rsv_release(root
, rsv
,
586 item
->bytes_reserved
);
589 static int btrfs_delayed_inode_reserve_metadata(
590 struct btrfs_trans_handle
*trans
,
591 struct btrfs_root
*root
,
593 struct btrfs_delayed_node
*node
)
595 struct btrfs_block_rsv
*src_rsv
;
596 struct btrfs_block_rsv
*dst_rsv
;
599 bool release
= false;
601 src_rsv
= trans
->block_rsv
;
602 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
604 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
607 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
608 * which doesn't reserve space for speed. This is a problem since we
609 * still need to reserve space for this update, so try to reserve the
612 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
613 * we're accounted for.
615 if (!src_rsv
|| (!trans
->bytes_reserved
&&
616 src_rsv
->type
!= BTRFS_BLOCK_RSV_DELALLOC
)) {
617 ret
= btrfs_block_rsv_add(root
, dst_rsv
, num_bytes
,
618 BTRFS_RESERVE_NO_FLUSH
);
620 * Since we're under a transaction reserve_metadata_bytes could
621 * try to commit the transaction which will make it return
622 * EAGAIN to make us stop the transaction we have, so return
623 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
628 node
->bytes_reserved
= num_bytes
;
629 trace_btrfs_space_reservation(root
->fs_info
,
635 } else if (src_rsv
->type
== BTRFS_BLOCK_RSV_DELALLOC
) {
636 spin_lock(&BTRFS_I(inode
)->lock
);
637 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
638 &BTRFS_I(inode
)->runtime_flags
)) {
639 spin_unlock(&BTRFS_I(inode
)->lock
);
643 spin_unlock(&BTRFS_I(inode
)->lock
);
645 /* Ok we didn't have space pre-reserved. This shouldn't happen
646 * too often but it can happen if we do delalloc to an existing
647 * inode which gets dirtied because of the time update, and then
648 * isn't touched again until after the transaction commits and
649 * then we try to write out the data. First try to be nice and
650 * reserve something strictly for us. If not be a pain and try
651 * to steal from the delalloc block rsv.
653 ret
= btrfs_block_rsv_add(root
, dst_rsv
, num_bytes
,
654 BTRFS_RESERVE_NO_FLUSH
);
658 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
663 * Ok this is a problem, let's just steal from the global rsv
664 * since this really shouldn't happen that often.
666 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->global_block_rsv
,
672 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
676 * Migrate only takes a reservation, it doesn't touch the size of the
677 * block_rsv. This is to simplify people who don't normally have things
678 * migrated from their block rsv. If they go to release their
679 * reservation, that will decrease the size as well, so if migrate
680 * reduced size we'd end up with a negative size. But for the
681 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
682 * but we could in fact do this reserve/migrate dance several times
683 * between the time we did the original reservation and we'd clean it
684 * up. So to take care of this, release the space for the meta
685 * reservation here. I think it may be time for a documentation page on
686 * how block rsvs. work.
689 trace_btrfs_space_reservation(root
->fs_info
, "delayed_inode",
690 btrfs_ino(inode
), num_bytes
, 1);
691 node
->bytes_reserved
= num_bytes
;
695 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
696 btrfs_ino(inode
), num_bytes
, 0);
697 btrfs_block_rsv_release(root
, src_rsv
, num_bytes
);
703 static void btrfs_delayed_inode_release_metadata(struct btrfs_root
*root
,
704 struct btrfs_delayed_node
*node
)
706 struct btrfs_block_rsv
*rsv
;
708 if (!node
->bytes_reserved
)
711 rsv
= &root
->fs_info
->delayed_block_rsv
;
712 trace_btrfs_space_reservation(root
->fs_info
, "delayed_inode",
713 node
->inode_id
, node
->bytes_reserved
, 0);
714 btrfs_block_rsv_release(root
, rsv
,
715 node
->bytes_reserved
);
716 node
->bytes_reserved
= 0;
720 * This helper will insert some continuous items into the same leaf according
721 * to the free space of the leaf.
