1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
17 #include "btrfs_inode.h"
19 #include "check-integrity.h"
21 #include "rcu-string.h"
24 static struct kmem_cache
*extent_state_cache
;
25 static struct kmem_cache
*extent_buffer_cache
;
26 static struct bio_set
*btrfs_bioset
;
28 static inline bool extent_state_in_tree(const struct extent_state
*state
)
30 return !RB_EMPTY_NODE(&state
->rb_node
);
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers
);
35 static LIST_HEAD(states
);
37 static DEFINE_SPINLOCK(leak_lock
);
40 void btrfs_leak_debug_add(struct list_head
*new, struct list_head
*head
)
44 spin_lock_irqsave(&leak_lock
, flags
);
46 spin_unlock_irqrestore(&leak_lock
, flags
);
50 void btrfs_leak_debug_del(struct list_head
*entry
)
54 spin_lock_irqsave(&leak_lock
, flags
);
56 spin_unlock_irqrestore(&leak_lock
, flags
);
60 void btrfs_leak_debug_check(void)
62 struct extent_state
*state
;
63 struct extent_buffer
*eb
;
65 while (!list_empty(&states
)) {
66 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state
->start
, state
->end
, state
->state
,
69 extent_state_in_tree(state
),
70 atomic_read(&state
->refs
));
71 list_del(&state
->leak_list
);
72 kmem_cache_free(extent_state_cache
, state
);
75 while (!list_empty(&buffers
)) {
76 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
77 printk(KERN_ERR
"BTRFS: buffer leak start %llu len %lu "
79 eb
->start
, eb
->len
, atomic_read(&eb
->refs
));
80 list_del(&eb
->leak_list
);
81 kmem_cache_free(extent_buffer_cache
, eb
);
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller
,
88 struct extent_io_tree
*tree
, u64 start
, u64 end
)
96 inode
= tree
->mapping
->host
;
97 isize
= i_size_read(inode
);
98 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
99 btrfs_debug_rl(BTRFS_I(inode
)->root
->fs_info
,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller
, btrfs_ino(inode
), isize
, start
, end
);
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
111 #define BUFFER_LRU_MAX 64
116 struct rb_node rb_node
;
119 struct extent_page_data
{
121 struct extent_io_tree
*tree
;
122 get_extent_t
*get_extent
;
123 unsigned long bio_flags
;
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
128 unsigned int extent_locked
:1;
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io
:1;
134 static void add_extent_changeset(struct extent_state
*state
, unsigned bits
,
135 struct extent_changeset
*changeset
,
142 if (set
&& (state
->state
& bits
) == bits
)
144 if (!set
&& (state
->state
& bits
) == 0)
146 changeset
->bytes_changed
+= state
->end
- state
->start
+ 1;
147 ret
= ulist_add(changeset
->range_changed
, state
->start
, state
->end
,
153 static noinline
void flush_write_bio(void *data
);
154 static inline struct btrfs_fs_info
*
155 tree_fs_info(struct extent_io_tree
*tree
)
159 return btrfs_sb(tree
->mapping
->host
->i_sb
);
162 int __init
extent_io_init(void)
164 extent_state_cache
= kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state
), 0,
166 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
167 if (!extent_state_cache
)
170 extent_buffer_cache
= kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer
), 0,
172 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
173 if (!extent_buffer_cache
)
174 goto free_state_cache
;
176 btrfs_bioset
= bioset_create(BIO_POOL_SIZE
,
177 offsetof(struct btrfs_io_bio
, bio
));
179 goto free_buffer_cache
;
181 if (bioset_integrity_create(btrfs_bioset
, BIO_POOL_SIZE
))
187 bioset_free(btrfs_bioset
);
191 kmem_cache_destroy(extent_buffer_cache
);
192 extent_buffer_cache
= NULL
;
195 kmem_cache_destroy(extent_state_cache
);
196 extent_state_cache
= NULL
;
200 void extent_io_exit(void)
202 btrfs_leak_debug_check();
205 * Make sure all delayed rcu free are flushed before we
209 if (extent_state_cache
)
210 kmem_cache_destroy(extent_state_cache
);
211 if (extent_buffer_cache
)
212 kmem_cache_destroy(extent_buffer_cache
);
214 bioset_free(btrfs_bioset
);
217 void extent_io_tree_init(struct extent_io_tree
*tree
,
218 struct address_space
*mapping
)
220 tree
->state
= RB_ROOT
;
222 tree
->dirty_bytes
= 0;
223 spin_lock_init(&tree
->lock
);
224 tree
->mapping
= mapping
;
227 static struct extent_state
*alloc_extent_state(gfp_t mask
)
229 struct extent_state
*state
;
231 state
= kmem_cache_alloc(extent_state_cache
, mask
);
236 RB_CLEAR_NODE(&state
->rb_node
);
237 btrfs_leak_debug_add(&state
->leak_list
, &states
);
238 atomic_set(&state
->refs
, 1);
239 init_waitqueue_head(&state
->wq
);
240 trace_alloc_extent_state(state
, mask
, _RET_IP_
);
244 void free_extent_state(struct extent_state
*state
)
248 if (atomic_dec_and_test(&state
->refs
)) {
249 WARN_ON(extent_state_in_tree(state
));
250 btrfs_leak_debug_del(&state
->leak_list
);
251 trace_free_extent_state(state
, _RET_IP_
);
252 kmem_cache_free(extent_state_cache
, state
);
256 static struct rb_node
*tree_insert(struct rb_root
*root
,
257 struct rb_node
*search_start
,
259 struct rb_node
*node
,
260 struct rb_node
***p_in
,
261 struct rb_node
**parent_in
)
264 struct rb_node
*parent
= NULL
;
265 struct tree_entry
*entry
;
267 if (p_in
&& parent_in
) {
273 p
= search_start
? &search_start
: &root
->rb_node
;
276 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
278 if (offset
< entry
->start
)
280 else if (offset
> entry
->end
)
287 rb_link_node(node
, parent
, p
);
288 rb_insert_color(node
, root
);
292 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
293 struct rb_node
**prev_ret
,
294 struct rb_node
**next_ret
,
295 struct rb_node
***p_ret
,
296 struct rb_node
**parent_ret
)
298 struct rb_root
*root
= &tree
->state
;
299 struct rb_node
**n
= &root
->rb_node
;
300 struct rb_node
*prev
= NULL
;
301 struct rb_node
*orig_prev
= NULL
;
302 struct tree_entry
*entry
;
303 struct tree_entry
*prev_entry
= NULL
;
307 entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
310 if (offset
< entry
->start
)
312 else if (offset
> entry
->end
)
325 while (prev
&& offset
> prev_entry
->end
) {
326 prev
= rb_next(prev
);
327 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
334 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
335 while (prev
&& offset
< prev_entry
->start
) {
336 prev
= rb_prev(prev
);
337 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
344 static inline struct rb_node
*
345 tree_search_for_insert(struct extent_io_tree
*tree
,
347 struct rb_node
***p_ret
,
348 struct rb_node
**parent_ret
)
350 struct rb_node
*prev
= NULL
;
353 ret
= __etree_search(tree
, offset
, &prev
, NULL
, p_ret
, parent_ret
);
359 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
362 return tree_search_for_insert(tree
, offset
, NULL
, NULL
);
365 static void merge_cb(struct extent_io_tree
*tree
, struct extent_state
*new,
366 struct extent_state
*other
)
368 if (tree
->ops
&& tree
->ops
->merge_extent_hook
)
369 tree
->ops
->merge_extent_hook(tree
->mapping
->host
, new,
374 * utility function to look for merge candidates inside a given range.
375 * Any extents with matching state are merged together into a single
376 * extent in the tree. Extents with EXTENT_IO in their state field
377 * are not merged because the end_io handlers need to be able to do
378 * operations on them without sleeping (or doing allocations/splits).
380 * This should be called with the tree lock held.
382 static void merge_state(struct extent_io_tree
*tree
,
383 struct extent_state
*state
)
385 struct extent_state
*other
;
386 struct rb_node
*other_node
;
388 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
391 other_node
= rb_prev(&state
->rb_node
);
393 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
394 if (other
->end
== state
->start
- 1 &&
395 other
->state
== state
->state
) {
396 merge_cb(tree
, state
, other
);
397 state
->start
= other
->start
;
398 rb_erase(&other
->rb_node
, &tree
->state
);
399 RB_CLEAR_NODE(&other
->rb_node
);
400 free_extent_state(other
);
403 other_node
= rb_next(&state
->rb_node
);
405 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
406 if (other
->start
== state
->end
+ 1 &&
407 other
->state
== state
->state
) {
408 merge_cb(tree
, state
, other
);
409 state
->end
= other
->end
;
410 rb_erase(&other
->rb_node
, &tree
->state
);
411 RB_CLEAR_NODE(&other
->rb_node
);
412 free_extent_state(other
);
417 static void set_state_cb(struct extent_io_tree
*tree
,
418 struct extent_state
*state
, unsigned *bits
)
420 if (tree
->ops
&& tree
->ops
->set_bit_hook
)
421 tree
->ops
->set_bit_hook(tree
->mapping
->host
, state
, bits
);
424 static void clear_state_cb(struct extent_io_tree
*tree
,
425 struct extent_state
*state
, unsigned *bits
)
427 if (tree
->ops
&& tree
->ops
->clear_bit_hook
)
428 tree
->ops
->clear_bit_hook(tree
->mapping
->host
, state
, bits
);
431 static void set_state_bits(struct extent_io_tree
*tree
,
432 struct extent_state
*state
, unsigned *bits
,
433 struct extent_changeset
*changeset
);
436 * insert an extent_state struct into the tree. 'bits' are set on the
437 * struct before it is inserted.
439 * This may return -EEXIST if the extent is already there, in which case the
440 * state struct is freed.
442 * The tree lock is not taken internally. This is a utility function and
443 * probably isn't what you want to call (see set/clear_extent_bit).
445 static int insert_state(struct extent_io_tree
*tree
,
446 struct extent_state
*state
, u64 start
, u64 end
,
448 struct rb_node
**parent
,
449 unsigned *bits
, struct extent_changeset
*changeset
)
451 struct rb_node
*node
;
454 WARN(1, KERN_ERR
"BTRFS: end < start %llu %llu\n",
456 state
->start
= start
;
459 set_state_bits(tree
, state
, bits
, changeset
);
461 node
= tree_insert(&tree
->state
, NULL
, end
, &state
->rb_node
, p
, parent
);
463 struct extent_state
*found
;
464 found
= rb_entry(node
, struct extent_state
, rb_node
);
465 printk(KERN_ERR
"BTRFS: found node %llu %llu on insert of "
467 found
->start
, found
->end
, start
, end
);
470 merge_state(tree
, state
);
474 static void split_cb(struct extent_io_tree
*tree
, struct extent_state
*orig
,
477 if (tree
->ops
&& tree
->ops
->split_extent_hook
)
478 tree
->ops
->split_extent_hook(tree
->mapping
->host
, orig
, split
);
482 * split a given extent state struct in two, inserting the preallocated
483 * struct 'prealloc' as the newly created second half. 'split' indicates an
484 * offset inside 'orig' where it should be split.
487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
488 * are two extent state structs in the tree:
489 * prealloc: [orig->start, split - 1]
490 * orig: [ split, orig->end ]
492 * The tree locks are not taken by this function. They need to be held
495 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
496 struct extent_state
*prealloc
, u64 split
)
498 struct rb_node
*node
;
500 split_cb(tree
, orig
, split
);
502 prealloc
->start
= orig
->start
;
503 prealloc
->end
= split
- 1;
504 prealloc
->state
= orig
->state
;
507 node
= tree_insert(&tree
->state
, &orig
->rb_node
, prealloc
->end
,
508 &prealloc
->rb_node
, NULL
, NULL
);
510 free_extent_state(prealloc
);
516 static struct extent_state
*next_state(struct extent_state
*state
)
518 struct rb_node
*next
= rb_next(&state
->rb_node
);
520 return rb_entry(next
, struct extent_state
, rb_node
);
526 * utility function to clear some bits in an extent state struct.
527 * it will optionally wake up any one waiting on this state (wake == 1).
529 * If no bits are set on the state struct after clearing things, the
530 * struct is freed and removed from the tree
532 static struct extent_state
*clear_state_bit(struct extent_io_tree
*tree
,
533 struct extent_state
*state
,
534 unsigned *bits
, int wake
,
535 struct extent_changeset
*changeset
)
537 struct extent_state
*next
;
538 unsigned bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
540 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
541 u64 range
= state
->end
- state
->start
+ 1;
542 WARN_ON(range
> tree
->dirty_bytes
);
543 tree
->dirty_bytes
-= range
;
545 clear_state_cb(tree
, state
, bits
);
546 add_extent_changeset(state
, bits_to_clear
, changeset
, 0);
547 state
->state
&= ~bits_to_clear
;
550 if (state
->state
== 0) {
551 next
= next_state(state
);
552 if (extent_state_in_tree(state
)) {
553 rb_erase(&state
->rb_node
, &tree
->state
);
554 RB_CLEAR_NODE(&state
->rb_node
);
555 free_extent_state(state
);
560 merge_state(tree
, state
);
561 next
= next_state(state
);
566 static struct extent_state
*
567 alloc_extent_state_atomic(struct extent_state
*prealloc
)
570 prealloc
= alloc_extent_state(GFP_ATOMIC
);
575 static void extent_io_tree_panic(struct extent_io_tree
*tree
, int err
)
577 btrfs_panic(tree_fs_info(tree
), err
, "Locking error: "
578 "Extent tree was modified by another "
579 "thread while locked.");
583 * clear some bits on a range in the tree. This may require splitting
584 * or inserting elements in the tree, so the gfp mask is used to
585 * indicate which allocations or sleeping are allowed.
587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588 * the given range from the tree regardless of state (ie for truncate).
590 * the range [start, end] is inclusive.
592 * This takes the tree lock, and returns 0 on success and < 0 on error.
594 static int __clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
595 unsigned bits
, int wake
, int delete,
596 struct extent_state
**cached_state
,
597 gfp_t mask
, struct extent_changeset
*changeset
)
599 struct extent_state
*state
;
600 struct extent_state
*cached
;
601 struct extent_state
*prealloc
= NULL
;
602 struct rb_node
*node
;
607 btrfs_debug_check_extent_io_range(tree
, start
, end
);
609 if (bits
& EXTENT_DELALLOC
)
610 bits
|= EXTENT_NORESERVE
;
613 bits
|= ~EXTENT_CTLBITS
;
614 bits
|= EXTENT_FIRST_DELALLOC
;
616 if (bits
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
619 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
621 * Don't care for allocation failure here because we might end
622 * up not needing the pre-allocated extent state at all, which
623 * is the case if we only have in the tree extent states that
624 * cover our input range and don't cover too any other range.
625 * If we end up needing a new extent state we allocate it later.
627 prealloc
= alloc_extent_state(mask
);
630 spin_lock(&tree
->lock
);
632 cached
= *cached_state
;
635 *cached_state
= NULL
;
639 if (cached
&& extent_state_in_tree(cached
) &&
640 cached
->start
<= start
&& cached
->end
> start
) {
642 atomic_dec(&cached
->refs
);
647 free_extent_state(cached
);
650 * this search will find the extents that end after
653 node
= tree_search(tree
, start
);
656 state
= rb_entry(node
, struct extent_state
, rb_node
);
658 if (state
->start
> end
)
660 WARN_ON(state
->end
< start
);
661 last_end
= state
->end
;
663 /* the state doesn't have the wanted bits, go ahead */
664 if (!(state
->state
& bits
)) {
665 state
= next_state(state
);
670 * | ---- desired range ---- |
672 * | ------------- state -------------- |
674 * We need to split the extent we found, and may flip
675 * bits on second half.
677 * If the extent we found extends past our range, we
678 * just split and search again. It'll get split again
679 * the next time though.
681 * If the extent we found is inside our range, we clear
682 * the desired bit on it.
685 if (state
->start
< start
) {
686 prealloc
= alloc_extent_state_atomic(prealloc
);
688 err
= split_state(tree
, state
, prealloc
, start
);
690 extent_io_tree_panic(tree
, err
);
695 if (state
->end
<= end
) {
696 state
= clear_state_bit(tree
, state
, &bits
, wake
,
703 * | ---- desired range ---- |
705 * We need to split the extent, and clear the bit
708 if (state
->start
<= end
&& state
->end
> end
) {
709 prealloc
= alloc_extent_state_atomic(prealloc
);
711 err
= split_state(tree
, state
, prealloc
, end
+ 1);
713 extent_io_tree_panic(tree
, err
);
718 clear_state_bit(tree
, prealloc
, &bits
, wake
, changeset
);
724 state
= clear_state_bit(tree
, state
, &bits
, wake
, changeset
);
726 if (last_end
== (u64
)-1)
728 start
= last_end
+ 1;
729 if (start
<= end
&& state
&& !need_resched())
734 spin_unlock(&tree
->lock
);
736 free_extent_state(prealloc
);
743 spin_unlock(&tree
->lock
);
744 if (gfpflags_allow_blocking(mask
))
749 static void wait_on_state(struct extent_io_tree
*tree
,
750 struct extent_state
*state
)
751 __releases(tree
->lock
)
752 __acquires(tree
->lock
)
755 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
756 spin_unlock(&tree
->lock
);
758 spin_lock(&tree
->lock
);
759 finish_wait(&state
->wq
, &wait
);
763 * waits for one or more bits to clear on a range in the state tree.