723 static int btrfs_batch_insert_items(struct btrfs_root
*root
,
724 struct btrfs_path
*path
,
725 struct btrfs_delayed_item
*item
)
727 struct btrfs_delayed_item
*curr
, *next
;
729 int total_data_size
= 0, total_size
= 0;
730 struct extent_buffer
*leaf
;
732 struct btrfs_key
*keys
;
734 struct list_head head
;
740 BUG_ON(!path
->nodes
[0]);
742 leaf
= path
->nodes
[0];
743 free_space
= btrfs_leaf_free_space(root
, leaf
);
744 INIT_LIST_HEAD(&head
);
750 * count the number of the continuous items that we can insert in batch
752 while (total_size
+ next
->data_len
+ sizeof(struct btrfs_item
) <=
754 total_data_size
+= next
->data_len
;
755 total_size
+= next
->data_len
+ sizeof(struct btrfs_item
);
756 list_add_tail(&next
->tree_list
, &head
);
760 next
= __btrfs_next_delayed_item(curr
);
764 if (!btrfs_is_continuous_delayed_item(curr
, next
))
774 * we need allocate some memory space, but it might cause the task
775 * to sleep, so we set all locked nodes in the path to blocking locks
778 btrfs_set_path_blocking(path
);
780 keys
= kmalloc_array(nitems
, sizeof(struct btrfs_key
), GFP_NOFS
);
786 data_size
= kmalloc_array(nitems
, sizeof(u32
), GFP_NOFS
);
792 /* get keys of all the delayed items */
794 list_for_each_entry(next
, &head
, tree_list
) {
796 data_size
[i
] = next
->data_len
;
800 /* reset all the locked nodes in the patch to spinning locks. */
801 btrfs_clear_path_blocking(path
, NULL
, 0);
803 /* insert the keys of the items */
804 setup_items_for_insert(root
, path
, keys
, data_size
,
805 total_data_size
, total_size
, nitems
);
807 /* insert the dir index items */
808 slot
= path
->slots
[0];
809 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
810 data_ptr
= btrfs_item_ptr(leaf
, slot
, char);
811 write_extent_buffer(leaf
, &curr
->data
,
812 (unsigned long)data_ptr
,
816 btrfs_delayed_item_release_metadata(root
, curr
);
818 list_del(&curr
->tree_list
);
819 btrfs_release_delayed_item(curr
);
830 * This helper can just do simple insertion that needn't extend item for new
831 * data, such as directory name index insertion, inode insertion.
833 static int btrfs_insert_delayed_item(struct btrfs_trans_handle
*trans
,
834 struct btrfs_root
*root
,
835 struct btrfs_path
*path
,
836 struct btrfs_delayed_item
*delayed_item
)
838 struct extent_buffer
*leaf
;
842 ret
= btrfs_insert_empty_item(trans
, root
, path
, &delayed_item
->key
,
843 delayed_item
->data_len
);
844 if (ret
< 0 && ret
!= -EEXIST
)
847 leaf
= path
->nodes
[0];
849 ptr
= btrfs_item_ptr(leaf
, path
->slots
[0], char);
851 write_extent_buffer(leaf
, delayed_item
->data
, (unsigned long)ptr
,
852 delayed_item
->data_len
);
853 btrfs_mark_buffer_dirty(leaf
);
855 btrfs_delayed_item_release_metadata(root
, delayed_item
);
860 * we insert an item first, then if there are some continuous items, we try
861 * to insert those items into the same leaf.
863 static int btrfs_insert_delayed_items(struct btrfs_trans_handle
*trans
,
864 struct btrfs_path
*path
,
865 struct btrfs_root
*root
,
866 struct btrfs_delayed_node
*node
)
868 struct btrfs_delayed_item
*curr
, *prev
;
872 mutex_lock(&node
->mutex
);
873 curr
= __btrfs_first_delayed_insertion_item(node
);
877 ret
= btrfs_insert_delayed_item(trans
, root
, path
, curr
);
879 btrfs_release_path(path
);
884 curr
= __btrfs_next_delayed_item(prev
);
885 if (curr
&& btrfs_is_continuous_delayed_item(prev
, curr
)) {
886 /* insert the continuous items into the same leaf */
888 btrfs_batch_insert_items(root
, path
, curr
);
890 btrfs_release_delayed_item(prev
);
891 btrfs_mark_buffer_dirty(path
->nodes
[0]);
893 btrfs_release_path(path
);
894 mutex_unlock(&node
->mutex
);
898 mutex_unlock(&node
->mutex
);
902 static int btrfs_batch_delete_items(struct btrfs_trans_handle
*trans
,
903 struct btrfs_root
*root
,
904 struct btrfs_path
*path
,
905 struct btrfs_delayed_item
*item
)
907 struct btrfs_delayed_item
*curr
, *next
;
908 struct extent_buffer
*leaf
;
909 struct btrfs_key key
;
910 struct list_head head
;
911 int nitems
, i
, last_item
;
914 BUG_ON(!path
->nodes
[0]);
916 leaf
= path
->nodes
[0];
919 last_item
= btrfs_header_nritems(leaf
) - 1;
921 return -ENOENT
; /* FIXME: Is errno suitable? */
924 INIT_LIST_HEAD(&head
);
925 btrfs_item_key_to_cpu(leaf
, &key
, i
);
928 * count the number of the dir index items that we can delete in batch
930 while (btrfs_comp_cpu_keys(&next
->key
, &key
) == 0) {
931 list_add_tail(&next
->tree_list
, &head
);
935 next
= __btrfs_next_delayed_item(curr
);
939 if (!btrfs_is_continuous_delayed_item(curr
, next
))
945 btrfs_item_key_to_cpu(leaf
, &key
, i
);
951 ret
= btrfs_del_items(trans
, root
, path
, path
->slots
[0], nitems
);
955 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
956 btrfs_delayed_item_release_metadata(root
, curr
);
957 list_del(&curr
->tree_list
);
958 btrfs_release_delayed_item(curr
);
965 static int btrfs_delete_delayed_items(struct btrfs_trans_handle
*trans
,
966 struct btrfs_path
*path
,
967 struct btrfs_root
*root
,
968 struct btrfs_delayed_node
*node
)
970 struct btrfs_delayed_item
*curr
, *prev
;
974 mutex_lock(&node
->mutex
);
975 curr
= __btrfs_first_delayed_deletion_item(node
);
979 ret
= btrfs_search_slot(trans
, root
, &curr
->key
, path
, -1, 1);
984 * can't find the item which the node points to, so this node
985 * is invalid, just drop it.
988 curr
= __btrfs_next_delayed_item(prev
);
989 btrfs_release_delayed_item(prev
);
991 btrfs_release_path(path
);
993 mutex_unlock(&node
->mutex
);
999 btrfs_batch_delete_items(trans
, root
, path
, curr
);
1000 btrfs_release_path(path
);
1001 mutex_unlock(&node
->mutex
);
1005 btrfs_release_path(path
);
1006 mutex_unlock(&node
->mutex
);
1010 static void btrfs_release_delayed_inode(struct btrfs_delayed_node
*delayed_node
)
1012 struct btrfs_delayed_root
*delayed_root
;
1015 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1016 BUG_ON(!delayed_node
->root
);
1017 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
);
1018 delayed_node
->count
--;
1020 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
1021 finish_one_item(delayed_root
);
1025 static void btrfs_release_delayed_iref(struct btrfs_delayed_node
*delayed_node
)
1027 struct btrfs_delayed_root
*delayed_root
;
1029 ASSERT(delayed_node
->root
);
1030 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
);
1031 delayed_node
->count
--;
1033 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
1034 finish_one_item(delayed_root
);
1037 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1038 struct btrfs_root
*root
,
1039 struct btrfs_path
*path
,
1040 struct btrfs_delayed_node
*node
)
1042 struct btrfs_key key
;
1043 struct btrfs_inode_item
*inode_item
;
1044 struct extent_buffer
*leaf
;
1048 key
.objectid
= node
->inode_id
;
1049 key
.type
= BTRFS_INODE_ITEM_KEY
;
1052 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &node
->flags
))
1057 ret
= btrfs_lookup_inode(trans
, root
, path
, &key
, mod
);
1059 btrfs_release_path(path
);
1061 } else if (ret
< 0) {
1065 leaf
= path
->nodes
[0];
1066 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1067 struct btrfs_inode_item
);
1068 write_extent_buffer(leaf
, &node
->inode_item
, (unsigned long)inode_item
,
1069 sizeof(struct btrfs_inode_item
));
1070 btrfs_mark_buffer_dirty(leaf
);
1072 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &node
->flags
))
1076 if (path
->slots
[0] >= btrfs_header_nritems(leaf
))
1079 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1080 if (key
.objectid
!= node
->inode_id
)
1083 if (key
.type
!= BTRFS_INODE_REF_KEY
&&
1084 key
.type
!= BTRFS_INODE_EXTREF_KEY
)
1088 * Delayed iref deletion is for the inode who has only one link,
1089 * so there is only one iref. The case that several irefs are
1090 * in the same item doesn't exist.
1092 btrfs_del_item(trans
, root
, path
);
1094 btrfs_release_delayed_iref(node
);
1096 btrfs_release_path(path
);
1098 btrfs_delayed_inode_release_metadata(root
, node
);
1099 btrfs_release_delayed_inode(node
);
1104 btrfs_release_path(path
);
1106 key
.type
= BTRFS_INODE_EXTREF_KEY
;
1108 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1114 leaf
= path
->nodes
[0];
1119 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1120 struct btrfs_root
*root
,
1121 struct btrfs_path
*path
,
1122 struct btrfs_delayed_node
*node
)
1126 mutex_lock(&node
->mutex
);
1127 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &node
->flags
)) {
1128 mutex_unlock(&node
->mutex
);
1132 ret
= __btrfs_update_delayed_inode(trans
, root
, path
, node
);
1133 mutex_unlock(&node
->mutex
);
1138 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1139 struct btrfs_path
*path
,
1140 struct btrfs_delayed_node
*node
)
1144 ret
= btrfs_insert_delayed_items(trans
, path
, node
->root
, node
);
1148 ret
= btrfs_delete_delayed_items(trans
, path
, node
->root
, node
);
1152 ret
= btrfs_update_delayed_inode(trans
, node
->root
, path
, node
);
1157 * Called when committing the transaction.
1158 * Returns 0 on success.
1159 * Returns < 0 on error and returns with an aborted transaction with any
1160 * outstanding delayed items cleaned up.