764 * The range [start, end] is inclusive.
765 * The tree lock is taken by this function
767 static void wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
770 struct extent_state
*state
;
771 struct rb_node
*node
;
773 btrfs_debug_check_extent_io_range(tree
, start
, end
);
775 spin_lock(&tree
->lock
);
779 * this search will find all the extents that end after
782 node
= tree_search(tree
, start
);
787 state
= rb_entry(node
, struct extent_state
, rb_node
);
789 if (state
->start
> end
)
792 if (state
->state
& bits
) {
793 start
= state
->start
;
794 atomic_inc(&state
->refs
);
795 wait_on_state(tree
, state
);
796 free_extent_state(state
);
799 start
= state
->end
+ 1;
804 if (!cond_resched_lock(&tree
->lock
)) {
805 node
= rb_next(node
);
810 spin_unlock(&tree
->lock
);
813 static void set_state_bits(struct extent_io_tree
*tree
,
814 struct extent_state
*state
,
815 unsigned *bits
, struct extent_changeset
*changeset
)
817 unsigned bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
819 set_state_cb(tree
, state
, bits
);
820 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
821 u64 range
= state
->end
- state
->start
+ 1;
822 tree
->dirty_bytes
+= range
;
824 add_extent_changeset(state
, bits_to_set
, changeset
, 1);
825 state
->state
|= bits_to_set
;
828 static void cache_state_if_flags(struct extent_state
*state
,
829 struct extent_state
**cached_ptr
,
832 if (cached_ptr
&& !(*cached_ptr
)) {
833 if (!flags
|| (state
->state
& flags
)) {
835 atomic_inc(&state
->refs
);
840 static void cache_state(struct extent_state
*state
,
841 struct extent_state
**cached_ptr
)
843 return cache_state_if_flags(state
, cached_ptr
,
844 EXTENT_IOBITS
| EXTENT_BOUNDARY
);
848 * set some bits on a range in the tree. This may require allocations or
849 * sleeping, so the gfp mask is used to indicate what is allowed.
851 * If any of the exclusive bits are set, this will fail with -EEXIST if some
852 * part of the range already has the desired bits set. The start of the
853 * existing range is returned in failed_start in this case.
855 * [start, end] is inclusive This takes the tree lock.
858 static int __must_check
859 __set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
860 unsigned bits
, unsigned exclusive_bits
,
861 u64
*failed_start
, struct extent_state
**cached_state
,
862 gfp_t mask
, struct extent_changeset
*changeset
)
864 struct extent_state
*state
;
865 struct extent_state
*prealloc
= NULL
;
866 struct rb_node
*node
;
868 struct rb_node
*parent
;
873 btrfs_debug_check_extent_io_range(tree
, start
, end
);
875 bits
|= EXTENT_FIRST_DELALLOC
;
877 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
878 prealloc
= alloc_extent_state(mask
);
882 spin_lock(&tree
->lock
);
883 if (cached_state
&& *cached_state
) {
884 state
= *cached_state
;
885 if (state
->start
<= start
&& state
->end
> start
&&
886 extent_state_in_tree(state
)) {
887 node
= &state
->rb_node
;
892 * this search will find all the extents that end after
895 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
897 prealloc
= alloc_extent_state_atomic(prealloc
);
899 err
= insert_state(tree
, prealloc
, start
, end
,
900 &p
, &parent
, &bits
, changeset
);
902 extent_io_tree_panic(tree
, err
);
904 cache_state(prealloc
, cached_state
);
908 state
= rb_entry(node
, struct extent_state
, rb_node
);
910 last_start
= state
->start
;
911 last_end
= state
->end
;
914 * | ---- desired range ---- |
917 * Just lock what we found and keep going
919 if (state
->start
== start
&& state
->end
<= end
) {
920 if (state
->state
& exclusive_bits
) {
921 *failed_start
= state
->start
;
926 set_state_bits(tree
, state
, &bits
, changeset
);
927 cache_state(state
, cached_state
);
928 merge_state(tree
, state
);
929 if (last_end
== (u64
)-1)
931 start
= last_end
+ 1;
932 state
= next_state(state
);
933 if (start
< end
&& state
&& state
->start
== start
&&
940 * | ---- desired range ---- |
943 * | ------------- state -------------- |
945 * We need to split the extent we found, and may flip bits on
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
952 * If the extent we found is inside our range, we set the
955 if (state
->start
< start
) {
956 if (state
->state
& exclusive_bits
) {
957 *failed_start
= start
;
962 prealloc
= alloc_extent_state_atomic(prealloc
);
964 err
= split_state(tree
, state
, prealloc
, start
);
966 extent_io_tree_panic(tree
, err
);
971 if (state
->end
<= end
) {
972 set_state_bits(tree
, state
, &bits
, changeset
);
973 cache_state(state
, cached_state
);
974 merge_state(tree
, state
);
975 if (last_end
== (u64
)-1)
977 start
= last_end
+ 1;
978 state
= next_state(state
);
979 if (start
< end
&& state
&& state
->start
== start
&&
986 * | ---- desired range ---- |
987 * | state | or | state |
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
992 if (state
->start
> start
) {
994 if (end
< last_start
)
997 this_end
= last_start
- 1;
999 prealloc
= alloc_extent_state_atomic(prealloc
);
1003 * Avoid to free 'prealloc' if it can be merged with
1006 err
= insert_state(tree
, prealloc
, start
, this_end
,
1007 NULL
, NULL
, &bits
, changeset
);
1009 extent_io_tree_panic(tree
, err
);
1011 cache_state(prealloc
, cached_state
);
1013 start
= this_end
+ 1;
1017 * | ---- desired range ---- |
1019 * We need to split the extent, and set the bit
1022 if (state
->start
<= end
&& state
->end
> end
) {
1023 if (state
->state
& exclusive_bits
) {
1024 *failed_start
= start
;
1029 prealloc
= alloc_extent_state_atomic(prealloc
);
1031 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1033 extent_io_tree_panic(tree
, err
);
1035 set_state_bits(tree
, prealloc
, &bits
, changeset
);
1036 cache_state(prealloc
, cached_state
);
1037 merge_state(tree
, prealloc
);
1045 spin_unlock(&tree
->lock
);
1047 free_extent_state(prealloc
);
1054 spin_unlock(&tree
->lock
);
1055 if (gfpflags_allow_blocking(mask
))
1060 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1061 unsigned bits
, u64
* failed_start
,
1062 struct extent_state
**cached_state
, gfp_t mask
)
1064 return __set_extent_bit(tree
, start
, end
, bits
, 0, failed_start
,
1065 cached_state
, mask
, NULL
);
1070 * convert_extent_bit - convert all bits in a given range from one bit to
1072 * @tree: the io tree to search
1073 * @start: the start offset in bytes
1074 * @end: the end offset in bytes (inclusive)
1075 * @bits: the bits to set in this range
1076 * @clear_bits: the bits to clear in this range
1077 * @cached_state: state that we're going to cache
1078 * @mask: the allocation mask
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1086 int convert_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1087 unsigned bits
, unsigned clear_bits
,
1088 struct extent_state
**cached_state
, gfp_t mask
)
1090 struct extent_state
*state
;
1091 struct extent_state
*prealloc
= NULL
;
1092 struct rb_node
*node
;
1094 struct rb_node
*parent
;
1098 bool first_iteration
= true;
1100 btrfs_debug_check_extent_io_range(tree
, start
, end
);
1103 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1111 prealloc
= alloc_extent_state(mask
);
1112 if (!prealloc
&& !first_iteration
)
1116 spin_lock(&tree
->lock
);
1117 if (cached_state
&& *cached_state
) {
1118 state
= *cached_state
;
1119 if (state
->start
<= start
&& state
->end
> start
&&
1120 extent_state_in_tree(state
)) {
1121 node
= &state
->rb_node
;
1127 * this search will find all the extents that end after
1130 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
1132 prealloc
= alloc_extent_state_atomic(prealloc
);
1137 err
= insert_state(tree
, prealloc
, start
, end
,
1138 &p
, &parent
, &bits
, NULL
);
1140 extent_io_tree_panic(tree
, err
);
1141 cache_state(prealloc
, cached_state
);
1145 state
= rb_entry(node
, struct extent_state
, rb_node
);
1147 last_start
= state
->start
;
1148 last_end
= state
->end
;
1151 * | ---- desired range ---- |
1154 * Just lock what we found and keep going
1156 if (state
->start
== start
&& state
->end
<= end
) {
1157 set_state_bits(tree
, state
, &bits
, NULL
);
1158 cache_state(state
, cached_state
);
1159 state
= clear_state_bit(tree
, state
, &clear_bits
, 0, NULL
);
1160 if (last_end
== (u64
)-1)
1162 start
= last_end
+ 1;
1163 if (start
< end
&& state
&& state
->start
== start
&&
1170 * | ---- desired range ---- |
1173 * | ------------- state -------------- |
1175 * We need to split the extent we found, and may flip bits on
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1185 if (state
->start
< start
) {
1186 prealloc
= alloc_extent_state_atomic(prealloc
);
1191 err
= split_state(tree
, state
, prealloc
, start
);
1193 extent_io_tree_panic(tree
, err
);
1197 if (state
->end
<= end
) {
1198 set_state_bits(tree
, state
, &bits
, NULL
);
1199 cache_state(state
, cached_state
);
1200 state
= clear_state_bit(tree
, state
, &clear_bits
, 0,
1202 if (last_end
== (u64
)-1)
1204 start
= last_end
+ 1;
1205 if (start
< end
&& state
&& state
->start
== start
&&
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1218 if (state
->start
> start
) {
1220 if (end
< last_start
)
1223 this_end
= last_start
- 1;
1225 prealloc
= alloc_extent_state_atomic(prealloc
);
1232 * Avoid to free 'prealloc' if it can be merged with
1235 err
= insert_state(tree
, prealloc
, start
, this_end
,
1236 NULL
, NULL
, &bits
, NULL
);
1238 extent_io_tree_panic(tree
, err
);
1239 cache_state(prealloc
, cached_state
);
1241 start
= this_end
+ 1;
1245 * | ---- desired range ---- |
1247 * We need to split the extent, and set the bit
1250 if (state
->start
<= end
&& state
->end
> end
) {
1251 prealloc
= alloc_extent_state_atomic(prealloc
);
1257 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1259 extent_io_tree_panic(tree
, err
);
1261 set_state_bits(tree
, prealloc
, &bits
, NULL
);
1262 cache_state(prealloc
, cached_state
);
1263 clear_state_bit(tree
, prealloc
, &clear_bits
, 0, NULL
);
1271 spin_unlock(&tree
->lock
);
1273 free_extent_state(prealloc
);
1280 spin_unlock(&tree
->lock
);
1281 if (gfpflags_allow_blocking(mask
))
1283 first_iteration
= false;
1287 /* wrappers around set/clear extent bit */
1288 int set_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1291 return set_extent_bit(tree
, start
, end
, EXTENT_DIRTY
, NULL
,
1295 int set_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1296 unsigned bits
, gfp_t mask
)
1298 return set_extent_bit(tree
, start
, end
, bits
, NULL
,
1302 int set_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1303 unsigned bits
, gfp_t mask
,
1304 struct extent_changeset
*changeset
)
1307 * We don't support EXTENT_LOCKED yet, as current changeset will
1308 * record any bits changed, so for EXTENT_LOCKED case, it will
1309 * either fail with -EEXIST or changeset will record the whole
1312 BUG_ON(bits
& EXTENT_LOCKED
);
1314 return __set_extent_bit(tree
, start
, end
, bits
, 0, NULL
, NULL
, mask
,
1318 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1319 unsigned bits
, int wake
, int delete,
1320 struct extent_state
**cached
, gfp_t mask
)
1322 return __clear_extent_bit(tree
, start
, end
, bits
, wake
, delete,
1323 cached
, mask
, NULL
);
1326 int clear_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1327 unsigned bits
, gfp_t mask
)
1331 if (bits
& EXTENT_LOCKED
)
1334 return clear_extent_bit(tree
, start
, end
, bits
, wake
, 0, NULL
, mask
);
1337 int clear_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1338 unsigned bits
, gfp_t mask
,
1339 struct extent_changeset
*changeset
)
1342 * Don't support EXTENT_LOCKED case, same reason as
1343 * set_record_extent_bits().
1345 BUG_ON(bits
& EXTENT_LOCKED
);
1347 return __clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, mask
,
1351 int set_extent_delalloc(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1352 struct extent_state
**cached_state
, gfp_t mask
)
1354 return set_extent_bit(tree
, start
, end
,
1355 EXTENT_DELALLOC
| EXTENT_UPTODATE
,
1356 NULL
, cached_state
, mask
);
1359 int set_extent_defrag(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1360 struct extent_state
**cached_state
, gfp_t mask
)
1362 return set_extent_bit(tree
, start
, end
,
1363 EXTENT_DELALLOC
| EXTENT_UPTODATE
| EXTENT_DEFRAG
,
1364 NULL
, cached_state
, mask
);
1367 int clear_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1370 return clear_extent_bit(tree
, start
, end
,
1371 EXTENT_DIRTY
| EXTENT_DELALLOC
|
1372 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, mask
);
1375 int set_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1378 return set_extent_bit(tree
, start
, end
, EXTENT_NEW
, NULL
,
1382 int set_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1383 struct extent_state
**cached_state
, gfp_t mask
)
1385 return set_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, NULL
,
1386 cached_state
, mask
);
1389 int clear_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1390 struct extent_state
**cached_state
, gfp_t mask
)
1392 return clear_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, 0,
1393 cached_state
, mask
);
1397 * either insert or lock state struct between start and end use mask to tell
1398 * us if waiting is desired.
1400 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1401 unsigned bits
, struct extent_state
**cached_state
)
1407 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
| bits
,
1408 EXTENT_LOCKED
, &failed_start
,
1409 cached_state
, GFP_NOFS
, NULL
);
1410 if (err
== -EEXIST
) {
1411 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1412 start
= failed_start
;
1415 WARN_ON(start
> end
);
1420 int lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1422 return lock_extent_bits(tree
, start
, end
, 0, NULL
);
1425 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1430 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1431 &failed_start
, NULL
, GFP_NOFS
, NULL
);
1432 if (err
== -EEXIST
) {
1433 if (failed_start
> start
)
1434 clear_extent_bit(tree
, start
, failed_start
- 1,
1435 EXTENT_LOCKED
, 1, 0, NULL
, GFP_NOFS
);
1441 int unlock_extent_cached(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1442 struct extent_state
**cached
, gfp_t mask
)
1444 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, cached
,
1448 int unlock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1450 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, NULL
,
1454 int extent_range_clear_dirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1456 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1457 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1460 while (index
<= end_index
) {
1461 page
= find_get_page(inode
->i_mapping
, index
);
1462 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1463 clear_page_dirty_for_io(page
);
1464 page_cache_release(page
);
1470 int extent_range_redirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1472 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1473 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1476 while (index
<= end_index
) {
1477 page
= find_get_page(inode
->i_mapping
, index
);
1478 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1479 __set_page_dirty_nobuffers(page
);
1480 account_page_redirty(page
);
1481 page_cache_release(page
);
1488 * helper function to set both pages and extents in the tree writeback
1490 static int set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1492 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1493 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1496 while (index
<= end_index
) {
1497 page
= find_get_page(tree
->mapping
, index
);
1498 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1499 set_page_writeback(page
);
1500 page_cache_release(page
);
1506 /* find the first state struct with 'bits' set after 'start', and
1507 * return it. tree->lock must be held. NULL will returned if
1508 * nothing was found after 'start'
1510 static struct extent_state
*
1511 find_first_extent_bit_state(struct extent_io_tree
*tree
,
1512 u64 start
, unsigned bits
)
1514 struct rb_node
*node
;
1515 struct extent_state
*state
;
1518 * this search will find all the extents that end after
1521 node
= tree_search(tree
, start
);
1526 state
= rb_entry(node
, struct extent_state
, rb_node
);
1527 if (state
->end
>= start
&& (state
->state
& bits
))
1530 node
= rb_next(node
);
1539 * find the first offset in the io tree with 'bits' set. zero is
1540 * returned if we find something, and *start_ret and *end_ret are
1541 * set to reflect the state struct that was found.
1543 * If nothing was found, 1 is returned. If found something, return 0.
1545 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1546 u64
*start_ret
, u64
*end_ret
, unsigned bits
,
1547 struct extent_state
**cached_state
)
1549 struct extent_state
*state
;
1553 spin_lock(&tree
->lock
);
1554 if (cached_state
&& *cached_state
) {
1555 state
= *cached_state
;
1556 if (state
->end
== start
- 1 && extent_state_in_tree(state
)) {
1557 n
= rb_next(&state
->rb_node
);
1559 state
= rb_entry(n
, struct extent_state
,
1561 if (state
->state
& bits
)
1565 free_extent_state(*cached_state
);
1566 *cached_state
= NULL
;
1569 free_extent_state(*cached_state
);
1570 *cached_state
= NULL
;
1573 state
= find_first_extent_bit_state(tree
, start
, bits
);
1576 cache_state_if_flags(state
, cached_state
, 0);
1577 *start_ret
= state
->start
;
1578 *end_ret
= state
->end
;
1582 spin_unlock(&tree
->lock
);
1587 * find a contiguous range of bytes in the file marked as delalloc, not
1588 * more than 'max_bytes'. start and end are used to return the range,
1590 * 1 is returned if we find something, 0 if nothing was in the tree
1592 static noinline u64
find_delalloc_range(struct extent_io_tree
*tree
,
1593 u64
*start
, u64
*end
, u64 max_bytes
,
1594 struct extent_state
**cached_state
)
1596 struct rb_node
*node
;
1597 struct extent_state
*state
;
1598 u64 cur_start
= *start
;
1600 u64 total_bytes
= 0;
1602 spin_lock(&tree
->lock
);
1605 * this search will find all the extents that end after
1608 node
= tree_search(tree
, cur_start
);
1616 state
= rb_entry(node
, struct extent_state
, rb_node
);
1617 if (found
&& (state
->start
!= cur_start
||
1618 (state
->state
& EXTENT_BOUNDARY
))) {
1621 if (!(state
->state
& EXTENT_DELALLOC
)) {
1627 *start
= state
->start
;
1628 *cached_state
= state
;
1629 atomic_inc(&state
->refs
);
1633 cur_start
= state
->end
+ 1;
1634 node
= rb_next(node
);
1635 total_bytes
+= state
->end
- state
->start
+ 1;
1636 if (total_bytes
>= max_bytes
)
1642 spin_unlock(&tree
->lock
);
1646 static noinline
void __unlock_for_delalloc(struct inode
*inode
,
1647 struct page
*locked_page
,
1651 struct page
*pages
[16];
1652 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1653 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1654 unsigned long nr_pages
= end_index
- index
+ 1;
1657 if (index
== locked_page
->index
&& end_index
== index
)
1660 while (nr_pages
> 0) {
1661 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1662 min_t(unsigned long, nr_pages
,
1663 ARRAY_SIZE(pages
)), pages
);
1664 for (i
= 0; i
< ret
; i
++) {
1665 if (pages
[i
] != locked_page
)
1666 unlock_page(pages
[i
]);
1667 page_cache_release(pages
[i
]);
1675 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1676 struct page
*locked_page
,
1680 unsigned long index
= delalloc_start
>> PAGE_CACHE_SHIFT
;
1681 unsigned long start_index
= index
;
1682 unsigned long end_index
= delalloc_end
>> PAGE_CACHE_SHIFT
;
1683 unsigned long pages_locked
= 0;
1684 struct page
*pages
[16];
1685 unsigned long nrpages
;
1689 /* the caller is responsible for locking the start index */
1690 if (index
== locked_page
->index
&& index
== end_index
)
1693 /* skip the page at the start index */
1694 nrpages
= end_index
- index
+ 1;
1695 while (nrpages
> 0) {
1696 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1697 min_t(unsigned long,
1698 nrpages
, ARRAY_SIZE(pages
)), pages
);
1703 /* now we have an array of pages, lock them all */
1704 for (i
= 0; i
< ret
; i
++) {
1706 * the caller is taking responsibility for
1709 if (pages
[i
] != locked_page
) {
1710 lock_page(pages
[i
]);
1711 if (!PageDirty(pages
[i
]) ||
1712 pages
[i
]->mapping
!= inode
->i_mapping
) {
1714 unlock_page(pages
[i
]);
1715 page_cache_release(pages
[i
]);
1719 page_cache_release(pages
[i
]);
1728 if (ret
&& pages_locked
) {
1729 __unlock_for_delalloc(inode
, locked_page
,
1731 ((u64
)(start_index
+ pages_locked
- 1)) <<
1738 * find a contiguous range of bytes in the file marked as delalloc, not
1739 * more than 'max_bytes'. start and end are used to return the range,
1741 * 1 is returned if we find something, 0 if nothing was in the tree
1743 STATIC u64
find_lock_delalloc_range(struct inode
*inode
,
1744 struct extent_io_tree
*tree
,
1745 struct page
*locked_page
, u64
*start
,
1746 u64
*end
, u64 max_bytes
)
1751 struct extent_state
*cached_state
= NULL
;
1756 /* step one, find a bunch of delalloc bytes starting at start */
1757 delalloc_start
= *start
;
1759 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1760 max_bytes
, &cached_state
);
1761 if (!found
|| delalloc_end
<= *start
) {
1762 *start
= delalloc_start
;
1763 *end
= delalloc_end
;
1764 free_extent_state(cached_state
);
1769 * start comes from the offset of locked_page. We have to lock
1770 * pages in order, so we can't process delalloc bytes before
1773 if (delalloc_start
< *start
)
1774 delalloc_start
= *start
;
1777 * make sure to limit the number of pages we try to lock down
1779 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
)
1780 delalloc_end
= delalloc_start
+ max_bytes
- 1;
1782 /* step two, lock all the pages after the page that has start */
1783 ret
= lock_delalloc_pages(inode
, locked_page
,
1784 delalloc_start
, delalloc_end
);
1785 if (ret
== -EAGAIN
) {
1786 /* some of the pages are gone, lets avoid looping by
1787 * shortening the size of the delalloc range we're searching
1789 free_extent_state(cached_state
);
1790 cached_state
= NULL
;
1792 max_bytes
= PAGE_CACHE_SIZE
;
1800 BUG_ON(ret
); /* Only valid values are 0 and -EAGAIN */
1802 /* step three, lock the state bits for the whole range */
1803 lock_extent_bits(tree
, delalloc_start
, delalloc_end
, 0, &cached_state
);
1805 /* then test to make sure it is all still delalloc */
1806 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1807 EXTENT_DELALLOC
, 1, cached_state
);
1809 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1810 &cached_state
, GFP_NOFS
);
1811 __unlock_for_delalloc(inode
, locked_page
,
1812 delalloc_start
, delalloc_end
);
1816 free_extent_state(cached_state
);
1817 *start
= delalloc_start
;
1818 *end
= delalloc_end
;
1823 int extent_clear_unlock_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1824 struct page
*locked_page
,
1825 unsigned clear_bits
,
1826 unsigned long page_ops
)
1828 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
1830 struct page
*pages
[16];
1831 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1832 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1833 unsigned long nr_pages
= end_index
- index
+ 1;
1836 clear_extent_bit(tree
, start
, end
, clear_bits
, 1, 0, NULL
, GFP_NOFS
);
1840 if ((page_ops
& PAGE_SET_ERROR
) && nr_pages
> 0)
1841 mapping_set_error(inode
->i_mapping
, -EIO
);
1843 while (nr_pages
> 0) {
1844 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1845 min_t(unsigned long,
1846 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1847 for (i
= 0; i
< ret
; i
++) {
1849 if (page_ops
& PAGE_SET_PRIVATE2
)
1850 SetPagePrivate2(pages
[i
]);
1852 if (pages
[i
] == locked_page
) {
1853 page_cache_release(pages
[i
]);
1856 if (page_ops
& PAGE_CLEAR_DIRTY
)
1857 clear_page_dirty_for_io(pages
[i
]);
1858 if (page_ops
& PAGE_SET_WRITEBACK
)
1859 set_page_writeback(pages
[i
]);
1860 if (page_ops
& PAGE_SET_ERROR
)
1861 SetPageError(pages
[i
]);
1862 if (page_ops
& PAGE_END_WRITEBACK
)
1863 end_page_writeback(pages
[i
]);
1864 if (page_ops
& PAGE_UNLOCK
)
1865 unlock_page(pages
[i
]);
1866 page_cache_release(pages
[i
]);
1876 * count the number of bytes in the tree that have a given bit(s)
1877 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1878 * cached. The total number found is returned.
1880 u64
count_range_bits(struct extent_io_tree
*tree
,
1881 u64
*start
, u64 search_end
, u64 max_bytes
,
1882 unsigned bits
, int contig
)
1884 struct rb_node
*node
;
1885 struct extent_state
*state
;
1886 u64 cur_start
= *start
;
1887 u64 total_bytes
= 0;
1891 if (WARN_ON(search_end
<= cur_start
))
1894 spin_lock(&tree
->lock
);
1895 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1896 total_bytes
= tree
->dirty_bytes
;
1900 * this search will find all the extents that end after
1903 node
= tree_search(tree
, cur_start
);
1908 state
= rb_entry(node
, struct extent_state
, rb_node
);
1909 if (state
->start
> search_end
)
1911 if (contig
&& found
&& state
->start
> last
+ 1)
1913 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
1914 total_bytes
+= min(search_end
, state
->end
) + 1 -
1915 max(cur_start
, state
->start
);
1916 if (total_bytes
>= max_bytes
)
1919 *start
= max(cur_start
, state
->start
);
1923 } else if (contig
&& found
) {
1926 node
= rb_next(node
);
1931 spin_unlock(&tree
->lock
);
1936 * set the private field for a given byte offset in the tree. If there isn't
1937 * an extent_state there already, this does nothing.
1939 static int set_state_private(struct extent_io_tree
*tree
, u64 start
, u64
private)
1941 struct rb_node
*node
;
1942 struct extent_state
*state
;
1945 spin_lock(&tree
->lock
);
1947 * this search will find all the extents that end after
1950 node
= tree_search(tree
, start
);
1955 state
= rb_entry(node
, struct extent_state
, rb_node
);
1956 if (state
->start
!= start
) {
1960 state
->private = private;
1962 spin_unlock(&tree
->lock
);
1966 int get_state_private(struct extent_io_tree
*tree
, u64 start
, u64
*private)
1968 struct rb_node
*node
;
1969 struct extent_state
*state
;
1972 spin_lock(&tree
->lock
);
1974 * this search will find all the extents that end after
1977 node
= tree_search(tree
, start
);
1982 state
= rb_entry(node
, struct extent_state
, rb_node
);
1983 if (state
->start
!= start
) {
1987 *private = state
->private;
1989 spin_unlock(&tree
->lock
);
1994 * searches a range in the state tree for a given mask.
1995 * If 'filled' == 1, this returns 1 only if every extent in the tree
1996 * has the bits set. Otherwise, 1 is returned if any bit in the
1997 * range is found set.
1999 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
2000 unsigned bits
, int filled
, struct extent_state
*cached
)
2002 struct extent_state
*state
= NULL
;
2003 struct rb_node
*node
;
2006 spin_lock(&tree
->lock
);
2007 if (cached
&& extent_state_in_tree(cached
) && cached
->start
<= start
&&
2008 cached
->end
> start
)
2009 node
= &cached
->rb_node
;
2011 node
= tree_search(tree
, start
);
2012 while (node
&& start
<= end
) {
2013 state
= rb_entry(node
, struct extent_state
, rb_node
);
2015 if (filled
&& state
->start
> start
) {
2020 if (state
->start
> end
)
2023 if (state
->state
& bits
) {
2027 } else if (filled
) {
2032 if (state
->end
== (u64
)-1)
2035 start
= state
->end
+ 1;
2038 node
= rb_next(node
);
2045 spin_unlock(&tree
->lock
);
2050 * helper function to set a given page up to date if all the
2051 * extents in the tree for that page are up to date
2053 static void check_page_uptodate(struct extent_io_tree
*tree
, struct page
*page
)
2055 u64 start
= page_offset(page
);
2056 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2057 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
2058 SetPageUptodate(page
);
2061 int free_io_failure(struct inode
*inode
, struct io_failure_record
*rec
)
2065 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2067 set_state_private(failure_tree
, rec
->start
, 0);
2068 ret
= clear_extent_bits(failure_tree
, rec
->start
,
2069 rec
->start
+ rec
->len
- 1,
2070 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
2074 ret
= clear_extent_bits(&BTRFS_I(inode
)->io_tree
, rec
->start
,
2075 rec
->start
+ rec
->len
- 1,
2076 EXTENT_DAMAGED
, GFP_NOFS
);
2085 * this bypasses the standard btrfs submit functions deliberately, as
2086 * the standard behavior is to write all copies in a raid setup. here we only
2087 * want to write the one bad copy. so we do the mapping for ourselves and issue
2088 * submit_bio directly.
2089 * to avoid any synchronization issues, wait for the data after writing, which
2090 * actually prevents the read that triggered the error from finishing.
2091 * currently, there can be no more than two copies of every data bit. thus,
2092 * exactly one rewrite is required.
2094 int repair_io_failure(struct inode
*inode
, u64 start
, u64 length
, u64 logical
,
2095 struct page
*page
, unsigned int pg_offset
, int mirror_num
)
2097 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2099 struct btrfs_device
*dev
;
2102 struct btrfs_bio
*bbio
= NULL
;
2103 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
2106 ASSERT(!(fs_info
->sb
->s_flags
& MS_RDONLY
));
2107 BUG_ON(!mirror_num
);
2109 /* we can't repair anything in raid56 yet */
2110 if (btrfs_is_parity_mirror(map_tree
, logical
, length
, mirror_num
))
2113 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
2116 bio
->bi_iter
.bi_size
= 0;
2117 map_length
= length
;
2119 ret
= btrfs_map_block(fs_info
, WRITE
, logical
,
2120 &map_length
, &bbio
, mirror_num
);
2125 BUG_ON(mirror_num
!= bbio
->mirror_num
);
2126 sector
= bbio
->stripes
[mirror_num
-1].physical
>> 9;
2127 bio
->bi_iter
.bi_sector
= sector
;
2128 dev
= bbio
->stripes
[mirror_num
-1].dev
;
2129 btrfs_put_bbio(bbio
);
2130 if (!dev
|| !dev
->bdev
|| !dev
->writeable
) {
2134 bio
->bi_bdev
= dev
->bdev
;
2135 bio_add_page(bio
, page
, length
, pg_offset
);
2137 if (btrfsic_submit_bio_wait(WRITE_SYNC
, bio
)) {
2138 /* try to remap that extent elsewhere? */
2140 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
2144 btrfs_info_rl_in_rcu(fs_info
,
2145 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2146 btrfs_ino(inode
), start
,
2147 rcu_str_deref(dev
->name
), sector
);
2152 int repair_eb_io_failure(struct btrfs_root
*root
, struct extent_buffer
*eb
,
2155 u64 start
= eb
->start
;
2156 unsigned long i
, num_pages
= num_extent_pages(eb
->start
, eb
->len
);
2159 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
2162 for (i
= 0; i
< num_pages
; i
++) {
2163 struct page
*p
= eb
->pages
[i
];
2165 ret
= repair_io_failure(root
->fs_info
->btree_inode
, start
,
2166 PAGE_CACHE_SIZE
, start
, p
,
2167 start
- page_offset(p
), mirror_num
);
2170 start
+= PAGE_CACHE_SIZE
;
2177 * each time an IO finishes, we do a fast check in the IO failure tree
2178 * to see if we need to process or clean up an io_failure_record
2180 int clean_io_failure(struct inode
*inode
, u64 start
, struct page
*page
,
2181 unsigned int pg_offset
)
2184 u64 private_failure
;
2185 struct io_failure_record
*failrec
;
2186 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2187 struct extent_state
*state
;
2192 ret
= count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
2193 (u64
)-1, 1, EXTENT_DIRTY
, 0);
2197 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
, start
,
2202 failrec
= (struct io_failure_record
*)(unsigned long) private_failure
;
2203 BUG_ON(!failrec
->this_mirror
);
2205 if (failrec
->in_validation
) {
2206 /* there was no real error, just free the record */
2207 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2211 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
2214 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
2215 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
2218 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
2220 if (state
&& state
->start
<= failrec
->start
&&
2221 state
->end
>= failrec
->start
+ failrec
->len
- 1) {
2222 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
,
2224 if (num_copies
> 1) {
2225 repair_io_failure(inode
, start
, failrec
->len
,
2226 failrec
->logical
, page
,
2227 pg_offset
, failrec
->failed_mirror
);
2232 free_io_failure(inode
, failrec
);
2238 * Can be called when
2239 * - hold extent lock
2240 * - under ordered extent
2241 * - the inode is freeing
2243 void btrfs_free_io_failure_record(struct inode
*inode
, u64 start
, u64 end
)
2245 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2246 struct io_failure_record
*failrec
;
2247 struct extent_state
*state
, *next
;
2249 if (RB_EMPTY_ROOT(&failure_tree
->state
))
2252 spin_lock(&failure_tree
->lock
);
2253 state
= find_first_extent_bit_state(failure_tree
, start
, EXTENT_DIRTY
);
2255 if (state
->start
> end
)
2258 ASSERT(state
->end
<= end
);
2260 next
= next_state(state
);
2262 failrec
= (struct io_failure_record
*)(unsigned long)state
->private;
2263 free_extent_state(state
);
2268 spin_unlock(&failure_tree
->lock
);
2271 int btrfs_get_io_failure_record(struct inode
*inode
, u64 start
, u64 end
,
2272 struct io_failure_record
**failrec_ret
)
2274 struct io_failure_record
*failrec
;
2276 struct extent_map
*em
;
2277 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2278 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2279 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2283 ret
= get_state_private(failure_tree
, start
, &private);
2285 failrec
= kzalloc(sizeof(*failrec
), GFP_NOFS
);
2289 failrec
->start
= start
;
2290 failrec
->len
= end
- start
+ 1;
2291 failrec
->this_mirror
= 0;
2292 failrec
->bio_flags
= 0;
2293 failrec
->in_validation
= 0;
2295 read_lock(&em_tree
->lock
);
2296 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
2298 read_unlock(&em_tree
->lock
);
2303 if (em
->start
> start
|| em
->start
+ em
->len
<= start
) {
2304 free_extent_map(em
);
2307 read_unlock(&em_tree
->lock
);
2313 logical
= start
- em
->start
;
2314 logical
= em
->block_start
+ logical
;
2315 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2316 logical
= em
->block_start
;
2317 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
2318 extent_set_compress_type(&failrec
->bio_flags
,
2322 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2323 logical
, start
, failrec
->len
);
2325 failrec
->logical
= logical
;
2326 free_extent_map(em
);
2328 /* set the bits in the private failure tree */
2329 ret
= set_extent_bits(failure_tree
, start
, end
,
2330 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
2332 ret
= set_state_private(failure_tree
, start
,
2333 (u64
)(unsigned long)failrec
);
2334 /* set the bits in the inode's tree */
2336 ret
= set_extent_bits(tree
, start
, end
, EXTENT_DAMAGED
,
2343 failrec
= (struct io_failure_record
*)(unsigned long)private;
2344 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2345 failrec
->logical
, failrec
->start
, failrec
->len
,
2346 failrec
->in_validation
);
2348 * when data can be on disk more than twice, add to failrec here
2349 * (e.g. with a list for failed_mirror) to make
2350 * clean_io_failure() clean all those errors at once.