1162 static int __btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1163 struct btrfs_root
*root
, int nr
)
1165 struct btrfs_delayed_root
*delayed_root
;
1166 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1167 struct btrfs_path
*path
;
1168 struct btrfs_block_rsv
*block_rsv
;
1170 bool count
= (nr
> 0);
1175 path
= btrfs_alloc_path();
1178 path
->leave_spinning
= 1;
1180 block_rsv
= trans
->block_rsv
;
1181 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1183 delayed_root
= btrfs_get_delayed_root(root
);
1185 curr_node
= btrfs_first_delayed_node(delayed_root
);
1186 while (curr_node
&& (!count
|| (count
&& nr
--))) {
1187 ret
= __btrfs_commit_inode_delayed_items(trans
, path
,
1190 btrfs_release_delayed_node(curr_node
);
1192 btrfs_abort_transaction(trans
, root
, ret
);
1196 prev_node
= curr_node
;
1197 curr_node
= btrfs_next_delayed_node(curr_node
);
1198 btrfs_release_delayed_node(prev_node
);
1202 btrfs_release_delayed_node(curr_node
);
1203 btrfs_free_path(path
);
1204 trans
->block_rsv
= block_rsv
;
1209 int btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1210 struct btrfs_root
*root
)
1212 return __btrfs_run_delayed_items(trans
, root
, -1);
1215 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle
*trans
,
1216 struct btrfs_root
*root
, int nr
)
1218 return __btrfs_run_delayed_items(trans
, root
, nr
);
1221 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1222 struct inode
*inode
)
1224 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1225 struct btrfs_path
*path
;
1226 struct btrfs_block_rsv
*block_rsv
;
1232 mutex_lock(&delayed_node
->mutex
);
1233 if (!delayed_node
->count
) {
1234 mutex_unlock(&delayed_node
->mutex
);
1235 btrfs_release_delayed_node(delayed_node
);
1238 mutex_unlock(&delayed_node
->mutex
);
1240 path
= btrfs_alloc_path();
1242 btrfs_release_delayed_node(delayed_node
);
1245 path
->leave_spinning
= 1;
1247 block_rsv
= trans
->block_rsv
;
1248 trans
->block_rsv
= &delayed_node
->root
->fs_info
->delayed_block_rsv
;
1250 ret
= __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1252 btrfs_release_delayed_node(delayed_node
);
1253 btrfs_free_path(path
);
1254 trans
->block_rsv
= block_rsv
;
1259 int btrfs_commit_inode_delayed_inode(struct inode
*inode
)
1261 struct btrfs_trans_handle
*trans
;
1262 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1263 struct btrfs_path
*path
;
1264 struct btrfs_block_rsv
*block_rsv
;
1270 mutex_lock(&delayed_node
->mutex
);
1271 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1272 mutex_unlock(&delayed_node
->mutex
);
1273 btrfs_release_delayed_node(delayed_node
);
1276 mutex_unlock(&delayed_node
->mutex
);
1278 trans
= btrfs_join_transaction(delayed_node
->root
);
1279 if (IS_ERR(trans
)) {
1280 ret
= PTR_ERR(trans
);
1284 path
= btrfs_alloc_path();
1289 path
->leave_spinning
= 1;
1291 block_rsv
= trans
->block_rsv
;
1292 trans
->block_rsv
= &delayed_node
->root
->fs_info
->delayed_block_rsv
;
1294 mutex_lock(&delayed_node
->mutex
);
1295 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
))
1296 ret
= __btrfs_update_delayed_inode(trans
, delayed_node
->root
,
1297 path
, delayed_node
);
1300 mutex_unlock(&delayed_node
->mutex
);
1302 btrfs_free_path(path
);
1303 trans
->block_rsv
= block_rsv
;
1305 btrfs_end_transaction(trans
, delayed_node
->root
);
1306 btrfs_btree_balance_dirty(delayed_node
->root
);
1308 btrfs_release_delayed_node(delayed_node
);
1313 void btrfs_remove_delayed_node(struct inode
*inode
)
1315 struct btrfs_delayed_node
*delayed_node
;
1317 delayed_node
= ACCESS_ONCE(BTRFS_I(inode
)->delayed_node
);
1321 BTRFS_I(inode
)->delayed_node
= NULL
;
1322 btrfs_release_delayed_node(delayed_node
);
1325 struct btrfs_async_delayed_work
{
1326 struct btrfs_delayed_root
*delayed_root
;
1328 struct btrfs_work work
;
1331 static void btrfs_async_run_delayed_root(struct btrfs_work
*work
)
1333 struct btrfs_async_delayed_work
*async_work
;
1334 struct btrfs_delayed_root
*delayed_root
;
1335 struct btrfs_trans_handle
*trans
;
1336 struct btrfs_path
*path
;
1337 struct btrfs_delayed_node
*delayed_node
= NULL
;
1338 struct btrfs_root
*root
;
1339 struct btrfs_block_rsv
*block_rsv
;
1342 async_work
= container_of(work
, struct btrfs_async_delayed_work
, work
);
1343 delayed_root
= async_work
->delayed_root
;
1345 path
= btrfs_alloc_path();
1350 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
/ 2)
1353 delayed_node
= btrfs_first_prepared_delayed_node(delayed_root
);
1357 path
->leave_spinning
= 1;
1358 root
= delayed_node
->root
;
1360 trans
= btrfs_join_transaction(root
);
1364 block_rsv
= trans
->block_rsv
;
1365 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1367 __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1369 trans
->block_rsv
= block_rsv
;
1370 btrfs_end_transaction(trans
, root
);
1371 btrfs_btree_balance_dirty_nodelay(root
);
1374 btrfs_release_path(path
);