2354 *failrec_ret
= failrec
;
2359 int btrfs_check_repairable(struct inode
*inode
, struct bio
*failed_bio
,
2360 struct io_failure_record
*failrec
, int failed_mirror
)
2364 num_copies
= btrfs_num_copies(BTRFS_I(inode
)->root
->fs_info
,
2365 failrec
->logical
, failrec
->len
);
2366 if (num_copies
== 1) {
2368 * we only have a single copy of the data, so don't bother with
2369 * all the retry and error correction code that follows. no
2370 * matter what the error is, it is very likely to persist.
2372 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2373 num_copies
, failrec
->this_mirror
, failed_mirror
);
2378 * there are two premises:
2379 * a) deliver good data to the caller
2380 * b) correct the bad sectors on disk
2382 if (failed_bio
->bi_vcnt
> 1) {
2384 * to fulfill b), we need to know the exact failing sectors, as
2385 * we don't want to rewrite any more than the failed ones. thus,
2386 * we need separate read requests for the failed bio
2388 * if the following BUG_ON triggers, our validation request got
2389 * merged. we need separate requests for our algorithm to work.
2391 BUG_ON(failrec
->in_validation
);
2392 failrec
->in_validation
= 1;
2393 failrec
->this_mirror
= failed_mirror
;
2396 * we're ready to fulfill a) and b) alongside. get a good copy
2397 * of the failed sector and if we succeed, we have setup
2398 * everything for repair_io_failure to do the rest for us.
2400 if (failrec
->in_validation
) {
2401 BUG_ON(failrec
->this_mirror
!= failed_mirror
);
2402 failrec
->in_validation
= 0;
2403 failrec
->this_mirror
= 0;
2405 failrec
->failed_mirror
= failed_mirror
;
2406 failrec
->this_mirror
++;
2407 if (failrec
->this_mirror
== failed_mirror
)
2408 failrec
->this_mirror
++;
2411 if (failrec
->this_mirror
> num_copies
) {
2412 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2413 num_copies
, failrec
->this_mirror
, failed_mirror
);
2421 struct bio
*btrfs_create_repair_bio(struct inode
*inode
, struct bio
*failed_bio
,
2422 struct io_failure_record
*failrec
,
2423 struct page
*page
, int pg_offset
, int icsum
,
2424 bio_end_io_t
*endio_func
, void *data
)
2427 struct btrfs_io_bio
*btrfs_failed_bio
;
2428 struct btrfs_io_bio
*btrfs_bio
;
2430 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
2434 bio
->bi_end_io
= endio_func
;
2435 bio
->bi_iter
.bi_sector
= failrec
->logical
>> 9;
2436 bio
->bi_bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
2437 bio
->bi_iter
.bi_size
= 0;
2438 bio
->bi_private
= data
;
2440 btrfs_failed_bio
= btrfs_io_bio(failed_bio
);
2441 if (btrfs_failed_bio
->csum
) {
2442 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2443 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
2445 btrfs_bio
= btrfs_io_bio(bio
);
2446 btrfs_bio
->csum
= btrfs_bio
->csum_inline
;
2448 memcpy(btrfs_bio
->csum
, btrfs_failed_bio
->csum
+ icsum
,
2452 bio_add_page(bio
, page
, failrec
->len
, pg_offset
);
2458 * this is a generic handler for readpage errors (default
2459 * readpage_io_failed_hook). if other copies exist, read those and write back
2460 * good data to the failed position. does not investigate in remapping the
2461 * failed extent elsewhere, hoping the device will be smart enough to do this as
2465 static int bio_readpage_error(struct bio
*failed_bio
, u64 phy_offset
,
2466 struct page
*page
, u64 start
, u64 end
,
2469 struct io_failure_record
*failrec
;
2470 struct inode
*inode
= page
->mapping
->host
;
2471 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2476 BUG_ON(failed_bio
->bi_rw
& REQ_WRITE
);
2478 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
2482 ret
= btrfs_check_repairable(inode
, failed_bio
, failrec
, failed_mirror
);
2484 free_io_failure(inode
, failrec
);
2488 if (failed_bio
->bi_vcnt
> 1)
2489 read_mode
= READ_SYNC
| REQ_FAILFAST_DEV
;
2491 read_mode
= READ_SYNC
;
2493 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
2494 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
2495 start
- page_offset(page
),
2496 (int)phy_offset
, failed_bio
->bi_end_io
,
2499 free_io_failure(inode
, failrec
);
2503 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2504 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
2506 ret
= tree
->ops
->submit_bio_hook(inode
, read_mode
, bio
,
2507 failrec
->this_mirror
,
2508 failrec
->bio_flags
, 0);
2510 free_io_failure(inode
, failrec
);
2517 /* lots and lots of room for performance fixes in the end_bio funcs */
2519 int end_extent_writepage(struct page
*page
, int err
, u64 start
, u64 end
)
2521 int uptodate
= (err
== 0);
2522 struct extent_io_tree
*tree
;
2525 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
2527 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
) {
2528 ret
= tree
->ops
->writepage_end_io_hook(page
, start
,
2529 end
, NULL
, uptodate
);
2535 ClearPageUptodate(page
);
2537 ret
= ret
< 0 ? ret
: -EIO
;
2538 mapping_set_error(page
->mapping
, ret
);
2544 * after a writepage IO is done, we need to:
2545 * clear the uptodate bits on error
2546 * clear the writeback bits in the extent tree for this IO
2547 * end_page_writeback if the page has no more pending IO
2549 * Scheduling is not allowed, so the extent state tree is expected
2550 * to have one and only one object corresponding to this IO.
2552 static void end_bio_extent_writepage(struct bio
*bio
)
2554 struct bio_vec
*bvec
;
2559 bio_for_each_segment_all(bvec
, bio
, i
) {
2560 struct page
*page
= bvec
->bv_page
;
2562 /* We always issue full-page reads, but if some block
2563 * in a page fails to read, blk_update_request() will
2564 * advance bv_offset and adjust bv_len to compensate.
2565 * Print a warning for nonzero offsets, and an error
2566 * if they don't add up to a full page. */
2567 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_CACHE_SIZE
) {
2568 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_CACHE_SIZE
)
2569 btrfs_err(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2570 "partial page write in btrfs with offset %u and length %u",
2571 bvec
->bv_offset
, bvec
->bv_len
);
2573 btrfs_info(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2574 "incomplete page write in btrfs with offset %u and "
2576 bvec
->bv_offset
, bvec
->bv_len
);
2579 start
= page_offset(page
);
2580 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2582 if (end_extent_writepage(page
, bio
->bi_error
, start
, end
))
2585 end_page_writeback(page
);
2592 endio_readpage_release_extent(struct extent_io_tree
*tree
, u64 start
, u64 len
,
2595 struct extent_state
*cached
= NULL
;
2596 u64 end
= start
+ len
- 1;
2598 if (uptodate
&& tree
->track_uptodate
)
2599 set_extent_uptodate(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2600 unlock_extent_cached(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2604 * after a readpage IO is done, we need to:
2605 * clear the uptodate bits on error
2606 * set the uptodate bits if things worked
2607 * set the page up to date if all extents in the tree are uptodate
2608 * clear the lock bit in the extent tree
2609 * unlock the page if there are no other extents locked for it
2611 * Scheduling is not allowed, so the extent state tree is expected
2612 * to have one and only one object corresponding to this IO.
2614 static void end_bio_extent_readpage(struct bio
*bio
)
2616 struct bio_vec
*bvec
;
2617 int uptodate
= !bio
->bi_error
;
2618 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
2619 struct extent_io_tree
*tree
;
2624 u64 extent_start
= 0;
2630 bio_for_each_segment_all(bvec
, bio
, i
) {
2631 struct page
*page
= bvec
->bv_page
;
2632 struct inode
*inode
= page
->mapping
->host
;
2634 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2635 "mirror=%u\n", (u64
)bio
->bi_iter
.bi_sector
,
2636 bio
->bi_error
, io_bio
->mirror_num
);
2637 tree
= &BTRFS_I(inode
)->io_tree
;
2639 /* We always issue full-page reads, but if some block
2640 * in a page fails to read, blk_update_request() will
2641 * advance bv_offset and adjust bv_len to compensate.
2642 * Print a warning for nonzero offsets, and an error
2643 * if they don't add up to a full page. */
2644 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_CACHE_SIZE
) {
2645 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_CACHE_SIZE
)
2646 btrfs_err(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2647 "partial page read in btrfs with offset %u and length %u",
2648 bvec
->bv_offset
, bvec
->bv_len
);
2650 btrfs_info(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2651 "incomplete page read in btrfs with offset %u and "
2653 bvec
->bv_offset
, bvec
->bv_len
);
2656 start
= page_offset(page
);
2657 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2660 mirror
= io_bio
->mirror_num
;
2661 if (likely(uptodate
&& tree
->ops
&&
2662 tree
->ops
->readpage_end_io_hook
)) {
2663 ret
= tree
->ops
->readpage_end_io_hook(io_bio
, offset
,
2669 clean_io_failure(inode
, start
, page
, 0);
2672 if (likely(uptodate
))
2675 if (tree
->ops
&& tree
->ops
->readpage_io_failed_hook
) {
2676 ret
= tree
->ops
->readpage_io_failed_hook(page
, mirror
);
2677 if (!ret
&& !bio
->bi_error
)
2681 * The generic bio_readpage_error handles errors the
2682 * following way: If possible, new read requests are
2683 * created and submitted and will end up in
2684 * end_bio_extent_readpage as well (if we're lucky, not
2685 * in the !uptodate case). In that case it returns 0 and
2686 * we just go on with the next page in our bio. If it
2687 * can't handle the error it will return -EIO and we
2688 * remain responsible for that page.
2690 ret
= bio_readpage_error(bio
, offset
, page
, start
, end
,
2693 uptodate
= !bio
->bi_error
;
2699 if (likely(uptodate
)) {
2700 loff_t i_size
= i_size_read(inode
);
2701 pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2704 /* Zero out the end if this page straddles i_size */
2705 off
= i_size
& (PAGE_CACHE_SIZE
-1);
2706 if (page
->index
== end_index
&& off
)
2707 zero_user_segment(page
, off
, PAGE_CACHE_SIZE
);
2708 SetPageUptodate(page
);
2710 ClearPageUptodate(page
);
2716 if (unlikely(!uptodate
)) {
2718 endio_readpage_release_extent(tree
,
2724 endio_readpage_release_extent(tree
, start
,
2725 end
- start
+ 1, 0);
2726 } else if (!extent_len
) {
2727 extent_start
= start
;
2728 extent_len
= end
+ 1 - start
;
2729 } else if (extent_start
+ extent_len
== start
) {
2730 extent_len
+= end
+ 1 - start
;
2732 endio_readpage_release_extent(tree
, extent_start
,
2733 extent_len
, uptodate
);
2734 extent_start
= start
;
2735 extent_len
= end
+ 1 - start
;
2740 endio_readpage_release_extent(tree
, extent_start
, extent_len
,
2743 io_bio
->end_io(io_bio
, bio
->bi_error
);
2748 * this allocates from the btrfs_bioset. We're returning a bio right now
2749 * but you can call btrfs_io_bio for the appropriate container_of magic
2752 btrfs_bio_alloc(struct block_device
*bdev
, u64 first_sector
, int nr_vecs
,
2755 struct btrfs_io_bio
*btrfs_bio
;
2758 bio
= bio_alloc_bioset(gfp_flags
, nr_vecs
, btrfs_bioset
);
2760 if (bio
== NULL
&& (current
->flags
& PF_MEMALLOC
)) {
2761 while (!bio
&& (nr_vecs
/= 2)) {
2762 bio
= bio_alloc_bioset(gfp_flags
,
2763 nr_vecs
, btrfs_bioset
);
2768 bio
->bi_bdev
= bdev
;
2769 bio
->bi_iter
.bi_sector
= first_sector
;
2770 btrfs_bio
= btrfs_io_bio(bio
);
2771 btrfs_bio
->csum
= NULL
;
2772 btrfs_bio
->csum_allocated
= NULL
;
2773 btrfs_bio
->end_io
= NULL
;
2778 struct bio
*btrfs_bio_clone(struct bio
*bio
, gfp_t gfp_mask
)
2780 struct btrfs_io_bio
*btrfs_bio
;
2783 new = bio_clone_bioset(bio
, gfp_mask
, btrfs_bioset
);
2785 btrfs_bio
= btrfs_io_bio(new);
2786 btrfs_bio
->csum
= NULL
;
2787 btrfs_bio
->csum_allocated
= NULL
;
2788 btrfs_bio
->end_io
= NULL
;
2790 #ifdef CONFIG_BLK_CGROUP
2791 /* FIXME, put this into bio_clone_bioset */
2793 bio_associate_blkcg(new, bio
->bi_css
);
2799 /* this also allocates from the btrfs_bioset */
2800 struct bio
*btrfs_io_bio_alloc(gfp_t gfp_mask
, unsigned int nr_iovecs
)
2802 struct btrfs_io_bio
*btrfs_bio
;
2805 bio
= bio_alloc_bioset(gfp_mask
, nr_iovecs
, btrfs_bioset
);
2807 btrfs_bio
= btrfs_io_bio(bio
);
2808 btrfs_bio
->csum
= NULL
;
2809 btrfs_bio
->csum_allocated
= NULL
;
2810 btrfs_bio
->end_io
= NULL
;
2816 static int __must_check
submit_one_bio(int rw
, struct bio
*bio
,
2817 int mirror_num
, unsigned long bio_flags
)
2820 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
2821 struct page
*page
= bvec
->bv_page
;
2822 struct extent_io_tree
*tree
= bio
->bi_private
;
2825 start
= page_offset(page
) + bvec
->bv_offset
;
2827 bio
->bi_private
= NULL
;
2831 if (tree
->ops
&& tree
->ops
->submit_bio_hook
)
2832 ret
= tree
->ops
->submit_bio_hook(page
->mapping
->host
, rw
, bio
,
2833 mirror_num
, bio_flags
, start
);
2835 btrfsic_submit_bio(rw
, bio
);
2841 static int merge_bio(int rw
, struct extent_io_tree
*tree
, struct page
*page
,
2842 unsigned long offset
, size_t size
, struct bio
*bio
,
2843 unsigned long bio_flags
)
2846 if (tree
->ops
&& tree
->ops
->merge_bio_hook
)
2847 ret
= tree
->ops
->merge_bio_hook(rw
, page
, offset
, size
, bio
,
2854 static int submit_extent_page(int rw
, struct extent_io_tree
*tree
,
2855 struct writeback_control
*wbc
,
2856 struct page
*page
, sector_t sector
,
2857 size_t size
, unsigned long offset
,
2858 struct block_device
*bdev
,
2859 struct bio
**bio_ret
,
2860 unsigned long max_pages
,
2861 bio_end_io_t end_io_func
,
2863 unsigned long prev_bio_flags
,
2864 unsigned long bio_flags
,
2865 bool force_bio_submit
)
2870 int old_compressed
= prev_bio_flags
& EXTENT_BIO_COMPRESSED
;
2871 size_t page_size