1377 btrfs_release_prepared_delayed_node(delayed_node
);
1378 if (async_work
->nr
== 0 || total_done
< async_work
->nr
)
1382 btrfs_free_path(path
);
1384 wake_up(&delayed_root
->wait
);
1389 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root
*delayed_root
,
1390 struct btrfs_fs_info
*fs_info
, int nr
)
1392 struct btrfs_async_delayed_work
*async_work
;
1394 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1397 async_work
= kmalloc(sizeof(*async_work
), GFP_NOFS
);
1401 async_work
->delayed_root
= delayed_root
;
1402 btrfs_init_work(&async_work
->work
, btrfs_delayed_meta_helper
,
1403 btrfs_async_run_delayed_root
, NULL
, NULL
);
1404 async_work
->nr
= nr
;
1406 btrfs_queue_work(fs_info
->delayed_workers
, &async_work
->work
);
1410 void btrfs_assert_delayed_root_empty(struct btrfs_root
*root
)
1412 struct btrfs_delayed_root
*delayed_root
;
1413 delayed_root
= btrfs_get_delayed_root(root
);
1414 WARN_ON(btrfs_first_delayed_node(delayed_root
));
1417 static int could_end_wait(struct btrfs_delayed_root
*delayed_root
, int seq
)
1419 int val
= atomic_read(&delayed_root
->items_seq
);
1421 if (val
< seq
|| val
>= seq
+ BTRFS_DELAYED_BATCH
)
1424 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1430 void btrfs_balance_delayed_items(struct btrfs_root
*root
)
1432 struct btrfs_delayed_root
*delayed_root
;
1433 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1435 delayed_root
= btrfs_get_delayed_root(root
);
1437 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1440 if (atomic_read(&delayed_root
->items
) >= BTRFS_DELAYED_WRITEBACK
) {
1444 seq
= atomic_read(&delayed_root
->items_seq
);
1446 ret
= btrfs_wq_run_delayed_node(delayed_root
, fs_info
, 0);
1450 wait_event_interruptible(delayed_root
->wait
,
1451 could_end_wait(delayed_root
, seq
));
1455 btrfs_wq_run_delayed_node(delayed_root
, fs_info
, BTRFS_DELAYED_BATCH
);
1458 /* Will return 0 or -ENOMEM */
1459 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1460 struct btrfs_root
*root
, const char *name
,
1461 int name_len
, struct inode
*dir
,
1462 struct btrfs_disk_key
*disk_key
, u8 type
,
1465 struct btrfs_delayed_node
*delayed_node
;
1466 struct btrfs_delayed_item
*delayed_item
;
1467 struct btrfs_dir_item
*dir_item
;
1470 delayed_node
= btrfs_get_or_create_delayed_node(dir
);
1471 if (IS_ERR(delayed_node
))
1472 return PTR_ERR(delayed_node
);
1474 delayed_item
= btrfs_alloc_delayed_item(sizeof(*dir_item
) + name_len
);
1475 if (!delayed_item
) {
1480 delayed_item
->key
.objectid
= btrfs_ino(dir
);
1481 delayed_item
->key
.type
= BTRFS_DIR_INDEX_KEY
;
1482 delayed_item
->key
.offset
= index
;
1484 dir_item
= (struct btrfs_dir_item
*)delayed_item
->data
;
1485 dir_item
->location
= *disk_key
;
1486 btrfs_set_stack_dir_transid(dir_item
, trans
->transid
);
1487 btrfs_set_stack_dir_data_len(dir_item
, 0);
1488 btrfs_set_stack_dir_name_len(dir_item
, name_len
);
1489 btrfs_set_stack_dir_type(dir_item
, type
);
1490 memcpy((char *)(dir_item
+ 1), name
, name_len
);
1492 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, delayed_item
);
1494 * we have reserved enough space when we start a new transaction,
1495 * so reserving metadata failure is impossible
1500 mutex_lock(&delayed_node
->mutex
);
1501 ret
= __btrfs_add_delayed_insertion_item(delayed_node
, delayed_item
);
1502 if (unlikely(ret
)) {
1503 btrfs_err(root
->fs_info
, "err add delayed dir index item(name: %.*s) "
1504 "into the insertion tree of the delayed node"
1505 "(root id: %llu, inode id: %llu, errno: %d)",
1506 name_len
, name
, delayed_node
->root
->objectid
,
1507 delayed_node
->inode_id
, ret
);
1510 mutex_unlock(&delayed_node
->mutex
);
1513 btrfs_release_delayed_node(delayed_node
);
1517 static int btrfs_delete_delayed_insertion_item(struct btrfs_root
*root
,
1518 struct btrfs_delayed_node
*node
,
1519 struct btrfs_key
*key
)
1521 struct btrfs_delayed_item
*item
;
1523 mutex_lock(&node
->mutex
);
1524 item
= __btrfs_lookup_delayed_insertion_item(node
, key
);
1526 mutex_unlock(&node
->mutex
);
1530 btrfs_delayed_item_release_metadata(root
, item
);
1531 btrfs_release_delayed_item(item
);
1532 mutex_unlock(&node
->mutex
);
1536 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1537 struct btrfs_root
*root
, struct inode
*dir
,
1540 struct btrfs_delayed_node
*node
;
1541 struct btrfs_delayed_item
*item
;
1542 struct btrfs_key item_key
;
1545 node
= btrfs_get_or_create_delayed_node(dir
);
1547 return PTR_ERR(node
);
1549 item_key
.objectid
= btrfs_ino(dir
);
1550 item_key
.type
= BTRFS_DIR_INDEX_KEY
;
1551 item_key
.offset
= index
;
1553 ret
= btrfs_delete_delayed_insertion_item(root
, node
, &item_key
);
1557 item
= btrfs_alloc_delayed_item(0);
1563 item
->key
= item_key
;
1565 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, item
);
1567 * we have reserved enough space when we start a new transaction,
1568 * so reserving metadata failure is impossible.
1572 mutex_lock(&node
->mutex
);
1573 ret
= __btrfs_add_delayed_deletion_item(node
, item
);
1574 if (unlikely(ret
)) {
1575 btrfs_err(root
->fs_info
, "err add delayed dir index item(index: %llu) "
1576 "into the deletion tree of the delayed node"
1577 "(root id: %llu, inode id: %llu, errno: %d)",
1578 index
, node
->root
->objectid
, node
->inode_id
,
1582 mutex_unlock(&node
->mutex
);
1584 btrfs_release_delayed_node(node
);
1588 int btrfs_inode_delayed_dir_index_count(struct inode
*inode
)
1590 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1596 * Since we have held i_mutex of this directory, it is impossible that
1597 * a new directory index is added into the delayed node and index_cnt
1598 * is updated now. So we needn't lock the delayed node.
1600 if (!delayed_node
->index_cnt
) {
1601 btrfs_release_delayed_node(delayed_node
);
1605 BTRFS_I(inode
)->index_cnt
= delayed_node
->index_cnt
;
1606 btrfs_release_delayed_node(delayed_node
);
1610 void btrfs_get_delayed_items(struct inode
*inode
, struct list_head
*ins_list
,
1611 struct list_head
*del_list
)
1613 struct btrfs_delayed_node
*delayed_node
;
1614 struct btrfs_delayed_item
*item
;
1616 delayed_node
= btrfs_get_delayed_node(inode
);
1620 mutex_lock(&delayed_node
->mutex
);
1621 item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1623 atomic_inc(&item
->refs
);
1624 list_add_tail(&item
->readdir_list
, ins_list
);
1625 item
= __btrfs_next_delayed_item(item
);
1628 item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1630 atomic_inc(&item
->refs
);
1631 list_add_tail(&item
->readdir_list
, del_list
);
1632 item
= __btrfs_next_delayed_item(item
);
1634 mutex_unlock(&delayed_node
->mutex
);
1636 * This delayed node is still cached in the btrfs inode, so refs
1637 * must be > 1 now, and we needn't check it is going to be freed
1640 * Besides that, this function is used to read dir, we do not
1641 * insert/delete delayed items in this period. So we also needn't
1642 * requeue or dequeue this delayed node.
1644 atomic_dec(&delayed_node
->refs
);
1647 void btrfs_put_delayed_items(struct list_head
*ins_list
,
1648 struct list_head
*del_list
)
1650 struct btrfs_delayed_item
*curr
, *next
;
1652 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1653 list_del(&curr
->readdir_list
);
1654 if (atomic_dec_and_test(&curr
->refs
))
1658 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1659 list_del(&curr
->readdir_list
);
1660 if (atomic_dec_and_test(&curr
->refs
))
1665 int btrfs_should_delete_dir_index(struct list_head
*del_list
,
1668 struct btrfs_delayed_item
*curr
, *next
;
1671 if (list_empty(del_list
))
1674 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1675 if (curr
->key
.offset
> index
)
1678 list_del(&curr
->readdir_list
);
1679 ret
= (curr
->key
.offset
== index
);
1681 if (atomic_dec_and_test(&curr
->refs
))
1693 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1696 int btrfs_readdir_delayed_dir_index(struct dir_context
*ctx
,
1697 struct list_head
*ins_list
)
1699 struct btrfs_dir_item
*di
;
1700 struct btrfs_delayed_item
*curr
, *next
;
1701 struct btrfs_key location
;
1705 unsigned char d_type
;
1707 if (list_empty(ins_list
))
1711 * Changing the data of the delayed item is impossible. So
1712 * we needn't lock them. And we have held i_mutex of the
1713 * directory, nobody can delete any directory indexes now.