= min_t(size_t, size
, PAGE_CACHE_SIZE
);
2873 if (bio_ret
&& *bio_ret
) {
2876 contig
= bio
->bi_iter
.bi_sector
== sector
;
2878 contig
= bio_end_sector(bio
) == sector
;
2880 if (prev_bio_flags
!= bio_flags
|| !contig
||
2882 merge_bio(rw
, tree
, page
, offset
, page_size
, bio
, bio_flags
) ||
2883 bio_add_page(bio
, page
, page_size
, offset
) < page_size
) {
2884 ret
= submit_one_bio(rw
, bio
, mirror_num
,
2893 wbc_account_io(wbc
, page
, page_size
);
2898 bio
= btrfs_bio_alloc(bdev
, sector
, BIO_MAX_PAGES
,
2899 GFP_NOFS
| __GFP_HIGH
);
2903 bio_add_page(bio
, page
, page_size
, offset
);
2904 bio
->bi_end_io
= end_io_func
;
2905 bio
->bi_private
= tree
;
2907 wbc_init_bio(wbc
, bio
);
2908 wbc_account_io(wbc
, page
, page_size
);
2914 ret
= submit_one_bio(rw
, bio
, mirror_num
, bio_flags
);
2919 static void attach_extent_buffer_page(struct extent_buffer
*eb
,
2922 if (!PagePrivate(page
)) {
2923 SetPagePrivate(page
);
2924 page_cache_get(page
);
2925 set_page_private(page
, (unsigned long)eb
);
2927 WARN_ON(page
->private != (unsigned long)eb
);
2931 void set_page_extent_mapped(struct page
*page
)
2933 if (!PagePrivate(page
)) {
2934 SetPagePrivate(page
);
2935 page_cache_get(page
);
2936 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
2940 static struct extent_map
*
2941 __get_extent_map(struct inode
*inode
, struct page
*page
, size_t pg_offset
,
2942 u64 start
, u64 len
, get_extent_t
*get_extent
,
2943 struct extent_map
**em_cached
)
2945 struct extent_map
*em
;
2947 if (em_cached
&& *em_cached
) {
2949 if (extent_map_in_tree(em
) && start
>= em
->start
&&
2950 start
< extent_map_end(em
)) {
2951 atomic_inc(&em
->refs
);
2955 free_extent_map(em
);
2959 em
= get_extent(inode
, page
, pg_offset
, start
, len
, 0);
2960 if (em_cached
&& !IS_ERR_OR_NULL(em
)) {
2962 atomic_inc(&em
->refs
);
2968 * basic readpage implementation. Locked extent state structs are inserted
2969 * into the tree that are removed when the IO is done (by the end_io
2971 * XXX JDM: This needs looking at to ensure proper page locking
2973 static int __do_readpage(struct extent_io_tree
*tree
,
2975 get_extent_t
*get_extent
,
2976 struct extent_map
**em_cached
,
2977 struct bio
**bio
, int mirror_num
,
2978 unsigned long *bio_flags
, int rw
,
2981 struct inode
*inode
= page
->mapping
->host
;
2982 u64 start
= page_offset(page
);
2983 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2987 u64 last_byte
= i_size_read(inode
);
2991 struct extent_map
*em
;
2992 struct block_device
*bdev
;
2995 int parent_locked
= *bio_flags
& EXTENT_BIO_PARENT_LOCKED
;
2996 size_t pg_offset
= 0;
2998 size_t disk_io_size
;
2999 size_t blocksize
= inode
->i_sb
->s_blocksize
;
3000 unsigned long this_bio_flag
= *bio_flags
& EXTENT_BIO_PARENT_LOCKED
;
3002 set_page_extent_mapped(page
);
3005 if (!PageUptodate(page
)) {
3006 if (cleancache_get_page(page
) == 0) {
3007 BUG_ON(blocksize
!= PAGE_SIZE
);
3008 unlock_extent(tree
, start
, end
);
3013 if (page
->index
== last_byte
>> PAGE_CACHE_SHIFT
) {
3015 size_t zero_offset
= last_byte
& (PAGE_CACHE_SIZE
- 1);
3018 iosize
= PAGE_CACHE_SIZE
- zero_offset
;
3019 userpage
= kmap_atomic(page
);
3020 memset(userpage
+ zero_offset
, 0, iosize
);
3021 flush_dcache_page(page
);
3022 kunmap_atomic(userpage
);
3025 while (cur
<= end
) {
3026 unsigned long pnr
= (last_byte
>> PAGE_CACHE_SHIFT
) + 1;
3027 bool force_bio_submit
= false;
3029 if (cur
>= last_byte
) {
3031 struct extent_state
*cached
= NULL
;
3033 iosize
= PAGE_CACHE_SIZE
- pg_offset
;
3034 userpage
= kmap_atomic(page
);
3035 memset(userpage
+ pg_offset
, 0, iosize
);
3036 flush_dcache_page(page
);
3037 kunmap_atomic(userpage
);
3038 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3041 unlock_extent_cached(tree
, cur
,
3046 em
= __get_extent_map(inode
, page
, pg_offset
, cur
,
3047 end
- cur
+ 1, get_extent
, em_cached
);
3048 if (IS_ERR_OR_NULL(em
)) {
3051 unlock_extent(tree
, cur
, end
);
3054 extent_offset
= cur
- em
->start
;
3055 BUG_ON(extent_map_end(em
) <= cur
);
3058 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
3059 this_bio_flag
|= EXTENT_BIO_COMPRESSED
;
3060 extent_set_compress_type(&this_bio_flag
,
3064 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
3065 cur_end
= min(extent_map_end(em
) - 1, end
);
3066 iosize
= ALIGN(iosize
, blocksize
);
3067 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
3068 disk_io_size
= em
->block_len
;
3069 sector
= em
->block_start
>> 9;
3071 sector
= (em
->block_start
+ extent_offset
) >> 9;
3072 disk_io_size
= iosize
;
3075 block_start
= em
->block_start
;
3076 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
3077 block_start
= EXTENT_MAP_HOLE
;
3080 * If we have a file range that points to a compressed extent
3081 * and it's followed by a consecutive file range that points to
3082 * to the same compressed extent (possibly with a different
3083 * offset and/or length, so it either points to the whole extent
3084 * or only part of it), we must make sure we do not submit a
3085 * single bio to populate the pages for the 2 ranges because
3086 * this makes the compressed extent read zero out the pages
3087 * belonging to the 2nd range. Imagine the following scenario:
3090 * [0 - 8K] [8K - 24K]
3093 * points to extent X, points to extent X,
3094 * offset 4K, length of 8K offset 0, length 16K
3096 * [extent X, compressed length = 4K uncompressed length = 16K]
3098 * If the bio to read the compressed extent covers both ranges,
3099 * it will decompress extent X into the pages belonging to the
3100 * first range and then it will stop, zeroing out the remaining
3101 * pages that belong to the other range that points to extent X.
3102 * So here we make sure we submit 2 bios, one for the first
3103 * range and another one for the third range. Both will target
3104 * the same physical extent from disk, but we can't currently
3105 * make the compressed bio endio callback populate the pages
3106 * for both ranges because each compressed bio is tightly
3107 * coupled with a single extent map, and each range can have
3108 * an extent map with a different offset value relative to the
3109 * uncompressed data of our extent and different lengths. This
3110 * is a corner case so we prioritize correctness over
3111 * non-optimal behavior (submitting 2 bios for the same extent).
3113 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) &&
3114 prev_em_start
&& *prev_em_start
!= (u64
)-1 &&
3115 *prev_em_start
!= em
->orig_start
)
3116 force_bio_submit
= true;
3119 *prev_em_start
= em
->orig_start
;
3121 free_extent_map(em
);
3124 /* we've found a hole, just zero and go on */
3125 if (block_start
== EXTENT_MAP_HOLE
) {
3127 struct extent_state
*cached
= NULL
;
3129 userpage
= kmap_atomic(page
);
3130 memset(userpage
+ pg_offset
, 0, iosize
);
3131 flush_dcache_page(page
);
3132 kunmap_atomic(userpage
);
3134 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3137 free_extent_state(cached
);
3139 unlock_extent_cached(tree
, cur
,
3143 pg_offset
+= iosize
;
3146 /* the get_extent function already copied into the page */
3147 if (test_range_bit(tree
, cur
, cur_end
,
3148 EXTENT_UPTODATE
, 1, NULL
)) {
3149 check_page_uptodate(tree
, page
);
3151 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3153 pg_offset
+= iosize
;
3156 /* we have an inline extent but it didn't get marked up
3157 * to date. Error out
3159 if (block_start
== EXTENT_MAP_INLINE
) {
3162 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3164 pg_offset
+= iosize
;
3169 ret
= submit_extent_page(rw
, tree
, NULL
, page
,
3170 sector
, disk_io_size
, pg_offset
,
3172 end_bio_extent_readpage
, mirror_num
,
3178 *bio_flags
= this_bio_flag
;
3182 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3185 pg_offset
+= iosize
;
3189 if (!PageError(page
))
3190 SetPageUptodate(page
);
3196 static inline void __do_contiguous_readpages(struct extent_io_tree
*tree
,
3197 struct page
*pages
[], int nr_pages
,
3199 get_extent_t
*get_extent
,
3200 struct extent_map
**em_cached
,
3201 struct bio
**bio
, int mirror_num
,
3202 unsigned long *bio_flags
, int rw
,
3205 struct inode
*inode
;
3206 struct btrfs_ordered_extent
*ordered
;
3209 inode
= pages
[0]->mapping
->host
;
3211 lock_extent(tree
, start
, end
);
3212 ordered
= btrfs_lookup_ordered_range(inode
, start
,
3216 unlock_extent(tree
, start
, end
);
3217 btrfs_start_ordered_extent(inode
, ordered
, 1);
3218 btrfs_put_ordered_extent(ordered
);
3221 for (index
= 0; index
< nr_pages
; index
++) {
3222 __do_readpage(tree
, pages
[index
], get_extent
, em_cached
, bio
,
3223 mirror_num
, bio_flags
, rw
, prev_em_start
);
3224 page_cache_release(pages
[index
]);
3228 static void __extent_readpages(struct extent_io_tree
*tree
,
3229 struct page
*pages
[],
3230 int nr_pages
, get_extent_t
*get_extent
,
3231 struct extent_map
**em_cached
,
3232 struct bio
**bio
, int mirror_num
,
3233 unsigned long *bio_flags
, int rw
,
3240 int first_index
= 0;
3242 for (index
= 0; index
< nr_pages
; index
++) {
3243 page_start
= page_offset(pages
[index
]);
3246 end
= start
+ PAGE_CACHE_SIZE
- 1;
3247 first_index
= index
;
3248 } else if (end
+ 1 == page_start
) {
3249 end
+= PAGE_CACHE_SIZE
;
3251 __do_contiguous_readpages(tree
, &pages
[first_index
],
3252 index
- first_index
, start
,
3253 end
, get_extent
, em_cached
,
3254 bio
, mirror_num
, bio_flags
,
3257 end
= start
+ PAGE_CACHE_SIZE
- 1;
3258 first_index
= index
;
3263 __do_contiguous_readpages(tree
, &pages
[first_index
],
3264 index
- first_index
, start
,
3265 end
, get_extent
, em_cached
, bio
,
3266 mirror_num
, bio_flags
, rw
,
3270 static int __extent_read_full_page(struct extent_io_tree
*tree
,
3272 get_extent_t
*get_extent
,
3273 struct bio
**bio
, int mirror_num
,
3274 unsigned long *bio_flags
, int rw
)
3276 struct inode
*inode
= page
->mapping
->host
;
3277 struct btrfs_ordered_extent
*ordered
;
3278 u64 start
= page_offset(page
);
3279 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3283 lock_extent(tree
, start
, end
);
3284 ordered
= btrfs_lookup_ordered_extent(inode
, start
);
3287 unlock_extent(tree
, start
, end
);
3288 btrfs_start_ordered_extent(inode
, ordered
, 1);
3289 btrfs_put_ordered_extent(ordered
);
3292 ret
= __do_readpage(tree
, page
, get_extent
, NULL
, bio
, mirror_num
,
3293 bio_flags
, rw
, NULL
);
3297 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
3298 get_extent_t
*get_extent
, int mirror_num
)
3300 struct bio
*bio
= NULL
;
3301 unsigned long bio_flags
= 0;
3304 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, mirror_num
,
3307 ret
= submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
3311 int extent_read_full_page_nolock(struct extent_io_tree
*tree
, struct page
*page
,
3312 get_extent_t
*get_extent
, int mirror_num
)
3314 struct bio
*bio
= NULL
;
3315 unsigned long bio_flags
= EXTENT_BIO_PARENT_LOCKED
;
3318 ret
= __do_readpage(tree
, page
, get_extent
, NULL
, &bio
, mirror_num
,
3319 &bio_flags
, READ
, NULL
);
3321 ret
= submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
3325 static noinline
void update_nr_written(struct page
*page
,
3326 struct writeback_control
*wbc
,
3327 unsigned long nr_written
)
3329 wbc
->nr_to_write
-= nr_written
;
3330 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 &&
3331 wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
))
3332 page
->mapping
->writeback_index
= page
->index
+ nr_written
;
3336 * helper for __extent_writepage, doing all of the delayed allocation setup.
3338 * This returns 1 if our fill_delalloc function did all the work required
3339 * to write the page (copy into inline extent). In this case the IO has
3340 * been started and the page is already unlocked.
3342 * This returns 0 if all went well (page still locked)
3343 * This returns < 0 if there were errors (page still locked)
3345 static noinline_for_stack
int writepage_delalloc(struct inode
*inode
,
3346 struct page
*page
, struct writeback_control
*wbc
,
3347 struct extent_page_data
*epd
,
3349 unsigned long *nr_written
)
3351 struct extent_io_tree
*tree
= epd
->tree
;
3352 u64 page_end
= delalloc_start
+ PAGE_CACHE_SIZE
- 1;
3354 u64 delalloc_to_write
= 0;
3355 u64 delalloc_end
= 0;
3357 int page_started
= 0;
3359 if (epd
->extent_locked
|| !tree
->ops
|| !tree
->ops
->fill_delalloc
)
3362 while (delalloc_end
< page_end
) {
3363 nr_delalloc
= find_lock_delalloc_range(inode
, tree
,
3367 BTRFS_MAX_EXTENT_SIZE
);
3368 if (nr_delalloc
== 0) {
3369 delalloc_start
= delalloc_end
+ 1;
3372 ret
= tree
->ops
->fill_delalloc(inode
, page
,
3377 /* File system has been set read-only */
3380 /* fill_delalloc should be return < 0 for error
3381 * but just in case, we use > 0 here meaning the
3382 * IO is started, so we don't want to return > 0
3383 * unless things are going well.
3385 ret
= ret
< 0 ? ret
: -EIO
;
3389 * delalloc_end is already one less than the total
3390 * length, so we don't subtract one from
3393 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
3396 delalloc_start
= delalloc_end
+ 1;
3398 if (wbc
->nr_to_write
< delalloc_to_write
) {
3401 if (delalloc_to_write
< thresh
* 2)
3402 thresh
= delalloc_to_write
;
3403 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
3407 /* did the fill delalloc function already unlock and start
3412 * we've unlocked the page, so we can't update
3413 * the mapping's writeback index, just update
3416 wbc
->nr_to_write
-= *nr_written
;
3427 * helper for __extent_writepage. This calls the writepage start hooks,
3428 * and does the loop to map the page into extents and bios.
3430 * We return 1 if the IO is started and the page is unlocked,
3431 * 0 if all went well (page still locked)
3432 * < 0 if there were errors (page still locked)
3434 static noinline_for_stack
int __extent_writepage_io(struct inode
*inode
,
3436 struct writeback_control
*wbc
,
3437 struct extent_page_data
*epd
,
3439 unsigned long nr_written
,
3440 int write_flags
, int *nr_ret
)
3442 struct extent_io_tree
*tree
= epd
->tree
;
3443 u64 start
= page_offset(page
);
3444 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
3451 struct extent_state
*cached_state
= NULL
;
3452 struct extent_map
*em
;
3453 struct block_device
*bdev
;
3454 size_t pg_offset
= 0;
3460 if (tree
->ops
&& tree
->ops
->writepage_start_hook
) {
3461 ret
= tree
->ops
->writepage_start_hook(page
, start
,
3464 /* Fixup worker will requeue */
3466 wbc
->pages_skipped
++;
3468 redirty_page_for_writepage(wbc
, page
);
3470 update_nr_written(page
, wbc
, nr_written
);
3478 * we don't want to touch the inode after unlocking the page,
3479 * so we update the mapping writeback index now
3481 update_nr_written(page
, wbc
, nr_written
+ 1);
3484 if (i_size
<= start
) {
3485 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3486 tree
->ops
->writepage_end_io_hook(page
, start
,
3491 blocksize
= inode
->i_sb
->s_blocksize
;
3493 while (cur
<= end
) {
3495 if (cur
>= i_size
) {
3496 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3497 tree
->ops
->writepage_end_io_hook(page
, cur
,
3501 em
= epd
->get_extent(inode
, page
, pg_offset
, cur
,
3503 if (IS_ERR_OR_NULL(em
)) {
3505 ret
= PTR_ERR_OR_ZERO(em
);
3509 extent_offset
= cur
- em
->start
;
3510 em_end
= extent_map_end(em
);
3511 BUG_ON(em_end
<= cur
);
3513 iosize
= min(em_end
- cur
, end
- cur
+ 1);
3514 iosize
= ALIGN(iosize
, blocksize
);
3515 sector
= (em
->block_start
+ extent_offset
) >> 9;
3517 block_start
= em
->block_start
;
3518 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
3519 free_extent_map(em
);
3523 * compressed and inline extents are written through other
3526 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
3527 block_start
== EXTENT_MAP_INLINE
) {
3529 * end_io notification does not happen here for
3530 * compressed extents
3532 if (!compressed
&& tree
->ops
&&
3533 tree
->ops
->writepage_end_io_hook
)
3534 tree
->ops
->writepage_end_io_hook(page
, cur
,
3537 else if (compressed
) {
3538 /* we don't want to end_page_writeback on
3539 * a compressed extent. this happens
3546 pg_offset
+= iosize
;
3550 if (tree
->ops
&& tree
->ops
->writepage_io_hook
) {
3551 ret
= tree
->ops
->writepage_io_hook(page
, cur
,
3559 unsigned long max_nr
= (i_size
>> PAGE_CACHE_SHIFT
) + 1;
3561 set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
3562 if (!PageWriteback(page
)) {
3563 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
3564 "page %lu not writeback, cur %llu end %llu",
3565 page
->index
, cur
, end
);
3568 ret
= submit_extent_page(write_flags
, tree
, wbc
, page
,
3569 sector
, iosize
, pg_offset
,
3570 bdev
, &epd
->bio
, max_nr
,
3571 end_bio_extent_writepage
,
3577 pg_offset
+= iosize
;
3585 /* drop our reference on any cached states */
3586 free_extent_state(cached_state
);
3591 * the writepage semantics are similar to regular writepage. extent
3592 * records are inserted to lock ranges in the tree, and as dirty areas
3593 * are found, they are marked writeback. Then the lock bits are removed
3594 * and the end_io handler clears the writeback ranges
3596 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
3599 struct inode
*inode
= page
->mapping
->host
;
3600 struct extent_page_data
*epd
= data
;
3601 u64 start
= page_offset(page
);
3602 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
3605 size_t pg_offset
= 0;
3606 loff_t i_size
= i_size_read(inode
);
3607 unsigned long end_index
= i_size
>> PAGE_CACHE_SHIFT
;
3609 unsigned long nr_written
= 0;
3611 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3612 write_flags
= WRITE_SYNC
;
3614 write_flags
= WRITE
;
3616 trace___extent_writepage(page
, inode
, wbc
);
3618 WARN_ON(!PageLocked(page
));
3620 ClearPageError(page
);
3622 pg_offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
3623 if (page
->index
> end_index
||
3624 (page
->index
== end_index
&& !pg_offset
)) {
3625 page
->mapping
->a_ops
->invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
3630 if (page
->index
== end_index
) {
3633 userpage
= kmap_atomic(page
);
3634 memset(userpage
+ pg_offset
, 0,
3635 PAGE_CACHE_SIZE
- pg_offset
);
3636 kunmap_atomic(userpage
);
3637 flush_dcache_page(page
);
3642 set_page_extent_mapped(page
);
3644 ret
= writepage_delalloc(inode
, page
, wbc
, epd
, start
, &nr_written
);
3650 ret
= __extent_writepage_io(inode
, page
, wbc
, epd
,
3651 i_size
, nr_written
, write_flags
, &nr
);
3657 /* make sure the mapping tag for page dirty gets cleared */
3658 set_page_writeback(page
);
3659 end_page_writeback(page
);
3661 if (PageError(page
)) {
3662 ret
= ret
< 0 ? ret
: -EIO
;
3663 end_extent_writepage(page
, ret
, start
, page_end
);
3672 void wait_on_extent_buffer_writeback(struct extent_buffer
*eb
)
3674 wait_on_bit_io(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
,
3675 TASK_UNINTERRUPTIBLE
);
3678 static noinline_for_stack
int
3679 lock_extent_buffer_for_io(struct extent_buffer
*eb
,
3680 struct btrfs_fs_info
*fs_info
,
3681 struct extent_page_data
*epd
)
3683 unsigned long i
, num_pages
;
3687 if (!btrfs_try_tree_write_lock(eb
)) {
3689 flush_write_bio(epd
);
3690 btrfs_tree_lock(eb
);
3693 if (test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
)) {
3694 btrfs_tree_unlock(eb
);
3698 flush_write_bio(epd
);
3702 wait_on_extent_buffer_writeback(eb
);
3703 btrfs_tree_lock(eb
);
3704 if (!test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
))
3706 btrfs_tree_unlock(eb
);
3711 * We need to do this to prevent races in people who check if the eb is
3712 * under IO since we can end up having no IO bits set for a short period
3715 spin_lock(&eb
->refs_lock
);
3716 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3717 set_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3718 spin_unlock(&eb
->refs_lock
);
3719 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3720 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
3722 fs_info
->dirty_metadata_batch
);
3725 spin_unlock(&eb
->refs_lock
);
3728 btrfs_tree_unlock(eb
);
3733 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3734 for (i
= 0; i
< num_pages
; i
++) {
3735 struct page
*p
= eb
->pages
[i
];
3737 if (!trylock_page(p
)) {
3739 flush_write_bio(epd
);
3749 static void end_extent_buffer_writeback(struct extent_buffer
*eb
)
3751 clear_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3752 smp_mb__after_atomic();
3753 wake_up_bit(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
);
3756 static void set_btree_ioerr(struct page
*page
)
3758 struct extent_buffer
*eb
= (struct extent_buffer
*)page
->private;
3759 struct btrfs_inode
*btree_ino
= BTRFS_I(eb
->fs_info
->btree_inode
);
3762 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
))
3766 * If writeback for a btree extent that doesn't belong to a log tree
3767 * failed, increment the counter transaction->eb_write_errors.
3768 * We do this because while the transaction is running and before it's
3769 * committing (when we call filemap_fdata[write|wait]_range against
3770 * the btree inode), we might have
3771 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3772 * returns an error or an error happens during writeback, when we're
3773 * committing the transaction we wouldn't know about it, since the pages
3774 * can be no longer dirty nor marked anymore for writeback (if a
3775 * subsequent modification to the extent buffer didn't happen before the
3776 * transaction commit), which makes filemap_fdata[write|wait]_range not
3777 * able to find the pages tagged with SetPageError at transaction
3778 * commit time. So if this happens we must abort the transaction,
3779 * otherwise we commit a super block with btree roots that point to
3780 * btree nodes/leafs whose content on disk is invalid - either garbage
3781 * or the content of some node/leaf from a past generation that got
3782 * cowed or deleted and is no longer valid.
3784 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3785 * not be enough - we need to distinguish between log tree extents vs
3786 * non-log tree extents, and the next filemap_fdatawait_range() call
3787 * will catch and clear such errors in the mapping - and that call might
3788 * be from a log sync and not from a transaction commit. Also, checking
3789 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3790 * not done and would not be reliable - the eb might have been released
3791 * from memory and reading it back again means that flag would not be
3792 * set (since it's a runtime flag, not persisted on disk).
3794 * Using the flags below in the btree inode also makes us achieve the
3795 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3796 * writeback for all dirty pages and before filemap_fdatawait_range()
3797 * is called, the writeback for all dirty pages had already finished
3798 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3799 * filemap_fdatawait_range() would return success, as it could not know
3800 * that writeback errors happened (the pages were no longer tagged for
3803 switch (eb
->log_index
) {
3805 set_bit(BTRFS_INODE_BTREE_ERR
, &btree_ino
->runtime_flags
);
3808 set_bit(BTRFS_INODE_BTREE_LOG1_ERR
, &btree_ino
->runtime_flags
);
3811 set_bit(BTRFS_INODE_BTREE_LOG2_ERR
, &btree_ino
->runtime_flags
);
3814 BUG(); /* unexpected, logic error */
3818 static void end_bio_extent_buffer_writepage(struct bio
*bio
)
3820 struct bio_vec
*bvec
;
3821 struct extent_buffer
*eb
;
3824 bio_for_each_segment_all(bvec
, bio
, i
) {
3825 struct page
*page
= bvec
->bv_page
;
3827 eb
= (struct extent_buffer
*)page
->private;
3829 done
= atomic_dec_and_test(&eb
->io_pages
);
3831 if (bio
->bi_error
||
3832 test_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
)) {
3833 ClearPageUptodate(page
);
3834 set_btree_ioerr(page
);
3837 end_page_writeback(page
);
3842 end_extent_buffer_writeback(eb
);
3848 static noinline_for_stack
int write_one_eb(struct extent_buffer
*eb
,
3849 struct btrfs_fs_info
*fs_info
,
3850 struct writeback_control
*wbc
,
3851 struct extent_page_data
*epd
)
3853 struct block_device
*bdev
= fs_info
->fs_devices
->latest_bdev
;
3854 struct extent_io_tree
*tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
3855 u64 offset
= eb
->start
;
3856 unsigned long i
, num_pages
;
3857 unsigned long bio_flags
= 0;
3858 int rw
= (epd
->sync_io
? WRITE_SYNC
: WRITE
) | REQ_META
;
3861 clear_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
);
3862 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3863 atomic_set(&eb
->io_pages
, num_pages
);
3864 if (btrfs_header_owner(eb
) == BTRFS_TREE_LOG_OBJECTID
)
3865 bio_flags
= EXTENT_BIO_TREE_LOG
;
3867 for (i
= 0; i
< num_pages
; i
++) {
3868 struct page
*p
= eb
->pages
[i
];
3870 clear_page_dirty_for_io(p
);
3871 set_page_writeback(p
);
3872 ret
= submit_extent_page(rw
, tree
, wbc
, p
, offset
>> 9,
3873 PAGE_CACHE_SIZE
, 0, bdev
, &epd
->bio
,
3874 -1, end_bio_extent_buffer_writepage
,
3875 0, epd
->bio_flags
, bio_flags
, false);
3876 epd
->bio_flags
= bio_flags
;
3879 end_page_writeback(p
);
3880 if (atomic_sub_and_test(num_pages
- i
, &eb
->io_pages
))
3881 end_extent_buffer_writeback(eb
);
3885 offset
+= PAGE_CACHE_SIZE
;
3886 update_nr_written(p
, wbc
, 1);
3890 if (unlikely(ret
)) {
3891 for (; i
< num_pages
; i
++) {
3892 struct page
*p
= eb
->pages
[i
];
3893 clear_page_dirty_for_io(p
);
3901 int btree_write_cache_pages(struct address_space
*mapping
,
3902 struct writeback_control
*wbc
)
3904 struct extent_io_tree
*tree
= &BTRFS_I(mapping
->host
)->io_tree
;
3905 struct btrfs_fs_info
*fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
3906 struct extent_buffer
*eb
, *prev_eb
= NULL
;
3907 struct extent_page_data epd
= {
3911 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3916 int nr_to_write_done
= 0;
3917 struct pagevec pvec
;
3920 pgoff_t end
; /* Inclusive */
3924 pagevec_init(&pvec
, 0);
3925 if (wbc
->range_cyclic
) {
3926 index
= mapping
->writeback_index
; /* Start from prev offset */
3929 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
3930 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
3933 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3934 tag
= PAGECACHE_TAG_TOWRITE
;
3936 tag
= PAGECACHE_TAG_DIRTY
;
3938 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3939 tag_pages_for_writeback(mapping
, index
, end
);
3940 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3941 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
3942 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
3946 for (i
= 0; i
< nr_pages
; i
++) {
3947 struct page
*page
= pvec
.pages
[i
];
3949 if (!PagePrivate(page
))
3952 if (!wbc
->range_cyclic
&& page
->index
> end
) {
3957 spin_lock(&mapping
->private_lock
);
3958 if (!PagePrivate(page
)) {
3959 spin_unlock(&mapping
->private_lock
);
3963 eb
= (struct extent_buffer
*)page
->private;
3966 * Shouldn't happen and normally this would be a BUG_ON
3967 * but no sense in crashing the users box for something
3968 * we can survive anyway.
3971 spin_unlock(&mapping
->private_lock
);
3975 if (eb
== prev_eb
) {
3976 spin_unlock(&mapping
->private_lock
);
3980 ret
= atomic_inc_not_zero(&eb
->refs
);
3981 spin_unlock(&mapping
->private_lock
);
3986 ret
= lock_extent_buffer_for_io(eb
, fs_info
, &epd
);
3988 free_extent_buffer(eb
);
3992 ret
= write_one_eb(eb
, fs_info
, wbc
, &epd
);
3995 free_extent_buffer(eb
);
3998 free_extent_buffer(eb
);
4001 * the filesystem may choose to bump up nr_to_write.
4002 * We have to make sure to honor the new nr_to_write
4005 nr_to_write_done
= wbc
->nr_to_write
<= 0;
4007 pagevec_release(&pvec
);
4010 if (!scanned
&& !done
) {
4012 * We hit the last page and there is more work to be done: wrap
4013 * back to the start of the file
4019 flush_write_bio(&epd
);
4024 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4025 * @mapping: address space structure to write
4026 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4027 * @writepage: function called for each page
4028 * @data: data passed to writepage function
4030 * If a page is already under I/O, write_cache_pages() skips it, even
4031 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4032 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4033 * and msync() need to guarantee that all the data which was dirty at the time
4034 * the call was made get new I/O started against them. If wbc->sync_mode is
4035 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4036 * existing IO to complete.
4038 static int extent_write_cache_pages(struct extent_io_tree
*tree
,
4039 struct address_space
*mapping
,
4040 struct writeback_control
*wbc
,
4041 writepage_t writepage
, void *data
,
4042 void (*flush_fn
)(void *))
4044 struct inode
*inode
= mapping
->host
;
4048 int nr_to_write_done
= 0;
4049 struct pagevec pvec
;
4052 pgoff_t end
; /* Inclusive */
4057 * We have to hold onto the inode so that ordered extents can do their
4058 * work when the IO finishes. The alternative to this is failing to add
4059 * an ordered extent if the igrab() fails there and that is a huge pain
4060 * to deal with, so instead just hold onto the inode throughout the
4061 * writepages operation. If it fails here we are freeing up the inode
4062 * anyway and we'd rather not waste our time writing out stuff that is
4063 * going to be truncated anyway.
4068 pagevec_init(&pvec
, 0);
4069 if (wbc
->range_cyclic
) {
4070 index
= mapping
->writeback_index
; /* Start from prev offset */
4073 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
4074 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
4077 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4078 tag
= PAGECACHE_TAG_TOWRITE
;
4080 tag
= PAGECACHE_TAG_DIRTY
;
4082 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4083 tag_pages_for_writeback(mapping
, index
, end
);
4084 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
4085 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
4086 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
4090 for (i
= 0; i
< nr_pages
; i
++) {
4091 struct page
*page
= pvec
.pages
[i
];
4094 * At this point we hold neither mapping->tree_lock nor
4095 * lock on the page itself: the page may be truncated or
4096 * invalidated (changing page->mapping to NULL), or even
4097 * swizzled back from swapper_space to tmpfs file
4100 if (!trylock_page(page
)) {
4105 if (unlikely(page
->mapping
!= mapping
)) {
4110 if (!wbc
->range_cyclic
&& page
->index
> end
) {
4116 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
4117 if (PageWriteback(page
))
4119 wait_on_page_writeback(page
);
4122 if (PageWriteback(page
) ||
4123 !clear_page_dirty_for_io(page
)) {
4128 ret
= (*writepage
)(page
, wbc
, data
);
4130 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
)) {
4134 if (!err
&& ret
< 0)
4138 * the filesystem may choose to bump up nr_to_write.