1715 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1716 list_del(&curr
->readdir_list
);
1718 if (curr
->key
.offset
< ctx
->pos
) {
1719 if (atomic_dec_and_test(&curr
->refs
))
1724 ctx
->pos
= curr
->key
.offset
;
1726 di
= (struct btrfs_dir_item
*)curr
->data
;
1727 name
= (char *)(di
+ 1);
1728 name_len
= btrfs_stack_dir_name_len(di
);
1730 d_type
= btrfs_filetype_table
[di
->type
];
1731 btrfs_disk_key_to_cpu(&location
, &di
->location
);
1733 over
= !dir_emit(ctx
, name
, name_len
,
1734 location
.objectid
, d_type
);
1736 if (atomic_dec_and_test(&curr
->refs
))
1745 static void fill_stack_inode_item(struct btrfs_trans_handle
*trans
,
1746 struct btrfs_inode_item
*inode_item
,
1747 struct inode
*inode
)
1749 btrfs_set_stack_inode_uid(inode_item
, i_uid_read(inode
));
1750 btrfs_set_stack_inode_gid(inode_item
, i_gid_read(inode
));
1751 btrfs_set_stack_inode_size(inode_item
, BTRFS_I(inode
)->disk_i_size
);
1752 btrfs_set_stack_inode_mode(inode_item
, inode
->i_mode
);
1753 btrfs_set_stack_inode_nlink(inode_item
, inode
->i_nlink
);
1754 btrfs_set_stack_inode_nbytes(inode_item
, inode_get_bytes(inode
));
1755 btrfs_set_stack_inode_generation(inode_item
,
1756 BTRFS_I(inode
)->generation
);
1757 btrfs_set_stack_inode_sequence(inode_item
, inode
->i_version
);
1758 btrfs_set_stack_inode_transid(inode_item
, trans
->transid
);
1759 btrfs_set_stack_inode_rdev(inode_item
, inode
->i_rdev
);
1760 btrfs_set_stack_inode_flags(inode_item
, BTRFS_I(inode
)->flags
);
1761 btrfs_set_stack_inode_block_group(inode_item
, 0);
1763 btrfs_set_stack_timespec_sec(&inode_item
->atime
,
1764 inode
->i_atime
.tv_sec
);
1765 btrfs_set_stack_timespec_nsec(&inode_item
->atime
,
1766 inode
->i_atime
.tv_nsec
);
1768 btrfs_set_stack_timespec_sec(&inode_item
->mtime
,
1769 inode
->i_mtime
.tv_sec
);
1770 btrfs_set_stack_timespec_nsec(&inode_item
->mtime
,
1771 inode
->i_mtime
.tv_nsec
);
1773 btrfs_set_stack_timespec_sec(&inode_item
->ctime
,
1774 inode
->i_ctime
.tv_sec
);
1775 btrfs_set_stack_timespec_nsec(&inode_item
->ctime
,
1776 inode
->i_ctime
.tv_nsec
);
1778 btrfs_set_stack_timespec_sec(&inode_item
->otime
,
1779 BTRFS_I(inode
)->i_otime
.tv_sec
);
1780 btrfs_set_stack_timespec_nsec(&inode_item
->otime
,
1781 BTRFS_I(inode
)->i_otime
.tv_nsec
);
1784 int btrfs_fill_inode(struct inode
*inode
, u32
*rdev
)
1786 struct btrfs_delayed_node
*delayed_node
;
1787 struct btrfs_inode_item
*inode_item
;
1789 delayed_node
= btrfs_get_delayed_node(inode
);
1793 mutex_lock(&delayed_node
->mutex
);
1794 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1795 mutex_unlock(&delayed_node
->mutex
);
1796 btrfs_release_delayed_node(delayed_node
);
1800 inode_item
= &delayed_node
->inode_item
;
1802 i_uid_write(inode
, btrfs_stack_inode_uid(inode_item
));
1803 i_gid_write(inode
, btrfs_stack_inode_gid(inode_item
));
1804 btrfs_i_size_write(inode
, btrfs_stack_inode_size(inode_item
));
1805 inode
->i_mode
= btrfs_stack_inode_mode(inode_item
);
1806 set_nlink(inode
, btrfs_stack_inode_nlink(inode_item
));
1807 inode_set_bytes(inode
, btrfs_stack_inode_nbytes(inode_item
));
1808 BTRFS_I(inode
)->generation
= btrfs_stack_inode_generation(inode_item
);
1809 BTRFS_I(inode
)->last_trans
= btrfs_stack_inode_transid(inode_item
);
1811 inode
->i_version
= btrfs_stack_inode_sequence(inode_item
);
1813 *rdev
= btrfs_stack_inode_rdev(inode_item
);
1814 BTRFS_I(inode
)->flags
= btrfs_stack_inode_flags(inode_item
);
1816 inode
->i_atime
.tv_sec
= btrfs_stack_timespec_sec(&inode_item
->atime
);
1817 inode
->i_atime
.tv_nsec
= btrfs_stack_timespec_nsec(&inode_item
->atime
);
1819 inode
->i_mtime
.tv_sec
= btrfs_stack_timespec_sec(&inode_item
->mtime
);
1820 inode
->i_mtime
.tv_nsec
= btrfs_stack_timespec_nsec(&inode_item
->mtime
);
1822 inode
->i_ctime
.tv_sec
= btrfs_stack_timespec_sec(&inode_item
->ctime
);
1823 inode
->i_ctime
.tv_nsec
= btrfs_stack_timespec_nsec(&inode_item
->ctime
);
1825 BTRFS_I(inode
)->i_otime
.tv_sec
=
1826 btrfs_stack_timespec_sec(&inode_item
->otime
);
1827 BTRFS_I(inode
)->i_otime
.tv_nsec
=
1828 btrfs_stack_timespec_nsec(&inode_item
->otime
);
1830 inode
->i_generation
= BTRFS_I(inode
)->generation
;
1831 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1833 mutex_unlock(&delayed_node
->mutex
);
1834 btrfs_release_delayed_node(delayed_node
);
1838 int btrfs_delayed_update_inode(struct btrfs_trans_handle
*trans
,
1839 struct btrfs_root
*root
, struct inode
*inode
)
1841 struct btrfs_delayed_node
*delayed_node
;
1844 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1845 if (IS_ERR(delayed_node
))
1846 return PTR_ERR(delayed_node
);
1848 mutex_lock(&delayed_node
->mutex
);
1849 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1850 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1854 ret
= btrfs_delayed_inode_reserve_metadata(trans
, root
, inode
,
1859 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1860 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
);
1861 delayed_node
->count
++;
1862 atomic_inc(&root
->fs_info
->delayed_root
->items
);
1864 mutex_unlock(&delayed_node
->mutex
);
1865 btrfs_release_delayed_node(delayed_node
);
1869 int btrfs_delayed_delete_inode_ref(struct inode
*inode
)
1871 struct btrfs_delayed_node
*delayed_node
;
1874 * we don't do delayed inode updates during log recovery because it
1875 * leads to enospc problems. This means we also can't do
1876 * delayed inode refs
1878 if (BTRFS_I(inode
)->root
->fs_info
->log_root_recovering
)
1881 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1882 if (IS_ERR(delayed_node
))
1883 return PTR_ERR(delayed_node
);
1886 * We don't reserve space for inode ref deletion is because:
1887 * - We ONLY do async inode ref deletion for the inode who has only
1888 * one link(i_nlink == 1), it means there is only one inode ref.