4139 * We have to make sure to honor the new nr_to_write
4142 nr_to_write_done
= wbc
->nr_to_write
<= 0;
4144 pagevec_release(&pvec
);
4147 if (!scanned
&& !done
&& !err
) {
4149 * We hit the last page and there is more work to be done: wrap
4150 * back to the start of the file
4156 btrfs_add_delayed_iput(inode
);
4160 static void flush_epd_write_bio(struct extent_page_data
*epd
)
4169 ret
= submit_one_bio(rw
, epd
->bio
, 0, epd
->bio_flags
);
4170 BUG_ON(ret
< 0); /* -ENOMEM */
4175 static noinline
void flush_write_bio(void *data
)
4177 struct extent_page_data
*epd
= data
;
4178 flush_epd_write_bio(epd
);
4181 int extent_write_full_page(struct extent_io_tree
*tree
, struct page
*page
,
4182 get_extent_t
*get_extent
,
4183 struct writeback_control
*wbc
)
4186 struct extent_page_data epd
= {
4189 .get_extent
= get_extent
,
4191 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4195 ret
= __extent_writepage(page
, wbc
, &epd
);
4197 flush_epd_write_bio(&epd
);
4201 int extent_write_locked_range(struct extent_io_tree
*tree
, struct inode
*inode
,
4202 u64 start
, u64 end
, get_extent_t
*get_extent
,
4206 struct address_space
*mapping
= inode
->i_mapping
;
4208 unsigned long nr_pages
= (end
- start
+ PAGE_CACHE_SIZE
) >>
4211 struct extent_page_data epd
= {
4214 .get_extent
= get_extent
,
4216 .sync_io
= mode
== WB_SYNC_ALL
,
4219 struct writeback_control wbc_writepages
= {
4221 .nr_to_write
= nr_pages
* 2,
4222 .range_start
= start
,
4223 .range_end
= end
+ 1,
4226 while (start
<= end
) {
4227 page
= find_get_page(mapping
, start
>> PAGE_CACHE_SHIFT
);
4228 if (clear_page_dirty_for_io(page
))
4229 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
4231 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
4232 tree
->ops
->writepage_end_io_hook(page
, start
,
4233 start
+ PAGE_CACHE_SIZE
- 1,
4237 page_cache_release(page
);
4238 start
+= PAGE_CACHE_SIZE
;
4241 flush_epd_write_bio(&epd
);
4245 int extent_writepages(struct extent_io_tree
*tree
,
4246 struct address_space
*mapping
,
4247 get_extent_t
*get_extent
,
4248 struct writeback_control
*wbc
)
4251 struct extent_page_data epd
= {
4254 .get_extent
= get_extent
,
4256 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4260 ret
= extent_write_cache_pages(tree
, mapping
, wbc
,
4261 __extent_writepage
, &epd
,
4263 flush_epd_write_bio(&epd
);
4267 int extent_readpages(struct extent_io_tree
*tree
,
4268 struct address_space
*mapping
,
4269 struct list_head
*pages
, unsigned nr_pages
,
4270 get_extent_t get_extent
)
4272 struct bio
*bio
= NULL
;
4274 unsigned long bio_flags
= 0;
4275 struct page
*pagepool
[16];
4277 struct extent_map
*em_cached
= NULL
;
4279 u64 prev_em_start
= (u64
)-1;
4281 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
4282 page
= list_entry(pages
->prev
, struct page
, lru
);
4284 prefetchw(&page
->flags
);
4285 list_del(&page
->lru
);
4286 if (add_to_page_cache_lru(page
, mapping
,
4287 page
->index
, GFP_NOFS
)) {
4288 page_cache_release(page
);
4292 pagepool
[nr
++] = page
;
4293 if (nr
< ARRAY_SIZE(pagepool
))
4295 __extent_readpages(tree
, pagepool
, nr
, get_extent
, &em_cached
,
4296 &bio
, 0, &bio_flags
, READ
, &prev_em_start
);
4300 __extent_readpages(tree
, pagepool
, nr
, get_extent
, &em_cached
,
4301 &bio
, 0, &bio_flags
, READ
, &prev_em_start
);
4304 free_extent_map(em_cached
);
4306 BUG_ON(!list_empty(pages
));
4308 return submit_one_bio(READ
, bio
, 0, bio_flags
);
4313 * basic invalidatepage code, this waits on any locked or writeback
4314 * ranges corresponding to the page, and then deletes any extent state
4315 * records from the tree
4317 int extent_invalidatepage(struct extent_io_tree
*tree
,
4318 struct page
*page
, unsigned long offset
)
4320 struct extent_state
*cached_state
= NULL
;
4321 u64 start
= page_offset(page
);
4322 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
4323 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
4325 start
+= ALIGN(offset
, blocksize
);
4329 lock_extent_bits(tree
, start
, end
, 0, &cached_state
);
4330 wait_on_page_writeback(page
);
4331 clear_extent_bit(tree
, start
, end
,
4332 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
4333 EXTENT_DO_ACCOUNTING
,
4334 1, 1, &cached_state
, GFP_NOFS
);
4339 * a helper for releasepage, this tests for areas of the page that
4340 * are locked or under IO and drops the related state bits if it is safe
4343 static int try_release_extent_state(struct extent_map_tree
*map
,
4344 struct extent_io_tree
*tree
,
4345 struct page
*page
, gfp_t mask
)
4347 u64 start
= page_offset(page
);
4348 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
4351 if (test_range_bit(tree
, start
, end
,
4352 EXTENT_IOBITS
, 0, NULL
))
4355 if ((mask
& GFP_NOFS
) == GFP_NOFS
)
4358 * at this point we can safely clear everything except the
4359 * locked bit and the nodatasum bit
4361 ret
= clear_extent_bit(tree
, start
, end
,
4362 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
4365 /* if clear_extent_bit failed for enomem reasons,
4366 * we can't allow the release to continue.
4377 * a helper for releasepage. As long as there are no locked extents
4378 * in the range corresponding to the page, both state records and extent
4379 * map records are removed
4381 int try_release_extent_mapping(struct extent_map_tree
*map
,
4382 struct extent_io_tree
*tree
, struct page
*page
,
4385 struct extent_map
*em
;
4386 u64 start
= page_offset(page
);
4387 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
4389 if (gfpflags_allow_blocking(mask
) &&
4390 page
->mapping
->host
->i_size
> 16 * 1024 * 1024) {
4392 while (start
<= end
) {
4393 len
= end
- start
+ 1;
4394 write_lock(&map
->lock
);
4395 em
= lookup_extent_mapping(map
, start
, len
);
4397 write_unlock(&map
->lock
);
4400 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
4401 em
->start
!= start
) {
4402 write_unlock(&map
->lock
);
4403 free_extent_map(em
);
4406 if (!test_range_bit(tree
, em
->start
,
4407 extent_map_end(em
) - 1,
4408 EXTENT_LOCKED
| EXTENT_WRITEBACK
,
4410 remove_extent_mapping(map
, em
);
4411 /* once for the rb tree */
4412 free_extent_map(em
);
4414 start
= extent_map_end(em
);
4415 write_unlock(&map
->lock
);
4418 free_extent_map(em
);
4421 return try_release_extent_state(map
, tree
, page
, mask
);
4425 * helper function for fiemap, which doesn't want to see any holes.
4426 * This maps until we find something past 'last'
4428 static struct extent_map
*get_extent_skip_holes(struct inode
*inode
,
4431 get_extent_t
*get_extent
)
4433 u64 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
4434 struct extent_map
*em
;
4441 len
= last
- offset
;
4444 len
= ALIGN(len
, sectorsize
);
4445 em
= get_extent(inode
, NULL
, 0, offset
, len
, 0);
4446 if (IS_ERR_OR_NULL(em
))
4449 /* if this isn't a hole return it */
4450 if (!test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
) &&
4451 em
->block_start
!= EXTENT_MAP_HOLE
) {
4455 /* this is a hole, advance to the next extent */
4456 offset
= extent_map_end(em
);
4457 free_extent_map(em
);
4464 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4465 __u64 start
, __u64 len
, get_extent_t
*get_extent
)
4469 u64 max
= start
+ len
;
4473 u64 last_for_get_extent
= 0;
4475 u64 isize
= i_size_read(inode
);
4476 struct btrfs_key found_key
;
4477 struct extent_map
*em
= NULL
;
4478 struct extent_state
*cached_state
= NULL
;
4479 struct btrfs_path
*path
;
4480 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4489 path
= btrfs_alloc_path();
4492 path
->leave_spinning
= 1;
4494 start
= round_down(start
, BTRFS_I(inode
)->root
->sectorsize
);
4495 len
= round_up(max
, BTRFS_I(inode
)->root
->sectorsize
) - start
;
4498 * lookup the last file extent. We're not using i_size here
4499 * because there might be preallocation past i_size
4501 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, btrfs_ino(inode
), -1,
4504 btrfs_free_path(path
);
4509 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
4510 found_type
= found_key
.type
;
4512 /* No extents, but there might be delalloc bits */
4513 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4514 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4515 /* have to trust i_size as the end */
4517 last_for_get_extent
= isize
;
4520 * remember the start of the last extent. There are a
4521 * bunch of different factors that go into the length of the
4522 * extent, so its much less complex to remember where it started
4524 last
= found_key
.offset
;
4525 last_for_get_extent
= last
+ 1;
4527 btrfs_release_path(path
);
4530 * we might have some extents allocated but more delalloc past those
4531 * extents. so, we trust isize unless the start of the last extent is
4536 last_for_get_extent
= isize
;
4539 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1, 0,
4542 em
= get_extent_skip_holes(inode
, start
, last_for_get_extent
,
4552 u64 offset_in_extent
= 0;
4554 /* break if the extent we found is outside the range */
4555 if (em
->start
>= max
|| extent_map_end(em
) < off
)
4559 * get_extent may return an extent that starts before our
4560 * requested range. We have to make sure the ranges
4561 * we return to fiemap always move forward and don't
4562 * overlap, so adjust the offsets here
4564 em_start
= max(em
->start
, off
);
4567 * record the offset from the start of the extent
4568 * for adjusting the disk offset below. Only do this if the
4569 * extent isn't compressed since our in ram offset may be past
4570 * what we have actually allocated on disk.
4572 if (!test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4573 offset_in_extent
= em_start
- em
->start
;
4574 em_end
= extent_map_end(em
);
4575 em_len
= em_end
- em_start
;
4580 * bump off for our next call to get_extent
4582 off
= extent_map_end(em
);
4586 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
4588 flags
|= FIEMAP_EXTENT_LAST
;
4589 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
4590 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
4591 FIEMAP_EXTENT_NOT_ALIGNED
);
4592 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
4593 flags
|= (FIEMAP_EXTENT_DELALLOC
|
4594 FIEMAP_EXTENT_UNKNOWN
);
4595 } else if (fieinfo
->fi_extents_max
) {
4596 u64 bytenr
= em
->block_start
-
4597 (em
->start
- em
->orig_start
);
4599 disko
= em
->block_start
+ offset_in_extent
;
4602 * As btrfs supports shared space, this information
4603 * can be exported to userspace tools via
4604 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4605 * then we're just getting a count and we can skip the
4608 ret
= btrfs_check_shared(NULL
, root
->fs_info
,
4610 btrfs_ino(inode
), bytenr
);
4614 flags
|= FIEMAP_EXTENT_SHARED
;
4617 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4618 flags
|= FIEMAP_EXTENT_ENCODED
;
4619 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4620 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
4622 free_extent_map(em
);
4624 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
4625 (last
== (u64
)-1 && isize
<= em_end
)) {
4626 flags
|= FIEMAP_EXTENT_LAST
;
4630 /* now scan forward to see if this is really the last extent. */
4631 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
,
4638 flags
|= FIEMAP_EXTENT_LAST
;
4641 ret
= fiemap_fill_next_extent(fieinfo
, em_start
, disko
,
4650 free_extent_map(em
);
4652 btrfs_free_path(path
);
4653 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4654 &cached_state
, GFP_NOFS
);
4658 static void __free_extent_buffer(struct extent_buffer
*eb
)
4660 btrfs_leak_debug_del(&eb
->leak_list
);
4661 kmem_cache_free(extent_buffer_cache
, eb
);
4664 int extent_buffer_under_io(struct extent_buffer
*eb
)
4666 return (atomic_read(&eb
->io_pages
) ||
4667 test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
) ||
4668 test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4672 * Helper for releasing extent buffer page.
4674 static void btrfs_release_extent_buffer_page(struct extent_buffer
*eb
)
4676 unsigned long index
;
4678 int mapped
= !test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4680 BUG_ON(extent_buffer_under_io(eb
));
4682 index
= num_extent_pages(eb
->start
, eb
->len
);
4688 page
= eb
->pages
[index
];
4692 spin_lock(&page
->mapping
->private_lock
);
4694 * We do this since we'll remove the pages after we've
4695 * removed the eb from the radix tree, so we could race
4696 * and have this page now attached to the new eb. So
4697 * only clear page_private if it's still connected to
4700 if (PagePrivate(page
) &&
4701 page
->private == (unsigned long)eb
) {
4702 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4703 BUG_ON(PageDirty(page
));
4704 BUG_ON(PageWriteback(page
));
4706 * We need to make sure we haven't be attached
4709 ClearPagePrivate(page
);
4710 set_page_private(page
, 0);
4711 /* One for the page private */
4712 page_cache_release(page
);
4716 spin_unlock(&page
->mapping
->private_lock
);
4718 /* One for when we alloced the page */
4719 page_cache_release(page
);
4720 } while (index
!= 0);
4724 * Helper for releasing the extent buffer.
4726 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
4728 btrfs_release_extent_buffer_page(eb
);
4729 __free_extent_buffer(eb
);
4732 static struct extent_buffer
*
4733 __alloc_extent_buffer(struct btrfs_fs_info
*fs_info
, u64 start
,
4736 struct extent_buffer
*eb
= NULL
;
4738 eb
= kmem_cache_zalloc(extent_buffer_cache
, GFP_NOFS
|__GFP_NOFAIL
);
4741 eb
->fs_info
= fs_info
;
4743 rwlock_init(&eb
->lock
);
4744 atomic_set(&eb
->write_locks
, 0);
4745 atomic_set(&eb
->read_locks
, 0);
4746 atomic_set(&eb
->blocking_readers
, 0);
4747 atomic_set(&eb
->blocking_writers
, 0);
4748 atomic_set(&eb
->spinning_readers
, 0);
4749 atomic_set(&eb
->spinning_writers
, 0);
4750 eb
->lock_nested
= 0;
4751 init_waitqueue_head(&eb
->write_lock_wq
);
4752 init_waitqueue_head(&eb
->read_lock_wq
);
4754 btrfs_leak_debug_add(&eb
->leak_list
, &buffers
);
4756 spin_lock_init(&eb
->refs_lock
);
4757 atomic_set(&eb
->refs
, 1);
4758 atomic_set(&eb
->io_pages
, 0);
4761 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4763 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4764 > MAX_INLINE_EXTENT_BUFFER_SIZE
);
4765 BUG_ON(len
> MAX_INLINE_EXTENT_BUFFER_SIZE
);
4770 struct extent_buffer
*btrfs_clone_extent_buffer(struct extent_buffer
*src
)
4774 struct extent_buffer
*new;
4775 unsigned long num_pages
= num_extent_pages(src
->start
, src
->len
);
4777 new = __alloc_extent_buffer(src
->fs_info
, src
->start
, src
->len
);
4781 for (i
= 0; i
< num_pages
; i
++) {
4782 p
= alloc_page(GFP_NOFS
);
4784 btrfs_release_extent_buffer(new);
4787 attach_extent_buffer_page(new, p
);
4788 WARN_ON(PageDirty(p
));
4793 copy_extent_buffer(new, src
, 0, 0, src
->len
);
4794 set_bit(EXTENT_BUFFER_UPTODATE
, &new->bflags
);
4795 set_bit(EXTENT_BUFFER_DUMMY
, &new->bflags
);
4800 struct extent_buffer
*alloc_dummy_extent_buffer(struct btrfs_fs_info
*fs_info
,
4803 struct extent_buffer
*eb
;
4805 unsigned long num_pages
;
4810 * Called only from tests that don't always have a fs_info
4811 * available, but we know that nodesize is 4096
4815 len
= fs_info
->tree_root
->nodesize
;
4817 num_pages
= num_extent_pages(0, len
);
4819 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
4823 for (i
= 0; i
< num_pages
; i
++) {
4824 eb
->pages
[i
] = alloc_page(GFP_NOFS
);
4828 set_extent_buffer_uptodate(eb
);
4829 btrfs_set_header_nritems(eb
, 0);
4830 set_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4835 __free_page(eb
->pages
[i
- 1]);
4836 __free_extent_buffer(eb
);
4840 static void check_buffer_tree_ref(struct extent_buffer
*eb
)
4843 /* the ref bit is tricky. We have to make sure it is set
4844 * if we have the buffer dirty. Otherwise the
4845 * code to free a buffer can end up dropping a dirty
4848 * Once the ref bit is set, it won't go away while the
4849 * buffer is dirty or in writeback, and it also won't
4850 * go away while we have the reference count on the
4853 * We can't just set the ref bit without bumping the
4854 * ref on the eb because free_extent_buffer might
4855 * see the ref bit and try to clear it. If this happens
4856 * free_extent_buffer might end up dropping our original
4857 * ref by mistake and freeing the page before we are able
4858 * to add one more ref.
4860 * So bump the ref count first, then set the bit. If someone
4861 * beat us to it, drop the ref we added.
4863 refs
= atomic_read(&eb
->refs
);
4864 if (refs
>= 2 && test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4867 spin_lock(&eb
->refs_lock
);
4868 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4869 atomic_inc(&eb
->refs
);
4870 spin_unlock(&eb
->refs_lock
);
4873 static void mark_extent_buffer_accessed(struct extent_buffer
*eb
,
4874 struct page
*accessed
)
4876 unsigned long num_pages
, i
;
4878 check_buffer_tree_ref(eb
);
4880 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4881 for (i
= 0; i
< num_pages
; i
++) {
4882 struct page
*p
= eb
->pages
[i
];
4885 mark_page_accessed(p
);
4889 struct extent_buffer
*find_extent_buffer(struct btrfs_fs_info
*fs_info
,
4892 struct extent_buffer
*eb
;
4895 eb
= radix_tree_lookup(&fs_info
->buffer_radix
,
4896 start
>> PAGE_CACHE_SHIFT
);
4897 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
4900 * Lock our eb's refs_lock to avoid races with
4901 * free_extent_buffer. When we get our eb it might be flagged
4902 * with EXTENT_BUFFER_STALE and another task running
4903 * free_extent_buffer might have seen that flag set,
4904 * eb->refs == 2, that the buffer isn't under IO (dirty and
4905 * writeback flags not set) and it's still in the tree (flag
4906 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4907 * of decrementing the extent buffer's reference count twice.
4908 * So here we could race and increment the eb's reference count,
4909 * clear its stale flag, mark it as dirty and drop our reference
4910 * before the other task finishes executing free_extent_buffer,
4911 * which would later result in an attempt to free an extent
4912 * buffer that is dirty.
4914 if (test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
)) {
4915 spin_lock(&eb
->refs_lock
);
4916 spin_unlock(&eb
->refs_lock
);
4918 mark_extent_buffer_accessed(eb
, NULL
);
4926 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4927 struct extent_buffer
*alloc_test_extent_buffer(struct btrfs_fs_info
*fs_info
,
4930 struct extent_buffer
*eb
, *exists
= NULL
;
4933 eb
= find_extent_buffer(fs_info
, start
);
4936 eb
= alloc_dummy_extent_buffer(fs_info
, start
);
4939 eb
->fs_info
= fs_info
;
4941 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
4944 spin_lock(&fs_info
->buffer_lock
);
4945 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
4946 start
>> PAGE_CACHE_SHIFT
, eb
);
4947 spin_unlock(&fs_info
->buffer_lock
);
4948 radix_tree_preload_end();
4949 if (ret
== -EEXIST
) {
4950 exists
= find_extent_buffer(fs_info
, start
);
4956 check_buffer_tree_ref(eb
);
4957 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
4960 * We will free dummy extent buffer's if they come into
4961 * free_extent_buffer with a ref count of 2, but if we are using this we
4962 * want the buffers to stay in memory until we're done with them, so
4963 * bump the ref count again.
4965 atomic_inc(&eb
->refs
);
4968 btrfs_release_extent_buffer(eb
);
4973 struct extent_buffer
*alloc_extent_buffer(struct btrfs_fs_info
*fs_info
,
4976 unsigned long len
= fs_info
->tree_root
->nodesize
;
4977 unsigned long num_pages
= num_extent_pages(start
, len
);
4979 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
4980 struct extent_buffer
*eb
;
4981 struct extent_buffer
*exists
= NULL
;
4983 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
4987 eb
= find_extent_buffer(fs_info
, start
);
4991 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
4995 for (i
= 0; i
< num_pages
; i
++, index
++) {
4996 p
= find_or_create_page(mapping
, index
, GFP_NOFS
|__GFP_NOFAIL
);
5000 spin_lock(&mapping
->private_lock
);
5001 if (PagePrivate(p
)) {
5003 * We could have already allocated an eb for this page
5004 * and attached one so lets see if we can get a ref on
5005 * the existing eb, and if we can we know it's good and
5006 * we can just return that one, else we know we can just
5007 * overwrite page->private.
5009 exists
= (struct extent_buffer
*)p
->private;
5010 if (atomic_inc_not_zero(&exists
->refs
)) {
5011 spin_unlock(&mapping
->private_lock
);
5013 page_cache_release(p
);
5014 mark_extent_buffer_accessed(exists
, p
);
5020 * Do this so attach doesn't complain and we need to
5021 * drop the ref the old guy had.
5023 ClearPagePrivate(p
);
5024 WARN_ON(PageDirty(p
));
5025 page_cache_release(p
);
5027 attach_extent_buffer_page(eb
, p
);
5028 spin_unlock(&mapping
->private_lock
);
5029 WARN_ON(PageDirty(p
));
5031 if (!PageUptodate(p
))
5035 * see below about how we avoid a nasty race with release page
5036 * and why we unlock later
5040 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5042 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
5046 spin_lock(&fs_info
->buffer_lock
);
5047 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
5048 start
>> PAGE_CACHE_SHIFT
, eb
);
5049 spin_unlock(&fs_info
->buffer_lock
);
5050 radix_tree_preload_end();
5051 if (ret
== -EEXIST
) {
5052 exists
= find_extent_buffer(fs_info
, start
);
5058 /* add one reference for the tree */
5059 check_buffer_tree_ref(eb
);
5060 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
5063 * there is a race where release page may have
5064 * tried to find this extent buffer in the radix
5065 * but failed. It will tell the VM it is safe to
5066 * reclaim the, and it will clear the page private bit.
5067 * We must make sure to set the page private bit properly
5068 * after the extent buffer is in the radix tree so
5069 * it doesn't get lost
5071 SetPageChecked(eb
->pages
[0]);
5072 for (i
= 1; i
< num_pages
; i
++) {
5074 ClearPageChecked(p
);
5077 unlock_page(eb
->pages
[0]);
5081 WARN_ON(!atomic_dec_and_test(&eb
->refs
));
5082 for (i
= 0; i
< num_pages
; i
++) {
5084 unlock_page(eb
->pages
[i
]);
5087 btrfs_release_extent_buffer(eb
);
5091 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
5093 struct extent_buffer
*eb
=
5094 container_of(head
, struct extent_buffer
, rcu_head
);
5096 __free_extent_buffer(eb
);
5099 /* Expects to have eb->eb_lock already held */
5100 static int release_extent_buffer(struct extent_buffer
*eb
)
5102 WARN_ON(atomic_read(&eb
->refs
) == 0);
5103 if (atomic_dec_and_test(&eb
->refs
)) {
5104 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
)) {
5105 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
5107 spin_unlock(&eb
->refs_lock
);
5109 spin_lock(&fs_info
->buffer_lock
);
5110 radix_tree_delete(&fs_info
->buffer_radix
,
5111 eb
->start
>> PAGE_CACHE_SHIFT
);
5112 spin_unlock(&fs_info
->buffer_lock
);
5114 spin_unlock(&eb
->refs_lock
);
5117 /* Should be safe to release our pages at this point */
5118 btrfs_release_extent_buffer_page(eb
);
5119 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5120 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
))) {
5121 __free_extent_buffer(eb
);
5125 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);
5128 spin_unlock(&eb
->refs_lock
);
5133 void free_extent_buffer(struct extent_buffer
*eb
)
5141 refs
= atomic_read(&eb
->refs
);
5144 old
= atomic_cmpxchg(&eb
->refs
, refs
, refs
- 1);
5149 spin_lock(&eb
->refs_lock
);
5150 if (atomic_read(&eb
->refs
) == 2 &&
5151 test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
))
5152 atomic_dec(&eb
->refs
);
5154 if (atomic_read(&eb
->refs
) == 2 &&
5155 test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
) &&
5156 !extent_buffer_under_io(eb
) &&
5157 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5158 atomic_dec(&eb
->refs
);
5161 * I know this is terrible, but it's temporary until we stop tracking
5162 * the uptodate bits and such for the extent buffers.
5164 release_extent_buffer(eb
);
5167 void free_extent_buffer_stale(struct extent_buffer
*eb
)
5172 spin_lock(&eb
->refs_lock
);
5173 set_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
);
5175 if (atomic_read(&eb
->refs
) == 2 && !extent_buffer_under_io(eb
) &&
5176 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5177 atomic_dec(&eb
->refs
);
5178 release_extent_buffer(eb
);
5181 void clear_extent_buffer_dirty(struct extent_buffer
*eb
)
5184 unsigned long num_pages
;
5187 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5189 for (i
= 0; i
< num_pages
; i
++) {
5190 page
= eb
->pages
[i
];
5191 if (!PageDirty(page
))
5195 WARN_ON(!PagePrivate(page
));
5197 clear_page_dirty_for_io(page
);
5198 spin_lock_irq(&page
->mapping
->tree_lock
);
5199 if (!PageDirty(page
)) {
5200 radix_tree_tag_clear(&page
->mapping
->page_tree
,
5202 PAGECACHE_TAG_DIRTY
);
5204 spin_unlock_irq(&page
->mapping
->tree_lock
);
5205 ClearPageError(page
);
5208 WARN_ON(atomic_read(&eb
->refs
) == 0);
5211 int set_extent_buffer_dirty(struct extent_buffer
*eb
)
5214 unsigned long num_pages
;
5217 check_buffer_tree_ref(eb
);
5219 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
5221 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5222 WARN_ON(atomic_read(&eb
->refs
) == 0);
5223 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
));
5225 for (i
= 0; i
< num_pages
; i
++)
5226 set_page_dirty(eb
->pages
[i
]);
5230 int clear_extent_buffer_uptodate(struct extent_buffer
*eb
)
5234 unsigned long num_pages
;
5236 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5237 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5238 for (i
= 0; i
< num_pages
; i
++) {
5239 page
= eb
->pages
[i
];
5241 ClearPageUptodate(page
);
5246 int set_extent_buffer_uptodate(struct extent_buffer
*eb
)
5250 unsigned long num_pages
;
5252 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5253 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5254 for (i
= 0; i
< num_pages
; i
++) {
5255 page
= eb
->pages
[i
];
5256 SetPageUptodate(page
);
5261 int extent_buffer_uptodate(struct extent_buffer
*eb
)
5263 return test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5266 int read_extent_buffer_pages(struct extent_io_tree
*tree
,
5267 struct extent_buffer
*eb
, u64 start
, int wait
,
5268 get_extent_t
*get_extent
, int mirror_num
)
5271 unsigned long start_i
;
5275 int locked_pages
= 0;
5276 int all_uptodate
= 1;
5277 unsigned long num_pages
;
5278 unsigned long num_reads
= 0;
5279 struct bio
*bio
= NULL
;
5280 unsigned long bio_flags
= 0;
5282 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
5286 WARN_ON(start
< eb
->start
);
5287 start_i
= (start
>> PAGE_CACHE_SHIFT
) -
5288 (eb
->start
>> PAGE_CACHE_SHIFT
);
5293 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5294 for (i
= start_i
; i
< num_pages
; i
++) {
5295 page
= eb
->pages
[i
];
5296 if (wait
== WAIT_NONE
) {
5297 if (!trylock_page(page
))
5303 if (!PageUptodate(page
)) {
5310 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5314 clear_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
5315 eb
->read_mirror
= 0;
5316 atomic_set(&eb
->io_pages
, num_reads
);
5317 for (i
= start_i
; i
< num_pages
; i
++) {
5318 page
= eb
->pages
[i
];
5319 if (!PageUptodate(page
)) {
5320 ClearPageError(page
);
5321 err
= __extent_read_full_page(tree
, page
,
5323 mirror_num
, &bio_flags
,
5333 err
= submit_one_bio(READ
| REQ_META
, bio
, mirror_num
,
5339 if (ret
|| wait
!= WAIT_COMPLETE
)
5342 for (i
= start_i
; i
< num_pages
; i
++) {
5343 page
= eb
->pages
[i
];
5344 wait_on_page_locked(page
);
5345 if (!PageUptodate(page
))
5353 while (locked_pages
> 0) {
5354 page
= eb
->pages
[i
];
5362 void read_extent_buffer(struct extent_buffer
*eb
, void *dstv
,
5363 unsigned long start
,
5370 char *dst
= (char *)dstv
;
5371 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5372 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5374 WARN_ON(start
> eb
->len
);
5375 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5377 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5380 page
= eb
->pages
[i
];
5382 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
5383 kaddr
= page_address(page
);
5384 memcpy(dst
, kaddr
+ offset
, cur
);
5393 int read_extent_buffer_to_user(struct extent_buffer
*eb
, void __user
*dstv
,
5394 unsigned long start
,
5401 char __user
*dst
= (char __user
*)dstv
;
5402 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5403 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5406 WARN_ON(start
> eb
->len
);
5407 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5409 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5412 page
= eb
->pages
[i
];
5414 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
5415 kaddr
= page_address(page
);
5416 if (copy_to_user(dst
, kaddr
+ offset
, cur
)) {
5430 int map_private_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
5431 unsigned long min_len
, char **map
,
5432 unsigned long *map_start
,
5433 unsigned long *map_len
)
5435 size_t offset
= start
& (PAGE_CACHE_SIZE
- 1);
5438 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5439 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5440 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
5447 offset
= start_offset
;
5451 *map_start
= ((u64
)i
<< PAGE_CACHE_SHIFT
) - start_offset
;
5454 if (start
+ min_len
> eb
->len
) {
5455 WARN(1, KERN_ERR
"btrfs bad mapping eb start %llu len %lu, "
5457 eb
->start
, eb
->len
, start
, min_len
);
5462 kaddr
= page_address(p
);
5463 *map
= kaddr
+ offset
;
5464 *map_len
= PAGE_CACHE_SIZE
- offset
;
5468 int memcmp_extent_buffer(struct extent_buffer
*eb
, const void *ptrv
,
5469 unsigned long start
,
5476 char *ptr
= (char *)ptrv
;
5477 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5478 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5481 WARN_ON(start
> eb
->len
);
5482 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5484 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5487 page
= eb
->pages
[i
];
5489 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
5491 kaddr
= page_address(page
);
5492 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
5504 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
5505 unsigned long start
, unsigned long len
)
5511 char *src
= (char *)srcv
;
5512 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5513 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5515 WARN_ON(start
> eb
->len
);
5516 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5518 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5521 page
= eb
->pages
[i
];
5522 WARN_ON(!PageUptodate(page
));
5524 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
5525 kaddr
= page_address(page
);
5526 memcpy(kaddr
+ offset
, src
, cur
);
5535 void memset_extent_buffer(struct extent_buffer
*eb
, char c
,
5536 unsigned long start
, unsigned long len
)
5542 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5543 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5545 WARN_ON(start
> eb
->len
);
5546 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5548 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5551 page
= eb
->pages
[i
];
5552 WARN_ON(!PageUptodate(page
));
5554 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
5555 kaddr
= page_address(page
);
5556 memset(kaddr
+ offset
, c
, cur
);
5564 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
5565 unsigned long dst_offset
, unsigned long src_offset
,
5568 u64 dst_len
= dst
->len
;
5573 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5574 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
5576 WARN_ON(src
->len
!= dst_len
);
5578 offset
= (start_offset
+ dst_offset
) &
5579 (PAGE_CACHE_SIZE
- 1);
5582 page
= dst
->pages
[i
];
5583 WARN_ON(!PageUptodate(page
));
5585 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
- offset
));
5587 kaddr
= page_address(page
);
5588 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
5597 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
5599 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
5600 return distance
< len
;
5603 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
5604 unsigned long dst_off
, unsigned long src_off
,
5607 char *dst_kaddr
= page_address(dst_page
);
5609 int must_memmove
= 0;
5611 if (dst_page
!= src_page
) {
5612 src_kaddr
= page_address(src_page
);
5614 src_kaddr
= dst_kaddr
;
5615 if (areas_overlap(src_off
, dst_off
, len
))
5620 memmove(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5622 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5625 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5626 unsigned long src_offset
, unsigned long len
)
5629 size_t dst_off_in_page
;
5630 size_t src_off_in_page
;
5631 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5632 unsigned long dst_i
;
5633 unsigned long src_i
;
5635 if (src_offset
+ len
> dst
->len
) {
5636 btrfs_err(dst
->fs_info
,
5637 "memmove bogus src_offset %lu move "
5638 "len %lu dst len %lu", src_offset
, len
, dst
->len
);
5641 if (dst_offset
+ len
> dst
->len
) {
5642 btrfs_err(dst
->fs_info
,
5643 "memmove bogus dst_offset %lu move "
5644 "len %lu dst len %lu", dst_offset
, len
, dst
->len
);
5649 dst_off_in_page
= (start_offset
+ dst_offset
) &
5650 (PAGE_CACHE_SIZE
- 1);
5651 src_off_in_page
= (start_offset
+ src_offset
) &
5652 (PAGE_CACHE_SIZE
- 1);
5654 dst_i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
5655 src_i
= (start_offset
+ src_offset
) >> PAGE_CACHE_SHIFT
;
5657 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
-
5659 cur
= min_t(unsigned long, cur
,
5660 (unsigned long)(PAGE_CACHE_SIZE
- dst_off_in_page
));
5662 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
5663 dst_off_in_page
, src_off_in_page
, cur
);
5671 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5672 unsigned long src_offset
, unsigned long len
)
5675 size_t dst_off_in_page
;
5676 size_t src_off_in_page
;
5677 unsigned long dst_end
= dst_offset
+ len
- 1;
5678 unsigned long src_end
= src_offset
+ len
- 1;
5679 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5680 unsigned long dst_i
;
5681 unsigned long src_i
;
5683 if (src_offset
+ len
> dst
->len
) {
5684 btrfs_err(dst
->fs_info
, "memmove bogus src_offset %lu move "
5685 "len %lu len %lu", src_offset
, len
, dst
->len
);
5688 if (dst_offset
+ len
> dst
->len
) {
5689 btrfs_err(dst
->fs_info
, "memmove bogus dst_offset %lu move "
5690 "len %lu len %lu", dst_offset
, len
, dst
->len
);
5693 if (dst_offset
< src_offset
) {
5694 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
5698 dst_i
= (start_offset
+ dst_end
) >> PAGE_CACHE_SHIFT
;
5699 src_i
= (start_offset
+ src_end
) >> PAGE_CACHE_SHIFT
;
5701 dst_off_in_page
= (start_offset
+ dst_end
) &
5702 (PAGE_CACHE_SIZE
- 1);
5703 src_off_in_page
= (start_offset
+ src_end
) &
5704 (PAGE_CACHE_SIZE
- 1);
5706 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
5707 cur
= min(cur
, dst_off_in_page
+ 1);
5708 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
5709 dst_off_in_page
- cur
+ 1,
5710 src_off_in_page
- cur
+ 1, cur
);
5718 int try_release_extent_buffer(struct page
*page
)
5720 struct extent_buffer
*eb
;
5723 * We need to make sure noboody is attaching this page to an eb right
5726 spin_lock(&page
->mapping
->private_lock
);
5727 if (!PagePrivate(page
)) {
5728 spin_unlock(&page
->mapping
->private_lock
);
5732 eb
= (struct extent_buffer
*)page
->private;
5736 * This is a little awful but should be ok, we need to make sure that
5737 * the eb doesn't disappear out from under us while we're looking at
5740 spin_lock(&eb
->refs_lock
);
5741 if (atomic_read(&eb
->refs
) != 1 || extent_buffer_under_io(eb
)) {
5742 spin_unlock(&eb
->refs_lock
);
5743 spin_unlock(&page
->mapping
->private_lock
);
5746 spin_unlock(&page
->mapping
->private_lock
);
5749 * If tree ref isn't set then we know the ref on this eb is a real ref,
5750 * so just return, this page will likely be freed soon anyway.
5752 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
)) {
5753 spin_unlock(&eb
->refs_lock
);
5757 return release_extent_buffer(eb
);