1889 * And in most case, the inode ref and the inode item are in the
1890 * same leaf, and we will deal with them at the same time.
1891 * Since we are sure we will reserve the space for the inode item,
1892 * it is unnecessary to reserve space for inode ref deletion.
1893 * - If the inode ref and the inode item are not in the same leaf,
1894 * We also needn't worry about enospc problem, because we reserve
1895 * much more space for the inode update than it needs.
1896 * - At the worst, we can steal some space from the global reservation.
1899 mutex_lock(&delayed_node
->mutex
);
1900 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
))
1903 set_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
);
1904 delayed_node
->count
++;
1905 atomic_inc(&BTRFS_I(inode
)->root
->fs_info
->delayed_root
->items
);
1907 mutex_unlock(&delayed_node
->mutex
);
1908 btrfs_release_delayed_node(delayed_node
);
1912 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node
*delayed_node
)
1914 struct btrfs_root
*root
= delayed_node
->root
;
1915 struct btrfs_delayed_item
*curr_item
, *prev_item
;
1917 mutex_lock(&delayed_node
->mutex
);
1918 curr_item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1920 btrfs_delayed_item_release_metadata(root
, curr_item
);
1921 prev_item
= curr_item
;
1922 curr_item
= __btrfs_next_delayed_item(prev_item
);
1923 btrfs_release_delayed_item(prev_item
);
1926 curr_item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1928 btrfs_delayed_item_release_metadata(root
, curr_item
);
1929 prev_item
= curr_item
;
1930 curr_item
= __btrfs_next_delayed_item(prev_item
);
1931 btrfs_release_delayed_item(prev_item
);
1934 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
))
1935 btrfs_release_delayed_iref(delayed_node
);
1937 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1938 btrfs_delayed_inode_release_metadata(root
, delayed_node
);
1939 btrfs_release_delayed_inode(delayed_node
);
1941 mutex_unlock(&delayed_node
->mutex
);
1944 void btrfs_kill_delayed_inode_items(struct inode
*inode
)
1946 struct btrfs_delayed_node
*delayed_node
;
1948 delayed_node
= btrfs_get_delayed_node(inode
);
1952 __btrfs_kill_delayed_node(delayed_node
);
1953 btrfs_release_delayed_node(delayed_node
);
1956 void btrfs_kill_all_delayed_nodes(struct btrfs_root
*root
)
1959 struct btrfs_delayed_node
*delayed_nodes
[8];
1963 spin_lock(&root
->inode_lock
);
1964 n
= radix_tree_gang_lookup(&root
->delayed_nodes_tree
,
1965 (void **)delayed_nodes
, inode_id
,
1966 ARRAY_SIZE(delayed_nodes
));
1968 spin_unlock(&root
->inode_lock
);
1972 inode_id
= delayed_nodes
[n
- 1]->inode_id
+ 1;
1974 for (i
= 0; i
< n
; i
++)
1975 atomic_inc(&delayed_nodes
[i
]->refs
);
1976 spin_unlock(&root
->inode_lock
);
1978 for (i
= 0; i
< n
; i
++) {
1979 __btrfs_kill_delayed_node(delayed_nodes
[i
]);
1980 btrfs_release_delayed_node(delayed_nodes
[i
]);
1985 void btrfs_destroy_delayed_inodes(struct btrfs_root
*root
)
1987 struct btrfs_delayed_root
*delayed_root
;
1988 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1990 delayed_root
= btrfs_get_delayed_root(root
);
1992 curr_node
= btrfs_first_delayed_node(delayed_root
);
1994 __btrfs_kill_delayed_node(curr_node
);
1996 prev_node
= curr_node
;
1997 curr_node
= btrfs_next_delayed_node(curr_node
);
1998 btrfs_release_delayed_node(prev_node
);